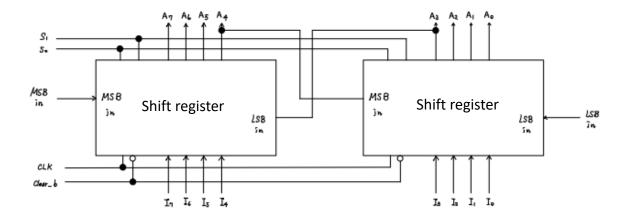
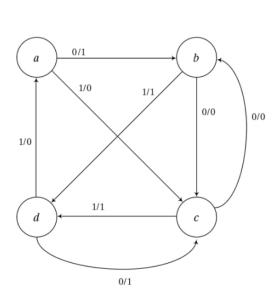
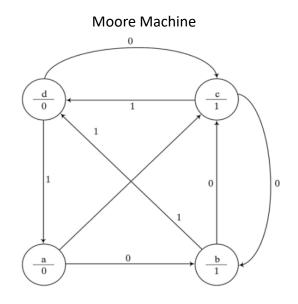

# Logic Design HW6 Solution


1. (20%) Using a 4-bit register, construct a 4-bit shift register that can shift/rotate its content one position to the left or right




| MUX | S2 | S1 | S0 | Operation    |
|-----|----|----|----|--------------|
| 0   | 0  | 0  | 0  | No operation |
| 1   | 0  | 0  | 1  | Load input   |
| 2   | 0  | 1  | 0  | Shift left   |
| 3   | 0  | 1  | 1  | Shift right  |
| 4   | 1  | 0  | 0  | Rotate left  |
| 5   | 1  | 0  | 1  | Rotate right |

2. (20%) Construct an 8-bit universal shift register from 4-bit registers as shown below.3.


| <b>S0</b> | <b>S1</b> | Operation   |
|-----------|-----------|-------------|
| 0         | 0         | No change   |
| 0         | 1         | Shift right |
| 1         | 0         | Shift left  |
| 1         | 1         | Load input  |



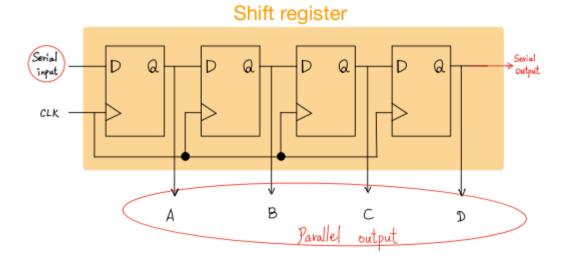
3. (20%) For the following two state diagrams, identify the Mealy Machine and Moore Machine, respectively. Prove or disprove that they are equivalent.

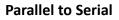


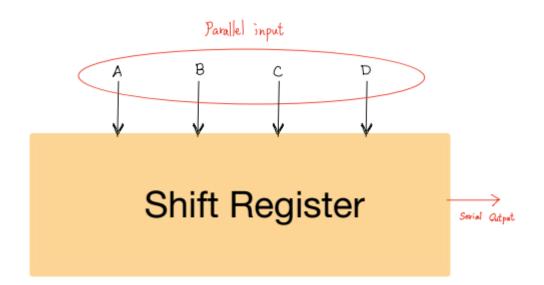
Mealy Machine



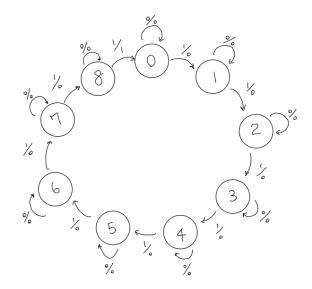
| State | Input | Next state | Output |
|-------|-------|------------|--------|
| а     | 0     | b          | 1      |
| а     | 1     | С          | 0      |
| b     | 0     | С          | 0      |
| b     | 1     | d          | 1      |
| С     | 0     | b          | 0      |
| С     | 1     | d          | 1      |
| d     | 0     | С          | 1      |
| d     | 1     | а          | 0      |


| State | Input | Next state | Output |
|-------|-------|------------|--------|
| а     | 0     | b          | 0      |
| а     | 1     | С          | 0      |
| b     | 0     | с          | 1      |
| b     | 1     | d          | 1      |
| С     | 0     | b          | 1      |
| С     | 1     | d          | 1      |
| d     | 0     | С          | 0      |
| d     | 1     | а          | 0      |


They are not equivalent

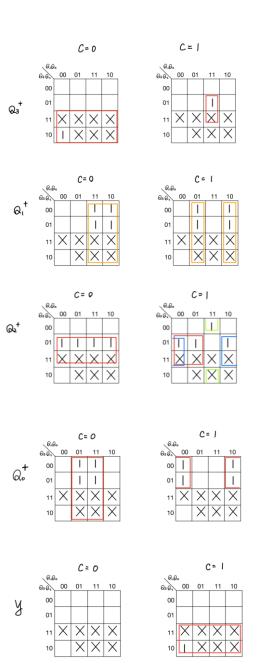

# 4. (10%) What is the difference between serial and parallel transfer? Explain how to convert serial data to parallel and parallel data to serial. What type of register is needed?

| Serial transfer   | Data transmit in order, time $\uparrow$ , area $\downarrow$       |  |  |
|-------------------|-------------------------------------------------------------------|--|--|
| Parallel transfer | Data transmit simultaneously, time $\downarrow$ , area $\uparrow$ |  |  |


#### Serial to parralel








5. (15%) Design a modulo-9 counter using D FFs, with the counting sequence (0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 1, ...), which produces y = 1 if the state '8' is encountered (i.e., when we go from state '8' to state '0'), and y = 0 otherwise. The counter stays in its current state iff C = 0, and makes state transition iff C = 1. You can use only D FFs. Show the state diagram and minimized state table, then derive the simplified output and excitation functions. Finally, show the schematic.



|   | Present State |                |    |                       | Next State |      | Outp | ut (y) |
|---|---------------|----------------|----|-----------------------|------------|------|------|--------|
|   | Q₃            | Q <sub>2</sub> | Q1 | <b>Q</b> <sub>0</sub> | C=0        | C=1  | C=0  | C=1    |
| 0 | 0             | 0              | 0  | 0                     | 0000       | 0001 | 0    | 0      |
| 1 | 0             | 0              | 0  | 1                     | 0001       | 0010 | 0    | 0      |
| 2 | 0             | 0              | 1  | 0                     | 0010       | 0011 | 0    | 0      |
| 3 | 0             | 0              | 1  | 1                     | 0011       | 0100 | 0    | 0      |
| 4 | 0             | 1              | 0  | 0                     | 0100       | 0101 | 0    | 0      |
| 5 | 0             | 1              | 0  | 1                     | 0101       | 0110 | 0    | 0      |
| 6 | 0             | 1              | 1  | 0                     | 0110       | 0111 | 0    | 0      |
| 7 | 0             | 1              | 1  | 1                     | 0111       | 1000 | 0    | 0      |
| 8 | 1             | 0              | 0  | 0                     | 1000       | 0000 | 0    | 1      |

K-Map:

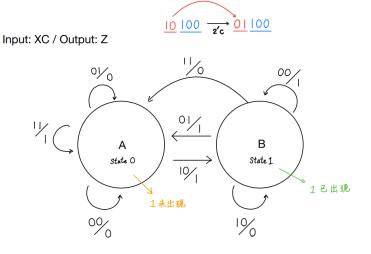


 $Q_3 = Q_3C' + Q_2Q_1Q_0C$ 

 $Q_2 = Q_2Q_1' + Q_2C' + Q_2Q_0' + Q_2'Q_1Q_0C = Q_2 \oplus Q_1Q_0C$ 

 $Q_1 = Q_1C' + Q_1Q_0'C + Q_1Q_0C = Q_1C' + C(Q_1 \oplus Q_0) = Q_1C' + C(Q_1 \oplus Q_0)$ 

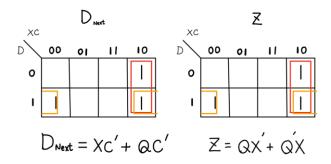
 $Q_0 = Q_0C' + Q_3'Q_0'C$ 


y= Q₃C

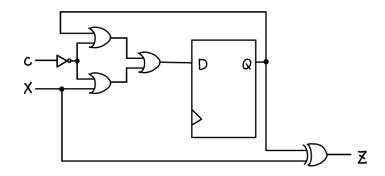
## Circuit diagram:



6. (15%) We are going to design a serial two's-complementor circuit using D FFs. A binary integer of arbitrary length is entered into the input X of the two's-complementor, with LSB first. When a given bit is entered on input X, the corresponding output bit is to appear during the same clock cycle on output Z. When the other input C becomes 1 for one clock cycle, it indicates that a sequence is complete and that the circuit is to be initialized to receive another sequence. Otherwise, C = 0. Give the state diagram and state table for the serial two's-complementor, and follow the design procedure step by step to obtain a circuit implemented by D FFs.


State diagram:




State table:

| Present State | Next State D <sub>Next</sub> / Z |       |       |              |  |  |
|---------------|----------------------------------|-------|-------|--------------|--|--|
| D             | XC=00                            | XC=01 | XC=10 | XC=11        |  |  |
| 0             | 0/0                              | 0/0   | 1/1   | 0/1          |  |  |
| 1             | 1/1                              | 0/1   | 1/0   | 0 <b>/</b> 0 |  |  |

k-map:



## Circuit diagram:

