#### 1呂依凡

(a) .

| Ψ |  |
|---|--|

| index | input |   | computing process |   | out | tput                          |   |   |   |   |
|-------|-------|---|-------------------|---|-----|-------------------------------|---|---|---|---|
|       | X     | у | Z                 | W |     |                               | А | В | С | D |
| 0     | 0     |   | 0                 | 0 | 0   | 0000 + 0011                   | 0 | 0 | 1 | 1 |
| 1     | 0     |   | 0                 | 0 | 1   | 0001 + 0011                   | 0 | 1 | 0 | 0 |
| 2     | 0     |   | 0                 | 1 | 0   | 0010 + 0011                   | 0 | 1 | 0 | 1 |
| 3     | 0     |   | 0                 | 1 | 1   | 0011 + 0011                   | 0 | 1 | 1 | 0 |
| 4     | 0     |   | 1                 | 0 | 0   | 0100 + 0011                   | 0 | 1 | 1 | 1 |
| 5     | 0     |   | 1                 | 0 | 1   | equals to input               | 0 | 1 | 0 | 1 |
| 6     | 0     |   | 1                 | 1 | 0   | equals to input               | 0 | 1 | 1 | 0 |
| 7     | 0     |   | 1                 | 1 | 1   | equals to input               | 0 | 1 | 1 | 1 |
| 8     | 1     |   | 0                 | 0 | 0   | equals to input               | 1 | 0 | 0 | 0 |
| 9     | 1     |   | 0                 | 0 | 1   | equals to input               | 1 | 0 | 0 | 1 |
| 10    | 1     |   | 0                 | 1 | 0   | equals to input               | 1 | 0 | 1 | 0 |
| 11    | 1     |   | 0                 | 1 | 1   | 1011 - 0101 = 1011 + 1010 + 1 | 0 | 1 | 1 | 0 |
| 12    | 1     |   | 1                 | 0 | 0   | 1100 - 0101 = 1100 + 1010 + 1 | 0 | 1 | 1 | 1 |
| 13    | 1     |   | 1                 | 0 | 1   | 1101 - 0101 = 1101 + 1010 + 1 | 1 | 0 | 0 | 0 |
| 14    | 1     |   | 1                 | 1 | 0   | 1110 - 0101 = 1110 + 1010 + 1 | 1 | 0 | 0 | 1 |
| 15    | 1     |   | 1                 | 1 | 1   | 1111 - 0101 = 1111 + 1010 + 1 | 1 | 0 | 1 | 0 |

(b) ~

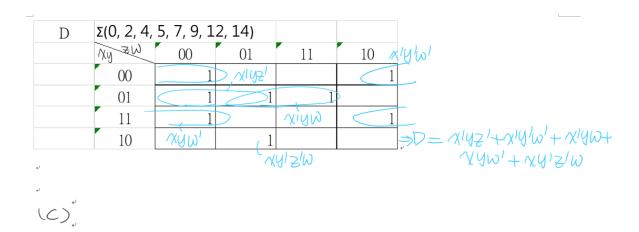
| А | Σ(8,9,10,1 | 3,14,15) |     |    |          |
|---|------------|----------|-----|----|----------|
|   | MY ZW      | 00       | 01  | 11 | 10       |
|   | 00         |          |     |    |          |
|   | 01         |          | XZW |    | X43      |
|   | 11         | XY N     | 1   | 1  | $\sim$ 1 |
|   | 10         |          | 1   |    |          |

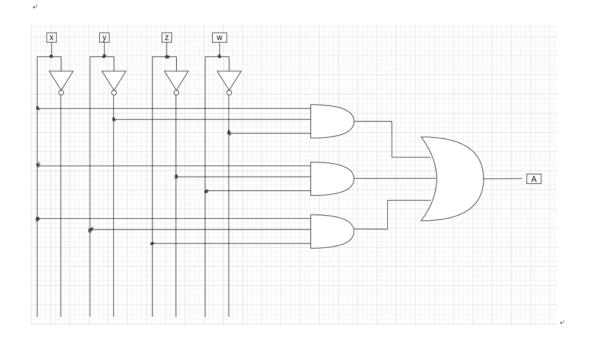
$$\Rightarrow A = \chi Y^{\prime} \omega^{\prime} + \chi z^{\prime} \omega + \chi Y z$$

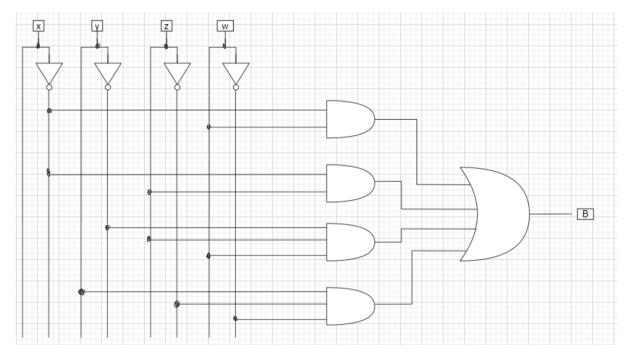
B Σ(1, 2, 3, 4, 5, 6, 7, 11, 12)

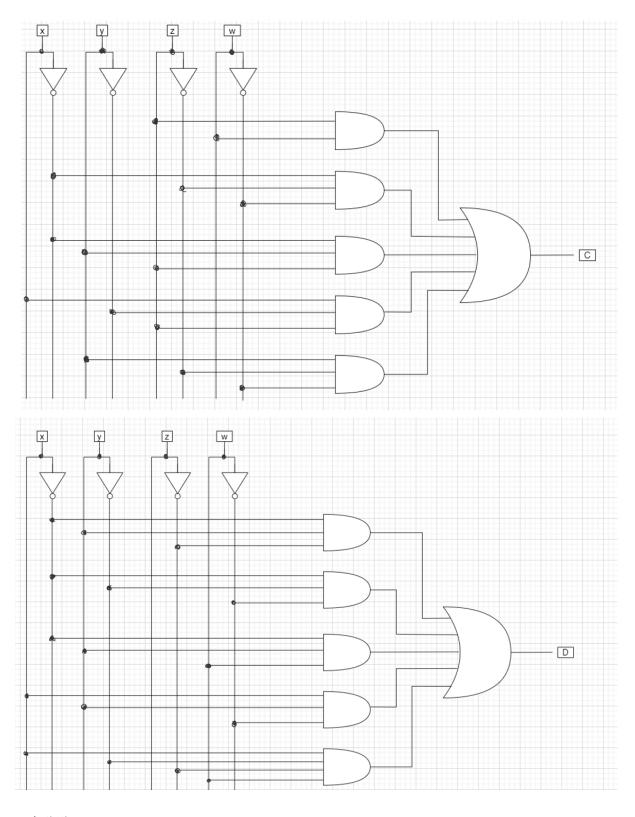
2ω 00 01 11 10

00 1 1 1 1

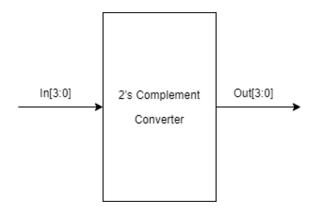

11 1 1 1


10 √2ω 1


| ⇒ }= | $\chi'\omega + \chi'\xi + y$ | 126+75/61 |
|------|------------------------------|-----------|
|      |                              |           |


| С  | Σ(0, 3, 4, | Σ(0, 3, 4, 6, 7, 10, 11, 12, 15) |            |    |       |  |  |  |  |
|----|------------|----------------------------------|------------|----|-------|--|--|--|--|
|    | XY ZW      | 00                               | 01,01      | 11 | 10    |  |  |  |  |
|    | 00         | 1                                | - 1/1 2100 | 1  | x/43  |  |  |  |  |
|    | 01         | 13                               | Sm \       |    | 1     |  |  |  |  |
|    | 11         |                                  |            |    |       |  |  |  |  |
|    | 10         | (yz/w)                           |            | 1  | 1     |  |  |  |  |
| ų. |            |                                  | v          |    | X41/7 |  |  |  |  |

$$\Rightarrow C = 80 + 418101 + 4182 + 418101$$







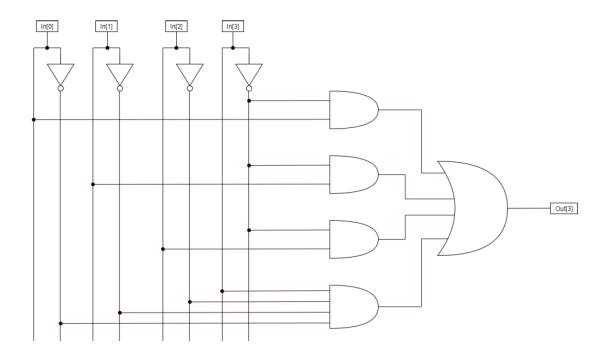



#### 2 陳謙謙



Truth Table of 2's Complement (For signed-input)

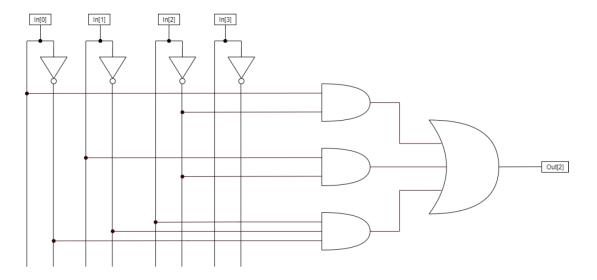
| decimal | In[3] | In[2] | In[1] | In[0] | Out[3] | Out[2] | Out[1] | Out[0] | decimal |
|---------|-------|-------|-------|-------|--------|--------|--------|--------|---------|
| 0       | 0     | 0     | 0     | 0     | 0      | 0      | 0      | 0      | 0       |
| +1      | 0     | 0     | 0     | 1     | 1      | 1      | 1      | 1      | -1      |
| +2      | 0     | 0     | 1     | 0     | 1      | 1      | 1      | 0      | -2      |
| +3      | 0     | 0     | 1     | 1     | 1      | 1      | 0      | 1      | -3      |
| +4      | 0     | 1     | 0     | 0     | 1      | 1      | 0      | 0      | -4      |
| +5      | 0     | 1     | 0     | 1     | 1      | 0      | 1      | 1      | -5      |
| +6      | 0     | 1     | 1     | 0     | 1      | 0      | 1      | 0      | -6      |
| +7      | 0     | 1     | 1     | 1     | 1      | 0      | 0      | 1      | -7      |
| -8      | 1     | 0     | 0     | 0     | 1      | 0      | 0      | 0      | -8      |
| -7      | 1     | 0     | 0     | 1     | 0      | 1      | 1      | 1      | +7      |
| -6      | 1     | 0     | 1     | 0     | 0      | 1      | 1      | 0      | +6      |
| -5      | 1     | 0     | 1     | 1     | 0      | 1      | 0      | 1      | +5      |
| -4      | 1     | 1     | 0     | 0     | 0      | 1      | 0      | 0      | +4      |
| -3      | 1     | 1     | 0     | 1     | 0      | 0      | 1      | 1      | +3      |
| -2      | 1     | 1     | 1     | 0     | 0      | 0      | 1      | 0      | +2      |
| -1      | 1     | 1     | 1     | 1     | 0      | 0      | 0      | 1      | +1      |


Special Case: Since the 2's complement of 1000 is 1000, we the signed input 1000 is decimal -8; however, the 2's complement output 1000 represents decimal -8 rather than +8

#### K-map

## Out[3]

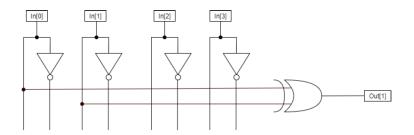
| In[1:0] | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| In[3:2] |    |    |    |    |
| 00      | 0  | 1  | 1  | 1  |
| 01      | 1  | 1  | 1  | 1  |
| 11      | 0  | 0  | 0  | 0  |
| 10      | 1  | 0  | 0  | 0  |


 $Out[3] = In[3]' \ In[0] + In[3]' \ In[1] + In[3]' In[2] + In[3] \ In[2]' \ In[1]' \ In[0]'$ 



#### Out[2]

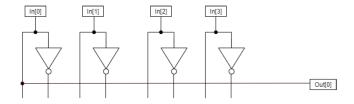
| 0 0.0[2] |    |    |    |    |
|----------|----|----|----|----|
| In[1:0]  | 00 | 01 | 11 | 10 |
| In[3:2]  |    |    |    |    |
| 00       | 0  | 1  | 1  | 1  |
| 01       | 1  | 0  | 0  | 0  |
| 11       | 1  | 0  | 0  | 0  |
| 10       | 0  | 1  | 1  | 1  |
|          |    |    |    |    |


## Out[2] = In[2]' In[0] + In[2]' In[1] + In[2] In[1]' In[0]'

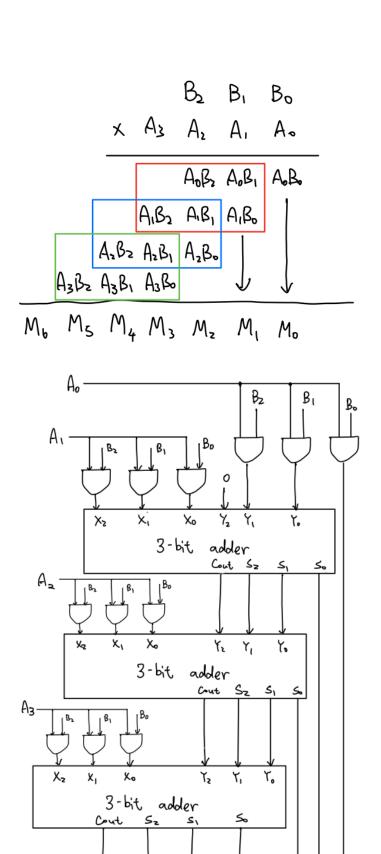


#### Out[1]

| In[1:0] | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| In[3:2] |    |    |    |    |
| 00      | 0  | 1  | 0  | 1  |
| 01      | 0  | 1  | 0  | 1  |
| 11      | 0  | 1  | 0  | 1  |
| 10      | 0  | 1  | 0  | 1  |


#### Out[1] = $ln[1]' ln[0] + ln[1] ln[0]' = ln[1] \oplus ln[0]$




#### Out[0]

| In[1:0] | 00 | 01 | 11 | 10 |
|---------|----|----|----|----|
| In[3:2] |    |    |    |    |
| 00      | 0  | 1  | 1  | 0  |
| 01      | 0  | 1  | 1  | 0  |
| 11      | 0  | 1  | 1  | 0  |
| 10      | 0  | 1  | 1  | 0  |

# Out[0] = In[0]

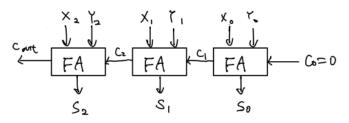


#### 3. 林彥岑



Mβ

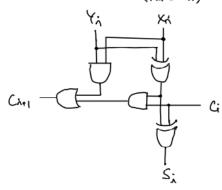
 $M_{\dot{S}}$ 


 $M_4$ 

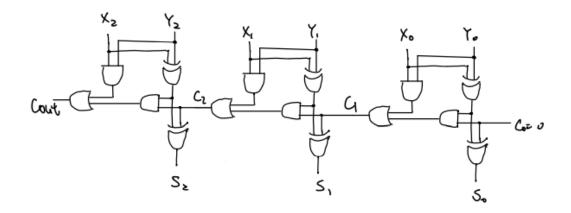
 $M_3$ 

M2 M1 Mo

# NOTE:


3-bit adder(以 ripple carry adder 實現)




Full adder

Si= AiBBi & Ci

 $C_{\lambda_{+1}} = A_{\dot{\alpha}} B_{\dot{\alpha}} + C_{\dot{\alpha}} (A_{\dot{\alpha}} \oplus B_{\dot{\alpha}})$ 



3-bit adder logic gate:

