Homework #3 Due 23:59 on 11/2 (Tue)

- 1. (16%) Write the truth table for a 4-bit Gray code converted from a 4-bit binary code, and give the logic circuit that implement the functions.
- 2. (16%) Given that xy = 0 and x + y = 1, prove using (a) algebraic manipulation and (b) truth table that xz + x'y + yz = y + z.
- 3. Consider the Boolean functions *f* and *g*, as given in the following truth table.
 - (a) (12%) List the minterms and maxterms of f, g, f', and g'.
 - (b) (12%) Express *f* and *g* in sum-of-minterms (som) algebraic form, and then simplify them to reduced sop form.
 - (c) (12%) Draw the logic diagrams for *f* and *g* from its reduced sop form, using only the NOT, AND, and OR gates.

а	b	С	f	8
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- 4. (16%) Simplify $f(w, x, y, z) = \Sigma(4, 5, 7, 12, 14, 15) + \Sigma_d(3, 8, 10)$ using a K-map, and give its logic diagram using only 2-input NAND gates and NOT gates (inverters).
- 5. (16%) Simplify $f(a, b, c, d, e) = \Sigma(6, 9, 13, 18, 19, 25, 27, 29)$ using any method. What are the PIs, EPIs, and minimal covers? Implement it with a 2-level NOR-NOR circuit.