1. Convert F and G to the other canonical form and standard forms of sum of products and product of sums. (10%)

 $F(a, b, c) = \sum (0,1,3,4,7)$ $G(w, x, y, z) = \Pi(1,3,5,8,9,11,13,15)$

2. Simplify the following Boolean expressions (do not use K-map) to a minimum number of literals as less as possible. After simplification, draw the logic diagrams of the circuits that implement the original and simplified expressions, respectively. (10%)

(a) (x+y'z')(w+xy'),

(b) w'x'y+wyz+wx'z'+x'yz.

- 3. Use DeMorgan's theorem to remove the complement outside the braces. (12%)
 - (a) ((x+w')'+w'y'z+(x+z)'(x+y))',
 - (b) (x(yz'+y'z)'+wy(y'+x'z))',
 - (c) (x+y)'+z'(x'+z)',
 - (d) (xy'+z)'(w+y'z).
- 4. Reformulate the function F=x'+x(x'+y)(y'+z) using (15%)
 - (a) AND, OR, and inverter (NOT) gates,
 - (b) AND and inverter (NOT) gates,
 - (c) OR and inverter (NOT) gates.
- 5. For the function $F(w, x, y, z) = \prod (2,3,4,5,6,7,9,11,14)$
 - (a) Obtain its truth table, (3%)
 - (b) Express F in sum-of-minterms and product-of-maxterms forms, (6%)
 - (c) Draw the logic diagram of F, (5%)

(d) Use Boolean algebra to simplify the function F to a new function G, with minimum number of literals, (5%)

(e) Obtain the truth table of G and compare it with that of F, (5%)

- (f) Draw the logic diagram of G and compare the number of literals of F and G. (5%)
- 6. For the Gray code sequence of 16 code words (g₃g₂g₁g₀), use a 4-bit binary code (b₃b₂b₁b₀) as inputs
 (a) Derive the related truth table, (6%)
 (b) Find the logic functions for each g_i. (8%)
- 7. Write the Boolean functions with one canonical form (f_1 and f_2) and draw the logic diagrams of the circuit whose outputs are defined by the truth table. (10%)

а	b	С	f ₁	f ₂
0	0	0	0	1
0	0	1	1	1
0	1	0	1	0
0	1	1	0	0

EECS1010 Logic Design

1	0	0	1	1
1	0	1	1	0
1	1	0	0	0
1	1	1	1	1