

Design Specification:
 Input: f_crystal, rst_n
 Output: audio_mclk, audio_lrck, audio_sck, audio_sdin
 Block diagram:

 Inside speaker_control module,

Design Implementation:
 I/O pin assignment:
 f_crystal—W5
 rst_n—V17
 audio_mclk—A14
 audio_lrck—A16
 audio_sck—B15
 audio_sdin—B16

 About note_gen module, it decides what note (Do, Re, Mi…) to output according note_div (in block
diagram) value. For example, in this experiment, I chose to output Do. At the same time, it also decides the
amplitude (i.e. volume) of the sound through audio_left (左聲道) and audio_right (右聲道) in the block
diagram.
 About speaker_control module, its function can be decomposed into two main parts. One is frequency
divider and the other one is parallel to serial converter. Frequency divider outputs appropriate clock
frequencies for Pmod I2S so that our ears are able to hear ‘Do’ from FPGA.

And the most important function of speaker_control is parallel to serial converter. As both audio_left
and audio_right are 16-bit parallel signals coming from note_gen, we need convert it to serial signal before
output as audio_sdin. Also, we need to a clock delay (a audio_sck clock delay) and start from MSB of
audio_left to LSB of audio_left, then continue with MSB of audio_right to LSB of audio_right. (So the serial
sequence would like, audio_right[0]->audio_left[15]->audio_left[14] …)

I used case in Verilog to implement this function. By using counter (5 bits in total->32 different values)
with audio_sck, which is 32X faster than audio_lrck, I can output each bit from audio_left and audio_right
serially.

Simulation Result:

f_crystal serves as a clock from FPGA board. According to the waveform, audio_mclk is 4X slower than

f_crystal and audio_sck is 4X slower than audio_mclk. However, since audio_lrck is too slow compared to
other divided clock frequencies, I didn’t provide the whole period of the audio_lrck. I checked it in the
waveform and it’s 32X slower than audio_sck. Hence, the divided frequencies are correct.
 Finally, through the control of audio_sck, audio_sdin could output audio_left and audio_right serially
(both are 16’hb000).

Discussion:
 In this experiment, the most challenging part is to implement parallel to serial converter, which I
haven’t done before. Through the use of case in Verilog, it becomes easy and fast to implement.

Design Specification:
 Input: Do, Re, Mi, volume_up, volume_down, f_crystal, rst
 Output: audio_mclk, audio_lrck, audio_sck, audio_sdin
 Output: [3:0]ssd_ctl
 Output: [7:0]D_ssd
 Block diagram:

 Inside Up_counter module:

Design Implementation:
 I/O pin assignment:
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7
 D_ssd[0] — V7
 f_crystal — W5
 rst—V17
 audio_mclk—A14
 audio_lrck—A16
 audio_sck—B15
 audio_sdin—B16
 Do—W19
 Re—U18
 Mi—T17
 volume_up—T17
 volume_down—U17
 In this experiment, we are required to design to produce the buzzer sounds Do, Re and Mi by pushing
the button. So, I used debounce module to pre-process the signal from push button, then designed a MUX
to choose the frequency input for note_gen module in Lab8_1 according to which button is pushed. If no

button is pushed, I just sent 22’d0 signal into note_gen module.
 The other part of this experiment is to control the volume of the sound, which should be quantized
into 16 levels. Therefore, I designed a counter with up-counting and down-counting function at the same
time. As I use BCD to represent the counter value, I need two 4-bit counter to implement it. So, there are
two identical Digit module in the block diagram of Up_counter. But MSB only has two possible values 4’d0,
4’d1, I didn’t draw it in the block diagram. The most difficult part is LSB of the counter.
 First of all, when the counter needs to change its value, I checked if it’s a increasing signal or
decreasing signal by one pulse signal. If the signal is coming from volume_up (button), one pulse module
for volume up would output 1 and of course, one pulse module for volume down would output 0. Similar
situation for signal coming from volume_down.
 No matter it’s increasing or decreasing, I used adding to do it. I would add 4’d1 on current value if it’s
increasing and 4’b1111 on current value if it’s decreasing. That’s because it’s 2’s complement
representation.
 When it’s increasing, I set limit_0 = 4’d9, limit_next = 4’d0. As when LSB reaches 4’d9, it would pass a
carry to MSB and becomes 4’d0 when next clock edge arrives. Also, I set limit_rst0 = 4’d5, limit_rst1 = 4’d1.
Because there are only 16 levels of volume, it should become 0 when next clock edge arrives when
reaching 15 if it’s still increasing signal. Opposite setting for decreasing signal, which is limit_0 = 4’d0,
limit_next = 4’d9, limit_rst0 =4’d0, limit_rst1 = 4’d0. Finally, I don’t need to care about the setting if it’s
neither increasing nor decreasing signal.
 As long as I got each value of BCD, I converted it into 4-bit decimal number from 0~15. Then, I sent
this value to note_gen to adjust the volume accordingly. As audio_left and audio_right in Lab8_1 are 16-bit
2’s complement number. The most positive number is 16’h7FFF (about 32767.9in decimal). Hence, level
difference is about 32767.9/16 = 2047.9 With this value, I can produce different amplitude of the sound.

Discussion:
 The most challenging part of this experiment is undoubtedly the counter with up counting and down
counting function at the same time. It’s becomes more difficult as I used BCD to represent the value. I need
to discuss the different cases for increasing and decreasing separately. Many details need to be considered.
I believe it would have been a lot easier if I just a 4-bit counter and only need to deal with the value when
showing the result on 7-segment display.

Conclusion for Lab8:
 Through the lab, I know the speaker function on FPGA board. And I know I could control the frequency
for note_gen module so that FPGA board would produce different kinds of note. Also, I have noticed the
communication protocol applied in the lab, which is how to implement parallel to serial converter. Now, I
know how to design a counter with up-counting and down-counting function at the same time. I think this
is very important as I have seen this function in our daily life a lot, ex: volume control in the smartphone.

Reference:
 08_Speaker.pdf given by professor. Through this handout, I have learned how to control the sound
with Verilog and implement it on FPGA.

