

Design Specification
 Input: f_crystal, mode_in, state_in
 Output: state_LED, mode_LED
 Output: [3:0]ssd_ctl, [7:0]D_ssd
 Block diagram:

Design Implementation:
 I/O pin assignment
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6

 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7
 D_ssd[0] — V7
 f_crystal — W5
 state_in — W19
 mode_in—T17
 state_LED—L1
 mode_LED—P1
 state diagram
 state 0/1: pause/start

 Mode 0/1: non-Lap/Lap

 In this experiment, the function of Pause/Start is the same as previous Lab. So I just need to figure out
how to do the function of Lap. As shown in the block diagram, I used mode_LED to serve as clock for FF, so
when it’s the state of Lap, FF would remember the value of 7-segment display. Then, I used a MUX to
choose if I need to output freezing result or the counting one according to mode_LED as well (if it’s equal to
1, it shows freezing result. Otherwise, it shows the counting result)

Discussion:
 As explained above, I came up with the method to freeze the 7-segment result while still counting.
And I applied the module done in previous Lab so that this experiment was completed. For example,
frq_div would output different kinds of clock frequency to different modules. I used 10Hz clock for
stopwatch module so that it could count quicker and make sure my stopwatch could support 00:00 to
59:59. And the same debounce, one pulse module for each button respectively.

 Design specification:
 Input: f_crystal, rst, setting, pause_pb, stop_pb, sec_ctl, min_ctl
 Output: state_LED, mode_LED, [3:0]ssd_ctl, [7:0]D_ssd, [13:0]LED
 Block diagram:

Design Implementation:
 I/O pin assignment
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7
 D_ssd[0] — V7
 f_crystal — W5
 pause_pb — W19
 stop_pb — T17
 min_ctl—U17
 sec_ctl — T18
 setting — R2

 rst — T1
 state_LED—L1
 mode_LED—P1
 LED[13]—N3
 LED[12]—P3
 LED[11]—U3
 LED[10]—W3
 LED[9]—V3
 LED[8]—V13
 LED[7]—V14
 LED[6]—U14
 LED[5]—U15
 LED[4]—W18
 LED[3]—V19
 LED[2]—U19
 LED[1]—E19
 LED[0]—U16
 State diagram:
 State for pause/resume: state=0/1

 State for start/stop:

 In this experiment, pause and resume is the same function we did in previous Lab. So the difficulty
here in this experiment is how to set minute/second to any value ranging from 00:00 to 23:59 and
implement start/stop function.

Since there is a DIP switch to control if the minute and second could be set or not, I need to AND the
input from this DIP switch and push button signal. Note that push button signal doesn’t need to go through
on pulse processing as the longer the push button is pressed, the higher the value is going to be set.

As for start/stop function, I use another Flip Flop to remember the current state. If it’s stop state, then
the 4-digit counter would just stop. When pressing again this same push button (one pulse would output
1), I use a MUX to check the state remembered by the Flip Flop (stop state), the counter would go back to
the initially set value and start count. The Flip Flop is used because I want to make sure the MUX could take
the right value of state. Otherwise, state would change very quickly as soon as the push button is pressed
so that the MUX would be possibly too late to take the state value.

Also, according to the value of setting, the 7-segment display shows different result. If setting == 1, the
show the result of set value, which would change along the time, if keeping pressing push button.
Otherwise, it shows the down counting result.

Discussion:
 After understanding what this experiment wants I do, I analyze which module I haven’t done before.
For example, although I have done timer before, I combine 4 single digit timer into a big module with 4
digits timer. Similar function for sec & min, I combine single digit counter to complete it. Then, I combine
each module together in a top module.
 I think another key point is how to implement the start/stop function correctly. I use Flip Flop to
remember the state and detect the onePulse output to check if the button is pressed. This makes me think
of STOP button (正方形的按鈕) on the radio, which is fun and realistic stuff.

When doing this experiment, I found some errors on 7-segment display. But due to the lack of
experience in debugging Verilog code, it took me several hours to find the simple bug, which is I forgot to
declare a point (i.e. : in 7:36) in Display_7_segment module. I thought it was problems from other modules
like Timer_4d or min/sec. None of them are the problem here. After this experience, I found it’s not that
easy to debug Verilog. But I guess more experience to get better at this.

 Design Specification
 Input: pb1, pb2, reset, setting, f_crystal
 Output: set_state, mode_state, Lap6_1_LED, state6_1_LED, start_LED6_2, count_LED6_2
 Output: [9:0]LED, [3:0]ssd_ctl, [7:0]D_ssd
 Block diagram:

 Design Implementation:
 I/O pin assignment
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7
 D_ssd[0] — V7
 f_crystal — W5
 setting — T18
 reset — U18

 pb1 — W19
 pb2 — T17
 set_state—L1
 mode _state—P1
 state6_1_LED—N3
 Lap6_1_LED—P3
 count_LED6_2—U3
 start_LED6_2—W3
 LED[9]—V3
 LED[8]—V13
 LED[7]—V14
 LED[6]—U14
 LED[5]—U15
 LED[4]—W18
 LED[3]—V19
 LED[2]—U19
 LED[1]—E19
 LED[0]—U16

 State diagram
 Setting (T18) state diagram:

 Other state diagram are the same diagram in Lab6_1 and Lab6_2!
 In this experiment, the most important thing is to come up with a way to use just 3+1 (reset) push
buttons to combine all the function of Lab6_1 and Lab6_2.
 First of all, use setting button (T18) to output set_enable signal to decide if minute and second can be
set. And at this same push button, when long pressing it, it could switch between different modes (Lab6_1
or Lab6_2)
 If it’s Lab6_1, I can use the other two buttons (W19, T17) to preform ‘lap’ and ‘start/pause’ function. If
it’s Lab6_2, I can use the signal set_enable to decide two buttons (W19, T17) are able to set minute and
second or not. If set_enable == 1, then two buttons can be used to set minute and second. Otherwise, it is
used to perform start/stop and pause/resume function.

Discussion:
 As there are many functions to show but only 3+1 push buttons are allowed to use. So, I initially guess
some functions are required long press button to implement it. So, I used long press to switch between
Lab6_1 and Lab6_2 mode. At this very button, I also add setting function in Lab6_2 on it.
 Although there are many similar modules in Lab6_1 and Lab6_2 at the same time, such as debounce,
one pulse, FSM and so on. I didn’t separate them from Lab6_1 and Lab6_2. Because it would be easier to
debug when viewing Lab6_1 and Lab6_2 as a big module after making sure Lab6_1 and Lab6_2 are correct.
Also, there would be less modification on Lab6_1 and Lab6_2 when doing so.

Conclusion for Lab6:
 In this lab, there are more FSM applications and more modes to switch in a single experiment, which is
more complicated compared to Lab5.

Also, in this Lab, I have learned FSM can not only preform pause/resume but also Lap/start/stop and
shows the result on 7-segment display. All of these functions are common in our daily life, such as timer
and stopwatch function in our smartphones.

Through this Lab, I find it’s useful when thinking about how the experiment is being used in our daily
life, such as timer, stopwatch and switch the mode between them. Sometimes, it’s easy to think of their
functions but hard to express them in Verilog. It’s probably because I haven’t think about details
thoroughly.

And I have known that I can use the same module repeatedly. (For example, write debounce U0(…)
and debounce U1(…) in Verilog as U0 and U1 can be viewed as different module with same function).
Therefore, there will not be too many .v files with the same code, which looks way more clean.

