

Design Specification:
 Input: f_crystal, rst_n
 Output: q[3:0]
 Block diagram:

Design Implementation:
 I/O pin assignment:
 f_crystal—W5
 rst_n—R2
 q[3]—V19
 q[2]—U19
 q[1]—E19
 q[0]—U16

Detail of frequency divider and binary-up counter has been illustrated at report of lab3_2 and
prelab3_1.
I used a top module to include module from lab3_2 and prelab3_1 and used wire to connect
two modules, such as f_out in the block diagram.

Discussion:
 In this problem, we used the 1Hz frequency derived from lab3_2 to display the 4-bit binary-
up-counter result from 0000 to 1111 on LED. We need 1Hz clock to control the 4-bit binary
counter. As our eyes are only able to observe the different patterns of LED when they’re changing
in 1Hz frequency. If the frequency is too high, what we could see is only 4 always-on LEDs.

2. Combine the 4-bit synchronous binary up counter from exp1 with a binary-to-
seven-segment-display decoder (from lab2-exp3) to display the binary counting in
7-segment display.

Design Specification:
 Input: f_crystal, rst_n
 Output: ssd_ctl[3:0], D_ssd[7:0]
 Block diagram:

Design Implementation:

I/O pin assignment:
 f_crystal—W5
 rst_n—R2
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7

 D_ssd[0] — V7
 From the module Lab3-exp3 I can get 1Hz and use it as clock for 4-bit binary up counter. And I
connect this 4-bit signal to binary-to-seven-segment-display so that I can observe the output
through 7-segment display. I need to use 1Hz frequency as clock frequency so that our human eyes
are able to see the different patterns on 7-segment display.
 And ssd_ctl is always equal to 4’b1110 because I only need one of 7-segment display to show
the result and others are off.

Discussion:
 I decompose this problem into two parts, which is binary-up-counter and 7-segment display
respectively. I have done both of the modules in previous labs. Hence, I just used some wires to
connect them to form a big module in this lab.

3. Construct a single digit BCD up counter with the divided clock as the clock
frequency and display on the seven-segment display.
3.1 Construct a BCD up counter.
3.2 Construct a BCD-to-seven-segment display decoder (from lab2-exp2).
3.3 Combine the above two together.

Design Specification:
 Input: f_crystal, rst_n
 Output: [3:0]ssd_ctl
 Output: [7:0]D_ssd
 Block diagram:
 BCD up counter:

 Whole Architecture:

Design Implementation:

I/O pin assignment:
 f_crystal—W5
 rst_n—R2
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7
 D_ssd[0] — V7
 In this part, I need to use a BCD up counter. Therefore, I modify the lab3_3 a little bit. I use the
value of reset of current counter value to control the next counter value. If rst_n = 0 (don’t care the
current counter value), q_tmp (in the block diagram of BCD up counter) is assigned to 0 for next
clock cycle. If rst_n = 1, and current value is equal to 9, q_tmp (in the block diagram of BCD up
counter) is assigned to 0 for next clock cycle as well (since BCD value is not larger than 9). When
it’s other condition q_tmp (in the block diagram of BCD up counter) is assigned to current counter
value (q in the block diagram of BCD up counter) plus 1. And then use BCD to 7-segment display
decoder in lab2 to show the pattern on the 7-segment. And ssd_ctl is always equal to 4’b1110 as I
only show the result on one of the 7-segment display

Discussion:
 This problem is similar to the previous one. The previous one is binary up counter and this
one is BCD up counter. So, I just modify module from the last problem a little bit and connect the
7-segment display. Then, we are able to observe the different patterns of 7-segment display.

4 Construct a single digit BCD down counter with the divided clock as the clock frequency
and display on the seven-segment display.

4.1 Construct a BCD up counter.
4.2 Construct a BCD-to-seven-segment display decoder (from lab2-exp2).
4.3 Combine the above two together

Design Specification:
 Input: f_crystal, rst_n
 Output: [3:0]ssd_ctl
 Output: [7:0]D_ssd
 Block diagram:
 BCD down counter:

Whole architecture:

Design Implementation:
I/O pin assignment:

 f_crystal—W5
 rst_n—R2
 ssd_ctl[3]—W4

 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7
 D_ssd[0] — V7
 In this part, it’s very similar to BCD up counter. If rst_n = 0 (don’t care the current counter
value), q_tmp (in the block diagram of BCD up counter) is assigned to 9 for next clock cycle. If rst_n
= 1, and current value is equal to 0, q_tmp (in the block diagram of BCD up counter) is assigned to
9 for next clock cycle as well (since BCD value is not less than 0). When it’s other condition q_tmp
(in the block diagram of BCD up counter) is assigned to current counter value (q in the block
diagram of BCD up counter) minus 1. And then use BCD to 7-segment display decoder in lab2 to
show the pattern on the 7-segment. And ssd_ctl is always equal to 4’b1110 as I only show the
result on one of the 7-segment display

Discussion:
 This problem is similar to the previous one. The previous one is BCD up counter and this one
is BCD down counter. So, I just modify module from the last problem a little bit and connect the 7-
segment display. Then, we are able to observe the different patterns of 7-segment display.

Design Specification:
 Input: f_crystal, rst_n
 Output: [3:0]ssd_ctl, [7:0]D_ssd

 Block diagram:

Design Implementation:

I/O pin assignment:
 f_crystal—W5
 rst_n—R2
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5
 D_ssd[1] — U7
 D_ssd[0] — V7

First all of, I used 27-bit counter get 1Hz frequency to serve as clock for shift register and 16th
and 17th bit of counter value to serve as input for scan control, which is faster than 1Hz. Scan
control uses 2-to-4 decoder to decide which 7-segment is on and other 3 ones are off (i.e. decide
ssd_ctl). Scan control also takes 4 outputs from shift register, which represents characters
(NTHUEE). Then, scan control’s 2-to-4 decoder also decides which character is shown on 7-
segment display at this point of time. Through the fast switching of 2 bits from frequency divider,
our eyes would see the different characters on each 7-segment display.

Discussion:
 This is quite a complicated problem at first. But I found it can be solved through dividing the
problem into some smaller modules. I have done some of these smaller modules on previous lab
or experiment and need to modify some of them slightly. For example, how to show characters
(NTHUEE) on 7-segment display. I check what the look of each character on 7-segment display. And
I assign the 1/0 to each segment of 7-segment display when I need to show this character, ex: N->
8'b1101_0101. And I think the key module is scan_ctl, which helps me show different characters
on different 7-segment display.

5 (Bonus) Construct a 30-second count down timer (stop at 00).

Design Specification:
 Input: f_crystal, rst_n
 Output: [3:0]ssd_ctl, [7:0]D_ssd

 Block diagram:

Design Specification:

I/O pin assignment:
 f_crystal—W5
 rst_n—R2
 ssd_ctl[3]—W4
 ssd_ctl[2]—V4
 ssd_ctl[1]—U4
 ssd_ctl[0]—U2
 D_ssd[7]—W7
 D_ssd[6] — W6
 D_ssd[5] — U8
 D_ssd[4] — V8
 D_ssd[3] — U5
 D_ssd[2] — V5

 D_ssd[1] — U7
 D_ssd[0] — V7
 This experiment is pretty much the same the last experiment. This experiment is to show the
30 seconds countdown timer on 7-segment display. I also use frequency divider to get 1Hz
frequency for BCD down counter and much higher frequency for scan control. And 2-to-4 decoder
decider which 7-segment display is on and other 3 ones are off. In this experiment, only two
possible cases as there are only two digits to show. Also, since it’s two digit, borrow from higher
digit should be considered. When LSB goes to 0, it need to borrow from MSB (value of MSB is
subtracted by 1) and keep going with 9, 8, 7…Then, we could see the result on 7-segment display.

Discussion:
 The key of this experiment is also divide the problem into many modules and make sure each
module works well. And I create a top module to combine and connect them well. Also, as the
same as the last experiment, scan_ctl is a important module, which allows us to see the different
numbers on 7-segment display.

Conclusion for Lab4:
 Via this lab, I know how to design BCD up/down counter and how to use scan_ctl to show the
different patterns on different 7-segment display. Most importantly, I have learned that it’s
important to decompose the problem into different small problems so that it would be easier to
solve.

Reference for Lab4: handout given by professor, from which I learned how to design BCD
up/down counter and how to use scan_ctl to show the different patterns on different 7-segment
display

