
Fall 2021

Lab 5: Keyboard and Audio Modules

Welcome to The
Logic Design Lab!

Prof. Chun-Yi Lee

Department of Computer Science

National Tsing Hua University

Agenda
Lab 5 Outline

Lab 5 Basic Questions

Lab 5 Advanced Questions

2

Lab 5 Outline
Basic questions (1%)

Group assignment

Due on 11/18/2021 (Thu). Demonstration on your FPGA board (In class)

Only demonstration is necessary. Nothing to submit. 

Advanced questions (6%)

Group assignment

eeclass submission due on 11/25/2021 (Thu). 23:59:59.

Demonstration on your FPGA board (In class)

Assignment submission (Submit to eeclass)

Source codes and testbenches

Lab report in PDF

3

Lab 5 Rules

Please note that grading will be based on NCVerilog

You can use ANY modeling techniques  

If not specifically mentioned, we assume the following SPEC

clk is positive edge triggered

Synchronously reset the Flip-Flops when rst_n == 1’b0, if there exists
one rst_n signal in the specification 
 

4

Lab 5 Submission Requirements

Source codes and testbenches

Please follow the templates EXACTLY

We will test your codes by TAs’ testbenches 

Lab 5 report

Please submit your report in a single PDF file

Please draw the block diagrams and state transition
diagrams of your designs

Please explain your designs in detail

Please list the contributions of each team member clearly

Please explain how you test your design

What you have learned from Lab 5 

5

Agenda
Lab 5 Outline

Lab 5 Basic Questions

Lab 5 Advanced Questions

6

Basic Questions

Group assignment

FPGA demonstration (due on 11/18/2021. In class.)

Keyboard sample code

Audio sample code 1 & 2

7

Keyboard sample code

Please implement the keyboard sample codes released
on eeclass

Audio sample codes

Please implement the audio sample codes 1 & 2
released on eeclass

Basic FPGA Demonstration 1

8

Agenda
Lab 5 Outline

Lab 5 Basic Questions

Lab 5 Advanced Questions

9

Advanced Questions
Group assignment

Verilog questions

Source codes and the report due on 11/25/2021. 23:59:59.

Sliding window sequence detector

Traffic light controller

Greatest common divisor

Bonus: Booth multiplier 

FPGA demonstration (due on 11/25/2021. In class.)

Mixed keyboard and audio modules together

Vending machine

10

Verilog Advanced Question 1
Sliding Window sequence detector (mealy machine)

Detect the sequence 1100(10)+01 (in regular expression)

The pattern 10 in the middle have to appear at least once and can be
repeated.

For example, 11001001 is a match, 1100101001 is also a match. On the
other hand, 110001 is a mismatch match.

Continuous detection

Detect the sequences whenever they occur, and set dec to 1’b1

Please draw a state transition diagram in your report

A sample waveform is provided in the next page 

I/O port definition

Input: 	 clk, rst_n, in

Output: 	 dec
11

clk

rst_n

0 0 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

in

dec

Verilog Advanced Question 1 (Con’t)

12

A match case

A mismatch case

clk

rst_n

0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

in

dec 0 1 0

0 0

0

1 0

Traffic light controller for a highway (HW) and local road (LR) intersection

HW has higher priority and should be green as long as possible

LR has a sensor to detect cars on it. When a car is sensed, LR turns green shortly

Green light is at least 80 clock cycles and yellow light is 20 clock cycles

Input: clk, rst_n, lr_has_car; Output: hw_light[2:0], lr_light[2:0]

hw_light & lr_light: bits [2:0] represent Green, Yellow, and Red, respectively

Highway

Local road 13

Verilog Advanced Question 2

HW = Green

LR = Red

HW = Yellow

LR = Red

HW = Red

LR = Red

HW = Red

LR = Yellow

HW = Red

LR = Green

HW = Red

LR = Red

>= 80 cycles &
lr_has_car == 1

20 cycles

20 cycles

1 cycle1 cycle

80 cycles

Traffic light controller Finite State Machine

Please complete the FSM in your report (some arrows are removed
intentionally)

14

Verilog Advanced Question 2 (Con’t)

A Traffic light
controller “example”
timing diagram is
illustrated on the left 

Please make sure
that your state
transitions follows
the timing digram
correctly

15

Verilog Advanced Question 2 (Con’t)

Greatest common divisor

Calculate the greatest common divisor of two numbers a and b

Top level block diagram and pseudo code are as follows

You shall not use loop statements and modulus (%) in your Verilog codes

Function gcd (a, b)

begin

 if (a == 0)

 return b;

 while (b != 0)

 // Do the following operation once per clock cycle

 begin

 if (a > b)

 a = a - b;

 else

 b = b - a;

 end

 return a;

end

GCD module

start

a[15:0]

b[15:0]

clk

rst_n

gcd [15:0]

done

GCD pseudo
code

16

Verilog Advanced Question 3

Three states are used: WAIT, CAL, and FINISH

WAIT state

Wait for start == 1’b1 (one cycle) to begin the operation (and fetch the inputs)

The values of a and b may change during operation. Be sure to fetch and buffer
them when the state changes from WAIT to CAL

When rst_n == 1’b0, reset the module to the WAIT state

CAL state

Perform the subtraction operations once per cycle

FINISH state

Output the gcd result for two cycles

done == 1’b1 for two cycles

CAL FINISH
start == 1’b1

WAIT

start == 1’b0 gcd = 16’d0

done = 1’b0

gcd = 16’d0

done = 1’b0

gcd = your result

done = 1’b1

Two cycles 17

Verilog Advanced Question 3 (Cont’d)

18

Bonus: Verilog Advanced Question 4
Booth Multiplier

Please design a booth multiplier to compute the product of two signed input (the
product is also signed).

Your design should follow the mechanism of the booth multiplication. Otherwise, no
bonus credit will be granted 

For more information about the booth multiplier, please refer to the following
references:

https://tinyurl.com/kvsyspuj

https://tinyurl.com/4bzyayf8 

I/O port definition

Input: clk, rst_n, start, a[3:0] (signed), b[3:0] (signed)

Output: p[7:0] (signed)

https://tinyurl.com/kvsyspuj
https://tinyurl.com/4bzyayf8

19

Bonus: Verilog Advanced Question 4
Three states are used: WAIT, CAL, and FINISH 

WAIT state

Wait for start == 1’b1 (one cycle) to begin the operation (and fetch the
inputs)

The value of a and b may change during operation. Be sure to fetch and
buffer them when the state changes from WAIT to CAL

When rst_n == 1’b0, reset the module to the WAIT state 

CAL state

Perform the booth multiplication operations once per cycle

Transition to FINSH state after 4 cycles of calculation.  

FINISH state

Output the result p for one cycles 

20

Bonus: Verilog Advanced Question 4

WAIT

p = 8'd0

CAL

p = 8’d0

FINISH

p = a * b

rst_n start=1’b1

1 cycle 4 cycle

The state transition diagram of the booth multiplier

start=1’b0

Advanced Questions
Group assignment

Verilog questions

Source codes and the report due on 11/25/2021. 23:59:59.

Sliding window sequence detector

Traffic light controller

Greatest common divisor

Bonus: Booth multiplier 

FPGA demonstration (due on 11/25/2021. In class.)

Mixed keyboard and audio modules together

Vending machine

21

FPGA Demonstration 1

Button
Direction

Reset: Set back to C4 and ascend (1sec/note) 
(Use Enter as rst_n)

w

s

r 0.5 sec per note or 1 sec per note

Use the numbers (“w” and “s”) on the keyboard to control the scale to ascend or
descend, ranging from C4 to high C8.

Change a note every 1 second. If “r” is pressed, change to a note every 0.5 second. If “r”
is pressed again, go back to 1 second per note.

When it reaches C4 or C8, stay on the note until the direction changes (keyboard
pressed).

22

Four options available: Coffee, Coke, Oolong, and Water

Prices are: Coffee (NT$ 75), Coke (NT$ 50), Oolong
(NT$ 30), Water (NT$ 25) 

The rightmost three 7-segment displays show the
money inserted into the machine

When rst_n == 1’b1, please display “0”

The maximum value is NT$ 100

Do not prepend ‘0’ when you only have one or two
digits to display

Use five buttons to implement your design:

Left: NT$ 5

Center: NT$ 10

Right: NT$ 50

Top: rst_n

Bottom: Cancel 23

FPGA Demonstration 2

Use four LEDs to indicate which drinks you can buy

LED[3:0] corresponds to Coffee, Coke, Oolong, and Water, respectively 

Use the keyboard to select which drinks you buy

‘a’, ’s’, ‘d’, ‘f' corresponds to Coffee, Coke, Oolong, and Water,
respectively

Assume that the machine allows you to buy ONLY ONE DRINK at a time

Use the rightmost three 7-segment display to show the rest of the
money after buying a drink

E.g., if you inserted NT$ 40 and bought a can of Oolong (NT$ 30), the 7-
segment display will show NT$ 10

24

FPGA Demonstration 2

Remember to add debounce and one-pulse circuits to your buttons

Decrement the 7-segment display by NT$ 5 every second to mimic the process
of returning changes

Return the changes until it becomes zero

If the buyer does not want to buy a drink, he/she can use a Cancel Button to
cancel it

The inserted money will be returned the same way (NT$ 5 per second)

RESET

Insert
NT$ 5

Insert
NT$ 50

Insert
NT$ 10

Cancel

The layout of the
buttons used in this

question
25

FPGA Demonstration 2

Thank you for your attention!

26*Lake Helen at Lassen Volcanic National Park, Shasta County, California, USA 
This picture is taken by Chun-Yi Lee himself, who is also a fan of photography

