
Fall 2021

Lab 4: Finite State Machines

Welcome to The
Logic Design Lab!

Prof. Chun-Yi Lee

Department of Computer Science

National Tsing Hua University

Agenda

2

Lab 4 Outline

Lab 4 Basic Questions

Lab 4 Advanced Questions

Lab 4 Outline
Basic questions (1.5%)

Individual assignment

Due on 11/2/2021 (Thu). In class. 

Advanced questions (5%)

Group assignment

Demonstration on your FPGA board (In class)

Lab report should be submitted using PDF format

Assignment submission (Submit to EEClass)

EEClass submission (code, test bench, and report) due on 11/11/2021
(Thu) 23:59:59 for the Advanced Questions.

EEClass submission (code and report) due on 11/18/2021 (Thu)
23:59:59 for the FPGA Question

3

Lab 4 Rules

Please note that grading will be based on NCVerilog

You can use ANY modeling techniques  

If not specifically mentioned, we assume the following SPEC

clk is positive edge triggered

Synchronously reset the Flip-Flops when rst_n == 1’b0, if there
exists one rst_n signal in the specification 

4

Lab 4 Submission Requirements

Source codes and testbenches

Please follow the templates EXACTLY

We will test your codes by TAs’ testbenches 

Lab 4 report

Please submit your report in a single PDF file

Please draw the block diagrams and state transition
diagrams of your designs

Please explain your designs in detail

Please list the contributions of each team member clearly

Please explain how you test your design

What you have learned from Lab 4 

5

Agenda

6

Lab 4 Outline

Lab 4 Basic Questions

Lab 4 Advanced Questions

Basic Questions

Individual assignment

Verilog questions (due on 11/2/2021. In class.)

Moore machine

Mealy machine

Many-to-one linear-feedback shift register

One-to-many linear-feedback shift register 

Demonstrate your work by waveforms

7

Moore machine

Green represents input, while red represents output

Output your current state as well

When rst_n == 1’b0, state = S0

Moore

S0

11

S1

01

S2

11

S3

10

0

0 01

1

1

1

0

S0: 3’b000 S1: 3’b001 S2: 3’b010 S3: 3’b011 S4: 3’b100 S5: 3’b101 8

Verilog Basic Question 1

S4

10

S5

00

0

1

0

1

Mealy machine

Green represents input, while red represents output

Output your current state as well

When rst_n == 1’b0, state = S0

Mealy

S0

S2

S1

0 / 0

1 / 1

1 / 1

0 / 1 1 / 0

0 / 1

S0: 3’b000 S1: 3’b001 S2: 3’b010 S3: 3’b011 S4: 3’b100 S5: 3’b101

9

Verilog Basic Question 2

S3

S4

S5 0 / 1

1 / 0

1 / 0 0 / 0

1 / 1

0 / 1

Many-to-one linear-feedback shift register (LFSR) 
 

When rst_n == 1’b0, reset DFF[7:0] to 8'b10111101

Please draw the state transition diagram of the DFFs in LFSR for the first ten
states after rst_n is raised to 1’b1 in your report

Please describe what happens if we reset the DFFs to 8’d0 in your report

clk

D Q
DFF[0]

D Q
DFF[1]

D Q
DFF[2]

D Q
DFF[3]

XOR

out

10

D Q
DFF[4]

Verilog Basic Question 3

D Q
DFF[5]

D Q
DFF[6]

D Q
DFF[7]

XOR

XOR

One-to-many linear-feedback shift register (LFSR) 
 

When RESET == 1’b0, reset DFF[7:0] to 8'b10111101

Please draw the state transition diagram of the DFFs in LFSR for the first ten
states after rst_n is raised to 1’b1 in your report

Please describe what happens if we reset the DFFs to 8’d0 in your report

clk

D Q
DFF[0]

D Q
DFF[1]

D Q
DFF[2]

D Q
DFF[3]

out

11

D Q
DFF[4]

Verilog Basic Question 4

D Q
DFF[5]

D Q
DFF[6]

D Q
DFF[7]

XOR XOR XOR

Agenda

12

Lab 4 Outline

Lab 4 Basic Questions

Lab 4 Advanced Questions

Advanced Questions
Group assignment

Verilog questions

Source codes and the report due on 11/11/2021. 23:59:59.

Content-addressable memory (CAM) design

Scan chain design

Built-in self test

Mealy machine sequence detector 

FPGA demonstration (due on 11/18/2021. In class.)

1A2B game

13

Content-addressable memory (CAM) design

Design a CAM that stores n sets of m-bit data lines (n = 16, m = 8)

Input: clk, wen, ren, addr[3:0], din[m-1:0]

Output: dout[3:0], hit

14

Verilog Advanced Question 1

Stored data line 0 (m-bit)

Stored data line 1 (m-bit)

.

.

.

Stored data line n-2 (m-bit)

Stored data line n-1 (m-bit)

din (m-bit)
Co

m
pa

ra
to

r
Ar

ra
y

 P
ri

or
it

y
En

co
de

r

.

.

.

.

.

.

clk

hit

dout[3:0]wen

ren

addr 
[3:0]

CAM

When wen == 1'b1, write din to CAM[addr]

When ren == 1’b1:

• If there is only one matching data in the CAM, set dout to the
matching data's address and set hit to 1'b1

• If there are multiple matches in the CAM, set dout to the largest
address among them and set hit to 1'b1.

• If there is no match in the CAM, set dout to 1’b0 and set hit to 1’b0

When both wen and ren are 1’b1, perform read operation only and
ignore the write request

When both ren and wen are 1b’0, set dout to 1’b0 and set hit to 1’b0

Please refer to the next page for example waveform

Verilog Advanced Question 1 (Con’t)

15

Verilog Advanced Question 1 (Con’t)

16

0 0 7 15 9 0 0 0 0 0 0 0 0 0 0 0

0 4 8 35 8 0 0 0 4 8 35 87 45 0 0 0

0 0 0 0 0 0 0 0 0 9 15 0 0 0 0

clk

wen

addr

din

ren

dout

Write into CAM

Read from CAM

No write operation

No read operation No read

hit

Scan chain design

Scan chain is a technique used in design for testing. The objective is to make
testing easier by providing a simple way to set and observe every flip-flop in a
circuit. The structure of a scan chain is illustrated in the next page.

• In order to achieve the above objective, the DFFs in a circuits are all
replaced by a special type of DFF, called scan DFF (SDFF), which is also
shown in the next page. An SDFF contains several extra ports: scan_in and
scan_en, and is larger than the original DFF.

• All the SDFFs are connected in a chain, which is called a scan chain.

In this question, you are required to design a scan chain for a 4-bit multiplier,
which is a combinational circuit and can be designed by any modeling
technique.

• Input: clk, rst_n, scan_in, scan_en

• Output: scan_out

Reset all SDFFs to 1’b0 when rst_n == 1’b0

17

Verilog Advanced Question 2

18

D Q
DFF

rst_n

scan_en

data

scan_in
1

0
0

1

1'b0

clk
rst_n

scan_in
Q

Scan DFF
data

scan_en

scan_in
Q

Scan DFF
data

scan_in
Q

Scan DFF
data

scan_in
Q

Scan DFF
data

4-bit Multiplier
p[0]p[6]p[7] a[3] b[0]a[2]

scan_in

b[1]

clk

sc
an

_o
ut

rst_n

scan_en

clk

Verilog Advanced Question 2 (Con’t)

Scan chain design

The behavior of a scan chain

The behavior of a scan chain contains three phases: scan in, capture, and scan out.

• Scan in

• In this phase, scan_en is set to 1’b1, and a test pattern is scanned (shifted) from
the scan_in port into the scan chain bit-by-bit.

• Capture

• In this phase, scan_en is set to 1’b0, and the circuit performs its original
functionality.

• The inputs of the multiplier is provided by the values stored in SDFF. The output
of the multiplier is stored back to the SDFFs at the positive clock edge.

• Scan out

• In this phase, scan_en is set to 1’b1 again, and the values stored in the SDFFs are
shifted to the scan_out port of the scan chain bit-by-bit.

In TA’s test bench, the scan_en signal is controlled according to this three-phase
behavior pattern to test your scan chain design.

Please refer to the next page for the example behavior waveform.

Verilog Advanced Question 2 (Con’t)

19

20

clk

rst_n

scan_en

scan_in

7 clock cycles (8 positive edges) 8 clock cycles

b0 b1 b2 b3 a0 a1 a2 a3

scan_out p0 p1 p5p4p3p2 p6 p7

Scan In Scan Out

Verilog Advanced Question 2 (Con’t)

Capture

Built-in self test (BIST)

In the previous question, we designed a scan chain. Now we add a test
pattern generator in front of it. The test pattern generator is implemented by
a 8-bit many-to-one LFSR, which is the same as the design in the basic
question 3. Since the test pattern generator is inside a chip, this architecture
is called “built-in self test (BIST)”.

Please reuse the scan chain from the advanced question 2

Please modify your LFSR from the basic question 3 so that only the MSB of
the LFSR is shifted into the scan chain.

Typically, a circuit with BIST does not have scan_in and scan_out ports.
However, for the grading purposes, the two ports are set as output ports, so
as to allow them to be observable.

Input: clk, rst_n, scan_en

Output: scan_in, scan_out

Verilog Advanced Question 3

22

8-bit Many-to-One
LFSR (Basic Question 3)

Scan chain design

(Advanced Question 2)

(Note that it contains  
the multiplier)

scan_in

scan_enscan_in

sc
an

_o
ut

clk rst_n

scan_out

Verilog Advanced Question 3 (Con’t)

Mealy machine sequence detector

1-bit input In and 1-bit output Dec

When the four bit sequence is 0111, 1001, or 1110, Dec is set to 1

Re-detect the sequence every four bits

Please draw your state diagram in your report

23

Sequence
detector

In Dec

CLK

RESET

0 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 0

In

Dec

S0 S1 S2 S3
1 / 0 0 / 0 0 / 0 1 / 1

?

Complete the complete state diagram in your report

0 1 0

S0 S1 S2 S3 S0 S? S? S? S0 S1 S2 S3 S? S? S? S?State

10 0 010

Verilog Advanced Question 4

0

Advanced Questions

24

Group assignment

Verilog questions

Source codes and the report due on 11/11/2021. 23:59:59.

Content-addressable memory (CAM) design

Scan chain design

Built-in self test

Mealy machine sequence detector 

FPGA demonstration (due on 11/18/2021. In class.)

1A2B game

The 1A2B game

Traditionally, this is a two-player code-breaking game. However, in this lab, we
modify it to a single-player game 

The rule

In the beginning of each game, the FPGA generates a random number
consisting of four non-repeating digits, where each digit ranges from 0 to 9

The player’s task is to guess this number using the hints given by the FPGA

The behavior of this game contains two phases: the initial phase and the
guessing phase 

The initial phase

When the reset button is pressed, reset the game to this phase

In this phase, the seven-segment display shows “1A2b”, and wait for the player
to push the start button

After pressing the start button, a random non-repeating 4 digit answer is
generated and displayed using the LEDs, where LED[15:12] represents the first
digit, LED[11:8] represent the second digit, and so on
 25

FPGA Demonstration

The guessing phase

The LEDs should continue displaying the generated answer

The player is required to guess this number one by one, from the MSB to the LSB
using the leftmost 4 switches (i.e., SW[15:12]). The digit that is being guessed will
flicker until the player enters his/her guess using the enter button

After all the 4 digits have been entered, the seven segment display should show
XAYb according the correctness of the player’s guess, where X is the number of the
digits with correct digit positions, and Y is number of the correct digits that are out of
place.

If the player’s guess matches the answer, return the game to the initial phase after
the enter button is pressed (remember to clear all the LEDs!)

If the player’s guess does not match the answer, return to this guessing phase and
guess again after the enter button is pressed

Please note that the answer of each game should be random and generated using the
LFRS, which should keep operating and is only sampled when the start button is pressed

Please refer to the demonstration video from the TAs

Please refer to the next page for the state transition diagram 26

FPGA Demonstration (con’t)

27

FPGA Demonstration (con’t)

Initial

Guessing

rst_n

start button
pressedThe guess is

correct

The guess is being
entered or the guess is

incorrect

An example of the
state transition
diagram

28

FPGA Demonstration (con’t)
The layout of the switches, the buttons, and the seven segment
display 

The real answer in the following example is 4381, as indicated by
the LED pattern

29

FPGA Demonstration (con’t)
An example of the
behavior of the 1A2B
game (the answer in
this example 4381)

Video demonstration
link: 
shorturl.at/iuvJ3

Please note that we
will note intentionally
input patterns with:

Repeating digits

Digits with values
larger than 9

http://shorturl.at/iuvJ3

Thank you for your attention!

*The first Starbucks at Seattle, Washington, USA 
This picture is taken by Chun-Yi Lee himself, who is also a fan of photography 30

