
Fall 2021
Lab 3: Sequential Circuits

Welcome to The
Logic Design Lab!

Prof. Chun-Yi Lee

Department of Computer Science
National Tsing Hua University

Agenda

 2

Lab 3 Outline
Lab 3 Basic Questions
Lab 3 Advanced Questions

Lab 3 Outline
Basic questions (1.5%)

Individual assignment
Due on 10/21/2021. In class.
Only demonstration is necessary. Nothing to submit. 

Advanced questions (5%)
Group assignment
ILMS submission due on 10/28/2021. 23:59:59.
Demonstration on your FPGA board (In class)
Assignment submission (Submit to eeclass)

Source codes and testbenches
Lab report in PDF

 3

Lab 3 Rules

Please note that grading will be based on NCVerilog
You can use ANY modeling techniques  

If not specifically mentioned, we assume the following SPEC
clk is positive edge triggered
Synchronously reset the Flip-Flops when rst_n == 1’b0, if there exists
one rst_n signal in the specification 
 

 4

Lab 3 Submission Requirements
Source codes and testbenches

Please follow the templates EXACTLY
We will test your codes by TAs’ testbenches  

Lab 3 report
Please submit your report in a single PDF file
Please draw the block diagrams of your designs using
software
Please explain your designs in detail
Please list the contributions of each team member clearly
Please explain how you test your design
What you have learned from Lab 3 

 5

Agenda

 6

Lab 3 Outline
Lab 3 Basic Questions
Lab 3 Advanced Questions

Basic Questions

Individual assignment

Verilog questions (due on 10/21/2021. In class.)
Clock Divider
128 x 8 Memory Array  

Demonstrate your work by waveforms

 7

Clock Divider
sel[1:0] and the mux are combinational, not triggered by clk
Outputs: clk1_2, clk1_3, clk_1_4, clk1_8, dclk

Clock_Divider
clk

rst_n

clk1_3

clk1_2

clk1_4

clk1_2

clk1_3

clk

clk1_8

sel[1:0]

00

01

10

11

dclk

 8

Verilog Basic Question 1

rst_n

Clock Divider
sel[1:0] and the mux are combinational, not triggered by clk
When rst_n == 1’b0, all signals out the clock divider are one
Outputs: clk1_2, clk1_3, clk1_4, clk1_8, dclk

clk1_4

clk1_8

clk

 9

Verilog Basic Question 1(Con’t)

Clock_Divider

clk1_3

clk1_2

clk1_4

clk1_8

sel[1:0]

00

01

10

11

dclk

rst_n

clk

rst_n

128 x 8 Memory Array Memory
M = 128, N = 8

Inputs: clk, ren, wen, addr[6:0], din[7:0]
Outputs: dout[7:0]

127
126

…

1

0

N = 8 bits

M = 128
words

Memory

clk

Address
addr[6:0]

Data In
din[7:0]

Write Enable
wen

Read Enable
ren

Data Out
dout[7:0]

 10

Verilog Basic Question 2

Note: Memory Array in Verilog
A collection of registers in Verilog to mimic memory arrays

In reality, it is NOT made from registers
Real memory is made from SRAMs or DRAMs 

Declaration
Similar to regular reg arrays
reg [N-1:0] Your_Memory [M-1:0];

Access
Use your address register ADDR
E.g., One_word[N-1:0] = Your_Memory[ADDR]
If your M is 256, you only need 8 bits for ADDR (28 = 256)

M wordsN bits per word

 11

Specification
When wen == 1’b1, write din to Memory[addr]
When ren == 1’b1, output Memory[addr] to dout; otherwise dout = 8’d0
If both are 1, do only the read operation
Memory does not need to be reset

0 63 45 87 26 0 0 0 87 26 63 45 0 0 0 0

0 4 8 35 77 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 35 77 4 8 0 0 0

clk

wen

addr

din

ren

dout

Write into Memory

Read from Memory

No write operation

No read operation No read operation

 12

Verilog Basic Question 2 (Con’t)

Agenda

 13

Lab 3 Outline
Lab 3 Basic Questions
Lab 3 Advanced Questions

Advanced Questions
Group assignment

Verilog questions (due on 10/28/2021. 23:59:59.)
4-bit Ping-Pong Counter
First-In First Out (FIFO) Queue
Multi-Bank Memory
Round-Robin FIFO Arbiter
4-bit Paramterized Ping-Pong Counter 

FPGA demonstration (due on 10/28/2021. In class.)
4-bit Paramterized Ping-Pong Counter on FPGA

 14

Design a 4-bit Ping-Pong Counter
out: 0,1,2,…,13,14,15,14,13,…,2,1,0,1,2,…
direction: 1,1,1,…..,1, 1, 1, 0, 0,…, 0,0,0,1,1,…  

SPEC
When rst_n == 1’b0, the counter resets its value to 4’b0000,
and the direction to 1’b1
When enable == 1’b1, the counter begins its operation.
Otherwise, the counter holds its current value

Ping-Pong

Counter

clk

rst_n

enable

direction

out[3:0]

 15

Verilog Advanced Question 1

First-In First Out (FIFO) Queue 
 

Design a circular FIFO that stores eight entries of 8-bit data
The order of the read should follow the FIFO pattern, in which the first data written
would be read out first
The behavior of the FIFO

By setting ren=1'b1, the FIFO should output the oldest data to dout . On the other
hand, if wen=1’b1, the value of din signal is written into the FIFO. If both ren and
wen are set to 1’b1, only the read operation is performed
The FIFO should be able to be written unless it is full, and should be able to be
read unless it is empty

 16

Verilog Advanced Question 2

…

Read Pointer (internal signal)

Write Pointer
(internal signal)

din[7:0] dout[7:0]
clk

rst_n

ren wen

error

Error condition
If a read / write is issued to an empty / a full FIFO, the error bit should be
set to 1'b1. Otherwise, the read / write is valid and the error bit should be
set to 1'b0.

The values of dout
If there's an error, we do not care about the value of dout
If the FIFO is performing a write operation, we also do not care about the
value of dout

If rst_n == 1'b0, empty the FIFO, and set both dout and error to zero
Please note that the values of dout and error should change synchronously,
i.e., their values should only change at the positive edges of clk.

 17

Verilog Advanced Question 2 (Con't)

Multi-Bank Memory 
 
 

Design a memory hierarchy containing 4 banks of memory. Each bank consists of
4 sub-bank memory modules. (A total of 16 sub-banks)

Points will be deducted if the specified hierarchy is not followed

Please reuse the module from Basic Question 2 for each sub-bank

Input: clk, ren, wen, raddr[10:0], waddr[10:0], din[7:0]

Output: dout[7:0]
 18

Verilog Advanced Question 3

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Bank3
Bank2

Bank1
Bank0 Memory Module

In Your Basic  
Question 2

Sub-
Bank0

Sub-
Bank1

Sub-
Bank2

Sub-
Bank3

Multi-Bank Memory 
 
 

The most significant four bits of raddr (i.e. raddr[10:7], read address) and waddr
(i.e. waddr[10:7], write address) are used to address different sub-banks. For
example, waddr[10:7] == 4'b0110 addresses bank1’s sub-bank2
When wen == 1’b1, write din to Memory[addr]
When ren == 1’b1, output Memory[addr] to dout; otherwise dout = 8’d0
When both wen and ren are 1’b1, they can be serviced simultaneously if they are
directed for different sub-banks. Otherwise, only read request is serviced

 19

Verilog Advanced Question 3 (Con’t)

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank

Sub-
Bank0

Sub-
Bank1

Sub-
Bank2

Sub-
Bank3

Bank3
Bank2

Bank1
Bank0 Memory Module

In Your Basic  
Question 2

Design a Round-Robin FIFO Arbiter based on Advanced Q2

Input: clk, rst_n, wen[3:0], a[7:0], b[7:0], c[7:0], d[7:0]

output: valid, dout[7:0]

Four FIFOs in advanced question Q2 are connected to a round robin arbiter, which
controls their ren signals to make them output their contents via dout in a round robin
fashion.

 20

Verilog Advanced Question 4

Round Robin Arbiter

8-bit 8 entry FIFO a

8-bit 8 entry FIFO b

8-bit 8 entry FIFO c

8-bit 8 entry FIFO d

a[7:0]
8

8

8

8

b[7:0]

c[7:0]

d[7:0]

dout[7:0]

valid

wen[3:0] clk rst_n

Round Robin FIFO Arbiter

Each FIFO is written independently by setting the corresponding bit in wen
to 1'b1, e.g. setting wen to 4'b0001 will write a to FIFO a, 4'b1001 will write d
to FIFO d and a to FIFO a

The input data of FIFOs a, b, c and d are supplied via input ports a, b, c, and d,
respectively

However, if the FIFO that is being accessed by the arbiter, is also being
written or its error signal is 1'b1, the access is considered invalid. In such a
situation, the valid and the dout signal should be set to 1'b0 and no data is
read out from the FIFO. Otherwise, the read access is valid and valid should
be set to 1'b1.

Please note that the values of dout and valid should change synchronously,
i.e., their values should only change at the positive edges of clk.

Please refer to the next slide for a sample waveform.

 21

Verilog Advanced Question 4 (Con’t)

 22

clk

rst_n

input a 87

input d

input c

input b 56

9

13

1111wen [3:0]

dout

valid

0

1000

0 13 87

X

X

X

X

56 0

85

0100 0000

X

9 85 51

139

0001

51 X

0000

 FIFO read (internal state)

output (internal state)

FIFO a FIFO b FIFO c FIFO d FIFO a FIFO b FIFO c FIFO d FIFO a FIFO b

FIFO a FIFO b FIFO c FIFO d FIFO a FIFO b FIFO c FIFO d FIFO a

Design a 4-bit Parameterized Ping-Pong Counter with max and min

Input: clk, rst_n, enable, flip, max[3:0], min[3:0]

out[3:0]: 0,1,2,…,7,8,9,8,7,…,2,1,0,1,2,…

direction: 1,1,1,…,1,1,1,0,0,…,0,0,0,1,1,…

In the above example, max is 9 and min is 0

Parameterized
Ping-Pong
Counter

clk

rst_n
enable

direction

out[3:0]
max

min

flip

 23

Verilog Advanced Question 5

rst_n and enable
When rst_n == 1’b0, resets out to min and direction to 1'b1
When enable == 1’b1, the counter begins its operation. Otherwise, the
counter holds its current value 

max and min
max and min values are the maximum and minimum values for the
counter
max > min. Otherwise, the counter holds its current value
When counter > max or counter < min, counter holds its current value 

flip
When flip == 1’b1, counter flips its direction
Flip is only one cycle in length
Flip occurs when counter < MAX and counter > MIN

 24

Verilog Advanced Question 5 (Con’t)

 25

Verilog Advanced Question 5 (Con’t)

Notes

Be careful that max and min will change during counting

Once the value of the counter is out of range, hold the value
and direction

If max == min == output, please hold the output and direction

The following slides provide some example waveforms

Verilog Advanced Question 5 (Con’t)

clk

rst_n

enable

out[3:0]

direction

0 2 3 41 2 1 0 1

x

3

An example waveform where flip is set to 1'b0 and enable is
set to 1'b1

In this example min = 4’d0 and max = 4'd4

 26

x

Verilog Advanced Question 5 (Con’t)

clk

rst_n

out[3:0]

direction

0 2 3 21 0 1 2 3

x

1

An example waveform where there is one flip and enable is set
to 1'b1

In this example min = 4’d0 and max = 4'd4

 27

x

flip

Verilog Advanced Question 5 (Con’t)

clk

rst_n

out[3:0]

direction

0 2 3 21 2 3 4 3

x

1

An example waveform where there are two flips and enable is
set to 1'b1

In this example min = 4’d0 and max = 4'd4

 28

x

flip

Advanced Questions
Group assignment

Verilog questions (due on 10/28/2021. 23:59:59.)
4-bit Ping-Pong Counter
First-In First Out (FIFO) Queue
Multi-Bank Memory
Round-Robin FIFO Arbiter
4-bit Paramterized Ping-Pong Counter 

FPGA demonstration (due on 10/28/2021. In class.)
4-bit Paramterized Ping-Pong Counter on FPGA

 29

 30

FPGA Demonstration 1
4-bit Paramterized Ping-Pong Counter on FPGA

Behavior specification

In the beginning, the digits showing on the 7-segment display
should be the value of min

Once enable is on, the Ping-Pong Counter starts counting

When enable is off, the Ping-Pong Counter holds its value

The Ping-Pong Counter only counts when max > min

Switches

SW[15] stands for enable

SW[14:11] stand for max

SW[10:7] stand for min

 31

FPGA Demonstration 1
Buttons

"DOWN" button stands for flip

Once flip occurs, you should change your direction

Flip only occurs when min <= output <= max

“UP" button stands for rst_n

Once the button is pushed, the output is set to the value of min,
which is determined by SW[10:7]

The direction is set to “counting up"

Please present your output signal on the two leftmost 7-segment
displays

 32

FPGA Demonstration 1
7-segment display

The rightmost two digits of the 7-segment displays stand for
direction

Please illuminates the upper three segments when counting up,
and illuminates the lower three segments otherwise

Please see the figure on the next page for more details

 33

FPGA Demonstration 1

Counting Up

Counting Down

 34

FPGA Demonstration 1
Notes

Be careful that max and min will change during counting

Once the value of the counter is out of range, hold the value and
direction

If max == min == output, please hold the output and direction

You MUST add debounce and one-pulse circuits for your buttons

Remember to add debounce and one-pulse circuits to your design

We use the 100MHz clock which is provided by the FPGA board.
Please set clk as input and connect it with the W5 port on the FPGA
board.

Your counter should count in an observable frequency so that TAs
can tell whether your design is correct or not

Thank you for your attention!

 35*Balloon Festival at Reno, Nevada, USA 
This picture is taken by Chun-Yi Lee himself, who is also a fan of photography

