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PREFACE 

HDL (hardware description language) and FPGA (field-programmable gate array) devices 
allow designers to quickly develop and simulate a sophisticated digital circuit, realize it 
on a prototyping device, and verify operation of the physical implementation. As these 
technologies mature, they have become mainstream practice. We can now use a PC and 
an inexpensive FPGA prototyping board to construct a complex and sophisticated digital 
system. This book uses a "learning by doing" approach and illustrates the FPGA and HDL 
development and design process by a series of examples. A wide range of examples is 
included, from a simple gate-level circuit to an embedded system with an 8-bit soft-core 
microcontroller and customized 110 peripherals. All examples can be synthesized and 
physically tested on a prototyping board. 

Focus and audience 

FOCUS The main focus of this book is on the effective derivation of hardware, not the 
syntax of HDL. Instead of explaining every language construct, the book focuses on a 
small synthesizable subset and uses about a dozen code templates to provide the skeletons 
of various types of circuits. These templates are general and can easily be integrated to 
construct a large, complex system. Although this approach limits the "freedom" of syntactic 
expression, it will not prevent us from developing innovative hardware architecture. Because 
of the generality and flexibility of HDL, the same circuit can usually be described by a 
wide variety of language constructs and coding styles. Many of these codes are intended 
for modeling. They may lead to unnecessarily complex hardware implementation and 
sometimes cannot be synthesized at all. The template approach actually forces us to think 
more about hardware and develop a good coding practice for synthesis. Since we are 
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more interested in hardware, it is more beneficial to spend time on developing 10 different 
hardware architectures with the same code template rather than describing the same circuit 
with 10 different versions of codes. 

There are two popular HDLs, VHDL and Verilog. Both languages are used widely and 
are IEEE standards. This book uses Verilog, and a separate book with a similar title uses 
VHDL. Despite the drastic syntactic differences in the two languages, their capabilities are 
very similar, particularly for our purposes. After we comprehend the design practice and 
coding methodology in one language, learning the other language is rather straightforward. 

Although the book is intended for beginning designers, the examples follow strict design 
guidelines and prepare readers for future endeavors. The coding and design practice is 
"forward compatible," which means that: 

The same practice can be applied to large design in the future. 
The same practice can aid other system development tasks, including simulation, 
timing analysis, verification, and testing. 
The same practice can be applied to ASIC technology and different types of FPGA 
devices. 
The code can be accepted by synthesis software from different vendors. 

In summary, the book is a hands-on, hardware-centric text that involves minimal HDL 
overhead and follows good design and coding practice to achieve maximal forward com- 
parability. 

Audience and perquisites The book contains three major parts: basic digital circuits, 
peripheral modules, and embedded microcontroller. The intended audience is students in 
an introductory or advanced digital system design course as well as practicing engineers 
who wish to learn FPGA- and HDL-based development. For the materials in the first two 
parts, readers need to have a basic knowledge of digital systems, usually a required course 
in electrical engineering and computer engineering curricula. For the materials in the third 
part, prior exposure to assembly language programming will be helpful. 

Logistics 

Although a major goal of this book is to teach readers to develop software-independent 
and device-neutral HDL codes, we have to choose a software package and a prototyping 
board to synthesize and implement the design examples. The synthesis software and FPGA 
devices from Xilinx, a leading manufacture in this area, are used in the book. 

Software The synthesis software used in the book is the Web version of the Xilinx 
ISE package. The functionality of this version is similar to that of the full version but 
supports only a limited number of devices. Most introductory development boards use 
FPGA devices from the inexpensive Spartan-3 family. Since the Web version supports 
the Spartan-3 device, it fits our needs. The simulation software used in the book is the 
starter version of Mentor Graphics' ModelSim XE 111 package. It is a customized edition 
of ModelSim. Both software packages are free and can be downloaded from Xilinx's Web 
site. 

FPGA prototyping board This book is prepared to be used with several entry-level 
FPGA prototyping boards manufactured by Digilent Inc., including the Spartan-3 Starter, 
Nexys-2, and Basys boards, all of which contain a Spartan-313E FPGA device and have 



similar 110 peripherals. The design examples in the book are based on the Spartan-3 Starter 
board (or simply the S3 board), but most of them can be used directly on other boards as 
well. The applicability of the HDL codes is summarized below. 

Spartan3 Starter (S3) board. The S3 board contains all the peripherals and no 
additional accessory module is needed. All HDL codes and discussions can be 
applied to this board directly. 
Nexys-2 board. The Nexys-2 board is a newer board, which contains a larger FPGA 
device and a larger memory chip. Its peripherals are similar to those on the S3 board. 
There are two differences. First, the "color depth" of its VGA interface is expanded 
from 3 bits to 8 bits. Thus, the output of the VGA interface circuits discussed in 
Chapters 13 and 14 needs to be modified accordingly. Second, the Nexys-2 board 
contains a more sophisticated external memory device. Although the device can be 
configured as an asynchronous SRAM, the timing characteristics are different from 
those of the S3 board's memory device, and thus the HDL codes for the memory 
controller in Chapter 1 1 cannot be used directly. However, the same design principle 
can be applied to construct a new controller. 
Basys board. The Basys board is a simpler board. It lacks the RS-232 connector. 
To implement the UART module and the serial interface discussed in Chapter 8, we 
need Digilent's RS-232 converterperipheral module. The Basys board has no external 
memory devices, and thus the discussion of the memory controller in Chapter 11 is 
not applicable. 
Other FPGA boards. Most peripherals discussed in this book are de facto industrial 
standards, and the corresponding HDL codes can be used as long as a board provides 
proper analog interface circuits and connectors. Except for the Xilinx-specific por- 
tions, the codes can be applied to the boards based on the FPGA devices from other 
manufacturers as well. 

PC Accessories The design examples include interfaces to several PC peripheral de- 
vices. A keyboard, a mouse, and a VGA monitor are required for the respective modules, 
and a "straight-through" serial cable (the most commonly used type) is required for the 
UART module. These accessories are widely available and can probably be obtained from 
an old PC. 

Book organization 

The book is divided into three major parts. Part I introduces the elementary HDL constructs 
and their hardware counterparts, and demonstrates the construction of a basic digital circuit 
with these constructs. It consists of six chapters: 

Chapter 1 describes the skeleton of an HDL program, basic language syntax, and 
logical operators. Gate-level combinational circuits are derived with these language 
constructs. 
Chapter 2 provides an overview of an FPGA device, prototyping board, and devel- 
opment flow. The development process is demonstrated by a tutorial on Xilinx ISE 
synthesis software and a tutorial on Mentor Graphics ModelSim simulation software. 
Chapter 3 introduces HDL's relational and arithmetic operators and routing constructs. 
These correspond to medium-sized components, such as comparators, adders, and 
multiplexers. Module-level combinational circuits are derived with these language 
constructs. 
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Chapter 4 covers the codes for memory elements and the construction of "regular" 
sequential circuits, such as counters and shift registers, in which the state transitions 
exhibit a regular pattern. 
Chapter 5 discusses the construction of a finite state machine (FSM), which is a 
sequential circuit whose state transitions do not exhibit a simple, regular pattern. 
Chapter 6 presents the construction of an FSM with data path (FSMD). The FSMD is 
used to implement register transfer (RT) methodology, in which the system operation 
is described by data transfers and manipulations among registers. 
Chapter 7 discusses several more advanced topics on language constructs and coding 
techniques and introduces the development of more sophisticated testbenches. This 
chapter can be skipped without affecting the remaining chapters. 

Part I1 applies the techniques from Part I to design an array of peripheral modules for the 
prototyping board. Each chapter covers the development, implementation, and verification 
of an individual peripheral. These modules can be incorporated to a larger project. Part I1 
consists of seven chapters: 

Chapter 8 discusses the design of a universal asynchronous receiver and transmitter 
(UART), which provides a serial link to receive and transmit data via the prototyping 
board's RS-232 port. 
Chapter 9 covers the design of a keyboard interface, which reads scan code from a 
keyboard. The keyboard is connected via the prototyping board's PS2 port. 
Chapter 10 covers the design ofa  mouse interface, which obtains the button and move- 
ment information from a mouse. The mouse is also connected via the prototyping 
board's PS2 port. 
Chapter 11 discusses the implementation and timing issues of a memory controller. 
The controller is used to read data from and write data to the two static random access 
memory (SRAM) devices on the S3 board. 
Chapter 12 discusses the inference and application of Spartan-3 device-specific com- 
ponents. The focus is on the FPGA's internal memory blocks. 
Chapter 13 presents the design and implementation of a video controller. The discus- 
sion covers the generation of video synchronization signals and shows the construc- 
tion of simple bit- and object-mapped graphical interfaces. The monitor is connected 
to the prototyping board's VGA port. 
Chapter 14 continues development of the video controller. The discussion illustrates 
the construction of text interface and general tile-mapped scheme. 

Part 111 introduces an FPGA-based soft-core microcontroller, known as PicoBlaze, and 
demonstrates the integration of a general-purpose processor and customized circuit. It 
includes four chapters: 

Chapter 15 provides an overview of the organization and instruction set of PicoBlaze. 
Chapter 16 introduces the basic assembly programming and provides an overview of 
the development process. 
Chapter 17 discusses PicoBlaze's 110 feature and illustrates the procedure to derive 
customized circuits to interface other 110 peripherals. 
Chapter 18 discusses PicoBlaze's interrupt capability and demonstrates the construc- 
tion of a customized interrupt-handling circuit. 

In addition to regular chapters, the appendix summarizes and lists all code templates. 

special m a r k s x i l i n x  s p e c i f i c  We use two special paragraph marks in the book: one 
for a Xilinx-specijic featzrre and one for Verilog-1995 constructs. While the examples 
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described in the book are implemented on a Xilinx-based prototyping board and the codes 
are synthesized by Xilinx ISE software, we try to make the HDL codes as device independent 
and software neutral as possible. Most discussions and codes can be applied to different 
target devices and different synthesis software as well. However, certain codes or device 
features are unique to Xilinx ISE software or Spartan-3 FPGA devices. We use the Xilinx 
spec@ superscript, as in the heading of this section, to indicate that the discussion in the 
corresponding section or chapter is unique to Xilinx. 

Similarly, we use marginal notes, as shown on the outer edge, to indicate that the dis- 
cussion in a paragraph is unique to Xilinx. This note indicates that the code or design is no Xilinx 
longer portable and needs to be revised when a different software package or target device specific 
is used. 

The Verilog language was first ratified in 1995 (referred to as Verilog-1995) and then 
revised in 2001 (referred to as Verilog-2001). Many useful enhancements are added in the 
revised version. We use Verilog-2001 in this book. If a language construct differs in the two 
versions, we describe the old syntax briefly in a separate paragraph and use a marginal note, 
as shown on the outer edge, for this type of discussion. It indicates "for your information" FYI 
and the materials are included to help readers understand the older Verilog codes. 

Instructional use 

The book can be a good companion text for an introductory digital systems course or 
an advanced project-oriented course. In an introductory digital systems course, the book 
supplies the lab portion of the curriculum. The chapters in Part I basically follow the 
sequence of a typical curriculum and can be presented along with regular lectures. One or 
two peripheral modules can be selected as case studies, and corresponding experiments can 
be used as term projects. 

In an advanced project-oriented course, the book provides a base for independent projects. 
The materials in Part I should be treated as an overview or refresher, which provides a gen- 
eral background on HDL, synthesis, and FPGA boards. Some modules in Part I1 can be 
used to demonstrate the design of more complex circuits. These modules can also be con- 
sidered as building blocks (i.e., IPS) or subsystems to be integrated into final projects. The 
PicoBlaze microcontroller discussed in Part 111 can be used as a general-purpose processor 
if an embedded-system type of project is desired. 

Companion Web site 

An accompanying Web site (http://acadernic.csuohio.edu/chu~p/rtl) provides additional in- 
formation, including the following materials: 

Errata 
Code templates 
HDL code listing and relevant files 
Links to synthesis and simulation software 
Links to referenced materials 
Additional project ideas 

Errata The book is self-prepared, which means that the author has produced all aspects 
of the text, including illustrations, tables, code listings, indexing, and formatting. As errors 
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are always bound to happen, the accompanying Web site provides an updated errata sheet 
and a place to report errors. 

Cleveland, Ol~io 

January 2008 
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CHAPTER 1 

GATE-LEVEL COMBINATIONAL CIRCUIT 

1 .I INTRODUCTION 

Verilog is a hardware description language. It was developed in the mid-1980s and later 
transferred to the IEEE (Institute of Electrical and Electronics Engineers). The language is 
formally defined by IEEE Standard 1364. The standard was ratified in 1995 (referred to as 
Verilog- 1995) and revised in 200 1 (referred to as Verilog-200 1). Many useful enhancements 
are added in the revised version. We use Verilog-2001 in this book. 

Verilog is intended for describing and modeling a digital system at various levels and is 
an extremely complex language. The focus of this book is on hardware design rather than 
the language. Instead of covering every aspect of Verilog, we introduce the key Verilog 
synthesis constructs by examining a collection of examples. Several advanced topics are 
examined further in Chapter 7 and detailed Verilog coverage may be explored through the 
sources listed in the bibliographic section at the end of the chapter. 

Although the syntax of Verilog is somewhat like that of the C language, its semantics 
(i.e., "meaning") is based on concurrent hardware operation and is totally different from the 
sequential execution of C. The subtlety of some language constructs and certain inherent 
non-deterministic behavior of Verilog can lead to difficult-to-detect errors and introduce a 
discrepancy between simulation and synthesis. The coding of this book follows a "better- 
safe-than-buggy" philosophy. Instead of writing quick and short codes, the focus is on 
style and constructs that are clear and synthesizable and can accurately describe the desired 
hardware. 

FPGA Prototyping by Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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Table 1.1 Truth table of 1-bit equality comparator 

input output 
i O i l  eq 

In this chapter, we use a simple comparator to illustrate the skeleton of a Verilog program. 
The description uses only logic operators and represents a gate-level combinational circuit, 
which is composed of simple logic gates. In Chapter 3, we cover the remaining Verilog 
operators and constructs and examine the register-transfer-level combinational circuits, 
which are composed of intermediate-sized components, such as adders, comparators, and 
multiplexers. 

1.2 GENERAL DESCRIPTION 

Consider a I-bit equality comparator with two inputs, iO and il, and an output, eq. The 
eq signal is asserted when iO and il are equal. The truth table of this circuit is shown in 
Table 1.1. 

Assume that we want to use basic logic gates, which include not, and, or, and xor cells, 
to implement the circuit. One way to describe the circuit is to use a sum-of-products format. 
The logic expression is 

eq = , i O .  i l  + i O 1 .  ill 

One possible Verilog code is shown in Listing 1.1.  We examine the language constructs 
and statements of this code in the following subsections. 

Listing 1.1 Gate-level implementation of a I-bit comparator 

module e q l  
/ /  I / O  p o r t s  
( 

i n p u t  w i r e  iO,  i l ,  
5 o u t p u t  w i r e  eq 

) ; 

// s i g n a l  d e c l a r a t i o n  
w i r e  PO, p l ;  

10 

/ /  body  
// slim o f  t w o  p r o d u c t  t e r m s  
a s s i g n  eq = pO I p l ;  
/ /  p r o d u c t  t e r m s  

I 5  a s s i g n  pO = - i O  & - i l ;  
a s s i g n  p l  = i O  & i l ;  

endmodule  
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Figure 1.1 Graphical representation of a comparator program. 

The best way to understand an HDL (hardware description language) program is to think 
in terms of hardware circuits. This program consists of three portions. The 110 port portion 
describes the input and output ports ofthis circuit, which are i O  and i l ,  and eq, respectively. 
The signal declaration portion specifies the internal connecting signals, which are pO and 
p l .  The body portion describes the internal organization of the circuit. There are three 
continuous assignments in this code. Each can be thought of as a circuit part that performs 
certain simple logical operations. We examine the language constructs and statements of 
this code in the next section. 

The graphical representation of this program is shown in Figure 1.1. The three contin- 
uous assignments constitute the three circuit parts. The connections among these parts are 
specified implicitly by the signal and port names. 

1.3 BASIC LEXICAL ELEMENTS AND DATA TYPES 

1.3.1 Lexical elements 

Identifier An identifier gives a unique name to an object, such as e q l ,  iO, or PO. It is 
composed of letters, digits, the underscore character (-), and the dollar sign ($). $ is usually 
used with a system task or function. 

The first character of an identifier must be a letter or underscore. It is a good practice 
to give an object a descriptive name. For example, mem-addr-en is more meaningful than 
mae for a memory address enable signal. 

Verilog is a case-sensitive language. Thus, data-bus,  Data-bus, and DATAEUS refer 
to three different objects. To avoid confusion, we should refrain from using the case to 
create different identifiers. 

Keywords K w o r d s  are predefined identifiers that are used to describe language con- 
structs. In this book. we use boldface type for Verilog keywords, such as module and wire 
in Listing 1. I .  

White space White space, which includes the space, tab, and newline characters, is 
used to separate identifiers and can be used freely in the Verilog code. We can use proper 
white spaces to format the code and make it more readable. 

Comments A comment is just for documentation purposes and will be ignored by soft- 
ware. Verilog has two forms of comments. A one-line comment starts with //, as in 

/ /  T h i s  is a commeni 

A multiple-line comment is encapsulated between /*  and */, as in 
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/* T h i s  i s  comment  l i n e  I .  
T h i s  i s  comment l i n e  2 .  
T h i s  i s  comment l i n e  3 .  * /  

In this book, we use italic type for comments, as in the examples above. 

1.4 DATATYPES 

1.4.1 Four-value system 

Four basic values are used in most data types: 
0: for "logic Ow, or a false condition 
I: for "logic I", or a true condition 
z: for the high-impedance state 
x: for an unknown value 

The z value corresponds to the output of a tri-state buffer. The x value is usually used in 
modeling and simulation, representing a value that is not 0, I, or z, such as an uninitialized 
input or output conflict. 

1.4.2 Data type groups 

Verilog has two main groups of data types: net and variable. 

Net group The data types in the net group represent the physical connections between 
hardware components. They are used as the outputs of continuous assignments and as the 
connection signals between different modules. The most commonly used data type in this 
group is wire. As the name indicates, it represents a connecting wire. 

The wire data type represents a 1-bit signal, as in 

wire  pO, p l ;  // two  I - b i t  s i g n a l s  

When a collection of signals is grouped into a bus, we can represent it using a one- 
dimensional array (vector), as in 

wire  [7:01 d a t a l ,  d a t a 2 ;  // 8 - b i t  d a t a  
wire  [31:01 a d d r ;  / /  32- bit a d d r e s s  
wire  [0:71 r e v e r s - d a t a ;  // a s c e n d i n g  i n d e x  s h o u l d  be a v o i d e d  

While the index range can be either descending (as in 17 : 01 ) or ascending (as in 10 : 71 ), 
the former is preferred since the leftmost position (i.e., 7) corresponds to the MSB of a 
binary number. 

A two-dimensional array is sometimes needed to represent a memory. For example, 
a 32-by-4 memory (i.e., a memory has 32 words and each word is 4 bits wide) can be 
represented as 

wire  [3:01 meal [31:0]  ; // 32-by-4  memory 

The other data types in the net group imply certain logical behavior or functionality, 
such as wand (for wired-and connection) and supply0 (for circuit ground connection). We 
don't use these data types in this book. Verilog-2001 also allows the signed data type and 
this issue is discussed in Section 7.3. 
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Variable group The data types in the variable group represent abstract storage in be- 
havioral modeling and are used in the outputs of procedural assignments. There are five 
data types in this group: reg, integer, real, time, and realtime. The most commonly used 
data type in this group is reg and it can be synthesized. The inferred circuit may or may 
not contain physical storage components. The last three data types can only be used in 
modeling and simulation, and the use of the integer data type is discussed in Section 7.3. 

In Verilog-1995, the variable group is known as the register group. Since this term is 
the same for a physical hardware register (i.e., a collection of flip-flops), it is changed in FYI 
the Verilog-2001 documentation to avoid confusion. In this book, we use the term variable 
for the data type, and use the term register for the physical register circuit. 

1.4.3 Number representation 

An integer constant in Verilog can be represented in various formats. Its general form is 

[ s i g n ]  [ s i z e ]  ' [ b a s e ]  [ v a l u e ]  

The [base] term specifies the base of the number, which can be the following: 
b or B: binary 
o or 0: octal 
h or H: hexadecimal 
d or D: decimal 

The [value] term specifies the value of the number in the corresponding base. The 
underline character (-) can be included for clarity. 

The [s ize]  term specifies the number of bits in a number. It is optional. The number 
is known as a sized tiumber when a [size] term exists and is known as an unsized number 
otherwise. 

Sized number A sized number specifies the number of bits explicitly. If the size of the 
value is smaller than the [s ize]  term specified, zeros are padded in front to extend the 
number. except in several special cases. The z or x value is padded if the MSB of the value 
is z or x, and the MSB is padded if the signed data type is used. Several sized number 
examples are shown in the top portion of Table 1.2. 

Unsized number An unsized number omits the [s ize]  term. Its actual size depends 
on the host computer but must be at least 32 bits. The ' [base] term can also be omitted if 
the number is in decimal format. Assume that 32 bits are used in the host machine. Several 
unsized number examples are shown in the bottom portion of Table 1.2. 

1.4.4 Operators 

Verilog has about two dozen operators. For the gate-level description, we need only the 
following bitwise operators: - (not), & (and), I (or), and ^ (xor). These operators infer 
basic gate-level cells. Other operators are discussed in Section 3.2. 

1.5 PROGRAM SKELETON 

As its name indicates, HDL is used to describe hardware. When we develop or examine a 
Verilog code, it is much easier to comprehend ifwe think in terms of6'hardware organization" 



Table 1.2 Examples of sized and unsized numbers 

number stored value comment 

11010 
11010 
11010 
11010 
11010 
00000 
00001 
zzzzz 
XXXXX 

xxx0l 
11111 

- ignored 

0 extended 
0 extended 
z extended 
x extended 
x extended 
2's complement of 00001 

'b11010 00000000000000000000000000011010 extendedto32bits 
' hee 0000000000000000000000001 1101 110 extended to 32 bits 
1 00000000000000000000000000000001 extended to 32 bits 
- 1 1111111111111111i111111111111Iil extended to 32 bits 

rather than "sequential algorithm." Most Verilog codes in this book follow the basic skeleton 
shown in Listing 1.1. It consists of three portions: I10 port declaration, signal declaration, 
and module body. 

1.5.1 Port declaration 

The module declaration and port declaration of Listing 1.1 are 

module  e q l  
( 

i n p u t  w i r e  iO, i l ,  
o u t p u t  w i r e  e q  

1 ; 

The 110 declaration specifies the modes, data types, and names of the module's I10 ports. 
The simplified syntax is 

module  [module -name]  
( 

[model [ d a t a - t y p e ]  [ p o r t - n a m e s ]  , 
[mode] [ d a t a - t y p e ]  [ p o r t - n a m e s ]  , 
. . . 
[mode] [ d a t a - t y p e ]  [ p o r t - n a m e s ]  

) ;  

The [mode] term can be input, output, or inout, which represent the input, output, or 
bidirectional port, respectively. Note that there is no comma in the last declaration. The 
[data-type] term can be omitted if it is wire. 

Verilog-1995 port declaration In Verilog-1995, port names, modes, and data types 
FYI are declared separately. For example, the preceding port declaration becomes 
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m o d u l e  eql (iO, il, eq); / /  only  port  names in b r a c k e t s  
/ /  d e c l a r e  mode 
i n p u t  iO, il; 
o u t p u t  eq; 
/ /  d e c l a r e  data t y p e  
w i r e  iO, il; 
w i r e  eq; 

We do not use this format in this book. 

1.5.2 Program body 

Unlike a program in the C language, in which the statements are executed sequentially, the 
program body of a synthesizable Verilog module can be thought of as a collection of circuit 
parts. These parts are operated in parallel and executed concurrently. There are several 
ways to describe a part: 

Continuous assignment 
"Always block" 
Module instantiation 

The first way to describe a circuit part is by using a continuous assignment. It is useful 
for simple combinational circuits. Its simplified syntax is 

a s s i g n  [signal-name1 = [expression1 ; 

Each continuous assignment can be thought as a circuit part. The signal on the left-hand 
side is the output and the signals used in the right-hand-side expression are the inputs. The 
expression describes the function of this circuit. For example, consider the statement 

a s s i g n  eq = pO I p l; 

It is a circuit that performs the or operation. When pO or p l  changes its value, this statement 
is activated and the expression is evaluated. The new value is assigned to eq after the prop- 
agation delay. There are three continuous assignments in Listing 1.1 and they correspond to 
the three circuit parts shown in Figure 1.1. Since the assignments correspond to the circuit 
parts, the order of these statements does not matter. 

The second way to describe a circuit part is by using an always block. More abstract 
procedural assignments are used inside the always block and thus it can be used to describe 
more complex circuit operation. The always block is discussed in Section 3.3. 

The third way to describe a circuit part is by using module instantiation. Instantiation 
creates an instance of another module and allows us to incorporate predesigned modules as 
subsystems of the current module. Instantiation is discussed in Section 1.6. 

1.5.3 Signal declaration 

The declaration portion specifies the internal signals and parameters used in the module. 
The internal signals can be thought of as the interconnecting wires between the circuit parts, 
as shown in Figure 1.1 .  

The simplified syntax of signal declaration is 

[data-type] [port-names]; 

Two internal signals are declared in Listing 1.1 : 

w i r e  PO, pl; 



Implicit net In Verilog, an identifier does not need to be declared explicitly. If a dec- 
FYI laration is omitted, it is assumed to be an implicit net. The default data type is wire. We 

can remove the explicit declarations in Listing 1.1 and the simplified code is shown in 
Listing 1.2. 

Listing 1.2 Code with implicit net 

module e q l - i m p l i c i t  
( 

i n p u t  i O ,  i l ,  / /  no d a t a  t y p e  d e c l a r a t i o n  
o u t p u t  eq  

-. 1 ;  

/ /  no i n t e r n a l  s i g n a l  d e c l a r a t i o n  

// prodzrct t e r m s  mus t  be p l a c e d  i n  f r o n t  
I U  a s s i g n  pO = - i O  & - i l ;  / / i m p l i c i t  d e c l a r a t i o n  

a s s i g n  p l  = i O  & i l ;  / / i m p l i c i t  d e c l a r a t i o n  
/ /  sum o f  two p r o d u c t  t e r m s  
a s s i g n  eq  = pO I p l ;  

I<  endmodule 

Although the code is more compact, it may introduce subtle errors of misspelled identifiers. 
For clarity and documentation, we always use explicit declarations in this book. 

1.5.4 Another example 

We can expand the comparator to 2-bit inputs. Let the input be a and b and the output be 
aeqb. The aeqb signal is asserted when both bits of a and b are equal. The code is shown 
in Listing 1.3. 

Listing 1.3 Gate-level implementation of a 2-bit comparator 

module eq2-sop 
( 
i n p u t  w i r e  [1 :01 a ,  b ,  
o u t p u t  w i r e  aeqb  

-. 1 ;  

/ /  i n t e r n a l  s i g n a l  d e c l a r a t i o n  
w i r e  PO, p l ,  p 2 ,  p 3 ;  

1 0  // slim o f  p r o d u c t  t e r m s  
a s s i g n  aeqb = pO I p l  I p2 I p 3 ;  
/ /  p r o d u c t  t e r m s  
a s s i g n  pO = ( - a [ 1 1  & " b [ l l )  & ( - a [01  & - b [ 0 ] )  ; 
a s s i g n  p l  = ( - a [ l l  & - b  Ell) & (a[Ol  & bCO1) ; 

1 5  a s s i g n  p2 = (a111 & bC11) & (-aCOI & - b [ O I ) ;  
a s s i g n  p3 = (aC11 & bC11) & ( a [ 0 1  & b [ O l )  ; 

endmodule 

The a and b ports are now declared as a two-element array. Derivation of the architecture 
body is similar to that of the 1-bit comparator. The PO, p i ,  p2, and p3 signals represent 
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aeqb 

Figure 1.2 Construction of a 2-bit comparator from 1-bit comparators. 

the results of the four product terms, and the final result, aeqb, is the logic expression in 
sum-of-products format. 

1.6 STRUCTURAL DESCRIPTION 

A digital system is frequently composed of several smaller subsystems. This allows us to 
build a large system from simpler or predesigned components. Verilog provides a mech- 
anism, known as module instantiation, to perform this task. This type of code is called 
structural description. 

An alternative to the design ofthe 2-bit comparator of Section 1.5.4 is to utilize previously 
constructed I -bit comparators as the building blocks. The diagram is shown in Figure 1.2, 
in which two 1-bit comparators are used to check the two individual bits and their results 
are fed to an and cell. The aeqb signal is asserted only when both bits are equal. The 
corresponding code is shown in Listing 1.4. 

Listing 1.4 Structural description of a 2-bit comparator 

module e q 2  
( 

i n p u t  w i r e [ l : 0 1  a ,  b ,  
o u t p u t  w i r e  aeqb 

5 1;  

/ /  i n t e r n a l  s i g n a l  d e c l a r a t i o n  
w i r e  eO, e l ;  

lo / /  bodv  
/ /  i n s t a n t i a t e  two  I - b i t  c o m p a r a t o r s  
e q l  e q - b i t 0 - u n i t  ( .  i O ( a  [ O ]  ) , . i l  ( b  LO]) , . e q ( e 0 ) )  ; 
e q l  e q - b i t l - u n i t  ( .  e q ( e l ) ,  . i O ( a [ l l ) ,  . i l ( b C 1 1 ) )  ; 

15 / /  a  and b  a r e  eqrral i f  i n d i v i d u a l  b i t s  a r e  e q u a l  
a s s i g n  aeqb = eO & e l ;  

endmodule  
- -- - -- 

The code includes two module instantiation statements. The simplified syntax of module 
instantiation is 
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[module-name] [instance-name] 
( 
. [port-name] ( [signal-name] ) , 
.[port-name] ([signal-name]), 
. . .  
1 ;  

The first portion of the statement specifies which component is used. The [modulename] 
term indicates the name of the module and the [instancename] term gives a unique id 
for an instance. The second portion is port connection, which indicates the connections 
between the 110 ports of an instantiated module (the lower-level module) and the external 
signals used in the current module (the higher-level module). This form of mapping is 
known as connection by name. The order of the port-name and signal-name pairs does not 
matter. 

In Listing 1.4, the first component instantiation statement is 

The eql is the module name defined in Listing 1.1. The port mapping reflects the connec- 
tions shown in Figure 1.2. The component instantiation statement represents a circuit that 
is encompassed in a "black box" whose function is defined in another module. 

This example demonstrates the close relationship between a block diagram and code. 
The code is essentially a textual description of a schematic. Although it is a clumsy way for 
humans to comprehend the diagram, it puts all representations into a single HDL framework. 

Xilinx The Xilinx ISE package includes a simple schematic editor utility that can perform schematic 
specific capture in graphic format and then convert the diagram into an HDL structural description. 

Connection by ordered list An alternative scheme to associate the ports and external 
FYI signals is connection by ordered list (sometimes also known as connection byposition). In 

this scheme, the port names of the lower-level module are omitted and the signals of the 
higher-level module are listed in the same order as the lower-level module's port declaration. 
With this scheme, the two module instantiation statements in Listing 1.4 can be rewritten 
as 

Although this scheme makes the code more compact, it is error prone, especially for a 
module with many 110 ports. For example, ifwe modify the code of the lower-level module 
and switch the order of two ports in the port declaration, all the instantiated modules need to 
be corrected as well. If this is done accidentally during code editing, the altered port order 
may be left undetected during synthesis and leads to difficult-to-find bugs. We always use 
the connection-by-name scheme in this book. 

Verilog primitive Verilog includes a set of predefinedprimitives that can be instantiated 
FYI as modules. These primitives correspond to simple gate-level function blocks, such as 

the and, or, and not cells. For example, the eql circuit can be implemented by using 
simple cells, as shown in Figure 1.3. The corresponding primitive-based code is shown 
in Listing 1.5. 
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Figure 1.3 Low-level diagram of a I-bit comparator. 

Listing 1.5 Implementation with Verilog primitive 

m o d u l e  eql-primitive 

( 
i n p u t  w i r e  iO, i1, 
o u t p u t  w i r e  eq 

5 ) :  

/ /  i n t e r n a l  s i g n a l  d e c l a r a t i o n  
w i r e  iO-n, il-n, P O ,  p i ;  

I,, / / p r i m i t i v e  g a t e  i n s t a n t i a t i o n s  
n o t  unit1 (iO-n, iO); / /  iO-n  = - i O ;  
n o t  unit2 (il-n, ill; / /  i l - n  = - i l ;  
and unit3 (PO, iO-n, il-n); / /  pO = iO-n  & i l - n ;  
and  unit4 (pl, iO, ill; / /  p1 = iO & i l ;  

1 5  o r  unit5 (eq, PO, pl); / /  eq  = pO I p l  ; 

e n d m o d u l e  

This form of code is very tedious and can easily be replaced with simple bitwise logical 
operators. We do not use primitives in this book. 

In addition to the predefined primitives, we can also define customized primitives, known 
as user-dejnedprimitives (UDPs). For example, we can define a I-bit comparator circuit 
in a UDP, as shown in Listing 1.6. 

Listing 1.6 UDP of a 1-bit comparator 

p r i m i t i v e  eql-udp(eq, iO, ill; 
o u t p u t  e q ;  
i n p u t  iO, il; 

t a b l e  
/ /  iO i l  : eq  

0 0 : 1 ;  
0 1 : o ;  
1 0 : 0 ;  

1 0  1 1 : 1; 
e n d t a b l e  

e n d p r i m i t i v e  
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uut 

Figure 1.4 Testbench for a 2-bit comparator. 

A UPD is essentially a table-based description of a circuit. The same table can also be 
described by a case statement (discussed in Section 3.5). We use the latter approach and do 
not use UDPs in this book. 

monitor test vector generator 

1.7 TESTBENCH 

After code is developed, it can be simulated in a host computer to verify the correctness 
of the circuit operation and can be s-vnthesized to a physical device. Simulation is usually 
performed within the same HDL framework. We create a special program, known as a test- 
bench, to mimic a physical lab bench. The sketch of a 2-bit comparator testbench is shown 
in Figure 1.4. The uut  block is the unit under test, the t e s t  v e c t o r  genera to r  block 
generates testing input patterns, and the monitor block examines the output responses. A 
simple testbench for the 2-bit comparator is shown in Listing 1.7. 

test-in-0 - 
test-in-l - 

Listing 1.7 Testbench for a 2-bit comparator 

// The ' t i m e s c a l e  d i r e c t i v e  s p e c i f i e s  t h a t  
// t h e  . s i m u l a t i o n  t i m e  u n i t  i s  I ns and 
// t h e  s i m u l a t i o n  t i m e s t e p  i s  10 ps 
' t i m e s c a l e  1 ns/lO ps 

5 

module eq2-testbench ; 
/ /  s i g n a l  d e c l a r a t i o n  
r e g  [1:0] test-in0 , test-in1 ; 
wire  test-out ; 

I0 

/ /  i n s t a n t i a t e  t h e  c i r c u i t  u n d e r  t e s t  
eq2 uut 

(.a(test-inO), .b(test-inl), .aeqb(test-out)); 

a aeqb 

eq2 
. b  

i i  / /  t e s t  v e c t o r  g e n e r a t o r  
i n i t i a l  
b e g i n  

// t e s t  v e c t o r  1 
test-in0 = 2'bOO; 
test-in1 = 2'bOO; 
# 200; 
// t e s t  v e c t o r  2 
test-in0 = 2'bOl; 
test-in1 = 2'bOO; 

test-out - 

- 



# 200; 
/ /  t e s t  v e c t o r  3 
test-in0 = Z'b01; 
test-in1 = 2'bll; 
# 200; 
/ /  t e s t  v e c t o r  4 
test-in0 = Z'b10; 
test-in1 = 2'blO; 
# 200; 
// t e s t  v e c t o r  5 
test-in0 = 2'blO; 
test-in1 = 2'bOO; 
# 200; 
/ /  t e s t  v e c t o r  6 
test-in0 = 2'bll; 
test-in1 = 2'bll; 
# 200; 
// t e s t  v e c t o r  7 
test-in0 = 2'bll; 
test-in1 = Z J b 0 1 ;  
# 200; 
// s t o p  s i t n z t l a t i o n  

$ s t o p  ; 
end  

511 endmodule  

The code consists of a module instantiation statement, which creates an instance of the 2- 
bit comparator, and an initial block, which generates a sequence of test patterns. The initial 
block is a special Verilog construct, which is executed once when simulation starts. The 
statements inside an initial block are executed sequentially. Each test pattern is generated 
by three statements, as in 

// t e s t  v e c t o r  2 
test-in0 = Z'b01; 
test-in1 = 2'bOO; 
# 200; 

The first two statements specify the values for the t e s t - i n0  and t e s t - i n 1  signals and the 
third indicates that the two values will last for 200 time units. The last statement, $stop, 
is a Verilog system function that stops the simulation and returns the control to simulation 
software. 

The code has no monitor. We can observe the input and output waveforms on a simulator's 
display, which can be treated as a "virtual logic analyzer." The simulated timing diagram 
of this testbench is shown in Figure 2.16. 

Writing code for a comprehensive test vector generator and a monitor requires detailed 
knowledge of Verilog. For now, this listing can serve as a testbench template for other com- 
binational circuits. We can substitute the uut  instance and modify the test patterns according 
to the new circuit. We provide a review of additional modeling and simulation-related lan- 
guage constructs and demonstrate the construction of a more sophisticated testbench in 
Section 7.5. 



1.8 BIBLIOGRAPHIC NOTES 

A short bibliographic section appears at the end of each chapter to provide some of the most 
relevant references for further exploration. A comprehensive bibliography is included at 
the end of the book. 

Verilog is a complex language. The standard is specified in IEEE Standard Verilog 
Hardware Description Language, IEEE Std 1364-2001. Verilog HDL, 2nd edition, by 
S. Palnitkar and Starter's Guide to Verilog 2001 by M .  D. Ciletti provide detailed coverage 
ofthe language's syntax and constructs. Verilog-200 1 includes many improvements over the 
old standard. The article "The IEEE Verilog 1364-2001 Standard: What's New, and Why 
You Need It" by S. Sutherland summarizes the new features. Derivation of the testbench 
for a large digital system is a difficult task. Writing Testbenches: Functional Verijication 
qf HDL Models, 2nd edition, by J .  Bergeron focuses on this topic. 

1.9 SUGGESTED EXPERIMENTS 

At the end of each chapter, some experiments are suggested as exercises. The experiments 
help us to better understand the concepts and provide a hands-on opportunity to design and 
debug actual circuits. 

1.9.1 Code for gate-level greater-than circuit 

Develop the HDL codes in Experiment 2.9.1. The code can be simulated and synthesized 
after we complete Chapter 2. 

1.9.2 Code for gate-level binary decoder 

Develop the HDL codes in Experiment 2.9.2. The code can be simulated and synthesized 
after we complete Chapter 2. 



CHAPTER 2 

OVERVIEW OF FPGA AND EDA 
SOFTWARE 

2.1 INTRODUCTION 

Developing a large FPGA-based system is an involved process that consists of many com- 
plex transformations and optimization algorithms. Software tools are needed to automate 
some of the tasks. We use the Web version of the Xilinx ISE package for synthesis and 
implementation, and use the starter version of Mentor Graphics ModelSim XE 111 package 
for simulation. In this chapter, we give a brief overview of the FPGA device and the S3 
prototyping board, and provide short tutorials for the two software packages to "jump-start" 
the learning process. 

2.2 FPGA 

2.2.1 Overview of a general FPGA device 

Afield-programmable gate array (FPGA) is a logic device that contains a two-dimensional 
array of generic logic cells and programmable switches. The conceptual structure of an 
FPGA device is shown in Figure 2.1. A logic cell can be configured (i.e., programmed) 
to perform a simple function, and a programmable switch can be customized to provide 
interconnections among the logic cells. A custom design can be implemented by specifying 
the function of each logic cell and selectively setting the connection of each programmable 
switch. Once the design and synthesis are completed, we can use a simple adaptor cable 
to download the desired logic cell and switch configuration to the FPGA device and obtain 

FPGA Proto!vpbig h.y Vrrilog E.~amples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons. Inc. 



programmable switch 

Figure 2.1 Conceptual structure of an FPGA device. 
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Figure 2.2 Three-input LUT-based logic cell. 

the custom circuit. Since this process can be done "in the field" rather than "in a fabrication 
facility (fab)," the device is known asfieldprogrammable. 

LUTbased logic cell A logic cell usually contains a small configurable combinational 
circuit with a D-type flip-flop (D FF). The most common method to implement a configurable 
combinational circuit is a look-up table (LUT). An n-input LUT can be considered as a 
small 2'"by-1 memory. By properly writing the memory content, we can use an LUT 
to implement any n-input combinational function. The conceptual diagram of a three- 
input LUT-based logic cell is shown in Figure 2.2(a). An example of three-input LUT 
implementation of a $ b @ c is shown in Figure 2.2(b). Note that the output of the LUT 



can be used directly or stored to the D FF. The latter can be used to implement sequential 
circuits. 

Macro cell Most FPGA devices also embed certain macro cells or macro blocks. These 
are designed and fabricated at the transistor level, and their functionalities complement the 
general logic cells. Commonly used macro cells include memory blocks, combinational 
multipliers, clock management circuits, and 110 interface circuits. Advanced FPGA devices 
may even contain one or more prefabricated processor cores. 

2.2.2 Overview of the Xilinx Spartan3 devices 

This book uses Xilinx Spartan-3 family FPGA devices. Based on the ratio between the num- 
ber of logic cells and the 110 counts, the family is further divided into several subfamilies. 
Our discussion applies to all the subfamilies. 

Logic cell, slice, and CLB The most basic element of the Spartan-3 device is a logic 
cell (LC), which contains a four-input LUT and a D FF, similar to that in Figure 2.2. 
In addition, a logic cell contains a carry circuit, which is used to implement arithmetic 
functions, and a multiplexing circuit, which is used to implement wide multiplexers. The 
LUT can also be configured as a 16-by- 1 static random access memory (SRAM) or a 16-bit 
shift register. 

To increase flexibility and improve performance, eight logic cells are combined with a 
special internal routing structure. In Xilinx terms, two logic cells are grouped to form a 
slice, and four slices are grouped to form a conjgurable logic block (CLB). 

Macro cell The Spartan-3 device contains four types of macro blocks: combinational 
multiplier, block RAM, digital clock manager (DCM), and input/output block (IOB). The 
combinational multiplier accepts two 18-bit numbers as inputs and calculates the product. 
The block RAM is an 18K-bit synchronous SRAM that can be arranged in various types 
of configurations. A DCM uses a digital-delayed loop to reduce clock skew and to control 
the frequency and phase shift of a clock signal. An IOB controls the flow of data between 
the device's I10 pins and the internal logic. It can be configured to support a wide variety 
of I10 signaling standards. 

Devices in the Spartan-3 subfamily Although Spartan-3 FPGA devices have similar 
types of logic cells and macro cells, their densities differ. Each subfamily contains an array 
of devices of various densities. The numbers of LCs, block RAMS, multipliers, and DCMs 
of the devices from the Spartan-3 subfamily are summarized in Table 2.1. 

2.3 OVERVIEW OF THE DlGlLENT S3 BOARD 

The Digilent S3 board is based on a Spartan-3 device (usually an XC3S200) and has an 
array of built-in peripherals. The simplified layouts of the board are shown in Figure 2.3(a) 
and (b). The main components and connectors are as follows: 

1 .  Xilinx Spartan-3 XC3S200 FPGA device (XC3S200FT256) 
2. 2M-bit Xilinx XCF02S platform flash configuration PROM 
3. Jumper to select the configuration source 
4. Two 256K-by-16 asynchronous SRAM devices (ISSI IS61LV25616AL-10T) 



(b) Bonom view 

Figure 2.3 Layout of an S3 board. (Courtesy of Xilinx, Inc. O Xilinx, Inc. 1994-2007. All rights 
resewed.) 
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Table 2.1 Devices in the Spartan-3 family 

Device Number of Number of Block Number of Number of 
LCs block RAMS RAM bits multipliers DCMs 

5. VGA display port 
6. RS-232 serial port 
7. RS-232 transceiverlvoltage-level convertor 
8. Second RS-232 transmit and receive channel 
9. PSI2 mouse/keyboard port 

10. Four-digit seven-segment LED display 
1 1. Eight slide switches 
12. Eight discrete LED outputs 
13. Four momentary-contact pushbutton switches 
14. 50-MHz crystal oscillator clock source 
15. Socket for an auxiliary crystal oscillator clock source 
16. Jumper to select an FPGA configuration mode 
17. Pushbutton switch to force FPGA reconfiguration 
18. LED to indicate whether the FPGA is successfully configured 
1 9. 40-pin expansion connector 1 (labeled B 1) 
20. 40-pin expansion connector 2 (labeled A2) 
2 1. 40-pin expansion connector 3 (labeled A1 ) 
22. JTAG connector for Digilent download cable 
23. Digilent low-cost download cable (included in the S3 kit but not shown in Figure 2.3) 
24. JTAG port (to be used with the Xilinx Parallel Cable IV and MultiPRO Desktop Tool, 

which are not included in the S3 kit) 
25. Power connector for an unregulated 5-V power supply (included in the S3 kit) 
26. Power-on LED indicator 
27. 3.3-V voltage regulator 
28. 2.5-V voltage regulator 
29. 1.2-V voltage regulator 
30. Selector for PS2 port voltage supply (3.3 or 5 V) 

2.4 DEVELOPMENT FLOW 

The simplified development flow of an FPGA-based system is shown in Figure 2.4. To 
facilitate further reading, we follow the terms used in the Xilinx documentation. The 
left portion of the flow is the refinement and programming process, in which a system is 
transformed from an abstract textual HDL description to a device cell-level configuration 
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Figure 2.4 Development flow. 

and then downloaded to the FPGA device. The right portion is the validation process, which 
checks whether the system meets the hnctional specification and performance goals. The 
major steps in the flow are: 

1. Design the system and derive the HDL file(s). We may need to add a separate 
constraint file to specify certain implementation constraints. 

2. Develop the testbench in HDL and perform RTL simulation. The RTL term reflects 
the fact that the HDL code is done at the register transfer level. 

3. Perform synthesis and implementation. The synthesis process is generally known as 
logic synthesis, in which the software transforms the HDL constructs to generic gate- 
level components, such as simple logic gates and FFs. The implementation process 
consists ofthree smaller processes: translate, map, and place and route. The translate 
process merges multiple design files to a single netlist. The map process, which 
is generally known as technology mapping, maps the generic gates in the netlist to 
FPGA's logic cells and 10Bs. Theplace androuteprocess, which is generally known 
asplacement androuting, derives the physical layout inside the FPGA chip. It places 
the cells in physical locations and determines the routes to connect various signals. In 
the Xilinx flow, static timing analysis, which determines various timing parameters, 
such as maximal propagation delay and maximal clock frequency, is performed at 
the end of the implementation process. 

4. Generate and download the programming file. In this process, a configuration file is 
generated according to the final netlist. This file is downloaded to an FPGA device 
serially to configure the logic cells and switches. The physical circuit can be verified 
accordingly. 

1 4 
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4 4 4 4 
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I functional I 
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The optional functional simulation can be performed after synthesis, and the optional 
timing simulation can be performed after implementation. Functional simulation uses a 
synthesized netlist to replace the RTL description and checks the correctness ofthe synthesis 
process. Timing simulation uses the final netlist, along with detailed timing data, to perform 
simulation. Because of the complexity of the netlist, functional and timing simulation may 
require a significant amount oftime. Ifwe follow good design and coding practices, the HDL 
code will be synthesized and implemented correctly. We only need to use RTL simulation 
to check the correctness of the HDL code and use static timing analysis to examine the 
relevant timing information. Both functional and timing simulations may be omitted from 
the development flow. 

2.5 OVERVIEW OF THE XlLlNX ISE PROJECT NAVIGATOR 

Xilinx ISE (integrated software environment) controls all aspects of the development flow. 
Project Navigator is a graphical interface for users to access software tools and relevant 
files associated with a project. We use it to launch all development tasks except ModelSim 
simulation. The discussion in this section and the tutorial in the next section are based on 
ISE WebPack version 8.2. 

The default ISE window is shown in Figure 2.5. It is divided into four subwindows: 

Sources window (top left): hierarchically displays the files included in the project 
Processes window (middle left): displays available processes for the source file cur- 
rently selected 
Transcript window (bottom): displays status messages, errors, and warnings 
Workplace window (top right): contains multiple document windows (such as HDL 
code, report, schematic, and so on) for viewing and editing 

Each subwindow may be resized, moved, docked, or undocked. The default layout can be 
restored by selecting View + Restore. Note that a subwindow may contain multiple pages. 
The tabs at the bottom are used to select the desired page. 

Sources window The sources window is used mainly to display files associated with the 
current project. A typical sources window, which corresponds to the design of Listing 2.2, 
is shown in Figure 2.6. The top drop-down list, labeled Sources for:, specifies the current 
design view. The synthesis/implementation view should be selected since we use ISE 
only for synthesis and implementation. 

There are three tabs at the bottom, labeled Sources, Snapshots, and Libraries. The 
Sources tab displays the project name, the FPGA device specified, and user documents 
and design files. The modules are displayed according to the internal design hierarchy. In 
Figure 2.6, the eq2 and eql entities reflect the hierarchy of Listing 2.2. The eq2 module 
also includes the eq-s3. ucf file, which specifies the constraints of the design. We can open 
a file in the workplace window by double-clicking the corresponding module. A top-level 
module icon can be placed next to a module, as in the eq2 module, to invoke synthesis and 
implementation for this particular module. 

The Snapshots tab displays project's "snapshots," which are copies of previously stored 
project files. The Libraries tab shows all libraries associated with the project. 

Processes window The processes window displays the processes available. The dis- 
play is context sensitive and the available processes are based on the source type selected 
in the sources window. For example, the eq2 module, which is set as the top-level module, 
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Figure 2.5 Typical ISE window. 



Figure 2.7 Typical processes window. 

is selected in Figure 2.6. The available processes are displayed in the processes window, 
as shown in Figure 2.7. Some processes may also contain several subprocesses. We can 
initiate a process by clicking on the corresponding icon. ISE incorporates the "auto make" 
technology, which automatically runs the processes necessary to get to the desired step. 
For example, when we initiate the Generate Programming File process, ISE automatically 
invokes the Synthesize and Implement Design processes since file generation is dependent 
on the implementation result, which, in turn, is dependent on the synthesis result. 

Transcript window The transcript window is used to display the progress of a process 
and relevant messages. The Console page displays errors, warnings, and information mes- 
sages. An error is signified by a red X mark next to the message and a warning is signified by 
a yellow ! mark. The Warnings and Errors pages display only warning and error messages. 



Workplace window The workplace window is for users to view and edit various types 
of files. We use it to perform two main tasks. The first task is to view and edit the HDL 
and constraint files. The default editor is the ISE Text Editor, which is a simple text editor 
with features to assist creation of the HDL code. The second task is to check the design 
summary and various reports. 

2.6 SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 

Xilinx ISE consists of an array of software tools, but detailed discussion of their use is 
beyond the scope of this book. We present a short tutorial in this section to illustrate the 
basic development process. There are four major steps: 

1. Create the design project and HDL codes. 
2. Create a testbench and perform RTL simulation. 
3. Add a constraint file and synthesize and implement the code. 
4. Generate and download the configuration file to an FPGA device. 

These steps follow the general development flow discussed in Section 2.4. 
We use the 2-bit comparator discussed in Chapter 1 in the tutorial. The codes are repeated 

in Listings 2.1 and 2.2. 

Listing 2.1 Gate-level implementation of a 1 -bit comparator 

module e q l  
// 1 / 0  p o r t s  
( 

i n p u t  w i r e  i O ,  i l ,  
o u t p u t  w i r e  e q  

1; 

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  PO, p l ;  

10 

// body  
/ /  sum o f  t w o  p r o d u c t  t e r m s  
a s s i g n  e q  = pO I p l ;  
/ /  p r o d u c t  t e r m s  

1 5  a s s i g n  pO = - i O  & - i l ;  
a s s i g n  p l  = iO & i l ;  

endmodule 

Listing 2.2 Structural description of a 2-bit comparator 

module eq2  
( 

i n p u t  w i r e  [ l :  01 a ,  b ,  
o u t p u t  w i r e  a e q b  

5 1; 

// i n t e r n u l  s i g n a l  d e c l a r . a t i o n  
w i r e  eO ,  e l ;  
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/ /  i n s t a n t i a t e  ~ H ' O  I -  b i t  c o m p a r a t o r s  
eql eq-bit0-unit ( .  iO(a[O]), . il (b [o]) , . eq(eO)) ; 
eqi eq-bitl-unit ( .  eq(el), . iO(a[1]), . il(b[ll)); 

15  / /  a and b  a r e  e q u a l  if i n d i v i d u a l  b i t s  a r e  e q u a l  
assign aeqb = eO & e l ;  

endmodule 

2.6.1 Create the design project and HDL codes 

There are three tasks in this step: 
Create a project. 
Add or create HDL files. 
Check the HDL syntax. 

Create a project An ISE project contains basic information of a design. which includes 
the source files and a target device. A new project can be created as follows: 

1. Select Start t All Programs t Xilinx ISE t Project Navigator (orwherever ISE resides) 
to launch the ISE project navigator. 

2. In Project Navigator, select File + New Project. The New Project Wizard - Create 
New project dialog appears. Enter the project name as eq2 and the location, and 
verify that HDL is selected in the Top-level Source Type field. Click Next. 

3. The New Project Wizard - Device Properties dialog appears. We need to enter the 
desired target device in this dialog. This information can be found in the FPGA board 
manual or by checking the marking on the top of the FPGA chip. For a typical S3 
board, select the following: 

Product Category: All 
Family: Spartan3 
Device: XC3S200 
Package: FT256 
Speed: -4 

We also need to verify that the Xilinx XST software is selected for synthesis: 
Synthesis Tool: XST (VHDL/Verilog) 

4. Click Next a few times to go through the remaining dialogs and then click Finish to 
complete the creation. 

After a project is created, we can create or add the relevant HDL files and a constraint file. 

Create a new HDL file If a file does not exist, we must create a new source file. The 
procedure to create a new HDL file is: 

1 .  Select Project t New Source. The New Source Wizard - Select Source Type dialog 
appears. Select Verilog Module and type the file name, eq2. Click Next. 

2. The next dialog appears. This dialog allows us to enter port names to be embedded 
in the Verilog code. However, since the code generated uses the old style of port 
declaration, we do not use this feature. Click Next. 

3. Click Finish and a new HDL text editor window appears in the workplace window. 
The software automatically generates a comment header and module delimiters. 

4. Use the editor to enter the HDL code in Listing 2.2 and save the file. 
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5. Repeat the process to create another file for the code in Listing 2.1. 

Add existing files If a file already exists, it can be added to the project as follows: 

1 .  Select Project + Add Source. A dialog window appears. 
2. Go to the appropriate directory and select the desired files. Click Open and a new 

dialog appears. 
3. Click OK to complete the addition. These files now appear in the sources window of 

the project navigator. 

Check the code syntax After completing a new HDL file, we need to check the syntax 
of the code: 

1. Select the desired file in the source window. 
2. In the processes window, click the + icon next to Synthesize to expand the process 

hierarchy. 
3. Double-click the Check Syntax process. 

The bottom transcript displays the progress of the process and reports errors and warnings, 
which begin with red X and yellow ! marks. Double-clicking the message leads to the 
offending line in the file. We can correct the problem, save the file, and repeat the syntax 
checking process until all syntax errors are eliminated. 

2.6.2 Create a testbench and perform the RTL simulation 

The testbench functions as a virtual lab bench. It consists of the HDL module to be tested 
and a code segment to generate the stimulus. The RTL simulation verifies operation of the 
HDL module in the host computer. ISE contains a built-in ISE simulator and can launch 
the ModelSim simulator manufactured by Mentor Graphics Corporation. Since the latter 
is more robust and versatile, we use it in the book. Although ModelSim can be invoked 
from ISE Project Navigator, we treat it as an individual software tool and illustrate its use 
in Section 2.7. 

2.6.3 Add a constraint file and synthesize and implement the code 

There are three tasks in this step: 
Add a constraint file. 
Perform synthesis and implementation. 
Check the design summary. 

Add a constraint file Constraints are certain conditions imposed on the synthesis 
and implementation processes. For our purposes, the main type of constraint is the pin 
assignment of a top-level 110 port and the minimal clock rate. During the implementation 
process, an I10 signal of the top-level module must be mapped to a physical pin of the 
FPGA device. Since the peripherals' 110 signals are already permanently connected to 
the designated FPGA's pins on the prototyping board, we must ensure that the signals are 
mapped to the corresponding pins. The other type of constraint is about timing, which 
specifies the minimal clock frequency to facilitate the oscillator of the board. 

The constraint information is stored in a text file with an extension of .ucf (for the user 
constraint file). In the eq2 circuit, we can connect the a and b ports to four switches and 
the aeqb port to an LED to verify the physical operation of the circuit. For the S3 board, 
the corresponding pins are F12, G 1 2 ,  H 1 4 ,  H 1 3 ,  and K 1 2 .  The constraint file becomes 



# 4 s l i d e  s w i t c h e s  
NET " a < O > "  LOC = "F12"  ; # s w i t c h  0 
NET " a < l > "  LOC = "G12" ; # s w i t c h  1 
NET "b<O>" LOC = "H14" ; # s w i t c h  2  
NET " b < l > "  LOC = "H13" ; # s w i t c h  3  
# l e d  
NET " a e q b "  LOC = "K12" ; # l e d  0  

Note that the # sign is used for a comment and the text after it is ignored. This file must be 
added to the design in the sources window. 

Several ISE tools are available to specify and generate the constraint file. Since all of our 
experiments are done in the same prototyping board, the constraints (i.e., pin assignment 
and clock frequency) remain the same. A constraint template file that includes all connected 
I10 peripheral signals of the S3 board is provided in the Appendix. One easy method to 
create a constraint file is simply to copy and edit the template file according to the 110 
port names of the current design. The procedure to create the .ucf file for the eq2 circuit 
proceeds as follows: 

1. Copy the template constraint file and rename it eq2_s3.ucf. 
2. Follow the procedure in Section 2.6.1 to add the new constraint file to the eq2 module 

in the sources window. 
3. Select the constraint file. 
4. In the processes window, click the + icon next to User Constraints to expand the 

process hierarchy. 
5. Double-click the Edit Constraints (Text) process to launch the ISE text editor. 
6. Rename the I10 names as needed and then delete the unused pin assignments. 
7. Save the file. 
The default option of ISE version 8.2 only allows the pin assignments of the existing 

top-level 110 ports. If unused pin assignments are not deleted from the ucf template, error 
messages will be generated. We can override the default option as follows: 

1. Select the top-level HDL file. 
2. Right-click the Implement Design process in the processes window and then select 

Properties ... from the menu. A dialog window appears. 
3. In the dialog window, check the Allow Unmatched LOC Constraints option and then 

click OK. 

AAer this option is turned on, we can use the same ucf template for all designs as long as 
the same I10 port names are kept in the top-level module, and we don't need to edit the ucf 
file each time. 

Perform synthesis and implementation Invoking the synthesis and implementation 
procedure is very simple: 

1.  Select the module to be synthesized and make sure that it is designated as the top-level 
module (with a green square next to the module icon). 

2. Double-click the Implement Design process in the processes window. 
3. Although the syntax is checked earlier, the code may contain constructs that cannot 

be synthesized or may lead to poor implementation (such as a combinational loop). 
The error and warning messages are displayed in the console tab of the transcript 
window. 

4. Correct the problems and repeat the simulation and synthesis processes if needed. 
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Figure 2.8 Design summary. 

Check the design summary As the project progresses, a report is generated in each 
process. These reports and key statistics are summarized in a design summary window. We 
can check the size ofthe resulting circuit (in terms ofthe numbers of slices, FFs, and LUTs) 
and, for a sequential circuit, check whether the clock rate meets the timing constraints. 
The summary can be invoked by double-clicking the View Design Summary process in the 
processes window. The summary for the eq2 circuit is shown in Figure 2.8. We can check 
the use of slices, LUTs, and so on, in the Device Utilization Summary portion. A more 
detailed report can be invoked by clicking the corresponding link. 



2.6.4 Generate and download the configuration file to an FPGA device 

The last step is to generate the configuration file and download the file to the FPGA device. 
There are three tasks in this step: 

Connect the download cable. 
Generate the configuration file. 
Download the configuration file. 

The S3 kit comes with a parallel-port JTAG download cable, and the following discussion 
is based on this cable. The procedures for other cables are similar and detailed instructions 
may be found in their manuals. 

Connect the download cable The procedure to prepare the board is as follows: 
I. Make sure that the PROM and Mode jumpers (labeled 3 and 16 in Figure 2.3) are in 

their default setting (as the board is shipped). 
2. Connect the power cable. 
3. Connect one end of the download cable to the parallel port of a PC and connect the 

other end to the JTAG port (labeled 22 in Figure 2.3) on the S3 board. 

Generate the configuration file Generating a configuration file is very straightfor- 
ward: 

1. Make sure that the top-level module is selected in the source window. 
2. Click Generate Programming File in the processes window. 

After this process is completed, a configuration file, eq2.bit, is generated. 

Download the configuration file Downloading the configuration file to an FPGA 
device is done by a software tool known as iMPACT, which can be invoked from ISE 
Project Navigator. The procedure is as follows: 

1. In the processes window, click the + sign to expand the Generate Programming File 
hierarchy. 

2. Double-click the Configure Device (IMPACT) process. The Welcome to iMPACT dia- 
log appears, as shown in Figure 2.9. Check Configure devices using Boundary-Scan 
(JTAG) and verify that Automatically connect to a cable and identify Boundary-Scan 
chain is selected in the drop-down list. Click Finish. 

3. If a message indicating that two devices are found is displayed, click OK to continue. 
4. The main iMPACT window, along with the Assign New Configuration File dialog, 

appears, as shown in Figure 2.10. The devices connected to the JTAG chain on the 
board should be detected and displayed. 

5. Select the eq2.bit file and click Open to assign this configuration file to the xc3s200 
device in the JTAG chain. 

6. If a warning message appears, ignore it and click OK. 
7. Select Bypass to skip the other device. 
8. Right-click on the xc3s200 device image, and select Program .... The Programming 

Properties dialog opens. Click OK to program the device. 
9. The Program Succeeded message appears when the downloading process is com- 

pleted. 
Now the FPGA device is configured and we can test the circuit with the switches and observe 
the output LED. 



Figure 2.10 iMPACT main window. 



Figure 2.11 Typical ModelSim window. 

An alternative way to configure the FPGA is to download the configuration file to a 
PROM and load the configuration file from the PROM. More information may be found in 
the sources cited in the bibliographic section. 

2.7 SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 

The ModelSim software is an HDL simulator manufactured by Mentor Graphics Corpo- 
ration and can run independently without ISE. The discussion in this section is based on 
ModelSim XE 111 Starter version 6.0d. 

The default ModelSim window is shown in Figure 2.1 1. It is divided into three subwin- 
dows: Transcript window (bottom), Workspace window, and multiple document interface 
(MDI) window. The Workspace window displays information on the current process. The 
bottom tab is used to select the desired process page, which can be Project, Library, Sim, 
and so on. The Transcript window keeps track of command history and messages. It can 
also be used as a command-line interface to enter ModelSim commands. The MDI window 
is an area to display HDL text, waveform, and so on. The bottom tab selects the desired 
pages. 



Each subwindow may be resized, moved, docked, or undocked. Additional windows 
may appear for some operations. The default layout can be restored by selecting Window 
+ Initial Layout. 

We present a short tutorial in this section to illustrate the basic simulation process. There 
are three steps: 

I .  Prepare a simulation project. 
2. Compile the HDL codes. 
3. Perform a simulation and examine the waveform. 

We use the 2-bit comparator testbench discussed in Chapter 1 for the tutorial, and the code 
is repeated in Listing 2.3. 

Listing 2.3 Testbench of a 2-bit comparator 

/ /  The ' t i m e s c a l e  d i r e c t i v e  s p e c i f i e s  t h a t  
/ /  t h e  . s imlr la t ion  t i m e  u n i t  i s  1 ns and 
// t h e  s i m u l a t i o n  t i m e s t e p  i s  10 ps 
' t i m e s c a l e  1 ns/lO ps 

< 

module eq2-testbench; 
/ /  s ig r ia l  d e c l a r a t i o n  
r e g  [I :0] test-in0 , test-in1 ; 
w i r e  test-out ; 

I0 

/ /  i n s t a t i t i a t e  t h e  c i r c u i t  under  t e s t  
eq2 uut 

(.a(test-inO), .b(test-inl), .aeqb(test-out)); 

1 5  / /  l e s t  v e c t o r  g e n e r a t o r  
i n i t i a l  
b e g i n  

// t e s t  v e c t o r  1 
test-in0 = 2'bOO; 
test-in1 = 2'bOO; 
# 200; 
/ /  l e s t  v e c t o r  2 
test-in0 = 2'bOl; 
test-in1 = 2'bOO; 
# 200; 
// t e s t  v e c t o r  3 
test-in0 = 2'bOl; 
test-in1 = 2'bll; 
# 200; 
/ /  t e s t  v e c t o r  4 
test-in0 = 2'blO; 
test-in1 = 2'blO; 
# 200; 
/ /  t e s t  v e c t o r  5 
test-in0 = 2'blO; 
test-in1 = 2'bOO; 
# 200; 
/ /  t e s t  v e c t o r  6 
test-in0 = 2'bll; 
test-in1 = 2'bll; 
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(a) Create Projec t  dialog (b) Add items dialog 

Figure 2.12 New project dialogs. 

# 200; 
/ /  t e s t  v e c t o r  7 
test-in0 = 2'bll; 
test-in1 = 2'bOl; 

45 # 200; 
// s t o p  s i m u l a t i o n  
$ s t o p  ; 

end 

so endmodule  

Prepare a simulation project A ModelSim simulation project consists of the library 
definition and a collection of HDL files. A testbench is an HDL program and can be created 
by using the ISE text editor, as discussed in Section 2.6.1. Alternatively, ModelSim also 
has a built-in editor. We assume that all HDL files are already constructed. The procedure 
to create a project is as follows: 

1. Select Start + All Programs + ModelSim XE I l l  6.0d + ModelSim (or wherever Mod- 
elSim resides) to launch the ModelSim program. 

2. Select File + New + Project and the Create Project dialog appears, as shown in 
Figure 2.12(a). Enter the project name as eq-testbench, select the project location, 
and set Default Library Name to work. Click OK. A blank Project page appears 
in the main window and the Add items to the project dialog appears, as shown in 
Figure 2.12(b). 

3. In the Add items to the project dialog, click Add Existing File and add the necessary 
HDL files. Click OK. The project tab appears in the workplace subwindow and 
displays the selected files, as shown in Figure 2.13. 

Compile the HDL code The compile term here means to convert the HDL code into 
ModelSim internal format. In Verilog, compiling is done on the module basis. The proce- 
dure is: 

1. Highlight the eql file and right-click the mouse. Select Compile + Compile Selected. 
Note that the compiling should be started from the modules at the bottom ofthe design 
hierarchy. The progress and messages are displayed in the transcript window. 
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Figure 2.14 Simulate dialog. 

2. If the file contains no syntactical error, a check mark shows up. Otherwise, an X 
mark shows up. Click the red error line in the transcript window to locate the errors. 
Correct the problems, save the file, and recompile the file. 

3. Repeat the preceding steps to compile the eq2 file and then the eq-tb file. 

Perform a simulation and examine the waveform After compiling the testbench 
and corresponding files, we can perform the simulation and examine the resulting waveform. 
This corresponds to running the circuit in a virtual lab bench and checking the waveform 
in a virtual logic analyzer. The procedure is: 

1. Select Simulate + Simulate and the Simulate dialog appears. 
2. In the Design tab, find and expand the work library, which is the one defined when 

we create the project. All compiled units are displayed, as shown in Figure 2.14. 
3. Load eq2- tes tbench by double-clicking the corresponding icon. The sim tab ap- 

pears in the workplace window and the corresponding page displays the structure of 
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Figure 2.16 Waveform window. 

the eq2-testbench module, as shown in Figure 2.15. An object window, which 
contains the signals in the selected module, may also appear. 

4. Highlight the uut unit and right-click the mouse. Select Add + Add to Wave. This 
adds all the signals of the uut unit to the waveform page. The waveform page appears 
in the MDI window. 

5. If necessary, rearrange the signals order and set them to the proper formats (decimal, 
hex, and so on). 

6. Select Simulate + Run. There are several commands to control the simulation: 
Restart (restart the simulation), Run (run the simulation one step), Continue run 
(resume the run from the interrupt), Run All (run the simulation forever), and Break 
(break the simulation). These commands are also shown as icons at the top of the 
window. 

7. The waveform window displays the simulated result, shown in Figure 2.16. We can 
scroll the window, zoom in, or zoom out to check the correctness of the design. 

2.8 BIBLIOGRAPHIC NOTES 

Both Xilinx ISE and Mentor Graphics ModelSim are complex software packages, and their 
documentation exceeds several thousand pages. Most documentation can be accessed via 
the Help menu. ISE has a short 30-page tutorial, ISE 8. l i  Quick Start Tutorial, and a more 
comprehensive 170-page tutorial, ISE In-Depth Tutorial. ModelSim also has a similar 
tutorial, ModelSim Tutorial. These tutorials provide an overview on all features of the 
software package. Relevant information for the Spartan-3 device can be found in its data 
sheets, DS099 Spartan-3 FPGA Family: Complete Data Sheet, which includes the detailed 
explanation on the logic cells and macro cells. The Design Warrior's Guide to FPGAs 
by Clive Maxfield provides a comprehensive review of FPGA-related issues. The detailed 
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Table 2.2 Truth table of a 2-to-4 decoder with enable 

input output 
en n(1) a.(O) bcode 

layout and I10 connectors of the S3 board may be found in Spartan-3 Starter Kit Board 
User Guide. Information on other prototyping boards can be found in their manuals. 

2.9 SUGGESTED EXPERIMENTS 

2.9.1 Gate-level greater-than circuit 

The greater-than circuit compares two inputs, a and b, and asserts an output when a is 
greater than b. We want to create a 4-bit greater-than circuit from the bottom up and use 
only gate-level logical operators. Design the circuit as follows: 

1. Derive the truth table for a 2-bit greater-than circuit and obtain the logic expression 
in the sum-of-products format. Based on the expression, derive the HDL code using 
only logical operators. 

2. Derive a testbench for the 2-bit greater-than circuit. Perform a simulation and verify 
the correctness of the design. 

3. Use four switches as the inputs and one LED as the output. Synthesize the circuit 
and download the configuration file to the prototyping board. Verify its operation. 

4. Use the 2-bit greater-than circuits and 2-bit equality comparators and a minimal 
number of "glue gates" to construct a 4-bit greater-than circuit. First draw a block 
diagram and then derive the structural HDL code according to the diagram. 

5. Derive a testbench for the 4-bit greater-than circuit. Perform a simulation and verify 
the correctness of the design. 

6. Use eight switches as the inputs and one LED as the output. Synthesize the circuit 
and download the configuration file to the prototyping board. Verify its operation. 

2.9.2 Gate-level binary decoder 

An 11-to-2" binary decoder asserts one of 2" bits according to the input combination. The 
finctional table of a 2-to-4 decoder with an enable signal is shown in Table 2.2. We want to 
create several decoders using only gate-level logical operators. The procedure is as follows: 

1.  Determine the logic expressions for the 2-to-4 decoder with enable and derive the 
HDL code using only logical operators. 

2. Derive a testbench for the decoder. Perform a simulation and verify the correctness 
of the design. 

3. Use two switches as the inputs and four LEDs as the outputs. Synthesize the circuit 
and download the configuration file to the prototyping board. Verify its operation. 
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4. Use the 2-to-4 decoders to derive a 3-to-8 decoder. First draw a block diagram and 
then derive the structural HDL code according to the diagram. 

5. Derive a testbench for the 3-to-8 decoder. Perform a simulation and verify the cor- 
rectness of the design. 

6. Use three switches as the inputs and eight LEDs as the outputs. Synthesize the circuit 
and download the configuration file to the prototyping board, Verify its operation. 

7. Use the 2-to-4 decoders to derive a 4-to-16 decoder. First draw a block diagram and 
then derive the structural HDL code according to the diagram. 

8. Derive a testbench for the 4-to-16 decoder. Perform a simulation and verify the 
correctness of the design. 
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CHAPTER 3 

RT-LEVEL COMBINATIONAL CIRCUIT 

3.1 INTRODUCTION 

The gate-level circuits discussed in Chapter 1 utilize simple bitwise operators to describe 
gate-level design, which is composed of simple logic cells. In this chapter, we examine 
the HDL description of circuits that are composed of intermediate-sized components, such 
as adders, comparators, and multiplexers. Since these components are the basic building 
blocks used in the register transfer methodology, it is sometimes referred to as RT-level 
design. We discuss more sophisticated Verilog operators, the always block, and routing 
constructs, and then demonstrate the RT-level combinational circuit design through a series 
of examples. 

3.2 OPERATORS 

Verilog consists of about two dozen operators. In addition to the bitwise operators discussed 
in Chapter 1,  there are arithmetic, shift, and relational operators. These operators correspond 
to intermediate-sized components, such as adders and comparators. We examine these 
operators in this section and also cover miscellaneous synthesis-related Verilog constructs. 
Table 3.1 summarizes the operators. 

FPG.4 Protoypittg bj, Verilog Exantples. B y  Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 



Table 3.1 Verilog operators 

Type of Operator Description Number 
operation symbol of operands 

Arithmetic + addition 
- subtraction 
* multiplication 
/ division 
% modulus 
* * exponentiation 

Shift > > logical right shift 2 
< < logical left shift 2 
>>> arithmetic right shift 2 
<<< logical left shift 2 

Relational > 
< 
>= 
<= 

Equality -- -- 
I = 
--- --- 

greater than 2 
less than 2 
greater than or equal to 2 
less than or equal to 2 

equality 2 
inequality 2 
case equality 2 
case inequality 2 

Bitwise - bitwise negation 1 
& bitwise and 2 

I bitwise or 2 
bitwise xor 2 

Reduction & reduction and 
I reduction or 
A reduction xor 

Logical ! logical negation 1 
&& logical and 2 

I I logical or 2 

Concatenation { } concatenation 
{ { } } replication 

Conditional ? : conditional 3 



Table 3.2 Operator precedence 

Operator Precedence 

! - + - (unary) highest 

* * 
* / %  
+ - (binary) 

? : lowest 

3.2.1 Arithmetic operators 

There are six arithmetic operators: +, -, *, /, %, and **. They represent addition, subtraction, 
multiplication, division, modulus, and exponentiation operations, respectively. The + and 
- operators can also be used as unary operators, as in -a. During synthesis, the + and - 
operators infer the adder and subtractor and they are synthesized by FPGA's logic cells. 

Multiplication is a complicated operation and synthesis of the multiplication operator * 
depends on synthesis software and target device technology. The Xilinx Spartan-3 FPGA Xilinx 
family contains prefabricated combinational multiplier blocks. The Xilinx XST software specific 
can infer these blocks during synthesis and thus the multiplication operator can be used in 
HDL code. The XCS200 device of the S3 board consists of twelve 18-by-18 multiplier 
blocks. Although the synthesis of the multiplication operator is supported, we need to be 
aware of the limitation on the number and input width of these blocks and use them with 
care. 

The /, %, and ** operators usually cannot be synthesized automatically. 

3.2.2 Shift operators 

There are four shift operators: >>, <<, >>>, and <<<. The first two represent the logical 
shift right and left and the last two represent the arithmetic shift right and left. 

The 0's are shifted in for a logical shift operation (i.e., >> and <<). The sign bits (i.e., the 
MSB) are shifted in for the >>> operation and the 0's are shifted in for the <<< operation. 
Note that there is no difference between the << and <<< operations. The latter is included 
for completeness. Some shifting examples are shown in Table 3.3. 

If both operands of a shift operator are signals, as in a << b, the operator infers a barrel 
shifter, which is a fairly complex circuit. On the other hand, if the shifted amount is fixed, 
as in a << 2, the operation infers no logic and involves only routing of the input signals. 



Table 3.3 Shift operation examples 

This type of operation can also be described by using the catenation operator discussed in 
Section 3.2.5. 

3.2.3 Relational and equality operators 

There are four relational operators: >, <, <=, and >=. These operators compare two operands 
and return a Boolean result, which can be false (represented by I-bit scalar value 0) or true 
(represented by l -bit scalar value I). 

There are four equality operators: ==, ! =, ===, and ! ==. As with the relational operators, 
they return ,false (I-bit 0)  or true (I-bit 1). The === and ! == operators, known as case 
equality and case inequality operators, take into consideration of the matches of the x and 
z bits in the operands. They cannot be synthesized. 

The relational operators and the == and ! = operators infer comparators during synthesis. 

3.2.4 Bitwise, reduction, and logical operators 

The bitwise, reduction, and logical operators are somewhat similar and perform the and, or, 
xor, as well as not operations. These operators are implemented by basic logic cells. 

Bitwise operators There are four basic bitwise operators: & (and), I (or), (xor), and 
- (not). The first three operators require two operands. Negation and xor operation can be 
combined, as in "- or ^", to form the xnor operator. The operations are performed on a 
bit-by-bit basis and thus are known as bitwise operators. For example, let a, b, and c be 
4-bit signals: 

w i r e  [3:01 a ,  b ,  c ;  

The statement 

a s s i g n  c = a I b ;  

is the same as 

a s s i g n  c[31 = a[31 I bC31; 
a s s i g n  c [21 = a [ 2 1  I bC21 ; 
a s s i g n  c [ l l  = a [ l l  I b[11 ; 
a s s i g n  c COI = a[Ol I b[Ol ; 

Reduction operators The previous &, I ,  and - operators may have only one operand 
and then are known as reduction operators. The single operand usually has an array data 
type. The designated operation is performed on all elements of the array and returns a I -bit 
result. For example, let a be a 4-bit signal and y be a 1-bit signal: 

w i r e  C3:OI a ;  

w i r e  y ;  
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Table 3.4 Logical and bitwise operation examples 

a b a&b alb a&&b allb 

0 1 0 1 0 (false) 1 (true) 
000 000 000 000 0 (false) 0 (false) 
000 001 000 001 0 (false) 1 (true) 
011 001 001 011 1 (true) 1 (true) 

The statement 

a s s i g n  y = I a; / /  o n l y  o n e  o p e r a n d  

is the same as 

a s s i g n  y = aC31 I a[21 I a[11 I a[01 ; 

Logical operators There are three logical operators: && (logical and), I I (logical or), 
and ! (logical negate). The logical operators are different from the bitwise operators. If 
we assume that no x or z is used, the operands of a logical operator are interpreted as 
false (when all bits are 0's) or true (when at least one bit is I), and the operation always 
returns a 1 -bit result. As the name suggests, the logical operators should be used as logical 
connectives of Boolean expressions, as in 

Some examples are shown in Table 3.4. The corresponding bitwise operations are also 
included to illustrate the difference between the two types of operations. Since Verilog uses 
0 and 1 to represent the false and true values, bitwise and logical operators can be used 
interchangeably in some situations. However, it is good practice to use logical operators 
for Boolean expressions and use bitwise operators for signal manipulation. 

3.2.5 Concatenation and replication operators 

The concatenation operator, { ), combines segments of elements and small arrays to form 
a large array. The following example illustrates its use: 

w i r e  al; 
w i r e  [3:01 a4; 
w i r e  [7:01 b8, c8, d8; 
. . .  
a s s i g n  b8 = (a4, a41; 
a s s i g n  c8 = {al, al, a4, 2'bOOI; 
a s s i g n  d8 = {b8[3:01 , c8[3:011; 

Implementation of the concatenation operator involves reconnection of the input and output 
signals and only requires "wiring." 

One application of the concatenation operator is to shift and rotate a signal by a fixed 
amount, as shown in the following example: 

w i r e  C7:OI a; 
w i r e  [7: 01 rot, shl , sha; 
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// v o t a t e  a  t o  r i g h t  3 b i t s  
a s s i g n  rot = (a[2:0], a[8:31); 
/ /  s h i f t  a  t o  r i g h t  3 b i t s  and  i n s e r t  0 ( l o g i c  s h i f t )  
a s s i g n  shl = C3'b000, a[8:31); 
// s h i f t  a  t o  r i g h t  3 b i t s  and  i n s e r t  MSB 
/ /  ( a r i t h m e t i c  s h i f t )  
a s s i g n  sha = Ca[8] , a[8] , a[8] , a[8:3]); 

The concatenation operator, N{ ), replicates the enclosed string. The replication con- 
stant, N, specifies the numberofreplications. For example, {4{2 'b01)) returns 8' b01010101. 
The previous arithmetic shift operation can be simplified: 

a s s i g n  sha = C3{a[81), a[8:3]}; 

3.2.6 Conditional operators 

The conditional operator, ? :, takes three operands and its general format is 

[signal] = [boolean-exp] ? [true-exp] : [false-exp]; 

The [boolean-expl is a Boolean expression that returns true ( I  ' b l )  or false ( I  'bO). The 
[s ignal]  gets [true-expl if it is true and [f alse-expl if it is false. For example, the 
following circuit obtains the maximum of a and b: 

a s s i g n  max = (a>b) ? a : b ;  

The operator can be thought as a simplified if-then-else statement: 

i f  [boolean-exp] then 
[signal] = [true-expl ; 

e l s e  
[signal] = Cf alse-expl ; 

Despite its simplicity, the conditional operators can be cascaded or nested to specify the 
desired selection. For example, the eq l  circuit described in Table 1.1 can be rewritten using 
conditional operators: 

a s s i g n  eq = (-il & -iO) ? l'bl : 
("il & iO) ? l'bO : 
(il & "iO) ? l'bO : 
l J b l ;  

We can extend the maximal circuit to return the maximum of a, b, and c: 

a s s i g n  max = (a>b) ? ((a>c) ? a : c) : 

((b>c) ? b : c ) ;  

While synthesized, a conditional operator infers a 2-to-1 multiplexing circuit. The 
detailed derivation is discussed in Section 3.6. 

3.2.7 Operator precedence 

The operator precedence specifies the order of evaluation. The precedence is shown in 
Table 3.2. When an expression is evaluated, the operator with higher precedence is evaluated 
first. For example, in the a + b >> 1 expression, a + b is evaluated first and then >> 1 
is evaluated. We can use parentheses to alter the precedence, as in a + (b >> I ) .  It is a 
good practice to use parentheses to make an expression clearer, as in (a  + b) >> 1, even 
when they are not required. 
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3.2.8 Expression bit-length adjustment 

As signals in real hardware, nets and variables in a Verilog program usually have different 
numbers of bits (i.e., bit lengths or widths). In a Verilog statement, the bit lengths of 
operands can be different and the adjustment is determined by a set of implicit rules: 

Determine the maximal bit length of the operands in the context, which includes the 
right-hand-side expression and the left-hand-side signal. 
Extend the bit lengths of operands on the right-hand side to the maximum and evaluate 
the expression. 
Assign the result to the left-hand-side signal. Truncate the MSBs if the signal's bit 
length is smaller. 

Let us first consider a simple example: 

w i r e  [7:01 a ,  b; 

a s s i g n  a = 8'b00000000; 
a s s i g n  b = 0; 

The first statement assigns an 8-bit value. "00000000", to a. The second statement assigns 
the integer 0 to b. Recall that the integer in Verilog is 32 bits and thus 0 is represented 
as "00000000000000000000000000000000". Since b is 8 bits wide, it is truncated to 
"00000000" during the assignment. Although both statements assign an all-zero pattern to 
the signals, we need to be aware of how the values are obtained. 

Let us consider another example: 

w i r e  [7:01 a ,  b; 
w i r e  [7:0] sum8; 
w i r e  [8:01 sum9; 

a s s i g n  sum8 = a + b; 
a s s i g n  sum9 = a + b; 

In the first assignment, all operands are 8 bits wide and an 8-bit addition is performed. The 
carry-out bit of the addition is discarded. In the second assignment, the a and b signals are 
extended to 9 bits, the bit length of the sum9 signal, and a 9-bit addition is performed. The 
sum [91 bit gets the resulting carry-out bit. We can also use a concatenation operator if an 
explicit carry-out signal is desired: 

a s s i g n  { c - o u t  ,sum81 = a + b; 

Although the basic conversion rule is simple and intuitive, the subtleties can be error- 
prone. For example, let a, b, suml, and sum2 be 8-bit signals. The following statements 
give a different result: 

/ /  s h i f t  0 t o  MSB o f  sum1 
a s s i g n  suml = (a + b) >>  1 ;  
// s h i f t  car-rj>-out o f  a+b t o  MSB o f  sum2 
a s s i g n  sum2 = (0 + a + b) >>  1 ;  

In the first assignment, all operands are 8 bits wide and an 8-bit addition is performed. The 
carry-bit is discarded. When the shift operation is performed, 0 is shifted into the MSB. In 
the second assignment, 0 is an integer and thus is 32 bits wide. The a and b are extended to 
32 bits for addition and the summation is shifted. The result is then truncated to 8 bits when 
assigned to sum2 and sum2 [71 gets the original carry-out bit. The conversion becomes 
more involved when the signed data type is used (discussed in Section 7.3). 
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Figure 3.1 Symbol and functional table of a tri-state buffer. 

A safe but somewhat cumbersome alternative is to adjust the bit lengths of the operands 
manually. For example, an alternative that may be used to obtain sum2 is 

w i r e  [8:01 sum-ext ; / /  e x t e n d  sum t o  9 b i t s  
. . . 
a s s i g n  sum-ext = tl'b0,a) + (l'bO,b); 
a s s i g n  sum2 = sum-ext C9: 11 ; 

The code is longer but is more descriptive and less prone to error. 
In summary, we must be aware of the Verilog's automatic bit-length adjustment mecha- 

nism. Unintended bit-length mismatch may lead to subtle, difficult-to-find errors. Except 
for trivial adjustments, such as assigning an all-zero pattern with an integer 0, we should 
either adjust the bit lengths manually or thoroughly document the desired automatic adjust- 
ment. 

3.2.9 Synthesis of z and x values 

In addition to the regular logic 0 and logic 1, net and variable can contain z and x values. 
Although they are not operators, we discuss the synthesis aspect of these two values in this 
subsection. 

Synthesis of z The z value implies high impedance or an open circuit. It is not a normal 
logic value and can only be synthesized by a tri-state bufer. The symbol and function table 
of a tri-state buffer are shown in Figure 3.1. The operation of the buffer is controlled by an 
enable signal, oe (for "output enable"). When it is 1, the input is passed to output. On the 
other hand, when it is 0, the y output appears to be an open circuit. The code of the tri-state 
buffer is 

a s s i g n  y = (oe) ? a-in : l'bz; 

The most common application for a tri-state buffer is to implement a bidirectional port 
to better utilize a physical 110 pin. A simple example is shown in Figure 3.2. The d i r  
signal controls the direction of signal flow of the b i  pin. When it is 0, the tri-state buffer is 
in a high-impedance state and the s ig-out  signal is blocked. The pin is used as an input 
port and the input signal is routed to the s i g - i n  signal. When the d i r  signal is 1,  the pin 
is used as an output port and the s ig-out  signal is routed to an external circuit. The HDL 
code can be derived according to the diagram: 

module bi-demo ( 
i n o u t  w i r e  bi, 

a s s i g n  sig-out = output-expression; 
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sig-in - 
Figure 3.2 Single-buffer bidirectional 110 port. 

Table 3.5 Truth table with don't-care 

input output 
i Y 

0 0 0 
0 1 1 
1 0  1 
1 I X 

a s s i g n  some-signal = expression-with-sig-in; 
. . .  
a s s i g n  bi = (dir) ? sig-out : l'bz; 
a s s i g n  sig-in = b i ;  

Note that the mode of the b i  port must be declared as inout for bidirectional operation. 
For a Xilinx Spartan-3 device, a tri-state buffer exists only in the 110 block (IOB) of a 

physical pin. Thus, the tri-state buffer can be used only for I/O ports that are mapped to the Xilinx 
physical pins of an FPGA device. specific 

Synthesis of x In some combinational circuits, certain input patterns may never occur 
and thus the output value is irrelevant. We frequently assign a "don't-care" value to the 
output. During synthesis, the don't-care will be assigned a value (either 0 or 1) that can 
help the optimization process. Consider the truth table shown in Table 3.5. We assume 
that the i will never be 11 and thus the corresponding output is specified as don't-care. In 
synthesis, we can use x for the don't-care value. One possible code for the previous table is 

a s s i g n  y = (i==2'b00) ? I'bO : 
(i==2'b01) ? l'bl : 
(i==2'b10) ? l'bl : 

l'bx; / /  i = = 2 ' b l l  

Although this approach helps to minimize the circuit, it introduces a discrepancy between 
simulation and synthesis. In simulation, x is a unique value rather than "0 or 1". If the 
input is 11 in simulation, the output becomes x and is not consistent with the synthesized 
result (which can be either 0 or 1). However, since the 11 pattern should never occur in the 



original specification, the appearance of the x value can be used to signal potential errors 
in the testbench. 

3.3 ALWAYS BLOCK FOR A COMBINATIONAL CIRCUIT 

To facilitate system modeling, Verilog contains a number ofprocedural statements, which 
are executed in sequence. Since their behavior is different from the normal concurrent circuit 
model, these statements are encapsulated inside an always block or initial block. The initial 
block is executed once when the simulation is started. It can be used in simulation, as in 
the testbench example in Listing 1.7. Only the always block can be synthesized and it is 
discussed in this section. Since the procedural statement is more abstract, this type of code 
is sometimes known as behaviorial description. 

An always block can be thought of as a black box whose behavior is described by the 
internal procedural statements. Procedural statements include a rich variety of constructs 
but many of them don't have clear hardware counterparts. A poorly coded always block 
frequently leads to unnecessarily complex implementation or cannot be synthesized at all. 
The focus of this section is on the synthesis of combinational circuits and we limit the 
discussion to three types of statements: 

Blocking procedural assignment 
If statement 
Case statement 

The latter two can be considered as constructs that infer routing structure. 

3.3.1 Basic syntax and behavior 

The simplified syntax of an always block with a sensitivity list (also known as event control 
e.~pression) is 

a l w a y s  @([sensitivity-list]) 
b e g i n  [optional name] 

[optional local variable declaration]; 

[procedural statement]; 
[procedural statement] ; 

end 

The [ s e n s i t i v i t y - l i s t ]  term is a list of signals and events to which the always block 
responds (i.e., is "sensitive to"). For a combinational circuit, all the input signals should 
be included in this list. The body is composed of any number of procedural statements. 
The begin and end delimiters can be omitted if there is only one procedural statement in 
the body. The @( [ s e n s i t i v i t y - l i s t ] )  term is actually a timing control construct. It is 
usually the only timing control construct in a synthesizable always block. 

An always block can be considered as a complex circuit part. It can be suspended or 
activated. When any signal of the sensitivity list changes or an event occurs, the part is 
activated and executes the internal procedural statements. Since there is no other timing 
control construct, the execution continues to the end and the part is suspended. Thus, an 
always block actually "loops forever" and the initiation of each loop is controlled by the 
sensitivity list. 
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3.3.2 Procedural assignment 

A procedural assignment can only be used within an always block or initial block. There 
are two types of assignments: blocking assignment and nonblocking assignment. Their 
basic syntax is 

[variable-name] = [expression] ; // b l o c k i n g  ass ignment  
[variable-name] <= [expression] ; // nonblocking ass ignment  

In a blocking assignment, the expression is evaluated and then assigned to the variable 
immediately, before execution of the next statement (the assignment thus "blocks" the 
execution of other statements). It behaves like the normal variable assignment in the C 
language. In a nonblocking assignment, the evaluated expression is assigned at the end of 
the always block (the assignment thus does not block the execution of other statements). 

The blocking and nonblocking assignments frequently confuse new Verilog users and 
failing to comprehend their differences can lead to unexpected behavior or race conditions. 
The basic rule of thumb is: 

Use blocking assignments for a combinational circuit. 
Use nonblocking assignments for a sequential circuit. 

This topic is explained in detail in Section 7.1. Since we focus on combinational circuits 
in this chapter, only the blocking statement is used. 

3.3.3 Variable data types 

In a procedural assignment, an expression can only be assigned to an output with one of 
the variable data types, which are reg, integer, real, time, and realtime. The reg data 
type is like the wire data type, but used with a procedural output. The integer data type 
represents a fixed-size (usually 32 bits) signed number in 2's-complement format. Since 
its size is fixed, we usually don't use it in synthesis. The other data types are for modeling 
and simulation and cannot be synthesized. 

3.3.4 Simple examples 

We use two simple examples to illustrate the use and behavior of the always block and 
procedural blocking assignment. 

1-bit comparator We can rewrite the previous I -bit comparator circuit in Listing 1.1 
using an always block. The code is shown in Listing 3.1. 

Listing 3.1 Always block implementation of a 1-bit comparator 

module eql-always 
( 

input wire iO, i l ,  
output reg eq / /  eq dec lared  as reg 

s ) ;  

/ /  pO and p l  dec lared  as reg 
reg PO, p i ;  

10 always @(iO, il) // i O  an i l  must be in s e n s i t i v i t y  l i s t  
begin 



// t h e  o r d e r  o f  s t a t e m e n t s  i s  i m p o r t a n t  
PO = - i O  & - i l ;  
pl = i 0  & i l ;  

I i eq = pO I p l ;  
end  

endmodule  

Since the eq, pO, and p l  signals are assigned within the always block, they are declared 
as the reg data type. The sensitivity list consists of i O  and il, which are separated by a 
comma. When one of them changes, the always block is activated. The three blocking 
assignments are executed sequentially, much like the statements in a C program. The order 
of the statements is important and pO and p l  must be assigned values before being used. 

In Verilog- 1995, the keyword or is used in place of the comma in a sensitivity list. For 
FYI example, the list 

a l w a y s  @(a, b ,  c) 

is written as 

a l w a y s  @(a o r  b o r  c) 

We use only commas in this book. 
A combinational circuit must include all its input signals in the sensitivity list to correctly 

model the desired behavior. Missing a signal can lead to discrepancy between synthesis 
and simulation. In Verilog-2001, we can use the notation 

a l w a y s  Q *  

to implicitly include all the input signals. In this book, we use this construct for the 
combinational circuit. 

Three-input and circuit The similarity of the codes in Listings 1.1 and 3.1 is somewhat 
misleading. The behavior of continuous assignments and procedural statements is quite 
different. 

Consider the code in Listing 3.2. It is a circuit that performs an and operation over a, b, 
and c (i.e., a & b & c). 

Listing 3.2 Behaviorial reduced and circuit using a variable 

module  and-block-assign 

( 
i n p u t  w i r e  a ,  b ,  c ,  
o u t p u t  r e g  y 
) ;  

a l w a y s  Q *  
b e g i n  

y = a ;  
I u y = y & b ;  

y = y & c ;  
e n d  

e n d m o d u l e  



Figure 3.3 Circuits inferred from correct and incorrect code segments. 

The inferred circuit is shown in Figure 3.3(a). Ifwe use continuous assignments in a similar 
way, as shown in Listing 3.3, the description is incorrect. 

Listing 3.3 Incorrect code for a reduced and circuit 

module and-con t  - a s s i g n  
( 
i n p u t  w i r e  a ,  b ,  c ,  
o u t p u t  w i r e  y 

s ) ;  

a s s i g n  y = a ;  
a s s i g n  y = y & b ;  
a s s i g n  y = y & c ;  

10 

endmodule  

In this code, each continuous assignment infers a circuit part. The three appearances of 
y on the left-hand side imply that the three outputs are tied together. The corresponding 
circuit diagram is shown in Figure 3.3(c) and it is clearly not the desired circuit. 

3.4 IF STATEMENT 

3.4.1 Syntax 

The simplified syntax of an if statement is 

i f  [ b o o l e a n - e x p r ]  
b e g i n  

[ p r o c e d u r a l  s t a t e m e n t  1 ; 
[ p r o c e d u r a l  s t a t e m e n t ]  ; 

end 
e l s e  

b e g i n  
[ p r o c e d u r a l  s t a t e m e n t ]  ; 
[ p r o c e d u r a l  s t a t e m e n t ] ;  



Table 3.6 Function table of a four-request priority encoder 

input output 
r pcode 

The [boolean-exprl term is a Boolean expression and is evaluated first. If it is true, 
the statements in the following branch are executed. Otherwise, the statements in the else 
branch are executed. The else branch is optional and can be omitted. The begin and end 
delimiters can be omitted if there is only one procedural statement in a branch. 

Multiple if statements can be "cascaded" to evaluate multiple Boolean conditions and 
establish priorities, as in 

. . .  
e l s e  i f  [boolean-expr-21 

e l s e  i f  [boolean-expr-31 
. . .  

e l s e  

When synthesized, the if statements infer "priority routing" networks. This topic is 
discussed in Section 3.6. 

3.4.2 Examples 

We use two simple examples to demonstrate use of the if statement. The first example is 
a priority encoder. The priority encoder has four requests, r C41, r C31, r C21, and r [I] ,  
which are grouped as a single 4-bit r input, and r C41 has the highest priority. The output 
is the binary code of the highest-order request. The function table is shown in Table 3.6. 
The HDL code is shown in Listing 3.4. 

Listing 3.4 Priority encoder using an if statement 

module prio-encoder-if 
( 

input  wire  C4:11 r ,  
output  reg  [2:01 y 

5 1; 

always  Q* 
i f  (r [41==lJ bl) / /  can be w r i t t e n  a s  ( r [ 4 ] )  

y = 3'blOO; 
e l s e  i f  (r[31==lJbl) // can be w r i t t e n  a s  ( r [ 3 ] )  

y = 3'b011; 
e l s e  i f  (r[21==l 'bl) // can be w r i t t e n  a s  ( r [ 2 ] )  
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Table 3.7 Truth table of a 2-to-4 decoder with enable 

input output 
en a ( l >  a(O> y 

y = 3'bOlO; 
e l s e  i f  (r[ll==l 'bl) / /  can b e  w r i t t e n  as  ( r [ l ] )  

I i  y = 3'b001; 
e l s e  

y = 3'bOOO; 

endmodule 

The code first checks the r [4] request and assigns 100 to pcode if it is asserted. It continues 
to check the r [31 request if r [4] is not asserted and repeats the process until all requests 
are examined. Note that the Boolean expression ( r  [41 ==l'bl) is true when r [41 is 1. 
Since the true value is also expressed as 1 ' bl in Verilog, the expression can be written as 
(r [41) as well. 

The second example is a binary decoder. An 11-to-2'3inary decoder asserts one bit 
of the 2"-bit output according to the input combination. The functional table of a 2-to-4 
decoder is shown in Table 3.7. The circuit also has a control signal, en, which enables the 
decoding function when asserted. The HDL code is shown in Listing 3.5. 

Listing 3.5 Binary decoder using an if statement 

module decoder-2-4-if 
( 

i n p u t  w i r e  [1:01 a ,  
i n p u t  w i r e  e n ,  

5 o u t p u t  r e g  [3:0] y 
1; 

a l w a y s  Q* 
i f  ( e n = = l J  bO) // can b e  ~ l r i l t e n  as  ( - e n )  

10 y = 4'bOOOO; 
e l s e  i f  (a==2'b00) 

y = 4'bOOOl; 
e l s e  i f  (a==2'b01) 

y = 4'bOOlO; 
I 5  e l s e  i f  (a==2'b10) 

y = 4'bOlOO; 
e l s e  

y = 4'blOOO; 

20 endmodule  
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The code first checks whether en is not asserted. lfthe condition is false (i.e., en is I), it tests 
the four binary combinations in sequence. Note that the Boolean expression (en==l 'bO) 
can be written as (-en) as well. 

3.5 CASE STATEMENT 

3.5.1 Syntax 

The simplified syntax of a case statement is 

c a s e  [case-exprl 
[item] : 

b e g i n  
[procedural statementl ; 
[procedural statementl ; 
. . . 

end 
[item] : 

b e g i n  
[procedural statement 1 ; 
[procedural statement 1 ; 
. . . 

end 
[iteml : 

b e g i n  
[procedural statement 1 ; 
[procedural statementl; 

end 
. . .  
d e f a u l t :  

b e g i n  
[procedural statement 1 ; 
[procedural statementl; 

end 
e n d c a s e  

A case statement is a multiway decision statement that compares the [case-exprl ex- 
pression with a number of [iteml expressions. The execution jumps to the branch whose 
[item] matches the current value of [case-expr] . If there are multiple matched [iteml 
expressions, execution jumps to the branch of the first match. The last item can be an op- 
tional default keyword. It covers all the unspecified values of the [case-exprl expression. 
The begin and end delimiters can be omitted if there is only one procedural statement in a 
branch. 

3.5.2 Examples 

We use the same priority encoder and decoder examples to demonstrate use of the case 
statement. The functional table of a 2-to-4 decoder is shown in Table 3.7. The HDL code 
using a case statement is shown in Listing 3.6. 
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Listing 3.6 Binary decoder using a case statement 

module decoder-2-4-case 

( 
i n p u t  w i r e  [1:01 a ,  
i n p u t  w i r e  e n ,  

5 o u t p u t  r e g  [3:0] y 
1 ;  

a l w a y s  Q* 
c a s e  (Cen, a)) 

10  3'b000, 3'b001, 3'b010, 3'bOll: y = 4'bOOOO; 
3'blOO: y = 4'bOOOl; 
3'blOl: y = 4'bOOlO; 
3'bllO: y = 4'bOlOO; 
3'blll: y = 4'blOOO; / /  d e f a u l t  can  a l s o  be u sed  

I S  e n d c a s e  

endmodule  

We can group multiple values into one item expression, as in line 10, if the identical 
statements are used for these values. Note that all possible values of the {en, a) expression 
are covered by the item expressions. 

The function table of the priority encoder is shown in Table 3.6. The HDL code is shown 
in Listing 3.7. 

Listing 3.7 Priority encoder using a case statement 

module prio-encoder-case 
( 

i n p u t  w i r e  C4: 11 r ,  
o u t p u t  r e g  [2:01 y 

5 ) ;  

a l w a y s  Q* 
c a s e  (r) 

4'b1000, 4'b1001, 4'b1010, 4'b1011, 
10  4'b1100, 4'b1101, 4'b1110, 4'bllll: 

y = 3'blOO; 
4'b0100, 4'b0101, 4'b0110, 4'bOlll: 

y = 3'bOll; 
4'b0010, 4'bOOll: 

1 5  y = 3'bOlO; 
4'bOOOl: 

y = 3'bOOl; 
4 ' b o o 0 0  : / /  d e f a u l t  can a l s o  be u sed  

y = 3'bOOO; 
20 e n d c a s e  

endmodule 



3.5.3 The casez and casex statements 

There are two variations in addition to the regular case statement. In a casez statement, 
the z value and the ? character in the item expression are treated as don't-care (i.e., the 
corresponding bit does not need to be matched). In a casex statement, the z and x values 
and the ? character in the item expression are treated as don't-care. Since the z and x 
values may appear in simulation, the ? character is preferred. 

For example, the previous priority encoder can be coded with a casez statement, as 
shown in Listing 3.8. 

Listing 3.8 Priority encoder using a casez statement 

module prio-encoder-casez 

( 
i n p u t  wire  [4:11 r ,  
o u t p u t  reg  C2:OI y 

S 1;  

a l w a y s  Q* 
c a s e z  (r) 

4 ' b l ? ? ? :  y = 3'blOO; 
4 ' b 0 1 ? ? :  y = 3 ' b O l l ;  
4 ' b 0 0 1 ? :  y = 3'bOlO; 
4'bOOOl: y = 3 ' b O O l ;  
4'bOOOO: y = 3 ' b O O O ;  // d e f a u l t  can a l s o  be used  

e n d c a s e  
IS 

endmodule 

3.5.4 The full case and parallel case 

In Verilog, the item expressions do not need to include all values of the [case-expr] 
expression and some values can be matched more than once. Consider the following casez 
statement: 

reg  C2:Ol s  
. . .  
c a s e z  ( s )  

3 ' b l l l :  y = l ' b l ;  
3 ' b l ? ? :  y = l ' b O ;  

3'bOOO: y = l ' b l ;  
e n d c a s e  

In this statement, the value 3 ' b l l l  is matched twice in the item expressions (once in 
3 'b l I landoncein3 'bl??) .  Sincethefirstmatchtakeseffect,ygetsl'blifsis3'blll. 
If s is 3' b001, 3'b010, or 3'b011, there are no matches and y will "keep its previous 
value." 

When all possible binary values of the [case-exprl expression are covered by the item 
expressions, the statement is known as a full case statement. For a combinational circuit, 
we must use a full case statement since each input combination should have an output value. 
We can add the default item to cover all the unmatched values. For example, the previous 
statement can be revised either as 



ROUTING STRUCTURE OF CONDITIONAL CONTROL CONSTRUCTS 57 

c a s e z  (s) 
3'blll: y = l'bl; 
3'bl??: y = l'bO; 
d e f a u l t :  y = l'bl; // y g e t s  1 f o r  u n s p e c i f i e d  v a l u e s  

e n d c a s e  

c a s e z  (s) 
3'blll: y = l'bl; 
3'bl??: y = l'bO; 
3'bOOO: y = l'bl; 
d e f a u l t :  y = l'bx; // y g e t s  don ' t - c a r e  

e n d c a s e  

When the values in the item expressions are mutually exclusive (i.e., a value appears in 
only one item expression), the statement is know as aparallel case statement. For example, 
the previous casez statement is not a parallel case statement since the value 3 ' b111 appears 
twice. The case statements of Listings 3.6 and 3.7 are parallel case statements. 

When synthesized, a parallel case statement usually infers a multiplexing routing network 
and a non-parallel case statement usually infers a priority routing network. This topic is 
discussed in the next section. 

Many synthesis software packages have "full case directive" and "parallel case directive." 
When they are used, all case statements are treated as full case statements and parallel 
case statements and synthesized accordingly. Verilog-2001 has similar attributes for this 
purpose. Using these directives essentially overrides original semantics of Verilog code FYI 
and introduces a discrepancy between simulation and synthesis. In this book, we express 
these conditions in code rather than applying these directives or attributes. 

3.6 ROUTING STRUCTURE OF CONDITIONAL CONTROL CONSTRUCTS 

We examine several conditional control language constructs, including the ? : operator and 
the if and case statements. In the C language, these constructs are executed sequentially. 
There is no "sequential" control in a combinational circuit. These constructs are realized 
by routing networks. All expressions are evaluated concurrently and the routing network 
routes the desired result to the output. There are two types of routing structures: priority 
routing network and multiplexing network, which are inferred by an if-else type statement 
and a parallel case statement, respectively. 

3.6.1 Priority routing network 

A priority routing network is implemented by a sequence of 2-to-1 multiplexers. The 
diagram and truth table of a 2-to-1 multiplexer are shown in Figure 3.4(a). An if-else 
statement implies a priority routing network. Consider the following statement: 

i f  (m==n) 
r = a + b + c ;  

e l s e  i f  (m > n) 
r = a - b ;  

e l s e  
r = c + 1 :  
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sel y 

0 (false) iO 

1 (true) i l  

(a) Diagram of a 2-to-1 multiplexer 

I Circuits for 
"value expressionsn 

.............. i ......... .. .............. : Priority routing 

..... -.! 
Circuits for 
"Boolean expressions" 

(b) Diagram of an if statement 

Figure 3.4 Implementation of an if statement. 

The conceptual diagram of the statement is shown in Figure 3.4(b). The two 2-to-1 multi- 
plexers form the priority routing network and other components implement various Boolean 
and arithmetic expressions. If the first Boolean condition (i.e., m==n) is true, the result of 
a+b+c is routed to r. Otherwise, the data connected to port 0 is passed to r. The next 
Boolean condition (i.e., m>n) determines whether the result of a-b or c+l is routed to the 
output. 

Note that all the Boolean expressions and arithmetic expressions are evaluated concur- 
rently. The outputs from the Boolean circuits set the selection signals of the multiplexers to 
route the desired value to r. The number of cascading stages increases proportionally to the 
number of if-else clauses. A large number of if-else clauses will lead to a long cascading 
chain and introduce a large propagation delay. 

The conditional operator (?:) is like a simplified if-else statement and infers similar 
priority routing networks. A non-parallel case statement sets a preference on the first 
matched item and thus also infers similar priority routing networks. For example, consider 
the following case statement: 

c a s e  ( e x p r )  
i t e m l :  s t a t e m e n t l ;  
i t e m 2 :  s t a t e r n e n t 2 ;  
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sel y 
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i2 
i3 01 il 

10 i2 

sel 11 i3 

(a) Diagram and functional table of a 4-to-1 multiplexer 

Circuits for 
"value expressions" 
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Multiplexer 

r 

sel I 
(b) Diagram of a parallel case statement 

Figure 3.5 Implementation of a parallel case statement. 

i t em3 : s t a t e m e n t 3  ; 
d e f a u l t  : s t a t e m e n t 4 ;  

e n d c a s e  

It can be translated to 

i f  [ e x p r = = i t e m l l  
s t a t e m e n t 1  ; 

e l s e  i f  [ expr==i tem21  
s t a t e m e n t 2  ; 

e l s e  i f  [ expr==i tem31  
s t a t e m e n t 3  ; 

e l s e  
s t a t e m e n t 4  ; 

3.6.2 Multiplexing network 

A multiplexing network is implemented by an n-to-1 multiplexer. The desired input port 
is specified by the selection signal and the corresponding input is routed to the output. The 
diagram and functional table of the 22-to-1 multiplexer are shown in Figure 3.5(a). 

In a parallel case statement, we can map each value of the case expression to an input 
port of the multiplexer and connect the corresponding evaluated result to the port. The case 
expression is connected to the selection signal. The construction can best be explained by 
an example. Consider the following case statement: 



w i r e  [ 1 : 0 1  s e l ;  

c a s e  ( s e l l  
2'bOO: r = a  + b  + c ;  
2 ' b I O :  r = a  - b ;  
d e f a u l t :  r  = c  + 1 ;  / /  2 ' 6 0 1 ,  2 ' b l l  

e n d c a s e  

The conceptual diagram of this statement is shown in Figure 3.5(b). The sel varaible can 
assume four possible values: 00,01, 10, and 11. It implies a 22-to-1 multiplexer with sel 
as the selection signal. The evaluated result of a+b+c is routed to r when sel is 00, the 
result of a-b is routed to r when sel is 10, and the result of c+l  is routed to r when sel 
is 01 or 11. 

Again, note that all value expressions are evaluated concurrently. The sel variable is 
used as the selection signal to route the desired value to the output. The width (i.e., number 
of input ports) of the multiplexer increases geometrically with the number of bits of sel. 

In general, the priority routing network is more effective when a preference is given 
under certain conditions, such as for a priority encoder, and the multiplexing network is 
more effective for a truth table or function table-based description, such as for a binary 
decoder. 

3.7 GENERAL CODING GUIDELINES FOR AN ALWAYS BLOCK 

Verilog is for both modeling and synthesis. While writing code for synthesis, we need 
to be aware of how the various language constructs are mapped to hardware. This is 
especially true for an always block since variables and procedural statements can be used 
within the block. We should remember that the purpose of the code is to infer hardware 
rather than describing a sequential algorithm in C. Failing to do so frequently leads to 
unsynthesizable codes, unnecessarily complex implementation, or discrepancy between 
simulation and synthesis. In this section, we review some common errors and suggest a 
collection of coding guidelines. 

3.7.1 Common errors in combinational circuit codes 

Following are common errors found in combinational circuit codes: 
a Variable assigned in multiple always blocks 
a Incomplete sensitivity list 

Incomplete branch and incomplete output assignment 
These errors are discussed below. 

Variable assigned in multiple always blocks In Verilog, variables can be assigned 
(i.e., appear on the left-hand side) in multiple always blocks. For example, the y variable 
is shared by two always blocks is the following code segment: 

r e g  y ;  
r e g  a ,  b ,  c l e a r ;  

a l w a y s  Q* 
i f  ( c l e a r )  y = l J b O ;  



a l w a y s  Q *  
y = a & b ;  

Although the code is syntactically correct and can be simulated, it cannot be synthesized. 
Recall that each always block can be interpreted as a circuit part. The code above indicates 
that y is the output of both circuit parts and can be updated by each part. No physical circuit 
exhibits this kind of behavior and thus the code cannot be synthesized. We must group the 
assignment statements in a single always block, as in 

a l w a y s  Q *  
i f  ( c l e a r )  

y  = l J b O ;  
e l s e  

y = a & b ;  

lncomplete sensitivity list For a combinational circuit, the output is a function of 
input and thus any change in an input signal should activate the circuit. This implies that all 
input signals should be included in the sensitivity list. For example, a two-input and gate 
can be written as 

a l w a y s  @ ( a ,  b )  / /  b o t h  a  and b  a r e  i n  s e n s i t i v i t y  l i s t  
y = a & b ;  

If we forget to include b, the code becomes 

a l w a y s  @ ( a )  // a m i s s i n g  f rom  s e n s i t i v i t y  l i s t  
y = a & b ;  

Although the code is still syntactically correct, its behavior is very different. When a 
changes, the always block is activated and y gets the value of a&b. When b changes, the 
always block remains suspended since it is not "sensitive to" b and y keeps its previous 
value. No physical circuit exhibits this kind of behavior. Most synthesis software will issue 
a warning message and infer the and gate instead. However, the simulation software still 
models the intended behavior and hence introduces a discrepancy between simulation and 
synthesis. 

In Verilog-2001, a special notation, @*, is introduced to implicitly include all the relevant 
input signals and thus eliminates this problem. It is a good practice to use this notation for 
combinational circuit description. 

lncomplete branch and incomplete output assignment The output of a combi- 
national circuit is a hnction of input only and the circuit should not contain any internal 
state (i.e., memory). One common error with an always block is the inference of unintended 
memory in a combinational circuit. The Verilog standard specifies that a variable will keep 
its previous value if it is not assigned a value in an always block. During synthesis, this 
infers an internal state (via a closed feedback loop) or a memory element (such as a latch). 

To prevent unintended memory in an always block, all output signals must be assigned 
proper values all the time. Incomplete branch and incomplete output assignment are two 
common errors that lead to unintended memory. To avoid these, we should observe the 
following rules while developing code for combinational circuit: 

Include all the branches of an if or case statement. 
Assign a value to every output signal in every branch. 

Consider the following code segment, which intends to describe a circuit that generates 
greater-than (i.e., g t )  and equal-to (i.e., eq) output signals: 



a l w a y s  Q* 
i f  (a > b) / /  eq no t  a s s i g n e d  i n  t h i s  b ranch  

gt = l'bl; 
e l s e  i f  (a == b) // g t  n o t  a s s i g n e d  i n  t h i s  b ranch  

eq = l'bl; 
/ /  f i n a l  e l s e  b ranch  i s  o m i t t e d  

The segment violates both rules. 
Let us first examine the incomplete branch error. There is no else branch in the segment. 

If both the a>b and a==b expressions are false, both gt  and eq are not assigned values. 
According to Verilog definition, they keep their previous values (i.e., the outputs depend on 
the internal state) and unintended latches are inferred. 

The segment also has incomplete output assignment errors. For example, when the a>b 
expression is true, eq is not assigned a value and thus will keep its previous state. A latch 
will be inferred accordingly. 

There are two ways to fix the errors. The first is to add the else branch and explicitly 
assign all output variables. The code becomes 

a l w a y s  Q* 
i f  (a > b) 

b e g i n  
gt = l'bl; 
eq = 1'bO; 

end 
e l s e  i f  (a == b) 

b e g i n  
gt = l'bO; 
eq = l'bl; 

end 
e l s e  / / i . e . , a < b  

b e g i n  
gt = l'bO; 
eq = l'bO; 

end 

The alternative is to assign a default value to each variable in the beginning of the always 
block to cover the unspecified branch and unassigned variable. The code becomes 

a l w a y s  Q* 
b e g i n  

gt = l'bO; // d e f a u l t  v a l u e  f o r  g t  
eq = l'bO; // d e f a u l t  v a l u e  f o r  eq  
if (a > b) 

gt = l'bl; 
e l s e  i f  (a == b) 

eq = l'bl; 
end 

Both gt and eq assume 0 if they are not assigned a value later. 
The case statement experiences the same errors if some values of the [case-expr] 

expression are not covered by the item expressions (i.e., not a full-case statement). Consider 
the following code segment: 

r e g  [1:01 s 
. . .  



case ( s )  

2'bOO: y = l'bl; 
2'blO: y = l'bO; 
2'bll: y = l'bl; 

endcase 

The 2'bOl value is not covered by any branch. If s assumes this combination, y will keep 
its previous value and an unintended latch is inferred. To fix the error, we must ensure that 
y is assigned a value all the time. One way to do this is to use the default keyword in the 
end to cover all the unspecified values. We can either replace the last item expression: 

case ( s )  
2'bOO: y = l'bl; 
2'blO: y = l'bO; 
default: y = l'bl; // y g e t s  I f o r  2 ' b O l  

e n d  c a s e 

or add a new item expression with the don't-care value: 

case ( s )  
2'bOO: y = l'bl; 
2'blO: y = l'bO; 
2'bll: y = l'bl; 
default: y = l'bx; // y g e t s  x f o r  2 ' b O l  

endcase 

Alternatively, we can assign a default value in the beginning of the always block: 

y = 1'bO; // can  u l s o  u s e  y = I ' b x  f o r  don ' t - c a r e  
case ( s )  

2'bOO: y = l'bl; 
2'blO: y = l'bO; 
2'bll: y = l'bl; 

endcase 

3.7.2 Guidelines 

The always block is a flexible and powerful language construct. However, it must be used 
with care to infer correct and efficient circuits and to avoid any discrepancy between synthe- 
sis and simulation. Following are the coding guidelines for the description of combinational 
circuits: 

Assign a variable only in a single always block. 
Use blocking statements for combinational circuits. 
Use @* to include all inputs automatically in the sensitivity list. 
Make sure that all branches of the if and case statements are included. 
Make sure that the outputs are assigned in all branches. 
One way to satisfy the two previous guidelines is to assign default values for outputs 
in the beginning of the always block. 
Describe the desired full case and parallel case in code rather than using software 
directives or attributes. 
Be aware of the type of routing network inferred by different control constructs. 
Think hardware, not C code. 



3.8 PARAMETER AND CONSTANT 

3.8.1 Constant 

HDL code frequently uses constant values in expressions and array boundaries. These 
values are fixed within the module and cannot be modified. One good design practice is to 
replace the "hard literals" with symbolic constants. It makes code clear and helps future 
maintenance and revision. In Verilog, a constant can be declared using the localparam (for 
"local parameter") keyword. For example, we can declare the width and range of a data 
bus as 

l o c a l p a r a m  DATA-WIDTH = 8 ,  
DATA-RANGE = 2**DATA_WIDTH - 1; 

or define a symbolic port name: 

l o c a l p a r a m  UART-PORT = 4'b0001, 
LCD-PORT = 4'b0010, 
MOUSE-PORT = 4'bOlOO; 

The expression in the declaration, such as 2**DATA-WIDTH-1, is evaluated during pre- 
processing and thus infers no physical circuit. In this book, we use capital letters for 
constants. 

The use of a constant can best be explained by an example. Consider the code of an 
adder with the carry-out bit. One way to do it is to extend the input manually by 1 bit, 
perform the regular addition, and extract the MSB of the summation as the carry-out bit. 
The code is shown in Listing 3.9. 

Listing 3.9 Adder using a hard literal 

module adder-carry-hard-lit 
( 

i n p u t  w i r e  [3:01 a, b, 
o u t p u t  w i r e  [3:01 sum, 

5 o u t p u t  wire  cout // c a r r y - o u t  
> ;  

/ / s i g n a l  d e c l a r a t i o n  
w i r e  [4:0] sum-ext ; 

10 

/ / b o d y  
a s s i g n  sum-ext = €1 'bO, a) + Cl'b0, b); 
a s s i g n  sum = sum-ext [3:01 ; 
a s s i g n  cout= sum-ext [41 ; 

IS 

endmodule 

The code is for a 4-bit adder. Hard literals, such as 3 and 4, are used for the ranges, as in 
wire C4 : 01 and sum-ext [3 : 01, and the MSB, as in sum-ext C41. If we want to revise the 
code for an 8-bit adder, these literals have to be modified manually. This will be a tedious 
and error-prone process if the code is complex and the literals are referred to in many places. 

To improve readability, we can use a symbolic constant, N, to represent the number of 
bits of the adder. The revised code is shown in Listing 3.10. 



Listing 3.10 Adder using constants 

module adder-carry-local-par 
( 

i n p u t  w i r e  [3:01 a, b, 
o u t p u t  w i r e  [3:01 sum, 

5 o u t p u t  w i r e  cout // c a r r y - o u t  
1;  

// c o n s t a n t  d e c l a r a t i o n  
l o c a l p a r a m  N = 4 ,  

10 N1 = N-1; 

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  [N:O] sum-ext; 

I S  / / b o d y  
a s s i g n  sum-ext = Cl'bO, a) + Cl 'bO, b); 
a s s i g n  sum = sum-ext EN1 : 01 ; 
a s s i g n  cout = sum-ext [NI ; 

The constant makes the code easier to understand and maintain. 

3.8.2 Parameter 

A Verilog module can be instantiated as a component and becomes a part of a larger design, 
as discussed in Section 1.6. Verilog provides a construct, known as a parameter, to pass 
information into a module. This mechanism makes the module versatile and reusable. A 
parameter cannot be modified inside the module and thus functions like a constant. 

In Verilog-2001, a parameter declaration section can be added in the header, before the 
port declaration. Its simplified syntax is 

module [module-name] 

# ( 
p a r a m e t e r  [parameter-name] = [def ault-value] , 

[parameter-name] = [def ault-value] ; 

) 

( 
. . . // 1 / 0  p o r t  d e c l a r a t i o n  

> ;  

For example, the previous adder code can be modified to use the adder width as a parameter, 
as shown in Listing 3.1 1. 

Listing 3.11 Adder using a parameter 

module adder-carry-para 
# ( p a r a m e t e r  N=4) 
( 

i n p u t  w i r e  [N-1:Ol a ,  b, 
5 o u t p u t  w i r e  [N-1:Ol sum, 

o u t p u t  w i r e  cout // c a r r y - o u t  



/ /  c o n s t a n t  d e c l a r a t i o n  
10 l o c a l p a r a m  N1 = N-1; 

// s i g n a l  d e c l a r a t i o n  
w i r e  [N:O] sum-ext ; 

15 / / b o d y  
a s s i g n  sum-ext = Cl'bO, a) + {I'bO, b); 
a s s i g n  sum = sum-ext [NI : 01 ; 
a s s i g n  cout= sum-ext [N] ; 

The N parameter is declared with a default value of 4. After N is declared, it can be used in 
the port declaration and module body, just like a constant. 

If the adder is later used as a component in other code, we can assign a desired value 
to the parameter during component instantiation and override the default value. Similar to 
the port connection discussed in Section 1.6, parameter assignment can be done either by 
name or by ordered list. A potential problem of the by-ordered-list scheme is discussed in 
Section 1.6 and we always use the by-name scheme in this book. The default value will 
be used if the parameter assignment is omitted. The use of the parameter in component 
instantiation is demonstrated in Listing 3.12. 

Listing 3.12 Adder instantiation example 

module adder-insta 

( 
i n p u t  w i r e  [3:01 a4, b4, 
o u t p u t  w i r e  [3:01 sum4, 

5 o u t p u t  w i r e  c4, 
i n p u t  w i r e  [7:01 a8, b8, 
o u t p u t  w i r e  [7:0] sum8, 
o u t p u t  w i r e  c8 

1; 
10 

/ /  i n s t a n t i a t e  8 - b i t  adder  
adder-carry-para # ( .  N(8)) unit1 

( .  a(a8), . b(b8), . sum(sum8), . cout ( ~ 8 ) )  ; 

/ /  i n s t a n t i a t e  4 - b i t  a d d e r  
adder-carry-para unit2 

(.a(a4), .b(b4), .sum(sum4), . cout(c4)); 

endmodule 

A parameter provides a mechanism to create scalable code, in which the "width" of 
a circuit can be adjusted to meet a specific need. This makes code more portable and 
encourages design reuse. 
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3.8.3 Use of parameters in Verilog-1995 

The localparam keyword, header declaration, and assignment by name discussed earlier 
are all new Verilog-2001 features. In Verilog-1995, parameters are declared after the header FYI 
and can only be redefined by using the by-order-list scheme or the defparam statement. 
Furthermore, constants must be declared as parameters, even though they should not be 
redefined. The previous adder code in Verilog-1995 syntax is shown in Listing 3.13. 

Listing 3.13 Parameter use in Verilog- 1995 

module adder-carry-95 (a, b, sum, cout); 
p a r a m e t e r  N = 4 ;  / /  p a r a m e t e r  d e c l a r e d  b e f o r e  t h e  p o r t  
p a r a m e t e r  N1 = N-1; / /  no l o c a l p a r a m  i n  V e r i l o g  -1995 
i n p u t  w i r e  [N1:01 a ,  b ;  

s o u t p u t  w i r e  [Nl:O] sum; 
o u t p u t  w i r e  cout ; 

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  [N:01 sum-ext ; 

to 

/ / b o d y  
a s s i g n  sum-ext = {l'bO, a) + {l'bO, b); 
a s s i g n  sum = sum-ext [Nl : O] ; 
a s s i g n  cout= sum-ext [N] ; 

15 

endmodule 

When a component is instantiated, the parameter can only be redefined by using the 
by-ordered-list scheme, as in 

or by using the defparam statement, as in 

defparam unit 1. N=8; 
defparam unit1 . N1=7; 
adder-carry-95 unit1 

(.a(a8), .b(b8), .sum(sum8), .cout(c8)); 

The Verilog- 1995 scheme is more tedious and may introduce subtle errors and we don't use 
it in this book. 

3.9 DESIGN EXAMPLES 

3.9.1 Hexadecimal digit to seven-segment LED decoder 

The sketch of a seven-segment LED display is shown in Figure 3.6(a). It consists of seven 
LED bars and a single round LED decimal point. On the prototyping board, the seven- 
segment LED is configured as active low, which means that an LED segment is lit if the 
corresponding control signal is 0. 

A hexadecimal digit to seven-segment LED decoder treats a 4-bit input as a hexadecimal 
digit and generates appropriate LED patterns, as shown in Figure 3.6(b). For completeness, 
we assume that there is also a 1-bit input, dp, which is connected directly to the decimal 



(a) Diagram of a seven-segment LED display 

(b) Hexadecimal digit patterns 

Figure 3.6 Seven-segment LED display and hexadecimal pattems. 

point LED. The LED control signals, dp, a, b, c ,  d, e, f ,  and g, are grouped together as a 
single 8-bit signal, sseg. The code is shown in Listing 3.14. It uses one case statement to 
list all the desired patterns for the seven LSBs of the sseg signal. The MSB is connected 
to dp. 

Listing 3.14 Hexadecimal digit to seven-segment LED decoder 

module hex-to-sseg 
( 

i n p u t  w i r e  [3:01 hex, 
i n p u t  w i r e  dp, 

5 o u t p u t  r e g  [7:0] sseg / /  o u t p u t  a c t i v e  low 

1; 

a l w a y s  Q* 
b e g i n  

10 c a s e  (hex) 
4'hO: sseg [6: 01 = 7'b0000001; 
4'hl: sseg[6:0] = 7'b1001111; 
4'h2: sseg [6:0] = 7'b0010010; 
4'h3: sseg [6:01 = 7'b0000110; 
4'h4: sseg[6:0] = 7'b1001100; 
4'h5: sseg [6:0] = 7'b0100100; 
4'h6: sseg [6:01 = 7'b0100000; 
4'h7: sseg[6:0] = 7'bOOOlill; 
4'h8 : sseg C6: 01 = 7' b0000000 ; 

20 4'h9 : sseg [6: 01 = 7'b0000100 ; 
4'ha: sseg [6:01 = 7'b0001000; 
4'hb: sseg [6:0] = 7'b1100000; 
4'hc: sseg[6:0] = 7'b0110001; 
4'hd: sseg [6:01 = 7'blOOOOlO; 

25 4'he: sseg C6:Ol = 7'b0110000; 
d e f a u l t :  sseg [6:01 = 7'b0111000; //4 'hf 

e n d c a s e  
sseg [71 = dp; 



end 
30 

endmodule 

There are four seven-segment LED displays on the prototyping board. To save the 
number of FPGA chip's 110 pins, a time-multiplexing scheme is used. The block diagram 
of the time-multiplexing module, dispaux, is shown in Figure 3.7(a). The inputs are inO, 
inl, in2, and in3, which correspond to four 8-bit seven-segment LED patterns, and the 
outputs are an, which is a 4-bit signal that enables the four displays individually, and sseg, 
which is the shared 8-bit signal that controls the eight LED segments. The circuit generates 
a properly timed enable signal and routes the four input patterns to the output alternatively. 
The design of this module is discussed in Chapter 4. For now, we just treat it as a black box 
that takes four seven-segment LED patterns, and instantiate it in the code. 

Testing circuit We use a simple 8-bit increment circuit to verify operation ofthe decoder. 
The sketch is shown in Figure 3.7(b). The sw input is the 8-bit switch of the prototyping 
board. It is fed to an incrementor to obtain sw+l. The original and incremented s w  signals 
are then passed to four decoders to display the four hexadecimal digits on seven-segment 
LED displays. The code is shown in Listing 3.15. 

Listing 3.15 Hex-to-LED decoder testing circuit 

module hex-to-sseg-test 
( 

i n p u t  wire  clk, 
i n p u t  w i r e  [7:01 sw, 

5 o u t p u t  w i r e  C3:Ol an, 
o u t p u t  w i r e  C7:Ol sseg 

1;  

// s i g n a l  d e c l a r a t i o n  
l o  w i r e  [7:01 inc; 

w i r e  [7: 01 led0 , led1 , led2, led3 ; 

/ /  i n c r e m e n t  i n p u t  
a s s i g n  inc = sw + 1 ;  

I S  

/ /  i n s t a n t i a t e  f o u r  i n s t a n c e s  o f  hex  d e c o d e r s  
/ /  i n s t a n c e  f o r  4 LSBs o f  i n p u t  
hex-to-sseg sseg-unit-0 

(.hex(sw[3:0]), .dp(lJbO), .sseg(ledO)); 
za / /  i n s t a n c e  f o r  4 MSBs o f  i n p u t  

hex-to-sseg sseg-unit-I 
(.hex(sw[7:41), .dp(lJbO), .sseg(ledl)); 

/ /  i n s t a n c e  f o r  4 LSBs o f  i nc re rnen t ed  v a l u e  
hex-to-sseg sseg-unit-2 

zs (.hex(inc[3:0]), .dp(l'bl), .sseg(led2)); 
/ /  i n s t a n c e  f o r  4 MSBs o f  i nc re rnen t ed  v a l u e  
hex-to-sseg sseg-unit-3 

(.hex(inc[7:4]), .dp(l'bl), .sseg(led3)); 

30 / /  i n s t a n t i a t e  7-seg LED d i s p l a y  t i m e - m u l t i p l e x i n g  modu le  
disp-mux disp-unit 
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Figure 3.7 LED time-multiplexing module and decoder testing circuit. 
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;S endmodule  

We can follow the procedure in Chapter 2 to synthesize and implement the circuit on 
the prototyping board. Note that the disp-mux.v file, which contains the code for the time- 
multiplexing module, and the ucf constraint file must be included in the Xilinx ISE project 
during synthesis. 

3.9.2 Sign-magnitude adder 

An integer can be represented in sign-magnitude format, in which the MSB is the sign and 
the remaining bits form the magnitude. For example, 3 and -3 become "00 1 1 " and " 10 1 1 " 
in Cbit sign-magnitude format. 

A sign-magnitude adder performs an addition operation in this format. The operation 
can be summarized as follows: 

If the two operands have the same sign, add the magnitudes and keep the sign. 
If the two operands have different signs, subtract the smaller magnitude from the 
larger one and keep the sign of the number that has the larger magnitude. 

One possible implementation is to divide the circuit into two stages. The first stage sorts 
the two input numbers according to their magnitudes and routes them to the max and min 
signals. The second stage examines the signs and performs addition or subtraction on the 
magnitude accordingly. Note that since the two numbers have been sorted, the magnitude 
of max is always larger than that of min and the final sign is the sign of max. 

The code is shown in Listing 3.16, which realizes the two-stage implementation scheme. 
For clarity, we split the input number internally and use separate sign and magnitude signals. 
A parameter, N, is used to represent the width of the adder. 

Listing 3.16 Sign-magnitude adder 

module sign-mag-add 

# ( 
p a r a m e t e r  N=4 

1 
5 ( 

i n p u t  w i r e  EN-1:Ol a, b, 
o u t p u t  r e g  EN-1:Ol sum 

) ;  

1 0  / /  s i g n a l  d e c l a r a t i o n  
r e g  [N-2:0] mag-a, mag-b , mag-sum, max, min; 
r e g  sign-a, sign-b, sign-sum; 

/ / b o d y  
I S  a l w a y s  Q *  

b e g i n  
/ /  s e p a r a t e  m a g n i t u d e  and s i g n  
mag-a = a CN-2:OI ; 
mag-b = b EN-2: 01 ; 

20 sign-a = a[N-11; 
sign-b = b CN-11 ; 
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Figure 3.8 Sign-magnitude adder testing circuit. 

mout[2:0] 

/ /  s o r t  a c c o r d i n g  t o  m a g n i t u d e  
if (mag-a > mag-b) 

b e g i n  
max = mag-a; 
min = mag-b; 
sign-sum = sign-a; 

end 
e l s e  

b e g i n  
max = mag-b; 
min = mag-a; 
sign-sum = sign-b; 

end 
// a d d / s u b  m a g n i t u d e  
if (sign-a==sign-b) 

mag-sum = max + min; 
e 1 s e 

mag-sum = max - min; 
40 // form o u t p u t  

sum = (sign-sum, mag-sum); 
end 

endmodule 

Testing circuit We use a Cbit sign-magnitude adder to verify circuit operation. The 
sketch of the testing circuit is shown in Figure 3.8. The two input numbers are connected to 
the 8-bit switch, and the sign and magnitude are shown on two seven-segment LED displays. 
Two pushbuttons are used as the selection signal of a multiplexer to route an operand or the 
sum to the display circuit. The rightmost even-segment LED shows the 3-bit magnitude, 
which is appended with a 0 in front and fed to the hexadecimal to seven-segment LED 
decoder. The next LED displays the sign bit, which is blank for the plus sign and is lit 
with a middle LED segment for the minus sign. The two LED patterns are then fed to the 
time-multiplexing module, dispaux,  as explained in Section 3.9.1. The code is shown in 
Listing 3.17. 

hex sseg 
dp 

hex-to-sseg 

- 

3 , ~  

J 
in0 sseg 
in1 an 
in2 
in3 sign circuit 

sw[3:0] = 
disp-mux 

reset 

a 

sw[7:4] = b  

btn 
clk 

0 

sign-mag-add - 
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Listing 3.17 Sign-magnitude adder testing circuit 

module sm-add-test 
( 

i n p u t  w i r e  clk, 
i n p u t  w i r e  [1:0] btn, 

5 i n p u t  w i r e  [7:01 sw, 
o u t p u t  w i r e  [3:01 an, 
o u t p u t  w i r e  [7:01 sseg 

) ;  

10 // s i g n a l  d e c l a r a t i o n  
w i r e  13: 01 sum, mout , oct ; 
w i r e  C7: 01 led3, led2, ledl , led0 ; 

/ /  i n s t a n t i a t e  a d d e r  
I S  sign-mag-add # (  . N (4) ) sm-adder-unit 

(.a(sw[3:Ol>, .b(sw[7:41), .sum(sum)); 

/ /  m a g n i t u d e  d i s p l a y e d  on  r i g h t m o s t  7 -seg  LED 
a s s i g n  mout = (btn==2'b00) ? sw [3:0] : 

20 (btn==2 ' b0l) ? sw [7:41 : 

sum ; 
a s s i g n  oct = {l'bO, mout [2:01); 
// i n s t a n t i a t e  h e x  d e c o d e r  
hex-to-sseg sseg-unit 

zs (.hex(oct), .dp(lJbO), .sseg(ledO)); 

/ /  s i g n  d i s p l a y e d  on 2 n d  7-seg  LED 
/ /  m i d d l e  LED b a r  on f o r  n e g a t i v e  number  
a s s i g n  ledl = mout [3] ? 8'b11111110 : 8'bllllllll; 

i o  / /  b l a n k  t w o  o t h e r  LEDs 
a s s i g n  led2 = 8'bllllllll; 
a s s i g n  led3 = 8'b11111111; 

/ /  i n s t a n t i a t e  7 -seg  LED d i s p l a y  t i m e - m u l t i p l e x i n g  m o d u l e  
15 disp-mux disp-unit 

(.clk(clk), .reset(iJbO), .inO(ledO), .inl(ledl), 
. in2 (led2), . in3 (led31, . an(an), . sseg(sseg)) ; 

endmodule  

3.9.3 Barrel shifter 

Although Verilog has built-in shift functions, there is no rotation operation. In this sub- 
section, we examine an 8-bit barrel shifter that rotates an arbitrary number of bits to the 
right. The circuit has an 8-bit data input, a, and a 3-bit control signal, amt, which specifies 
the amount to be rotated. The first design uses a case statement to exhaustively list all 
combinations of the amt signal and the corresponding rotated results. The code is shown 
in Listing 3.18. 
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Listing 3.18 Barrel shifter using a case statement 

module barrel-shifter-case 
( 

i n p u t  w i r e  [7:01 a, 
i n p u t  w i r e  [2:0] amt , 

5 o u t p u t  r e g  [7:0] y 
) ;  

/ /  body  
a l w a y s  Q* 

c a s e  (amt) 
3'00: y = a; 
3'01: y = Ca[Ol, aC7:llI; 
3'02: y = Ca[1:0], a[7:211; 
3'03: y = (a[2:Ol, a[7:311; 
3'04: y = Ca[3:Ol, a[7:413; 
3'05: y = Ca[4:Ol, a[7:511; 
3'06: y = Ca[5:0], a[7:611; 
d e f a u l t :  y = Ca[6:0], a[7]3; 

e n d c a s e  
20 

endmodule 

While the code is straightforward, it will become cumbersome when the number of 
data bits increases. Furthermore, a large number of items in a case statement implies a 
wide multiplexer, which makes synthesis difficult and leads to a large propagation delay. 
Alternatively, we can construct the circuit by stages. In the nth stage, the input signal is 
either passed directly to output or rotated right by 2" positions. The nth stage is controlled 
by the nth bit of the amt signal. Assume that the 3 bits of amt are m2mlmo. The total 
rotated amount after three stages is m222 + m12' + mo20, which is the desired rotating 
amount. The code for this scheme is shown in Listing 3.19. 

Listing 3.19 Barrel shifter using multistage shifts 

module barrel-shif ter-stage 
( 

i n p u t  w i r e  [7:01 a, 
i n p u t  w i r e  [2:01 amt, 

5 o u t p u t  w i r e  [7:0] y 
) ;  

// s i g n a l  d e c l a r a t i o n  
w i r e  [7:01 SO, sl; 

10 

// body 
// s t a g e  0 ,  s h i f t  0 o r  1 b i t  
a s s i g n  SO = amt [O] ? Ca[O], a[7:1]) : a; 
// s t a g e  1 ,  s h i f t  0 o r  2 b i t s  

1 5  a s s i g n  sl = amt [ll ? CsO[l:O] , sO[7:211 : SO; 
/ /  s t a g e  2, s h i f t  0 o r  4 b i t s  
a s s i g n  y = amt [2] ? {s1[3:01, sl[7:41) : sl; 

endmodule 
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Testing circuit To test the circuit, we can use the 8-bit switch for the a signal, three 
pushbutton switches for the amt signal, and the eight discrete LEDs for output. Instead of 
deriving a new constraint file for pin assignment, we create a new HDL file that wraps the 
barrel shifter circuit and maps its signals to the prototyping board's signals. The code is 
shown in Listing 3.20. 

Listing 3.20 Barrel shifter testing circuit 

module shif ter-test 

( 
i n p u t  w i r e  [ 2 : 0 ]  btn, 
i n p u t  w i r e  [7 :01  sw, 

5 o u t p u t  w i r e  [7 :01  led 

1 ; 

/ /  i n s t a n t i a t e  s h i f t e r  
barrel-shifter-stage shift-unit 

10 (.a(sw), .amt(btn), .y(led)); 

endmodule  

3.9.4 Simplified floating-point adder 

Floating point is another format to represent a number. With the same number of bits, 
the range in floating-point format is much larger than that in signed integer format. Al- 
though VHDL has a built-in floating-point data type, it is too complex to be synthesized 
automatically. 

Detailed discussion of floating-point representation is beyond the scope of this book. 
We use a simplified 13-bit format in this example and ignore the round-off error. The 
representation consists of a sign bit, s, which indicates the sign of the number (1  for 
negative); a 4-bit exponent field, e, which represents the exponent; and an 8-bit significand 
field, f ,  which represents the significand or the fraction. In this format, the value of a 
floating-point number is (- 1)" * . f * 2". The . f * 2e is the magnitude of the number and 
(-1)' is just a formal way to state that "s equal to 1 implies a negative number." Since 
the sign bit is separated from the rest of the number, floating-point representation can be 
considered as a variation of the sign-magnitude format. 

We also make the following assumptions: 
Both exponent and significand fields are in unsigned format. 
The representation has to be either normalized or zero. Normalized representa- 
tion means that the MSB of the significand field must be 1. If the magnitude of 
the computation result is smaller than the smallest normalized nonzero magnitude, 
0.10000000 * 20°00, it must be converted to zero. 

Under these assumptions, the largest and smallest nonzero magnitudes are 0.11 11 11 11 * 
2"" and 0.10000000 * 2°000, and the range is about 2'' (i.e., ~;$,AA~~~:$:::). 

Our floating-point adder design follows the process of add~ng numbers manually in 
scientific notation. This process can best be explained by examples. We assume that the 
widths of the exponent and significand are 2 and 1 digits, respectively. Decimal format 
is used for clarity. The computations of several representative examples are shown in 
Figure 3.9. The computation is done in four major steps: 



sort align addlsub normalize 

eg. 1 +O. 54E3 -0.87E4 -0.87E4 -0.87E4 
-0.87E4 +0.54E3 +0.05E4 +0.05E4 ---- 

-0.82E4 

eg. 3 +O. 54E0 -0.55EO -0.55EO -0.55EO 
-0.55EO +0.54EO +0.54EO +0.54EO ---- 

-0.01EO 

-0.55EO 
+O. 54E0 
-0. OOEO 

Figure 3.9 Floating-point addition examples. 

1. Sorting: puts the number with the larger magnitude on the top and the number with 
the smaller magnitude on the bottom (we call the sorted numbers "big number" and 
"small number"). 

2. Alignment: aligns the two numbers so that they have the same exponent. This can 
be done by adjusting the exponent of the small number to match the exponent of the 
big number. The significand of the small number has to shift to the right according 
to the difference in exponents. 

3. Addition/subtraction: adds or subtracts the significands of two aligned numbers. 
4. Normalization: adjusts the result to the normalized format. Three types of normal- 

ization procedures may be needed: 
After a subtraction, the result may contain leading zeros in front, as in example 2. 
After a subtraction, the result may be too small to be normalized and thus needs 
to be converted to zero, as in example 3. 
After an addition, the result may generate a carry-out bit, as in example 4. 

Our binary floating-point adder design uses a similar algorithm. To simplify the imple- 
mentation, we ignore the rounding. During alignment and normalization, the lower bits of 
the significand will be discarded when shifted out. The design is divided into four stages, 
each corresponding to a step in the foregoing algorithm. The suffixes, 'b', 's', 'a', 'r', and 
'n', used in signal names are for "big number," "small number," "aligned number," "result 
of addition/subtraction," and "normalized number," respectively. The code is developed 
according to these stages, as shown in Listing 3.21. 

Listing 3.21 Simplified floating-point adder 

module f p-adder 
( 

i n p u t  w i r e  signl, sign2, 
i n p u t  wire  [3:01 expl, exp2, 
i n p u t  w i r e  [7:0] fracl, frac2, 
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output  reg s i g n - o u t  , 
output  reg [3 :01  exp -ou t  , 
o u t p u t  reg [7 :01  f r a c - o u t  

) ;  
10 

/ /  s i g n a l  d e c l a r a t i o n  
/ / s u f f i x  b ,  s ,  a ,  n  f o r  
// b i g ,  s m a l l ,  a l i g n e d ,  n o r m a l i z e d  number 
reg s i g n b ,  s i g n s ;  

1 5  reg [3: 01 expb , exps  , expn , e x p - d i f  f  ; 
reg [ 7 :  01 f  r a c b  , f  r a c s  , f  r a c a  , f  r a c n  , sum-norm ; 
reg [ 8 : 0 ]  sum; 
reg [ 2 : 0 ]  l e a d 0 ;  

20 / /  body 
a l w a y s  O* 
begin 

// 1 s t  s t a g e :  s o r t  t o  f i n d  t h e  l a r g e r  number 
i f  ( { e x p l ,  f r a c l }  > Cexp2,  f r a c 2 ) )  

begin 
s i g n b  = s i g n l ;  
s i g n s  = s i g n 2 ;  
expb = e x p l ;  
e x p s  = e x p 2 ;  
f r a c b  = f r a c l ;  
f r a c s  = f r a c 2 ;  

end 
else 

begin 
s i g n b  = s i g n 2 ;  
s i g n s  = s i g n l ;  
expb = e x p 2 ;  
e x p s  = e x p l ;  
f r a c b  = f r a c 2 ;  
f r a c s  = f r a c l ;  

end 

/ /  2nd s t a g e :  a l i g n  s m a l l e r  number 
e x p - d i f f  = expb - e x p s ;  
f r a c a  = f  r a c s  >> e x p - d i f  f  ; 

/ /  3 r d  s t a g e :  a d d / s u b s t r a c t  
i f  ( s i g n b = = s i g n s )  

sum = { I ' b O ,  f r a c b }  + { I ' b O ,  f r a c a ) ;  
e  1 s e  

sum = { l ' b O ,  f r a c b )  - { I ' b O ,  f r a c a } ;  

/ /  4 t h  s t a g e :  n o r m a l i z e  
/ /  c o u n t  l e a d i n g  0s 
i f  (sum[71)  

l e a d 0  = 3 ' 0 0 ;  
else i f  (sumC61) 

l e a d 0  = 3 ' 0 1 ;  



e l s e  i f  (sumC51) 
60 l e a d 0  = 3 ' 0 2 ;  

e l s e  i f  (sumC41) 
l e a d 0  = 3 ' 0 3 ;  

e l s e  i f  ( sum[31)  
l e a d 0  = 3 ' 0 4 ;  

e l s e  i f  (sumC21) 
l e a d 0  = 3 ' 0 5 ;  

e l s e  i f  (sum C11) 
l e a d 0  = 3 ' 0 6 ;  

e l s e  
l e a d 0  = 3 ' 0 7 ;  

/ /  s h i f t  s i g n i f i c a n d  a c c o r d i n g  t o  l e a d i n g  0 
sum-norm = sum <<  l e a d 0 ;  
/ /  t z o r m a l i z e  w i t h  s p e c i a l  c o n d i t i o n s  
i f  ( sum[8 ] )  // w i t h  c a r r y  o u t ;  s h i f t  f r a c  l o  r i g h t  

b e g i n  
expn = expb  + 1; 
f  r a c n  = sum [ 8 :  11 ; 

end 
e l s e  i f  ( l e a d 0  > e x p b )  // t o o  s m a l l  t o  n o r m a l i z e  

b e g i n  
expn = 0 ;  // s e t  t o  0 
f r a c n  = 0 ;  

end 
e l s e  

b e g i n  
expn = expb  - l e a d 0 ;  

f  r a c n  = sum-norm; 
end 

/ /  , form o u t p z ~ t  
s i g n - o u t  = s i g n b ;  
exp -ou t  = e x p n ;  
f r a c - o u t  = f r a c n ;  

end 
95 

endmodule 

The circuit in the first stage compares the magnitudes and routes the big number to the 
signb, expb, and f r a c b  signals and the smaller number to the s igns ,  exps, and f r a c s  
signals. The comparison is done between e x p l t f  r a c l  and exp2&frac2. It implies that 
the exponents are compared first, and if they are the same, the significands are compared. 

The circuit in the second stage performs alignment. It first calculates the difference 
between the two exponents, which is expb-exps, and then shifts the significand, f r a c s ,  
to the right by this amount. The aligned significand is labeled f r aca .  The circuit in the 
third stage performs sign-magnitude addition, similar to that in Section 3.9.2. Note that the 
operands are extended by 1 bit to accommodate the cany-out bit. 

The circuit in the fourth stage performs normalization, which adjusts the result to make 
the final output conform to the normalized format. The normalization circuit is constructed 
in three segments. The first segment counts the number of leading zeros. It is somewhat 
like a priority encoder. The second segment shifts the significands to the left by the amount 
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specified by the leading-zero counting circuit. The last segment checks the carry-out and 
zero conditions and generates the final normalized number. 

Testing circuit The floating-point adder has two 13-bit input operands. Since the proto- 
typing board has only one 8-bit switch and four I-bit pushbuttons, it cannot provide enough 
number of physical inputs to test the circuit. To accommodate the 26 bits of the floating- 
point adder, we must create a testing circuit and assign constants or duplicated switch signals 
to the adder's input operands. An example is shown in Listing 3.22. It assigns one operand 
as constant and uses duplicated switch signals for the other operand. The addition result is 
passed to the hexadecimal decoders and the sign circuit and is shown on the seven-segment 
LED display. 

Listing 3.22 Floating-point adder testing circuit 

module fp-adder-test 
( 

i n p u t  w i r e  clk, 
i n p u t  w i r e  [1:01 btn, 

5 i n p u t  w i r e  [7:0] sw, 
o u t p u t  w i r e  [3:01 an, 
o u t p u t  w i r e  [7:01 sseg 

) ;  

10 / /  s i g n a l  d e c l a r a t i o n s  
w i r e  signl , sign2, sign-out ; 
w i r e  [3:01 expl, exp2, exp-out; 
w i r e  [7: 01 fracl , frac2, frac-out ; 
w i r e  [7: 01 led3, led2, led1 , led0 ; 

15 

/ /  body 
/ /  s e t  up the  fp  a d d e r  i n p u t  s i g n a l s  
a s s i g n  signl = l'bO; 
a s s i g n  expl = 4'bIOOO; 

20 a s s i g n  fracl = {l'bl, sw[l:Ol , 5'blOIOl); 
a s s i g n  sign2 = sw[7] ; 
a s s i g n  exp2 = btn; 
a s s i g n  frac2 = Cl'bl, sw[6:011; 

2s / /  i n s t a n t i a t e  f p  a d d e r  
fp-adder fp-unit 

( .  sign1 (signl), . sign2(sign2), . expl (expi), .exp2(exp2) 
.fracl (fracl), . frac2(frac2), . sign-out (sign-out), 
.exp-out(exp-out), .frat-out(frac-out)); 

30 

/ /  i n s t a n t i a t e  t h r e e  i n s t a n c e s  of  hex d e c o d e r s  
/ /  exponen t  
hex-to-sseg sseg-unit-0 

(.hex (exp-out) , . dp (1 'bo), . sseg (ledo)) ; 
35 / /  4 L S B s  o f  f r a c t i o n  

hex-to-sseg sseg-unit-1 
(.hex(frac-out[3:01), .dp(l'bl), .sseg(ledl)); 

/ /  4 MSBs of  f r a c t i o n  
hex-to-sseg sseg-unit-2 

(.hex(frac-out [7:4]), .dp(llbO), .sseg(led2)); 



// s i g n  
a s s i g n  led3 = (sign-out) ? 8'b11111110 : 8'bllllllll; 

// i n s t a n t i a t e  7 - s e g  LED d i s p l a y  t i m e - m u l t i p l e x i n g  m o d u l e  
, disp-mux disp-unit 

( .  clk(clk), .reset (llbO), . ino(led01, . inl(ledl), 
.in2(led2), .in3(led3), .an(an), .sseg(sseg)); 

e n d m o d u l e  

3.10 BIBLIOGRAPHIC NOTES 

VerilogHDL, Zndedition, by S. Palnitkar andstarter's Guide to Verilog2001 by M. D. Ciletti 
provide detailed coverage of Verilog's syntax and constructs. The article "The IEEE Verilog 
1364-200 1 Standard: What's New, and Why You Need It" by S. Sutherland summarizes the 
new features. The article ""full-case parallel-case", the Evil Twins of Verilog Synthesis" by 
C. E. Cummings examines the caveats of the full-case and parallel-case directives, and his 
other article, "New Verilog-200 1 Techniques for Creating Parameterized Models," discusses 
the advantage of Verilog-2001's new parameter passing scheme. 

3.1 1 SUGGESTED EXPERIMENTS 

3.1 1.1 Multifunction barrel shifter 

Consider an 8-bit shifting circuit that can perform rotating right or rotating left. An addi- 
tional I-bit control signal, lr, specifies the desired direction. 

1 .  Design the circuit using one rotate-right circuit, one rotate-left circuit, and one 2-to-1 
multiplexer to select the desired result. Derive the code. 

2. Derive a testbench and use simulation to verify operation of the code. 
3. Synthesize the circuit, program the FPGA, and verify its operation. 
4. This circuit can also be implemented by one rotate-right shifler with pre- and post- 

reversing circuits. The reversing circuit either passes the original input or reverses 
the input bitwise (e.g., if an 8-bit input is the reversed result 
becomes aoala2a3a5a5a6a7). Repeat steps 2 and 3. 

5.  Check the report files and compare the number of logic cells and propagation delays 
of the two designs. 

6. Expand the code for a 16-bit circuit and synthesize the code. Repeat steps 1 to 5. 
7. Expand the code for a 32-bit circuit and synthesize the code. Repeat steps 1 to 5 .  

3.1 1.2 Dual-priority encoder 

A dual-priority encoder returns the codes of the highest or second-highest priority requests. 
The input is a 12-bit r e q  signal and the outputs are f i r s t  and second, which are the 4-bit 
binary codes of the highest and second-highest priority requests, respectively. 

1 .  Design the circuit and derive the code. 
2. Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit that displays the two output codes on the seven-segment LED 

display of the prototyping board, and derive the code. 



4. Synthesize the circuit, program the FPGA, and verify its operation. 

3.1 1.3 BCD incrementor 

The binary-coded-decimal (BCD) format uses 4 bits to represent 10 decimal digits. For 
example, 25910 is represented as "0010 0101 1001" in BCD format. A BCD incrementor 
adds 1 to a number in BCD format. For example, after incrementing, "00 10 0 10 1 100 1 " 
(i.e., 25910) becomes "0010 01 10 0000" (i.e., 26010). 

1. Design a three-digit 12-bit incrementor and derive the code. 
2. Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit that displays three digits on the seven-segment LED display 

and derive the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 

3.1 1.4 Floating-point greater-than circuit 

A floating-point greater-than circuit compares two floating-point numbers and asserts out- 
put, g t ,  when the first number is larger than the second number. Assume that the two 
numbers are represented in the format discussed in Section 3.9.4. 

1.  Design the circuit and derive the code. 
2. Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit and derive the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 

3.1 1.5 Floating-point and signed integer conversion circuit 

A number may need to be converted to different formats in a large system. Assume that 
we use the 13-bit format in Section 3.9.4 for the floating-point representation and the 
8-bit signed data type for the integer representation. An integer-to-floating-point conver- 
sion circuit converts an 8-bit integer input to a normalized, 13-bit floating-point output. 
A floating-point-to-integer conversion circuit reverses the operation. Since the range of 
a floating-point number is much larger, conversion may lead to the underflow condition 
(i.e., the magnitude of the converted number is smaller than "00000001 ") or the overflow 
condition (i.e., the magnitude of the converted number is larger than "01 1 11 11 1 "). 

1. Design an integer-to-floating-point conversion circuit and derive the code. 
2. Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit and derive the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 
5. Design a floating-point-to-integer conversion circuit. In addition to the 8-bit integer 

output, the design should include two status signals, uf and of ,  for the underflow 
and overflow conditions. Derive the code and repeat steps 2 to 4. 

3.1 1.6 Enhanced floating-point adder 

The floating-point adder in Section 3.9.4 discards the lower bits when they are shifted out 
(it is known as round to zero). A more accurate method is to round to the nearest even, 
as defined in the IEEE Standard for Binary Floating-Point Arithmetic (IEEE Std 754). 
Three extra bits, known as the guard, round, and sticky bits, are required to implement this 



method. If you learned floating-point arithmetic before, modify the floating-point adder in 
Section 3.9.4 to accommodate the round-to-the-nearest-even method. 



CHAPTER 4 

REGULAR SEQUENTIAL CIRCUIT 

4.1 INTRODUCTION 

A sequential circuit is a circuit with memory, which forms the internal state of the circuit. 
Unlike a combinational circuit, in which the output is a function of input only, the output 
of a sequential circuit is a hnction of the input and the internal state. The synchronous 
design methodology is the most commonly used practice in designing a sequential circuit. In 
this methodology, all storage elements are controlled (i.e., synchronized) by a global clock 
signal and the data is sampled and stored at the rising or falling edge of the clock signal. It 
allows designers to separate the storage components from the circuit and greatly simplifies 
the development process. This methodology is the most important principle in developing 
a large, complex digital system and is the foundation of most synthesis, verification, and 
testing algorithms. All of the designs in the book follow this methodology. 

4.1.1 D FF and register 

The most basic storage component in a sequential circuit is a D-type flip-flop (D FF). The 
symbol and function table of a positive edge-triggered D FF are shown in Figure 4.l(a). 
The value of the d signal is sampled at the rising edge of the clk signal and stored to FF. A 
D FF may contain an asynchronous reset signal to clear the FF to 0. Its symbol and function 
table are shown in Figure 4.l(b). Note that the reset operation is independent of the clock 
signal. 

FPGA Prototyping b,v Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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Figure 4.1 Block diagram and functional table of a D FF. 
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Figure 4.2 Block diagram of a synchronous system. 

The three main timing parameters of a D FF are T,, (clock-to-q delay), TSet,, (setup 
time), and Thold (hold time). T,, is the time required to propagate the value of d to q at 
the rising edge of the clock signal. The d signal must be stable around the sampling edge 
to prevent the FF from entering the metastable state. TSet,, and Thold specify the time 
intervals before or after the sampling edge. 

A D FF provides 1-bit storage. A collection of D FFs can be grouped together to store 
multiple bits and is known as a register. 

d - 

4.1.2 Synchronous system 

next-state 

Block diagram The block diagram of a synchronous system is shown in Figure 4.2. It 
consists of the following parts: 

State register: a collection of D FFs controlled by the same clock signal 

s a t e  ' 
> ,lk 

A - . logic state-next 



Next-state logic: combinational logic that uses the external input and internal state 
(i.e., the output of register) to determine the new value of the register 
Output logic: combinational logic that generates the output signal 

Maximal operating frequency One of the most difficult design aspects of a sequential 
circuit is to ensure that the system timing does not violate the setup and hold time constraints. 
In a synchronous system, the storage components are grouped together and treated as a single 
register, as shown in Figure 4.2. We need to perform timing analysis on only one memory 
component. 

The timing of a sequential circuit is characterized by fmax, the maximal clockj?equency, 
which specifies how fast the circuit can operate. The reciprocal off,,, specifies Tclock, 
the minimal clock period, which can be interpreted as the interval between two sampling 
edges of the clock. To ensure correct operation, the next value must be generated and 
stabilized within this interval. Assume that the maximal propagation delay of next-state 
logic is Tcomb. The minimal clock period can be obtained by adding the propagation delays 
and setup time constraint of the closed loop in Figure 4.2: 

and the maximal clock rate is the reciprocal: 

1 
- - 

1 
fmax  = 

T ~ l ~ ~ k  Tcq + Tcomb f Tsetup 

Timing constraint in Xilinx ISEXi'inx " ~ " " ~ f ~ "  During synthesis, Xilinx software 
will analyze the synthesized circuit and show fmax in a report. We can also specify the 
desired operating frequency as a synthesis constraint, and the synthesis software will try to 
obtain a circuit to satisfy this requirement (i.e., a circuit whose f,,, is equal to or greater 
than the desired operating frequency). For example, if we use the 50-MHz (i.e., 20-ns 
period) oscillator on the prototyping board as the clock source, fmax of a sequential circuit 
must exceed this frequency (i.e., the period must be smaller than 20 ns). The following 
lines can be added to the constraint file: 

NET "clk" TNM-NET = "clk"; 
TIMESPEC "TS-clk" = PERIOD "clk" 20 ns HIGH 50 %;  

This indicates that the clk signal has a maximal period of 20 ns (i.e., 50 MHz) and a duty 
cycle of 50%. 

After synthesis, we can check the relevant timing information by invoking the View 
Design Summary process from the ISE's Processes window. The Timing Constraints sec- 
tion shows whether the imposed constraints are met, and the Static Timing Report section 
provides more detailed timing information. 

4.1.3 Code development 

Our code development follows the basic block diagram in Figure 4.2. The key is to separate 
the memory component (i.e., the register) from the system. Once the register is isolated, 
the remaining portion is a pure combinational circuit, and the coding and analysis schemes 
discussed in previous chapters can be applied accordingly. While this approach may make 
the code a bit more cumbersome at times, it helps us to better visualize the circuit architecture 
and avoid unintended memory and subtle mistakes. 



Based on the characteristics of the next-state logic, we divide sequential circuits into 
three categories: 

Regular seqztential circuit. The state transitions in the circuit exhibit a "regular" 
pattern, as in a counter or shift register. The next-state logic is constructed primarily 
by a predesigned, "regular" component, such as an incrementor or shifter. 
FSM. The state transitions in the circuit do not exhibit a simple, repetitive pattern. 
The next-state logic is constructed by "random logic" and synthesized from scratch. 
It should be called a random sequential circuit, but is commonly known as an FSM 
(finite state machine). 
FSMD. The circuit consists of a regular sequential circuit and an FSM. The two parts 
are known as a data path and a controlpath, and the complete circuit is known as an 
FSMD (FSM with data path). This type of circuit is used to implement an algorithm 
represented by register-transfer (RT) methodology, which describes system operation 
by a sequence of data transfers and manipulations among registers. 

The three types of circuits are discussed in this and two subsequent chapters. 

4.2 HDL CODE OF THE FF AND REGISTER 

Describing storage components in HDL is a subtle procedure, and there are many ways to 
do it. In fact, one common problem encountered by a new HDL user is the inference of 
unintended latches and buffers. Instead of covering all possible forms of syntactic descrip- 
tions, we introduce the code templates for several commonly used memory components. 
Since our development process separates the register and the combinational circuit, these 
components are sufficient for all designs in this book. The components are: 

D F F  
Register 
Register file 

All code templates use always blocks. As discussed in Section 3.3.2, nonblocking assign- 
ments should be used for the memory elements, whose basic syntax is 

[variable-name] <= [expression]; 

This type of assignment can avoid potential race condition and eliminate the discrepancy 
between simulation and synthesis. This topic is explained in detail in Section 7.1. 

We consider three types of D FFs: 
D FF without asynchronous reset 
D FF with asynchronous reset 
D FF with synchronous enable 

The first two are the most basic memory components and can be found in the library of 
any device technology. The third can be constructed from a simple D FF. We include the 
code since it is a frequently used memory component and can be mapped to the FF of the 
Spartan-3 device's logic cell. 

D FF without asynchronous reset The hnction table of a D FF is shown in Fig- 
ure 4. I (a) and the code is shown in Listing 4.1. 



Listing 4.1 D FF without asynchronous reset 

module d-ff  

( 
i n p u t  w i r e  c l k ,  
i n p u t  w i r e  d ,  

i o u t p u t  r e g  q 

1 ;  

/ /  bod? 
a l w a y s  @ ( p o s e d g e  c l k )  

l o  q <= d ;  

endmodule  

The rising edge is expressed by the posedge c l k  event in the sensitivity list. The posedge 
(for "positive edge") keyword specifies the direction of the c l k  signal changing toward 1. 
It indicates that the always block is activated only at the rising edge of the c l k  signal, a 
condition reflecting the characteristics of an edge-triggered FF. Note that the d signal is not 
included in the sensitive list. This is consistent with the fact that the d signal is sampled 
only at the rising edge of the c l k  signal, and a change in its value does not trigger any 
immediate response. 

D FF with asynchronous reset A D FF may contain an asynchronous reset signal, as 
shown in the hnction table of Figure 4.l(b). The signal clears the D FF to 0 any time and is 
not controlled by the clock signal. It actually has a higher priority than the regularly sampled 
input. Using an asynchronous reset signal violates the synchronous design methodology 
and thus should be avoided in normal operation. Its major application is to perform system 
initialization. For example, we can generate a short reset pulse to force a system to an initial 
state after turning on the power. The code for a D FF with asynchronous reset is shown in 
Listing 4.2. 

Listing 4.2 D FF with asynchronous reset 

module d-f f - r e s e t  

( 
i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  d ,  

5 o u t p u t  r e g  q 

1;  

// bodv 
a l w a y s  @ ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  

10 i f  ( r e s e t )  
q <= l'bO; 

e l s e  
q <= d ;  

15 endmodule  

Note that the posedge reset event is also included in the sensitivity list and its value is 
checked first in the if statement. The q signal is cleared to 0 if it is asserted and its operation 
is independent of the c l k  signal. 
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Figure 4.3 D FF with synchronous enable. 

D FF with synchronous enable A D FF may include an additional control signal, 
en, to enable the FF to sample the input value. Its symbol and functional table are shown 
in Figure 4. I(c). Note that the en signal is examined only at the rising edge of the clock 
and thus is synchronous. If it is not asserted, the FF keeps its previous value. The code is 
shown in Listing 4.3. 

Listing 4.3 One-segment coding style for a D FF with synchronous enable 

module d-f f - e n - l s e g  
\ 

i n p u t  w i r e  clk, r e s e t ,  
i n p u t  w i r e  e n ,  

5 i n p u t  w i r e  d ,  
o u t p u t  r e g  q 

) ;  

// hod?, 
I n  a l w a y s  O ( p o s e d g e  clk, p o s e d g e  r e s e t )  

i f  ( r e s e t )  
q <= 1'bO; 

e l s e  i f  ( e n )  
q <= d ;  

I 5  

endmodule 

Note that there is no else branch after the second if statement. According to Verilog 
definition, a variable keeps its previous value if it is not assigned. If en is 0, q keeps its 
previous value. Thus, omission of the else branch describes the desired behavior of this FF. 

The enabling feature of this D FF is usehl in maintaining synchronism between a fast 
subsystem and a slow subsystem. For example, assume that the operation rates of a fast and 
a slow subsystem are 50 MHz and 1 MHz. Instead of using a derived 1-MHz clock to drive 
the slow subsystem, we can generate a periodic enable tick that is asserted one clock cycle 
every 50 clock cycles. The slow subsystem is disabled (i.e., keeps the previous state) for 
the remaining 49 clock cycles. The same scheme can also be applied to eliminate a gated 
clock signal. 

Since the enable signal is synchronous, this circuit can be constructed by a regular D FF 
and simple next-state logic. The code is shown in Listing 4.4, and its block diagram is 
shown in Figure 4.3. 



Listing 4.4 Two-segment coding style for a D FF with synchronous enable 

module d-f f -en_2seg 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  en, 

, i n p u t  w i r e  d, 
o u t p u t  r e g  q 

) ;  

/ /  s i g n a l  d e c l a r a t i o n  
IU r e g  r-reg, r-next; 

// body 
/ /  D FF 
a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  reset 

I S  i f  (reset) 
r-reg <= 1 'bO; 

e l s e  
r-reg <= r-next; 

20 / /  n e x t - s t a t e  l o g i c  
a l w a y s  Q *  

i f  (en) 
r-next = d ;  

e l s e  
r-next = r-reg; 

// o u t p u t  l o g i c  
a l w a y s  Q *  

q = r-reg; 
30 

endmodule  

For clarity, we use suffixes next and r e g  to emphasize the next input value and the 
registered output of an FF. They are connected to the d and q signals of a D FF. The code 
in Listing 4.3 can be considered as shorthand for this more explicit description. 

4.2.2 Register 

A register is a collection of D FFs that are controlled by the same clock and reset signals. 
Like a D FF, a register can have an optional asynchronous reset signal and a synchronous 
enable signal. The code is identical to that of a D FF except that the array data type is needed 
for the relevant input and output signals. For example, an 8-bit register with asynchronous 
reset is shown in Listing 4.5. 

Listing 4.5 Register 

module reg-reset 

( 
i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [7:0] d ,  

5 o u t p u t  r e g  [7:01 q 

) ;  



/ /  body  
a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  r e s e t  

ICI i f  ( r e s e t )  
q <= 0 ;  

e l s e  
q <= d ;  

I endmodule  

4.2.3 Register file 

A register file is a collection of registers with one input port and one or more output ports. 
The write address signal, w-addr, specifies where to store data, and the read address signal, 
r-addr, specifies where to retrieve data. The register file is generally used as fast, temporary 
storage. The code for a parameterized 2"'-by-B register file is shown in Listing 4.6. Two 
parameters are defined in this design: W specifies the number of address bits, which implies 
that there are 2" words in the file, and B  specifies the number of bits in a word. 

Listing 4.6 Parameterized register file 

module  r e g - f  i l e  
# ( 

p a r a m e t e r  B = 8 ,  / /  number o f  b i t s  
W = 2  / /  number o f  a d d r e s s  b i t s  

5 ) 

( 
i n p u t  w i r e  clk, 
i n p u t  w i r e  wr-en ,  
i n p u t  w i r e  [W-1:01 w-addr , r - a d d r  , 
i n p u t  w i r e  [B-1:OI w - d a t a ,  
o u t p u t  w i r e  [B-1:Ol r - d a t a  

1;  

// s i g r ~ a l  d e c l a r a t i o n  
1 5  r e g  [B-1:Ol a r r a y - r e g  [2**W-1:0] ; 

// hodv 
/ /  rz3rire o p e r a t i o n  
a l w a y s  @ ( p o s e d g e  c l k )  

20 i f  (wr -en )  
a r r a y - r e g  [w-addr l  <= w - d a t a ;  

// r e a d  o p e r a t i o n  
a s s i g n  r - d a t a  = a r r a y - r e g  [ r - a d d r l  ; 

The code includes several new features. First, a two-dimensional array data type is 
defined, as in 

r e g  [B-1:OI a r r a y - r e g  [ 2 * * ~ - 1 :  01 ; 

It indicates that the array-reg variable is an array of [2**W-1: 01 elements and each ele- 
ment is with the data type of reg [B-I : 01. Second, a signal is used as an index to access an 
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element in the array, as in a r rayreg  [w-addrl . Although the description is very abstract, 
Xilinx software recognizes this language construct and can derive the correct implementa- 
tion accordingly. The array-reg [ .  . . I  = . . . and . . . = array-reg [. . . I  statements infer 
decoding and multiplexing logic, respectively. 

Some applications may need to retrieve multiple data words at the same time. This can 
be done by adding an additional read port: 

r-data2 = array-reg [r-addr-21 ; 

4.2.4 Storage components in a Spartan3 devicexilinX Specific 

In a Spartan-3 device, each logic cell contains a D FF with asynchronous reset and synchro- 
nous enable. These D FFs basically constitute the register of Figure 4.2. Since a logic cell 
also contains a four-input LUT, it will be wasteful if the cell is used simply as 1 bit of a mas- 
sive storage. The Spartan-3 device also has distributed RAM (random access memory) and 
block RAM modules, and they can be used for larger storage requirements. These modules 
can be configured for synchronous operation, and their characteristics are somewhat like a 
restricted version of the register file. The configuration and inference of these modules are 
discussed in Chapter 12. 

4.3 SIMPLE DESIGN EXAMPLES 

We illustrate the construction of several simple, representative sequential circuits in this 
section. 

4.3.1 Shift register 

Free-running shift register A free-running shift register shifts its content to the left 
or right by one position in each clock cycle. There is no other control signal. The code for 
an N-bit free-running shift-right register is shown in Listing 4.7. 

Listing 4.7 Free-running shift register 

module f ree-run-shif t-reg 
# ( p a r a m e t e r  N=8) 

( 
i n p u t  w i r e  clk, reset, 

5 i n p u t  w i r e  s-in, 

o u t p u t  w i r e  s-out 

1; 

/ / s i g n a l  d e c l a r a t i o n  
l o  reg  [N-1:0] r-reg; 

w i r e  [N-1 : 01 r-next ; 

// body 
// r e g i s t e r  

15 a l w a y s  @ ( p o s e d g e  clk, p o s e d g e  reset) 
i f  (reset) 

r-reg <= 0 ;  
e  1 s  e  



r - r e g  <= r - n e x t ;  
ZU 

/ /  n e x t - s t a t e  l o g i c  
a s s i g n  r - n e x t  = { s - i n  , r - r e g  [ N - 1 :  11 1 ;  
/ /  olr tpu t  l o g i c  
a s s i g n  s - o u t  = r - r e g [ O I ;  

5 

e n d m o d u l e  

The next-state logic is a I-bit shifter, which shifts r - r e g  right one position and inserts 
the serial input, s-in,  to the MSB. Since the 1-bit shifter involves only reconnection of 
the input and output signals, no real logic is needed. Its propagation delay represents the 
smallest possible Tcornb, and the corresponding f,,, represents the highest clock rate that 
can be achieved for a given device technology. 

Universal shift register A universal shift register can load parallel data, shift its content 
left or right, or remain in the same state. It can perform parallel-to-serial operation (first 
loading parallel input and then shifting) or serial-to-parallel operation (first shifting and 
then retrieving parallel output). The desired operation is specified by a 2-bit control signal, 
c t r l .  The code is shown in Listing 4.8. 

Listing 4.8 Universal shift register 

module  u n i v - s h i f  t - r e g  
# ( p a r a m e t e r  N=8) 
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  [ 1 : 0 1  c t r l ,  
i n p u t  w i r e  [N-1:01 d ,  
o u t p u t  w i r e  C N - 1 : O l  q 

) ; 

IO / / s i g n a l  d e c l a r a t i o n  
r e g  [N-1:01 r - r e g ,  r - n e x t ;  

// body  
/ /  r e g i s t e r  

1 5  a l w a y s  Q ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  
i f  ( r e s e t )  

r - r e g  <= 0 ;  
e l s e  

r - r e g  <= r - n e x t ;  
2 0  

/ /  n e x t - s t a t e  l o g i c  
a l w a y s  a *  

c a s e  ( c t r l )  
2  ' b 0 0 :  r - n e x t  = r - r e g ;  // no  op  

2 5  2 ' b O l :  r - n e x t  = {I - - reg[N-2 :O] ,  d [ O ] ) ;  // s h i f t  l e f t  
2 ' b l O :  r - n e x t  = {d[N-11 ,  r - r e g [ N - 1 : l l ) ;  // s h i f t  r i g h t  
d e f a u l t :  r - n e x t  = d ;  // l o a d  

e n d c a s e  
/ /  o t ~ t p u t  l o g i c  

10 a s s i g n  q = r - r e g ;  
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endmodule  

The next-state logic uses a 4-to-1 multiplexer to select the desired next value of the 
register. Note that the LSB and MSB of d (i.e., d [O] and d [N-11) are used as serial input 
for the shift-left and shift-right operations. 

In a Xilinx Spartan-3 device, a logic cell's 4-input LUT is implemented by a 16-by-1 
SRAM. The same SRAM can also be configured as a cascading chain of sixteen 1-bit SRAM Xilinx 
cells, which resembles a 16-bit shift register. This can be used to construct certain forms specific 
of shift register and leads to very efficient implementation. 

4.3.2 Binary counter and variant 

Free-running binary counter A free-running binary counter circulates through a bi- 
nary sequence repeatedly. For example, a 4-bit binary counter counts from "OOOO", "0001 ", 
. . ., to " 11 1 1" and wraps around. The code for a parameterized N-bit free-running binary 
counter is shown in Listing 4.9. 

Listing 4.9 Free-running binary counter 

module f ree-run-bin-counter 
# ( p a r a m e t e r  N=8) 
( 

i n p u t  w i r e  clk, reset, 
5 o u t p u t  w i r e  max-tick, 

o u t p u t  w i r e  [N-1:01 q 
1;  

/ / s i g n a l  d e c l a r a t i o n  
l o  r e g  [N-1:Ol r-reg; 

w i r e  [N-1: 01 r-next ; 

/ /  body  
/ /  r e g i s t e r  

IS a l w a y s  @ ( p o s e d g e  clk, p o s e d g e  reset) 
i f  (reset) 

r-reg <= 0 ;  / /  { N { l b  'O}} 
e  1 s  e  

r-reg <= r-next; 
10 

/ /  n e x t - . s t a t e  l o g i c  
a s s i g n  r-next = r-reg + 1; 
/ /  o u t p u t  l o g i c  
a s s i g n  q = r-reg; 

zs a s s i g n  max-tick = (r-reg==2**N-1) ? l'bl : l'bO; 
/ / c a n  a l s o  use  ( r _ r e g = = { N { l  ' b l ) ) )  

endmodule  

The next-state logic is an incrementor, which adds 1 to the register's current value. By 
definition of the + operator, the addition implicitly wraps around after the rxeg  reaches 
" 1. . .I". The circuit also consists of an output status signal, max-tick, which is asserted 
when the counter reaches the maximal value, "1. . . I"  (which is equal to 2 N  - 1). 
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Table 4.1 Function table of a universal binary counter 

syn-clr load en up q* Operation 

1 - - - 00. . .00 synchronous clear 
0 1 - -  d parallel load 
0 0 1 1 q+l  count up 
0 0 1 0 q-1 count down 
0 0 0 -  9 pause 

The max-tick signal represents a special type of signal that is asserted for a single clock 
cycle. In this book, we call this type of signal a tick and use the suffix - t i ck  to indicate a 
signal with this property. It is commonly used to interface with the enable signal of other 
sequential circuits. 

Universal binary counter A universal binary counter is more versatile. It can count up 
or down, pause, be loaded with a specific value, or be synchronously cleared. Its hnctions 
are summarized in Table 4.1. Note the difference between the r e s e t  and syn-clr signals. 
The former is asynchronous and should only be used for system initialization. The latter is 
sampled at the rising edge of the clock and can be used in normal synchronous design. The 
code for this counter is shown in Listing 4.10. 

Listing 4.10 Universal binary counter 

module  univ-bin-counter 
# ( p a r a m e t e r  N=8) 
( 

i n p u t  w i r e  clk, reset, 
% i n p u t  w i r e  syn-clr , load, en, up, 

i n p u t  w i r e  [N-1:OI d, 
o u t p u t  w i r e  max-tick, min-tick, 
o u t p u t  w i r e  [N-1:Ol q 

) ;  
I I1 

/ / s i g n a l  d e c l a r a t i o n  
r e g  [N-1:Ol r-reg, r-next; 

/ /  body 
15 / /  r e g i s t e r  

a l w a y s  @ ( p o s e d g e  clk, p o s e d g e  reset) 
i f  (reset) 

r-reg <= 0 ;  // 
e l s e  

20 r-reg <= r-next; 

/ /  n e x t - s t a t e  l o g i c  
a l w a y s  Q* 

i f  (syn-clr) 
25 r-next = 0 ;  

e l s e  i f  (load) 
r-next = d ;  

e l s e  i f  (en & up) 
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r-next = r-reg + 1; 
30 e l s e  i f  (en & -up)  

r-next = r-reg - 1; 
e l s e  

r-next = r-reg; 

35 // o u t p u t  l o g i c  
a s s i g n  q = r-reg; 
a s s i g n  max-tick = (r-reg==2**N-1) ? l'bl : l'bO; 
a s s i g n  min-tick = (r-reg==O) ? l'bl : l'bO; 

-- - 

The next-state logic follows the functional table and is described by an always block, which 
contains an if statement to prioritize the desired operations. 

Mod-m counter A mod-m counter counts from 0 to m - 1 and wraps around. A 
parameterized mod-m counter is shown in Listing 4.1 1. It has two parameters: M, which 
specifies the limit, rn; and N, which specifies the number of bits needed and should be equal 
to [log, MI. The code is shown in Listing 4.1 1, and the default value is for a mod-1 0 counter. 

Listing 4.1 1 Mod-m counter 

module mod-m-counter 

# ( 
p a r a m e t e r  N=4, / /  number of  b i t s  in  c o u n t e r  

M=10 // mod-M 
5 

( 
i n p u t  w i r e  clk, reset, 
o u t p u t  w i r e  max-tick, 
o u t p u t  w i r e  [N-1:Ol q 

10 ) ; 

/ / s i g n a l  d e c l a r a t i o n  
r e g  [N-1:01 r-reg; 
w i r e  [N-1:0] r-next ; 

I5 

// body 
// r e g i s t e r  
a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  reset 1 

i f  (reset) 
20 r-reg <= 0 ;  

e l s e  
r-reg <= r-next; 

// n e x t - s t a t e  l o g i c  
25 a s s i g n  r-next = (r-reg==(M-1)) ? 0 : r-reg + 1; 

// o u t p u t  l o g i c  
a s s i g n  q = r-reg; 
a s s i g n  max-tick = (r-reg==(M-1)) ? l J b l  : l'bO; 

30 endmodule  



The next-state logic is constructed by a conditional operator. If the counter reaches M-I, 
the new value is cleared to 0. Otherwise, it is incremented by 1. 

Inclusion of the N parameter in the code is somewhat redundant since its value depends 
on M. A more elegant way is to define a function that calculates N from M automatically. 
This scheme is discussed in Section 7.4. 

4.4 TESTBENCH FOR SEQUENTIAL CIRCUITS 

A testbench is a program that mimics a physical lab bench, as discussed in Section 1.7. In 
this section, we illustrate the construction of a simple testbench for the previous universal 
binary counter. It can serve as a template for other sequential circuits. Development of a 
more sophisticated testbench is discussed in Section 7.5. The code for the simple testbench 
is shown in Listing 4.12. 

Listing 4.12 Testbench for a universal binary counter 

' t i m e s c a l e  1 ns/lO ps 

// The ' t i m e s c a l e  d i r e c t i v e  s p e c i f i e s  t h a t  
/ /  t h e  s i m ~ r l a t i o n  tinre u n i t  i s  I trs and . / /  t h e  s i m u l a t o r  t i n r e s t e p  i s  1 0  ps 

module  bin-counter-tb ; 

// d e c l a r a t i o n  
10 l o c a l p a r a m  T=20; // c l o c k  p e r i o d  

r e g  clk, reset; 
r e g  syn-clr , load, en, u p ;  
r e g  [2:01 d ;  
w i r e  max-tick, min-tick; 

l i  w i r e  [2:01 q ;  

/ /  c l o c k  
// 20 11s c l o c k  r u n n i n g  f o r e v e r  

25 a l w a y s  
b e g i n  

clk = l J b l ;  

#(T/2) ; 
clk = l'bO; 

10 # ( T / 2 )  ; 
end  

/ /  r e s e t  f o r  t h e  f i r s t  hu!f c y c l e  
i n i t i a l  

5 b e g i n  
reset = 1 'bl; 
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# ( T / 2 )  ; 
r e s e t  = l ' b O ;  

end  
40 

/ /  o t h e r  s t i m u l u s  
i n i t i a l  
b e g i n  

/ /  ==== i n  i t  i a  i n p u t  ===== 

45 s y n - c l r  = l ' b O ;  
l o a d  = l ' b O ;  
e n  = l ' b O ;  
up = l ' b l ;  / /  c o u n t  up 
d  = 3'bOOO; 
@ ( n e g e d g e  r e s e t ) ;  / /  w a i t  r e s e t  t o  d e a s s e r t  
@ ( n e g e d g e  c l k )  ; / /  w a i t  f o r  one  c l o c k  
/ /  ==== t e s t  l o a d  ===== 

l o a d  = l ' b l ;  
d  = 3 ' b 0 1 1 ;  
@ ( n e g e d g e  c l k )  ; // w a i t  f o r  one  c l o c k  
l o a d  = l ' b O ;  
r e p e a t  ( 2 )  @ ( n e g e d g e  c l k )  ; 
// ==== t e s t  s y n - c l e a r  ==== 

s y n - c l r  = l ' b l ;  // a s s e r t  c l e a r  
@ ( n e g e d g e  c l k )  ; 
s y n - c l r  = 1 ' b O ;  
// ==== t e s t  up c o u n t e r  and pause  ==== 

e n  = 1 ' b l ;  // c o u n t  
up = l ' b l ;  
r e p e a t  ( l o )  @ ( n e g e d g e  c l k )  ; 
e n  = 1 ' b O ;  // pause  
r e p e a t  ( 2 )  @ ( n e g e d g e  c l k )  ; 
e n  = l ' b l ;  
r e p e a t  ( 2 )  @ ( n e g e d g e  c l k )  ; 
// ==== t e s t  down c o u n t e r  ==== 

up = l ' b O ;  
r e p e a t  ( 1 0 )  @ ( n e g e d g e  c l k )  ; 
// ==== w a i t  s t a t e m e n t  ==== 

// c o n t i n u e  u n t i l  q=2 
w a i t  ( q = = 2 )  ; 
@ ( n e g e d g e  c l k )  ; 
up  = l ' b l ;  
// c o n t i n u e  u n t i l  m i n - t i c k  becomes  1 
@ ( n e g e d g e  c l k )  ; 
w a i t  ( m i n - t i c k )  ; 
@ ( n e g e d g e  c l k )  ; 
up = l ' b O ;  
// ==== a b s o l u t e  d e l a y  ==== 

#(4*T); // w a i t  f o r  80 ns 
e n  = 1 ' b O ;  / /  pause  
#(4+T); // w a i t  f o r  80  ns 
// ==== s t o p  s i m u l a t i o n  ==== 

// r e t u r n  t o  i n t e r a c t i v e  s i m u l a t i o n  mode 
$ s t o p  ; 
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VI, end 
endmodule 

The code consists of a component instantiation statement, which creates an instance of 
a 3-bit counter, and three segments, which generate a stimulus for clock, reset, and regular 
inputs. 

The clock generation is specified by an always block: 

a l w a y s  
b e g i n  

c l k  = l ' b l ;  
# ( T / 2 )  ; 
c l k  = l ' b O ;  
# ( T / 2 )  ; 

end 

The T term is a constant that represents the number of time units in a clock period. It is 
defined as 

l o c a l p a r a m  T=20;  / /  c l o c k  p e r i o d  

Note that the always block has no sensitivity list and repeats itself forever. The clk signal 
is assigned between 0 and 1 alternately, and each value lasts for half a period. 

The reset stimulus is specified by an initial block: 

i n i t i a l  
b e g i n  

r e s e t  = 1  ' b l ;  
# ( T / 2 )  ; 
r e s e t  = l ' b O ;  

end 

An initial block is executed once at the beginning of a simulation. It indicates that the reset 
signal is set to 1 initially and changed to 0 after half a period. The block represents the 
"power-on" condition, in which the reset signal is asserted momentarily to clear the system 
to the initial state. Note that, by default, the x value (for unknown), not 0, is assigned to a 
variable. Using a short reset pulse is a good mechanism for performing system initialization. 

The second initial block generates a stimulus for other input signals. We first test the 
load and clear operations and then exercise counting in both directions. The final %stop 
function forces the simulator to stop simulation. 

For a synchronous system with positive edge-triggered FFs, an input signal must be stable 
around the rising edge of the clock signal to satisfy the setup and hold time constraints. One 
easy way to achieve this is to change an input signal's value during the I-to-0 transition of 
the clk signal. We can wait for this transition edge by using 

@ ( n e g e d g e  c l k )  ; 

The negedge clk event specifies the condition that the clk signal changes to 0 (i.e., negative 
edge). Note that each statement represents a new falling edge, which corresponds to the 
advancement of one clock cycle. In our template, we generally use this statement to specify 
the progress of time. For multiple clock cycles, we can use a repeat statement, as in 

r e p e a t  ( 1 0 )  @ ( n e g e d g e  c l k ) ;  / /  r e p e a t  10 t i m e s  

Several additional timing control constructs are shown at the end of the initial block. We 
can wait until a special condition, such as "when q is equal to 2" 
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Figure 4.4 Testbench waveform. 

w a i t  ( q = = 2 )  ; 

or wait until a signal changes, such as 

w a i t  (min-tick) ; 

or wait for an absolute time, such as 

#(4*T); // w a i t  f o r  4 T  

If an input signal is modified after these statements, we need to make sure that the input 
change does not occur at the rising edge of the clock. An additional 

Q( n e g e d g e  clk) ; 

statement should be added when needed. 
We can compile the code and perform simulation. Part of the simulated waveform is 

shown in Figure 4.4. 

4.5 CASE STUDY 

After examining several simple circuits, we discuss the design of more sophisticated exam- 
ples in this section. 

4.5.1 LED time-multiplexing circuit 

The S3 board has four seven-segment LED displays, each containing seven bars and one 
small round dot. To reduce the use ofFPGA's I10 pins, the S3 board uses a time-multiplexing 
sharing scheme. In this scheme, the four displays have their individual enable signals but 
share eight common signals to light the segments. All signals are active low (i.e., enabled 
when a signal is 0). The schematic of displaying a "3" on the rightmost LED is shown in 
Figure 4.5. Note that the enable signal (i.e., an) is "1 110". This configuration clearly can 
enable only one display at a time. We can time-multiplex the four LED patterns by enabling 
the four displays in turn, as shown in the simplified timing diagram in Figure 4.6. If the 
refreshing rate of the enable signal is fast enough, the human eye cannot distinguish the 
on and off intervals of the LEDs and perceives that all four displays are lit simultaneously. 
This scheme reduces the number of 110 pins from 32 to 12 (i.e., eight LED segments plus 
four enable signals) but requires a time-multiplexing circuit. Two variations of the circuit 
are discussed in the following subsections. 
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O a -  
O b  

l e -  
I f -  
0 g -. 
1 dp - 

Figure 4.5 Time-multiplexed seven-segment LED display. 

Figure 4.6 Timing diagram of a time-multiplexed seven-segment LED display. 
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Figure 4.7 Symbol and block diagram of a time-multiplexing circuit. 
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Time multiplexing with LED patterns The symbol and block diagram of the time- 
multiplexing circuit are shown in Figure 4.7. It takes four seven-segment LED patterns, 
in3, in2, i n l ,  and inO, and passes them to the output, sseg, in accordance with the enable 
signal. 

The refresh rate of the enable signal has to be fast enough to fool our eyes but should 
be slow enough so that the LEDs can be turned on and off completely. The rate around the 
range 1000 Hz should work properly. In our design, we use an 18-bit binary counter for 
this purpose. The two MSBs are decoded to generate the enable signal and are used as the 
selection signal for multiplexing. The refreshing rate of an individual bit, such as an [OI , 
becomes ~ H Z ,  which is about 800 Hz. The code is shown in Listing 4.13. 

2 

2-to-4 

Listing 4.13 LED time-multiplexing circuit with LED patterns 

module disp-mux 
( 

i n p u t  w i r e  c l k ,  reset, 
i n p u t  C7: 01 i n 3 ,  i n 2 ,  i n 1  , i nO,  

5 o u t p u t  r e g  [ 3 : 0 ]  a n ,  / /  e n a b l e ,  I -ou t -o f -4  a s s e r t e d  low 
o u t p u t  r e g  C7:OI s s e g  // l e d  s egmen t s  

) ;  

/ /  c o n s t a n t  d e c l a r a t i o n  
10 / /  r e f r e s h i n g  r a t e  arottnd 800 Hz ( 5 0  MHz/2"16)  

l o c a l p a r a m  N = 18; 

- 
reset decoder / an 

4 
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// s i g n a l  d e c l a r a t i o n  
r e g  CN-1:OI q-reg; 

1 5  w i r e  [N-1:OI q-next ; 

/ /  N-bi t  c o u n t e r  
// r e g i s t e r  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset 

20 i f  (reset) 
q-reg <= 0 ;  

e l s e  
q-reg <= q-next; 

2s // n e x t - s t a t e  l o g i c  
a s s i g n  q-next = q-reg + 1; 

// 2 MSBs o f  c o u n t e r  t o  c o n t r o l  4 - t o - l  m u l t i p l e x i n g  
// and t o  g e n e r a t e  a c t i v e - l o w  e n a b l e  s i g n a l  

30 a l w a y s  Q* 
c a s e  (q-reg [N-1: N-21) 

2'bOO: 
b e g i n  

an = 4'blllO; 
sseg = inO; 

end 
2'bOl: 

b e g i n  
an = 4'bllOl; 
sseg = inl; 

end 
2'blO: 

b e g i n  
an = 4'b1011; 
sseg = in2; 

end 
d e f a u l t  : 

b e g i n  
an = 4'b0111; 
sseg = in3; 

end 
e n d c a s e  

endmodule 

We use the testing circuit in Figure 4.8 to verify operation of the LED time-multiplexing 
circuit. It uses four 8-bit registers to store the LED patterns. The registers use the same 
8-bit switch as input but are controlled by individual enable signals. When we press a 
pushbutton, the corresponding register is enabled and the switch pattern is loaded to that 
register. The code is shown in Listing 4.14. 

Listing 4.14 Testing circuit for time multiplexing with LED patterns 

module disp-mux-test 
( 

i n p u t  w i r e  clk, 



sseg 
an 

Figure 4.8 LED time-multiplexing testing circuit. 

i n p u t  w i r e  [3:01 b t n ,  
5 i n p u t  w i r e  C7:Ol sw, 

o u t p u t  w i r e  [3:0]  a n ,  
o u t p u t  w i r e  [7:01 s s e g  

1; 

d q 
en 

> 

q -  
en 

> 

q 
en 

> 

q 
en 

> 

- 

l o  / /  s i g n a l  d e c l a r a t i o n  
r e g  [7 :0 ]  d 3 _ r e g ,  d 2 _ r e g ,  d l - r e g ,  d o - r e g ;  

I-d 

I-d 

- d  

. - 
. 
- - 

// i n s t a n t i a t e  7 - s e g  LED d i s p l a y  t i m e - m u l t i p l e x i n g  m o d u l e  
disp-mux d i s p - u n i t  

I 5 ( .  c l k ( c l k ) ,  . r e s e t  ( l ' b o ) ,  . i n O ( d 0 - r e g ) ,  . i n l ( d l - r e g ) ,  
. i n 2 ( d 2 _ r e g ) ,  . i n 3 ( d 3 _ r e g ) ,  . a n ( a n ) ,  . s s e g ( s s e g ) )  ; 

in0 sseg 
in1 an 
in2 
in3 

disp-mux 

reset 

/ /  r e g i s t e r s  f o r  4 l e d  p a t t e r n s  
a l w a y s  @ ( p o s e d g e  clk) 

20 b e g i n  
i f  ( b t n [ 3 ] )  

d3- reg  <= sw; 
i f  ( b t n  [21) 

d2- reg  <= sw; 
i f  (btnC11)  

d l - r e g  <= sw; 
i f  ( b t n  [Ol) 

do- reg  <= sw; 
end 

endmodule  
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Figure 4.9 Block diagram of a hexadecimal time-multiplexing circuit. 

Time multiplexing with hexadecimal digits The most common application of a 
seven-segment LED is to display a hexadecimal digit. The decoding circuit is discussed 
in Section 3.9.1. To display four hexadecimal digits with the previous time-multiplexing 
circuit, four decoding circuits are needed. A better alternative is first to multiplex the 
hexadecimal digits and then decode the result, as shown in Figure 4.9. 

This scheme requires only one decoding circuit and reduces the width of the 4-to-1 
multiplexer from 8 bits to 5 bits (i.e., 4 bits for the hexadecimal digit and 1 bit for the 
decimal point). The code is shown in Listing 4.15. In addition to clock and reset, the input 
consists of four 4-bit hexadecimal digits, hex3, hex2, hexl, and hex0, and four decimal 
points, which are grouped as one signal, dp-in. 

Listing 4.15 LED time-multiplexing circuit with hexadecimal digits 

module disp-hex-mux 
( 

i n p u t  w i r e  clk, r e s e t ,  
i n p u t  w i r e  [3 :0 ]  h e x 3 ,  h e x 2 ,  h e x l ,  h e x 0 ,  // hex d i g i t s  

5 i n p u t  w i r e  [3 :01  d p - i n ,  // 4  d e c i m a l  p o i n t s  
o u t p u t  r e g  C3:OI a n ,  // e n a b l e  I -ou t -o f -4  a s s e r t e d  low 
o u t p u t  r e g  [7 :01  s s e g  / /  l e d  s egmen t s  

1;  

l o  // c o n s t a n t  d e c l a r a t i o n  
// r e f r e s h i n g  r a t e  around 800 Hz (50  MH.z/2"16) 
l o c a l p a r a m  N = 1 8 ;  
// i n t e r n a l  s i g n a l  d e c l a r a t i o n  
r e g  [N-1:OI q - r e g ;  

15  w i r e  [N-1:O] q - n e x t ;  
r e g  [ 3 :  01 h e x - i n ;  
r e g  d p ;  

/ /  N-bit  c o u n t e r  
ro / /  r e g i s t e r  

a l w a y s  @ ( p o s e d g e  clk, p o s e d g e  r e s e t )  



if (reset) 
q-reg <= 0; 

e l s e  
s q-reg <= q-next; 

/ /  n e x t - s t a t e  l o g i c  
a s s i g n  q-next = q-reg + 1; 

30 // 2 MSBs o f  c o u n t e r  t o  c o n t r o l  4 - t o - l  m u l t i p l e x i n g  
/ /  and t o  g e n e r a t e  a c t i v e - l o w  e n a b l e  s i g n a l  
a l w a y s  B* 

c a s e  (q-reg [N-1: N-21) 
2'bOO: 

35 b e g i n  
an = 4'bIllO; 
hex-in = hex0; 
dp = dp-in 101 ; 

end 
40 2'bOl: 

b e g i n  
an = 4'bllOl; 
hex-in = hexl; 
dp = dp-in [l] ; 

end 
2'blO: 

b e g i n  
an = 4'blOll; 
hex-in = hex2; 
dp = dp-in [2] ; 

end 
d e f a u l t :  

b e g i n  
an = 4'bOlll; 

55 hex-in = hex3; 
dp = dp-in [31 ; 

end 
e n d c a s e  

60 / /  hex t o  s e v e n - s e g m e n t  l e d  d i s p l a y  
a l w a y s  B *  
b e g i n  

c a s e  (hex-in) 
4'hO : sseg [6: 01 = 7 ' b0000001; 

65 4'hl: sseg[6:0] = 7'b1001111; 
4'h2: sseg [6:0] = 7'b0010010; 
4'h3: sseg [6:0] = 7'b0000110; 
4'h4: sseg[6:0] = 7'b1001100; 
4'h5: sseg[6:0] = 7'b0100100; 
4'h6: sseg [6:0] = 7'b0100000; 
4'h7: sseg[6:0] = 7'b0001111; 
4'h8 : sseg [6: 01 = 7'b0000000 ; 
4'h9: sseg [6:0] = 7'b0000100; 
4'ha: sseg [6:0] = 7'b0001000; 



75 4'hb: sseg [6:0] = 7'b1100000; 
4 'hc: sseg [6:0] = 7' b0110001; 
4'hd: sseg [6:0] = 7'b1000010; 
4'he: sseg [6:0] = 7'b0110000; 
d e f a u l t :  sseg [6:01 = 7'b0111000; / / 4 ' h f  

80 e n d c a s e  
sseg C71 = dp; 

end 

endmodule 

To verify operation of this circuit, we define the 8-bit switch as two 4-bit unsigned 
numbers, add the two numbers, and show the two numbers and their sum on the four-digit 
seven-segment LED display. The code is shown in Listing 4.16. 

Listing 4.16 Testing circuit for time multiplexing with hexadecimal digits 

module hex-mux-test 
( 

i n p u t  w i r e  clk , 
i n p u t  wire  [7:01 sw, 

5 o u t p u t  w i r e  [3:01 an, 
o u t p u t  w i r e  [7:0] sseg 

1; 

// s i g n a l  d e c l a r a t i o n  
10 wire  [3:01 a, b; 

w i r e  [7:01 sum; 

/ /  i n s t a n t i a t e  7 - s eg  LED d i s p l a y  module 
disp-hex-mux disp-unit 

IS (.clk(clk), .reset(llbO), 
. hex3 (sum [7: 43 ) , . hex2 (sum C3: 01 ) , . hex1 (b), .hexO(a) 
.dp_in(4'blOll), .an(an), .sseg(sseg)); 

// adder  
20 a s s i g n  a = sw[3:01 ; 

a s s i g n  b = sw [7:41 ; 
a s s i g n  sum = {4'bO,a) + {4'bO,b); 

endmodule 

Simulation consideration Many sequential circuit examples in the book operate at a 
relatively slow rate, as does the enable pulse of the LED time-multiplexing circuit. This 
can be done by generating a single-clock enable tick from a counter. An 18-bit counter is 
used in this circuit: 

l o c a l p a r a m  N = 18; 
r e g  [N-1:Ol q-reg; 
wire  [N-1 : 01 q-next ; 
. . .  
a s s i g n  q-next = q-reg + 1; 

Because of the counter's size, simulating this type of circuit consumes a significant amount 
of computation time (i.e., 218 clock cycles for one iteration). Since our main interest is in 
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the multiplexing part of the code, most simulation time is wasted. It is more efficient to use 
a smaller counter in simulation. We can do this by modifying the constant statement 

l o c a l p a r a m  N = 4 ;  

when constructing the testbench. This requires only 24 clock cycles for one iteration and 
allows us to better exercise and observe the key operations. 

Instead of using a constant and modifying code between simulation and synthesis, an 
alternative is to define N as a parameter. During instantiation, we can assign different values 
for simulation and synthesis. 

4.5.2 Stopwatch 

We consider the design of a stopwatch in this subsection. The watch displays the time in 
three decimal digits, and counts from 00.0 to 99.9 seconds and wraps around. It contains 
a synchronous clear signal, clr, which returns the count to 00.0, and an enable signal, 
go, which enables and suspends the counting. This design is basically a BCD (binary- 
coded decimal) counter, which counts in BCD format. In this format, a decimal number is 
represented by a sequence of 4-bit BCD digits. For example, 13gI0 is represented as "0001 
00 1 1 100 1 " and the next number in sequence is 14OI0, which is represented as "000 1 0 100 
0000". 

Since the S3 board has a 50-MHz clock, we first need a mod-5,000,000 counter that 
generates a one-clock-cycle tick every 0.1 second. The tick is then used to enable counting 
of the three-digit BCD counter. 

Design I Our first design of the BCD counter uses a cascading structure of three decade 
(i.e., mod-10) counters, representing counts of 0.1, 1, and 10 seconds, respectively. The 
decade counter has an enable signal and generates a one-clock-cycle tick when it reaches 9. 
We can use these signals to "hook" the three counters. For example, the 10-second counter 
is enabled only when the enable tick of the mod-5,000,000 counter is asserted and both the 
0.1 - and I -second counters are 9. The code is shown in Listing 4.17. 

Listing 4.17 Cascading description for a stopwatch 

module stop-watch-cascade 

( 
i n p u t  w i r e  clk, 
i n p u t  w i r e  go, clr, 

5 o u t p u t  w i r e  [3:0] d2, dl, do 

) ;  

// d e c l a r a t i o n  
l o c a l p a r a m  D V S R  = 5000000; 

10 r e g  [22:0] ms-reg; 
w i r e  [22: 01 ms-next ; 
r e g  [3:0] d2_reg, dl-reg, do-reg; 
w i r e  [3: 01 d2-next , dl-next , do-next ; 
w i r e  dl-en, d2-en, do-en; 

15 w i r e  ms-tick, do-tick, dl-tick; 

/ /  b o d y  
/ /  r e g i s t e r  
a l w a y s  @ ( p o s e d g e  clk) 



20 b e g i n  
ms-reg <= ms-next; 
d2-reg <= dl-next; 
dl-reg <= dl-next; 
do-reg <= do-next; 

25 end 

// n e x t - s t a t e  l o g i c  
// 0 . 1  s e c  t i c k  g e n e r a t o r :  mod-5000000 
a s s i g n  ms-next = (clr I I (ms-reg==DVSR && go)) ? 4'bO : 

30 (go) ? ms-reg + 1 : 
ms-reg ; 

a s s i g n  ms-tick = (ms-reg==DVSR) ? l'bl : lJbO; 
// 0 . 1  s e c  c o u n t e r  
a s s i g n  do-en = ms-tick; 

3s a s s i g n  do-next = (clr I I (do-en && dO_reg==9)) ? 4'bO : 
(do-en) ? do-reg + 1 : 

do-reg ; 
a s s i g n  do-tick = (dO_reg==9) ? l'bl : 1 'bO; 
// I s e c  c o u n t e r  

40 a s s i g n  dl-en = ms-tick & do-tick; 
a s s i g n  dl-next = (clr I I (dl-en && dO_reg==9)) ? 4'bO : 

(dl-en) ? dl-reg + 1 : 
dl-reg; 

a s s i g n  dl-tick = (dl-reg==9) ? lJbl : l'bO; 

// I0 s e c  c o u n t e r  
a s s i g n  d2-en = ms-tick & do-tick & dl-tick; 
a s s i g n  d2-next = (clr I I (d2-en && d2_reg==9)) ? 4'bO : 

(d2-en) ? d2-reg + 1 : 

// o u t p u t  l o g i c  
a s s i g n  do = do-reg; 
a s s i g n  dl = dl-reg; 

ss a s s i g n  d2 = d2-reg; 

endmodule 

Note that all registers are controlled by the same clock signal. This example illustrates 
how to use a one-clock-cycle enable tick to maintain synchronicity. An inferior approach 
is to use the output of the lower counter as the clock signal for the next stage. Although it 
may appear to be simpler, it violates the synchronous design principle and is a very poor 
practice. 

Design I1 An alternative for the three-digit BCD counter is to describe the entire structure 
in a nested if statement. The nested conditions indicate that the counter reaches .9,9.9, and 
99.9 seconds. The code is shown in Listing 4.18. 

Listing 4.18 Nested if-statement description for a stopwatch 

module stop-vat ch-if 
( 

i n p u t  w i r e  clk , 
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i n p u t  w i r e  go, clr, 
o u t p u t  w i r e  [3:01 d2, dl, do 

) ;  

// d e c l a r a t i o n  
l o c a l p a r a m  DVSR = 5000000; 
r e g  [22:01 ms-reg; 
w i r e  [22: 01 ms-next ; 
r e g  [3:0] d2_reg, dl-reg, do-reg; 
r e g  [3: 01 d2-next , dl-next , do-next ; 
w i r e  ms-tick; 

/ /  body 
// r e g i s t e r  
a l w a y s  @ ( p o s e d g e  clk) 
b e g i n  

ms-reg <= ms-next; 
d2-reg <= d2-next; 
dl-reg <= dl-next; 
do-reg <= do-next; 

end 

/ /  n e x t - s t a t e  l o g i c  
/ /  0 . 1  s e c  t i c k  g e n e r a t o r  : mod-5000000 
a s s i g n  ms-next = (clr I I (ms-reg==DVSR && go)) ? 4'bO : 

(go) ? ms-reg + 1 : 
ms-reg ; 

a s s i g n  ms-tick = (ms-reg==DVSR) ? l'bl : l'bO; 
/ /  3 - d i g i t  bcd  c o u n t e r  
a l w a y s  Q* 
b e g i n  

// d e f a u l t :  keep  the  p r e v i o u s  v a l u e  
do-next = do-reg; 
dl-next = dl-reg; 
d2-next = d2-reg; 
i f  (clr) 

b e g i n  
do-next = 4'bO; 
dl-next = 4'bO; 
d2-next = 4'bO; 

end 
e l s e  i f  (ms-tick) 

i f  (do-reg ! =  9) 
do-next = do-reg + 1; 

e l s e  // r each  XX9 
b e g i n  

do-next = 4'bO; 
i f  (dl-reg ! =  9) 

dl-next = dl-reg + 1; 
e l s e  // r each  X99 

b e g i n  
dl-next = 4'bO; 
i f  (d2-reg ! =  9) 
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d2-next = d2-reg + 1; 
e l s e  // r e a c h  999 

d2-next = 4'bO; 
end 

end 
end 

// o u t p u t  l o g i c  
65 a s s i g n  do = do-reg; 

a s s i g n  dl = dl-reg; 
a s s i g n  d2 = d2-reg; 

endmodule 

Verification circuit To verify operation of the stopwatch, we can combine it with the 
previous hexadecimal LED time-multiplexing circuit to display the output of the watch. 
The code is shown in Listing 4.19. Note that the first digit of the LED is assigned to 0 and 
the go and clr signals are mapped to two pushbuttons of the S3 board. 

Listing 4.19 Testing circuit for a stopwatch 

module stop-watch-test 
( 

i n p u t  w i r e  clk, 
i n p u t  w i r e  [1:01 btn, 

S o u t p u t  w i r e  [3:01 an, 
o u t p u t  w i r e  [7:01 sseg 

1;  

// s i g n a l  d e c l a r a t i o n  
IIJ w i r e  [3:0] d2, dl, do; 

// i n s t a n t i a t e  7 - s e g  LED d i s p l a y  module 
disp-hex-mux disp-unit 

(.clk(clk), .reset(lJbO), 
I s . hex3 (4'b0), . hex2 (d2), . hex1 (dl), .hex0 (do) 9 

. dp_in(4'bllOl), . an(an), .sseg(sseg)); 

// i n s t a n t i a t e  s t o p w a t c h  
stop-watch-if counter-unit 

10 (.clk(clk), .go(btn[ll), .clr(btnCOl), 
.d2(d2), .dl(dl), .dO(d0) 1; 

endmodule 

4.5.3 FIFO buffer 

A FIFO (first-in-first-out) buffer is an "elastic" storage between two subsystems, as shown 
in the conceptual diagram of Figure 4.10. It has two control signals, wr and rd, for write 
and read operations. When wr is asserted, the input data is written into the buffer. The 
read operation is somewhat misleading. The head of the FIFO buffer is normally always 
available and thus can be read at any time. The rd signal actually acts like a "remove" 
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FlFO buffer 

\ data written 
into FlFO 

data read 
from FlFO 

Figure 4.10 Conceptual diagram of a FIFO buffer. 

signal. When it is asserted, the first item (i.e., head) of the FIFO buffer is removed and the 
next item becomes available. 

FIFO buffer is a critical component in many applications and the optimized implemen- 
tation can be quite complex. In this subsection, we introduce a simple, genuine circular- 
queue-based design. More efficient, device-specific implementation can be found in the 
Xilinx literature. 

Circular-queue-based implementation One way to implement a FIFO buffer is to 
add a control circuit to a register file. The registers in the register file are arranged as a 
circular queue with two pointers. The writepointer points to the head of the queue, and the 
readpointer points to the tail of the queue. The pointer advances one position for each write 
or read operation. The operation of an eight-word circular queue is shown in Figure 4.1 1. 

A FIFO buffer usually contains two status signals, f u l l  and empty, to indicate that the 
FIFO is full (i.e., cannot be written) and empty (i.e., cannot be read), respectively. One of 
the two conditions occurs when the read pointer is equal to the write pointer, as shown in 
Figure 4.1 l(a), (0, and (i). The most difficult design task of the controller is to derive a 
mechanism to distinguish the two conditions. One scheme is to use two FFs to keep track 
of the empty and full statuses. The FFs are set to 1 and 0 during system initialization and 
then modified in each clock cycle according to the values of the w r  and r d  signals. The 
code is shown in Listing 4.20. 

Listing 4.20 FIFO buffer 

module fifo 
# ( 

p a r a m e t e r  B=8, // number of b i t s  in a  word 
W = 4  // number of  a d d r e s s  b i t s  

s ) 

( 
i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  rd, wr, 
i n p u t  w i r e  [B-1:01 w-data, 

10 o u t p u t  w i r e  empty, full, 
o u t p u t  w i r e  [B-1:OI r-data 

1;  

/ / s i g n a l  d e c l a r a t i o n  
1 5  r e g  [B-1:Ol array-reg [2**W-1:Ol ; // r e g i s t e r  a r r a y  

r e g  [W-1:Ol w-ptr-reg, w-ptr-next , w-ptr-succ; 
r e g  [W-1:01 r-ptr-reg , r-ptr-next , r-ptr-succ ; 
r e g  full-reg, empty-reg, full-next, empty-next; 
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Figure 4.11 FIFO buffer based on a circular queue. 
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w i r e  wr-en; 
?(I 

/ /  body  
/ /  r e g i s t e r  f i l e  w r i t e  o p e r a t i o n  
a l w a y s  @ ( p o s e d g e  clk) 

i f  (wr-en) 
2s array-reg Cw-ptr-reg1 <= w-data; 

/ /  r e g i s t e r  f i l e  r e a d  o p e r a t i o n  
a s s i g n  r-data = array-reg [r-ptr-reg] ; 
/ /  w r i t e  e n a b l e d  o n l y  when FIFO i s  n o t  f z i l l  
a s s i g n  wr-en = wr & -full-reg; 

10 

// f i f o  c o n t r o l  l o g i c  
// r e g i s t e r  f o r  r e a d  and w 'r i te  p o i n t e r s  
a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  reset 

i f  (reset) 
b e g i n  

w-ptr-reg <= 0; 
r-ptr-reg <= 0; 
full-reg <= l'bO; 
empty-reg <= l'bl; 

end 
e l s e  

b e g i n  
w-ptr-reg <= w-ptr-next ; 
r-ptr-reg <= r-ptr-next; 
full-reg <= full-next; 
empty-reg <= empty-next ; 

end 

// n e x t - s t a t e  l o g i c  f o r  r ead  and w r i t e  p o i n t e r s  
ro a l w a y s  Q* 

b e g i n  
// s u c c e s s i v e  p o i n t e r  v a l u e s  
w-ptr-succ = w-ptr-reg + 1; 
r-ptr-succ = r-ptr-reg + 1; 
/ /  d e f a u l t :  k e e p  o l d  v a l u e s  
w-ptr-next = w-ptr-reg; 
r-ptr-next = r-ptr-reg; 
full-next = full-reg; 
empty-next = empty-reg; 
c a s e  ((wr, rd)) 

/ /  2 ' b O O :  no op  
2'bOl: / /  r e a d  

i f  (-empty-reg) // n o t  emp ty  
b e g i n  

r-ptr-next = r-ptr-succ ; 
full-next = l'bO; 
i f  (r-ptr-succ==w-ptr-reg) 

empty-next = l'bl; 
end 

2'blO: // w r i t e  
i f  ("full-reg) / /  no t  f u l l  
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b e g i n  
w-ptr-next = w-ptr-succ ; 
empty-next = l J b O ;  
i f  (w-ptr-succ==r-ptr-reg) 

full-next = l'bl; 
end 

2'bll: // w r i t e  and r ead  
b e g i n  

80 w-ptr-next = w-ptr-succ; 
r-ptr-next = r-ptr-succ ; 

end 
e n d c a s e  

end 
85 

// o u t p u t  
a s s i g n  full = full-reg; 
a s s i g n  empty = empty-reg; 

90 endmodule 

The code is divided into a register file and a FIFO controller. The controller consists of 
two pointers and two status FFs. Its next-state logic examines the w r  and r d  signals and takes 
actions accordingly. For example, let us consider the " 10" case, which implies that only a 
write operation occurs. The status FF is checked first to ensure that the buffer is not full. 
If this condition is met, we advance the write pointer by one position and clear the empty 
status FF. Storing one extra word to the buffer may make it full. This happens if the new 
write pointer "catches" the read pointer, which is expressed by the w-ptr-succ==r-ptr-reg 
expression. 

Verification circuit The verification circuit examines the operation of a 24-by-3 FIFO 
buffer. We use three switches to generate the input data and use two buttons for the w r  
and r d  signals. The 3-bit readout and the f u l l  and empty status signals are displayed 
in five discrete LEDs. Because of bounces of the mechanical contact, a debouncing cir- 
cuit is needed to generate a clean one-clock-cycle tick. The debouncing module, named 
debounce, is discussed in Section 6.2.1 but for now can be treated as a predesigned mod- 
ule. The original button inputs are b t n  101 and b tn  [I],  and the debounced signals are 
db-btn [O] and db-btn [I]. The code is shown in Listing 4.2 1. 

Listing 4.21 Testing circuit for a FIFO buffer 

module f i f  o-test 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [1:01 btn, 

5 i n p u t  w i r e  [2:01 sw, 
o u t p u t  w i r e  [7:0] led 

) ;  

// s i g n a l  d e c l a r a t i o n  
l o  w i r e  [1:0] db-btn; 

/ /  debounce  c i r c u i t  f o r  b tn [O]  
debounce btn-db-unit0 
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( .  clk(clk), .reset (reset), . sw(btn [Ol) , 
1 5  . db-level () , . db-tick (db-btn LO1 ) )  ; 

// debounce  c i r c u i t  f o r  b t n [ l ]  
debounce btn-db-unit1 

( .  clk(clk), .reset (reset), . sw(btn [I]), 
. d b - l e v e l 0  , . db-tick(db-btn [ll)) ; 

20 / /  i n s t a n t i a t e  a 2 - 2 - b y - 3  f i f o  
fifo #(.B(3), .W(2)) fifo-unit 

( . clk (clk) , . reset (reset) , 
. rd(db-btn LO1 ) , . wr (db-btn [I]) , . w-data(sw), 
. I--data (led [2 : 01 ) , . full (led C71) , . empty (led ) ) ; 

25 // d i s a b l e  unused l e d s  
a s s i g n  led[5:3] = 3'bOOO; 

endmodule 

4.6 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapter 3. 

4.7 SUGGESTED EXPERIMENTS 

4.7.1 Programmable square-wave generator 

A programmable square-wave generator is a circuit that can generate a square wave with 
variable on (i.e., logic 1) and off (i.e., logic 0) intervals. The durations of the intervals are 
specified by two 4-bit control signals, m and n, which are interpreted as unsigned integers. 
The on and off intervals are m* 100 ns and n* 100 ns, respectively (recall that the period of 
the S3 onboard oscillator is 20 ns). Design a programmable square-wave generator circuit. 
The circuit should be completely synchronous. We need a logic analyzer or oscilloscope 
to verify its operation. 

4.7.2 PWM and LED dimmer 

The duty cycle of a square wave is defined as the percentage of the on interval (i.e., logic 1) 
in a period. A PWM (pulse width modulation) circuit can generate an output with variable 
duty cycles. For a PWM with 4-bit resolution, a 4-bit control signal, w, specifies the duty 
cycle. The w signal is interpreted as an unsigned integer and the duty cycle is $. 

1 .  Design a PWM circuit with 4-bit resolution and verify its operation using a logic 
analyzer or oscilloscope. 

2. Modify the LED time-multiplexing circuit to include the PWM circuit for the an 
signal. The PWM circuit specifies the percentage of time that the LED display is 
on. We can control the perceived brightness by changing the duty cycle. Verify the 
circuit's operation by observing 1 bit of an on a logic analyzer or oscilloscope. 

3 .  Replace the LED time-multiplexing circuit of Listing 4.19 with the new design and 
use the lower 4 bits of the 8-bit switch to control the duty cycle. Verify operation of 
the circuit. It may be necessary to go to a dark area to see the effect of dimming. 



Figure 4.13 Pattern for Experiment 4.7.4. 

4.7.3 Rotating square circuit 

In a seven-segment LED display, a square pattern can be created by enabling the a, b, f, 
and g segments or the c, d, e, and g segments. We want to design a circuit that circulates 
the square patterns in the four-digit seven-segment LED display. The clockwise circulating 
pattern is shown in Figure 4.12. The circuit should have an input, en, which enables or 
pauses the circulation, and an input, cw, which specifies the direction (i.e., clockwise or 
counterclockwise) of the circulation. 

Design the circuit and verify its operation on the prototyping board. Make sure that the 
circulation rate is slow enough for visual inspection. 

4.7.4 Heartbeat circuit 

We want to create a "heartbeat" for the prototyping board. It repeats the simple pattern in 
the four-digit seven-segment display, as shown in Figure 4.13, at a rate of 72 Hz. Design 
the circuit and verify its operation on the prototyping board. 

4.7.5 Rotating LED banner circuit 

The prototyping board has a four-digit seven-segment LED display, and thus only four 
symbols can be displayed at a time. We can show more information if the data is ro- 
tated and moved continuously. For example, assume that the message is 10 digits (i.e., 
"0123456789"). The display can show the message as "0123", "1234", "2345", . . . , 
"6789", "7890m, . . . , "0123". The circuit should have an input, en, which enables or 
pauses the rotation, and an input, d i r ,  which specifies the direction (i.e., rotate left or 
right). 

Design the circuit and verify its operation on the prototyping board. Make sure that the 
rotation rate is slow enough for visual inspection. 

4.7.6 Enhanced stopwatch 

Modify the stopwatch with the following extensions: 



Add an additional signal, up, to control the direction of counting. The stopwatch 
counts up when the up signal is asserted and counts down otherwise. 
Add a minute digit to the display. The LED display format should be like M .  SS . D, 
where D represents 0.1 second and its range is between 0 and 9, SS represents seconds 
and its range is between 00 and 59, and M represents minutes and its range is between 0 
and 9. 

Design the new stopwatch and verify its operation with a testing circuit. 

4.7.7 Stack 

A stack is a last-in-first-out buffer in which the last stored data is retrieved first. Storing a 
data word to a stack is known as apush operation, and retrieving a data word from a stack 
is known as apop operation. The 110 signals of a stack are similar to those of a FIFO buffer 
except that we generally use the push and pop signals in place of the w r  and rd  signals. 
Design a stack using a register file and verify its operation with a testing circuit similar to 
the one in Listing 4.2 1. 
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CHAPTER 5 

FSM 

5.1 INTRODUCTION 

An FSM (finite state machine) is used to model a system that transits among a finite number 
of internal states. The transitions depend on the current state and external input. Unlike a 
regular sequential circuit, the state transitions of an FSM do not exhibit a simple, repetitive 
pattern. Its next-state logic is usually constructed from scratch and is sometimes known as 
"random" logic. This is different from the next-state logic of a regular sequential circuit, 
which is composed mostly of "structured components, such as incrementors and shifters. 

In this chapter, we provide an overview of the basic characteristics and representation of 
FSMs and discuss the derivation of HDL codes. In practice, the main application of an FSM 
is to act as the controller of a large digital system, which examines the external commands 
and status and activates proper control signals to control operation of a data path, which 
is usually composed of regular sequential components. This is known as an FSMD (finite 
state machine with data path) and is discussed in Chapter 6. 

5.1.1 Mealy and Moore outputs 

The basic block diagram of an FSM is the same as that of a regular sequential circuit and 
is repeated in Figure 5.1. It consists of a state register, next-state logic, and output logic. 
An FSM is known as a Moore machine if the output is only a function of state, and is 
known as a Mealy machine if the output is a function of state and external input. Both types 
of output may exist in a complex FSM, and we simply refer to it as containing a Moore 

FPGA Protoyping by Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 



120 FSM 
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Figure 5.1 B l o c k  diagram of a synchronous FSM. 

output and a Mealy output. The Moore and Mealy outputs are similar but not identical. 
Understanding their subtle differences is the key for controller design. The example in 
Section 5.3.1 illustrates the behaviors and constructions of the two types of outputs. 

5.1.2 FSM representation 

" 

Moore 

- 
- - 

An FSM is usually specified by an abstract state diagram or ASMchart (algorithmic state 
machine chart), both capturing the FSM's input, output, states, and transitions in a graphical 
representation. The two representations provide the same information. The FSM represen- 
tation is more compact and better for simple applications. The ASM chart representation is 
somewhat like a flowchart and is more descriptive for applications with complex transition 
conditions and actions. 

State diagram A state diagram is composed of nodes, which represent states and are 
drawn as circles, and annotated transitional arcs. A single node and its transition arcs are 
shown in Figure 5.2(a). A logic expression expressed in terms of input signals is associated 
with each transition arc and represents a specific condition. The arc is taken when the 
corresponding expression is evaluated true. 

The Moore output values are placed inside the circle since they depend only on the 
current state. The Mealy output values are associated with the conditions of transition arcs 
since they depend on the current state and external input. To reduce clutter in the diagram, 
only asserted output values are listed. The output signal takes the default (i.e., unasserted) 
value otherwise. 

A representative state diagram is shown in Figure 5.3(a). The FSM has three states, two 
external input signals (i.e., a and b), one Moore output signal (i.e., yl) ,  and one Mealy 
output signal (i.e., yo). The y l  signal is asserted when the FSM is in the SO or s l  state. 
The yo signal is asserted when the FSM is in the SO state and the a and b signals are " 1 1 ". 

next-state 
logic 

- 

ASM chart An ASM chart is composed of a network of ASM blocks. An ASM block 
consists of one state box and an optional network of decision boxes and conditional output 
boxes. A representative ASM block is shown in Figure 5.2(b). 

A state box represents a state in an FSM, and the asserted Moore output values are 
listed inside the box. Note that it has only one exit path. A decision box tests the input 
condition and determines which exit path to take. It has two exit paths, labeled T and F, 
which correspond to the true and false values of the condition. A conditional output box 
lists asserted Mealy output values and is usually placed after a decision box. It indicates 
that the listed output signal can be activated only when the corresponding condition in the 
decision box is met. 

d 
state:eg 

state-next 

output 
logic 
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mo: Moore output 
me: Mealy output 

logic expression 

to other state to other state 

I me = value 

(a) Node 

mo: Moore output 
me: Mealy output 

state 

mo = value 

conditional 
output box 

.............., 

1 exit to other ASM 1 exit to other ASM 
block block 

(b) ASM block 

Figure 5.2 Symbol of a state. 
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(a) State diagram (b) ASM chart 

Figure 5.3 Example of an FSM. 

A state diagram can easily be converted to an ASM chart, and vice versa. The corre- 
sponding ASM chart of the previous FSM state diagram is shown in Figure 5.3(b). 

5.2 FSM CODE DEVELOPMENT 

The procedure of developing code for an FSM is similar to that of a regular sequential 
circuit. We first separate the state register and then derive the code for the combinational 
next-state logic and output logic. The main difference is the next-state logic. For an FSM, 
the code for the next-state logic follows the flow of a state diagram or ASM chart. 

For clarity and flexibility, we use symbolic constants to represent the FSM's states. For 
examples, the three states in Figure 5.3 can be defined as 

l o c a l p a r a m  [1:0] SO = 2'b00, 
sl = 2'b01, 
s 2  = 2'blO; 

During synthesis, software usually can recognize the FSM structure and may map these 
symbolic constants to different binary representations (e.g., one-hot codes), a process known 
as state assignment. 

The complete code of the FSM is shown in Listing 5.1. It consists of segments for the 
state register, next-state logic, Moore output logic, and Mealy output logic. 



Listing 5.1 FSM example 

module f sm-eg-mult-seg 
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  a ,  b ,  

5 o u t p u t  w i r e  yo ,  y l  

1;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [1:01 SO = 2 j b 0 0 ,  

s1 = 2 ' b 0 1 ,  
s 2  = 2 ' b l O ;  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [ I  : 01 s t a t e - r e g  , s t a t e - n e x t  ; 

15 

/ /  s t a t e  r e g i s t e r  
a l w a y s  Q ( p o s e d g e  c l k  , p o s e d g e  r e s e t )  

i f  ( r e s e t )  
s t a t e - r e g  <= SO; 

20 e l s e  
s t a t e - r e g  <= s t a t e - n e x t ;  

/ /  n e x t - s t a t e  l o g i c  
a l w a y s  Q *  

c a s e  ( s t a t e - r e g )  
SO: i f  ( a )  

i f  ( b )  
s t a t e - n e x t  = s 2 ;  

e l s e  
s t a t e - n e x t  = s l ;  

e l s e  
s t a t e - n e x t  = SO; 

s l :  i f  ( a )  
s t a t e - n e x t  = SO; 

e l s e  
s t a t e - n e x t  = s 1 ;  

s 2 :  s t a t e - n e x t  = SO; 
d e f a u l t :  s t a t e - n e x t  = SO; 

e n d c a s e  
40 

// Moore o u t p u t  l o g i c  
a s s i g n  y l  = ( s t a t e - r e g = = s O )  I I ( s t a t e - r e g = = s l ) ;  

/ /  Mealy o u t p u t  l o g i c  
4s a s s i g n  yo = ( s t a t e - r e g = = s O )  & a  & b ;  

endmodule 

The key part is the next-state logic. It uses a case statement with the s t a t e r e g  signal 
as the selection expression. The next state (i.e., s t a t e n e x t  signal) is determined by the 
current state (i.e., s t a t e - r e g )  and external input. The code for each state basically follows 
the activities inside each ASM block of Figure 5.3(b). 



An alternative code is to merge next-state logic and output logic into a single combina- 
tional block, as shown in Listing 5.2. 

Listing 5.2 FSM with merged combinational logic 

module f sm-eg-2-seg  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  a ,  b ,  

5 o u t p u t  r e g  y o ,  y l  
) ;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [1 :01  S O  = 2  ' b 0 0 ,  

1 0  s l  = 2 ' b 0 1 ,  
s 2  = 2 ' b l O ;  

// s i g n a l  d e c l a r a t i o n  
r e g  [ I  :01 s t a t e - r e g  , s t a t e - n e x t  ; 

1 5  // s t a t e  r e g i s t e r  
a l w a y s  Q ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  

i f  ( r e s e t )  
s t a t e - r e g  <= SO; 

e l s e  
s t a t e - r e g  <= s t a t e - n e x t ;  

/ /  n e x t - s t a t e  l o g i c  and o u t p u t  l o g i c  
a l w a y s  O* 
b e g i n  

5 s t a t e - n e x t  = s t a t e - r e g ;  / /  d e f a u l t  n e x t  s t a t e :  t h e  same 
y l  = l l b O ;  // d e f a u l t  o u t p u t :  0 
yo = l ' b o ;  / /  d e f a u l t  o u t p u t :  0 
c a s e  ( s t a t e - r e g )  

S O  : b e g i n  
y l  = l ' b l ;  
i f  ( a )  

i f  (b) 
b e g i n  

s t a t e - n e x t  = s 2 ;  
yo = l ' b l ;  

end 
e l s e  

s t a t e - n e x t  = s l ;  
end 

s l :  b e g i n  
y l  = l J b l ;  
i f  ( a )  

s t a t e - n e x t  = SO; 
end 

s 2 :  s t a t e - n e x t  = S O ;  
d e f a u l t :  s t a t e - n e x t  = SO; 

e n d c a s e  
end 

endmodule  



Note that the default output values are listed at the beginning of the code. 
The code for the next-state logic and output logic follows the ASM chart closely. Once a 

detailed state diagram or ASM chart is derived, converting an FSM to HDL code is almost 
a mechanical procedure. Listings 5.1 and 5.2 can serve as templates for this purpose. 

Xilinx ISE includes a utility program called StareCAD, which allows a user to draw a Xilinx 
state diagram in graphical format. The program then converts the state diagram to HDL specific 
code. It is a good idea to try it first with a few simple examples to see whether the generated 
code and its style are satisfactory, particularly for the output signals. 

5.3 DESIGN EXAMPLES 

5.3.1 Rising-edge detector 

The rising-edge detector is a circuit that generates a short one-clock-cycle tick when the 
input signal changes from 0 to 1. It is usually used to indicate the onset of a slow time- 
varying input signal. We design the circuit using both Moore and Mealy machines, and 
compare their differences. 

Moore-based design The state diagram and ASM chart of a Moore machine-based 
edge detector are shown in Figure 5.4. The z e r o  and o n e  states indicate that the input 
signal has been 0 and 1 for a while. The rising edge occurs when the input changes to 1 in 
the z e r o  state. The FSM moves to the e d g  state and the output, t i c k ,  is asserted in this 
state. A representative timing diagram is shown at the middle of Figure 5.5. The code is 
shown in Listing 5.3. 

Listing 5.3 Moore machine-based edge detector 

module edge-detect-moore 

( 
i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  level, 

i o u t p u t  r e g  tick 

) ;  

/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [I: 01 

10 zero = 2'b00, 

edg = 2'b01, 
one = 2'blO; 

/ /  s i g n a l  d e c l a r a t i o n  
15 r e g  [I: 01 state-reg , state-next ; 

// s t a l e  r e g i s t e r  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset) 

i f  (reset) 
state-reg <= zero; 

e l s e  
state-reg <= state-next ; 

// n e x t - s t a t e  l o g i c  and o u t p u t  l o g i c  
25 a l w a y s  Q *  



(a) State diagram (b) ASM chart 

Figure 5.4 Edge detector based on a Moore machine. 
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Figure 5.5 Timing diagram of two edge detectors. 
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begin 
s t a t e - n e x t  = s t a t e - r e g ;  // d e f a u l t  s t a t e :  the  same 
t i c k  = I ' b O ;  // d e f a u l t  o u t p u t :  0 
case  ( s t a t e - r e g )  

z e r o  : 
i f  ( l e v e l )  

s t a t e - n e x t  = e d g ;  
edg : 

begin 
t i c k  = l ' b l ;  
i f  ( l e v e l  ) 

s t a t e - n e x t  = o n e ;  
e l s e  

s t a t e - n e x t  = z e r o ;  
end 

one : 
i f  ( - l e v e l )  

s t a t e - n e x t  = z e r o ;  
d e f a u l t  : s t a t e - n e x t  = z e r o  ; 

45 endcase  
end 

endmodule 

Mealy-based design The state diagram and ASM chart of a Mealy machine-based 
edge detector are shown in Figure 5.6. The zero and one states have a similar meaning. 
When the FSM is in the zero state and the input changes to 1, the output is asserted 
immediately. The FSM moves to the one state at the rising edge of the next clock and the 
output is deasserted. A representative timing diagram is shown at the bottom of Figure 5.5. 
Note that due to the propagation delay, the output signal is still asserted at the rising edge 
ofthe next clock (i.e., at t l ) .  The code is shown in Listing 5.4. 

Listing 5.4 Mealy machine-based edge detector 

module e d g e - d e t  e c t - m e a l y  
( 

input  wire  c l k ,  r e s e t ,  
input  wire l e v e l ,  

5 output  reg t i c k  
1; 

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
localparam z e r o  = l ' b O ,  

10 one = l ' b l ;  

// s i g n a l  d e c l a r a t i o n  
reg s t a t e - r e g  , s t a t e - n e x t  ; 

1 5  / /  s t a t e  r e g i s t e r  
always @ (posedge  c l k  , posedge r e s e t  

i f  ( r e s e t )  
s t a t e - r e g  <= z e r o ;  

e l s e  
s t a t e - r e g  <= s t a t e - n e x t  ; 



(a) State diagram (b) ASM chart 

Figure 5.6 Edge detector based on a  Mealy machine. 

// n e x t - s t a t e  l o g i c  and o u t p u t  l o g i c  
a l w a y s  Q* 
b e g i n  

s t a t e - n e x t  = s t a t e - r e g ;  // d e f a u l t  s t a t e :  the  same 
t i c k  = l ' b O ;  // d e f a u l t  o u t p u t :  0 
c a s e  ( s t a t e - r e g )  

z e r o  : 
i f  ( l e v e l )  

b e g i n  
t i c k  = l ' b l ;  
s t a t e - n e x t  = o n e ;  

end 
o n e  : 

i f  ( - l e v e l )  
s t a t e - n e x t  = z e r o ;  

d e f a u l t  : s t a t e - n e x t  = z e r o ;  
e n d c a s e  

end 
JU 

endmodule 
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Figure 5.7 Gate-level implementation of an edge detector. 

Direct implementation Since the transitions of the edge detector circuit are very sim- 
ple, it can be implemented without using an FSM. We include this implementation for 
comparison purposes. The circuit diagram is shown in Figure 5.7. It can be interpreted 
that the output is asserted only when the current input is 1 and the previous input, which is 
stored in the register, is 0. The corresponding code is shown in Listing 5.5. 

Listing 5.5 Gate-level implementation of an edge detector 

module edge-det ect -gate 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  level, 

5 o u t p u t  w i r e  tick 

1; 

// s i g n a l  d e c l a r a t i o n  
r e g  delay-reg ; 

I0  

// d e l a y  r e g i s t e r  
a l w a y s  Q ( p o s e d g e  clk, p o s e d g e  reset) 

i f  (reset) 
delay-reg <= l'bO; 

e l s e  
delay-reg <= level; 

/ /  d e c o d i n g  l o g i c  
a s s i g n  tick = -delay-reg & level; 

20 

endmodule  

Although the descriptions in Listings 5.4 and 5.5 appear to be very different, they describe 
the same circuit. The circuit diagram can be derived from the FSM if we assign 0 and 1 to 
the z e r o  and one states. 

Comparison Whereas both Moore machine- and Mealy machine-based designs can 
generate a short tick at the rising edge of the input signal, there are several subtle differences. 
The Mealy machine-based design requires fewer states and responds faster, but the width 
of its output may vary and input glitches may be passed to the output. 

The choice between the two designs depends on the subsystem that uses the output 
signal. Most of the time the subsystem is a synchronous system that shares the same clock 
signal. Since the FSM's output is sampled only at the rising edge of the clock, the width 
and glitches do not matter as long as the output signal is stable around the edge. Note that 
the Mealy output signal is available for sampling at t l ,  which is one clock cycle faster than 
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5.3.2 Debouncing circuit 

20 ms 

20 ms 

The slide and pushbutton switches on the prototyping board are mechanical devices. When 
pressed, the switch may bounce back and forth a few times before settling down. The 
bounces lead to glitches in the signal, as shown at the top of Figure 5.8. The bounces 
usually settle within 20 ms. The purpose of a debouncing circuit is to filter out the glitches 
associated with switch transitions. The debounced output signals from two FSM-based 
design schemes are shown in the two bottom parts of Figure 5.8. The first design scheme is 
discussed in this subsection and the second scheme is left as an exercise in Experiment 5.5.2. 
A better alternative FSMD-based scheme is discussed in Section 6.2.1. 

An FSM-based design uses a free-running 10-ms timer and an FSM. The timer generates 
a one-clock-cycle enable tick (the m - t i c k  signal) every 10 ms and the FSM uses this 
information to keep track of whether the input value is stabilized. In the first design scheme, 
the FSM ignores the short bounces and changes the value of the debounced output only 
after the input is stabilized for 20 ms. The output timing diagram is shown at the middle of 
Figure 5.8. The state diagram ofthis FSM is shown in Figure 5.9. The zero and one states 
indicate that the switch input signal, s w ,  has been stabilized with 0 and 1 values. Assume 
that the FSM is initially in the zero state. It moves to the w a i t  1-1 state when s w  changes 
to 1. At the w a i t l - I  state, the FSM waits for the assertion of m - t i c k .  If s w  becomes 0 
in this state, it implies that the width of the 1 value does not last long enough and the FSM 
returns to the zero state. This action repeats two more times for the w a i t l - 2  and w a i t l - 3  
states. The operation from the one state is similar except that the s w  signal must be 0. 

Since the 10-ms timer is free-running and the m - t i c k  tick can be asserted at any time, 
the FSM checks the assertion three times to ensure that the s w  signal is stabilized for at least 
20 ms (it is actually between 20 and 30 ms). The code is shown in Listing 5.6. It includes 
a 10-ms timer and the FSM. 



Figure 5.9 State diagram of a debouncing circuit. 

Listing 5.6 FSM implementation of a debouncing circuit 

module db-f s m  
( 

i n p u t  w i r e  clk, r e s e t ,  
i n p u t  w i r e  sw, 

5 o u t p u t  r e g  db 

1; 

/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  C2:OI 

10 z e r o  = 3 ' b 0 0 0 ,  
w a i t l - 1  = 3 ' b 0 0 1 ,  
w a i t l - 2  = 3 ' b 0 1 0 ,  
w a i t l - 3  = 3 ' b 0 1 1 ,  
one = 3 ' b 1 0 0 ,  

15 w a i t o - 1  = 3 ' b 1 0 1 ,  
wa i t0 -2  = 3 ' b 1 1 0 ,  
w a i t 0 - 3  = 3 ' b l l l ;  

// number o f  c o u n t e r  b i t s  ( 2 " N  * 2Ons = lOms t i c k )  
20 l o c a l p a r a m  N =19 ;  



// s i g n a l  d e c l a r a t i o n  
r e g  [N-1:Ol q - r e g ;  
w i r e  [N-1 : 01 q-next  ; 

25 w i r e  m - t i c k ;  
r e g  [2 :0 ]  s t a t e - r e g  , s t a t e - n e x t  ; 

/ /  body  

, ............................................... 

/ /  c o u n t e r  t o  g e n e r a t e  10 ms t i c k  
............................................... 

a l w a y s  B ( p o s e d g e  c l k )  
q - reg  <= q - n e x t ;  

35 / /  n e x t - s t a t e  l o g i c  
a s s i g n  q-nex t  = q - r e g  + 1 ;  
/ /  ozrtput t i c k  
a s s i g n  m-t ick  = (q-reg==O) ? l J b l  : l J b O ;  

............................................... 

// d e b o u n c i n g  FSM 
............................................... 

// s t a t e  r e g i s t e r  
a l w a y s  0 ( p o s e d g e  c l k  , p o s e d g e  r e s e t )  

i f  ( r e s e t )  
s t a t e - r e g  <= z e r o ;  

e l s e  
s t a t e - r e g  <= s t a t e - n e x t  ; 

so / /  n e x t - s t a t e  l o g i c  and o u t p u t  l o g i c  
a l w a y s  B*  
b e g i n  

s t a t e - n e x t  = s t a t e - r e g ;  // d e f a u l t  s t a t e :  t h e  same 
db = l J b O ;  // d e f a u l t  o u t p u t :  0 
c a s e  ( s t a t e - r e g )  

z e r o  : 
i f  (SW)  

s t a t e - n e x t  = w a i t  1-1 ; 
w a i t l - 1  : 

i f  ( - S W )  
s t a t e - n e x t  = z e r o ;  

e l s e  
i f  ( m - t i c k )  

s t a t e - n e x t  = w a i t l - 2  ; 
w a i t l - 2  : 

i f  ( - S W )  
s t a t e - n e x t  = z e r o ;  

e l s e  
i f  ( m - t i c k )  

s t a t e - n e x t  = w a i t l - 3 ;  
w a i t  1-3 : 

i f  ( - S W )  
s t a t e - n e x t  = z e r o ;  
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e l s e  
i f  ( m - t i c k )  

s t a t e - n e x t  = o n e ;  
one : 

begin  
db = l ' b l ;  
i f  ( -SW) 

s t a t e - n e x t  = w a i t 0 - 1 ;  
end 

w a i t 0 - 1  : 
begin  

db = l ' b l ;  
i f  (SW)  

s t a t e - n e x t  = o n e ;  
e l s e  

i f  ( m - t i c k )  
s t a t e - n e x t  = w a i t 0 - 2 ;  

end 

begin  
db = l ' b l ;  
i f  (sw) 

s t a t e - n e x t  = o n e ;  
e l s e  

i f  ( m - t i c k )  
s t a t e - n e x t  = w a i t 0 - 3 ;  

end 
w a i t 0 - 3  : 

beg in  
db = l ' b l ;  
i f  (SW)  

s t a t e - n e x t  = o n e ;  
e l s e  

i f  ( m - t i c k )  
s t a t e - n e x t  = z e r o ;  

end 
1 1 0  d e f a u l t  : s t a t e - n e x t  = z e r o ;  

end c a  s  e  
end 

endmodule 

5.3.3 Testing circuit 

We use a bounce counting circuit to verify operation of the rising-edge detector and the 
debouncing circuit. The block diagram is shown in Figure 5.10. The input ofthe verification 
circuit is from a pushbutton switch. In the lower part, the signal is first fed to the debouncing 
circuit and then to the rising-edge detector. Therefore, a one-clock-cycle tick is generated 
each time the button is pressed and released. The tick in turn controls the enable input of 
an 8-bit counter, whose content is passed to the LED time-multiplexing circuit and shown 
on the left two digits of the prototyping board's seven-segment LED display. In the upper 



Figure 5.10 Debouncing testing circuit. 

btn[l] - - 

part, the input signal is fed directly to the edge detector without the debouncing circuit, 
and the number is shown on the right two digits of the prototyping board's seven-segment 
LED display. The bottom counter thus counts one desired 0-to-1 transition as well as the 
bounces. 

The code is shown in Listing 5.7. It basically uses component instantiation to realize 
the block diagram. 

Listing 5.7 Verification circuit for a debouncing circuit and rising-edge detector 

module d e b o u n c e - t e s t  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  [ 1 : 0 ]  b t n ,  
o u t p u t  w i r e  [3 :01  a n ,  
o u t p u t  w i r e  [7 :01  s s e g  

1; 

/ /  s i g n a l  d e c l a r a t i o n  
1 0  r e g  [7 :01  b - r e g ,  d - r e g ;  

w i r e  17: 01 b -nex t  , d-nex t  ; 
r e g  b t n - r e g  , d b - r e g ;  
w i r e  d b - l e v e l  , d b - t i c k  , b t n - t i c k  , c l r ;  

level tick 
edge 

> detector 

hex2 
hex3 

15  / /  i n s t a n t i a t e  7-seg LED d i s p l a y  t i m e - m u l t i p l e x i n g  modu le  
disp-hex-mux d i s p - u n i t  

( .  c l k ( c 1 k )  , . r e s e t  ( r e s e t ) ,  
. hex3 ( b - r e g  C7: 41 ) , . hex2 ( b - r e g  [3 :  01 ) , 
. h e x l  ( d - r e g  [ 7 : 4 1 )  , . hexO(d- reg  [3 :01 )  , 

LO . d p _ i n ( 4 ' b l O l l ) ,  . a n ( a n ) ,  . s s e g ( s s e g ) ) ;  

en q 
counter 

> 

- 

// i n s t a n t i a t e  d e b o u n c i n g  c i r c u i t  
db-f sm d b - u n i t  

( .  c l k ( c l k ) ,  . r e s e t  ( r e s e t ) ,  . s w ( b t n  [ I ] ) ,  . d b ( d b - l e v e l ) )  ; 
2 5  

// edge  d e t e c t i o n  c i r c u i t s  
a l w a y s  @ ( p o s e d g e  c l k )  

b e g i n  
b t n - r e g  <= b t n  El] ; 
d b - r e g  <= d b - l e v e l ;  

- 

en q 
counter 

> 

- disp-rnux-hex 

reset clk - 

level tick 
edge 

> detector 

(- 

- 

sw db 

debouncing 
> 

- 

hex0 sseg 
hex1 

sseg 
an- an 
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end 
a s s i g n  btn-tick = -btn-reg & btn [I]  ; 
a s s i g n  db-tick = "db-reg & db-level; 

35 // two c o u n t e r s  
a s s i g n  clr = btn [O] ; 
a l w a y s  @ ( p o s e d g e  clk) 

b e g i n  
b-reg <= b-next; 

40 d-reg <= d-next; 
end 

a s s i g n  b-next = (clr) ? 8'bO : 
(btn-tick) ? b-reg + 1 : b-reg; 

a s s i g n  d-next = (clr) 7 8'bO : 

JS (db-tick) ? d-reg + 1 : d-reg; 

endmodule  

The seven-segment display shows the accumulated numbers of 0-to-1 edges of bounced 
and debounced switch input. After pressing and releasing the pushbutton switch several 
times, we can determine the average number of bounces for each transition. 

5.4 BIBLIOGRAPHIC NOTES 

The article "Coding and Scripting Techniques for FSM Designs with Synthesis-Optimized, 
Glitch-Free Outputs" by C. E. Cummings provides a detailed discussion on various coding 
styles of FSM. 

5.5 SUGGESTED EXPERIMENTS 

5.5.1 Dual-edge detector 

A dual-edge detector is similar to a rising-edge detector except that the output is asserted 
for one clock cycle when the input changes from 0 to 1 (i.e., rising edge) and 1 to 0 (i.e., 
falling edge). 

1. Design a circuit based on the Moore machine and draw the state diagram and ASM 
chart. 

2. Derive the HDL code based on the state diagram of the ASM chart. 
3. Derive a testbench and use simulation to verify operation of the code. 
4. Replace the rising detectors in Section 5.3.3 with dual-edge detectors and verify their 

operations. 
5. Repeat steps 1 to 4 for a Mealy machine-based design. 

5.5.2 Alternative debouncing circuit 

One problem with the debouncing design in Section 5.3.2 is the delayed response of the 
onset of a switch transition. An alternative is to react to the first edge in the transition and 
then wait for a small amount of time (at least 20 ms) to have the input signal settled. The 
output timing diagram is shown at the bottom of Figure 5.8. When the input changes from 
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Figure 5.11 Conceptual diagram of gate sensors. 

0 to 1, the FSM responds immediately. The FSM then ignores the input for about 20 ms to 
avoid glitches. After this amount of time, the FSM starts to check the input for the falling 
edge. Follow the design procedure in Section 5.3.2 to design the alternative circuit. 

1. Derive the state diagram and ASM chart for the circuit. 
2. Derive the HDL code. 
3. Derive the HDL code based on the state diagram and ASM chart. 
4. Derive a testbench and use simulation to verify operation of the code. 
5. Replace the debouncing circuit in Section 5.3.3 with the alternative design and verify 

its operation. 

5.5.3 Parking lot occupancy counter 

Consider a parking lot with a single entry and exit gate. Two pairs of photo sensors are used 
to monitor the activity of cars, as shown in Figure 5.1 1. When an object is between the 
photo transmitter and the photo receiver, the light is blocked and the corresponding output 
is asserted to 1. By monitoring the events of two sensors, we can determine whether a car is 
entering or exiting or a pedestrian is passing through. For example, the following sequence 
indicates that a car enters the lot: 

Initially, both sensors are unblocked (i.e., the a and b signals are "00"). 
Sensor a is blocked (i.e., the a and b signals are " 10"). 
Both sensors are blocked (i.e., the a and b signals are "1 1 "). 
Sensor a is unblocked (i.e., the a and b signals are "01 "). 
Both sensors becomes unblocked (i.e., the a and b signals are "00"). 

Design a parking lot occupancy counter as follows: 
1. Design an FSM with two input signals, a and b, and two output signals, e n t e r  and 

e x i t .  The e n t e r  and e x i t  signals assert one clock cycle when a car enters and one 
clock cycle when a car exits the lot, respectively. 

2. Derive the HDL code for the FSM. 
3. Design a counter with two control signals, i n c  and dec, which increment and decre- 

ment the counter when asserted. Derive the HDL code. 



4. Combine the counter and the FSM and LED multiplexing circuit. Use two debounced 
pushbuttons to mimic operation of the two sensor outputs. Verify operation of the 
occupancy counter. 
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CHAPTER 6 

FSMD 

6.1 INTRODUCTION 

An FSMD (finite state machine with data path) combines an FSM and regular sequential 
circuits. The FSM, which is sometimes known as a control path, examines the external 
commands and status and generates control signals to specify operation of the regular 
sequential circuits, which are known collectively as a data path. The FSMD is used to 
implement systems described by RT(register transfer) methodology, in which the operations 
are specified as data manipulation and transfer among a collection of registers. 

6.1.1 Single RT operation 

An RT operation specifies data manipulation and transfer for a single destination register. 
It is represented by the notation 

where rdest is the destination register, rsrcl, rsrc2, and rSrcn are the source registers, and f (.) 
specifies the operation to be performed. The notation indicates that the contents ofthe source 
registers are fed to the f (.) hnction, which is realized by a combinational circuit, and the 
result is passed to the input of the destination register and stored in the destination register 
at the next rising edge of the clock. Following are several representative RT operations: 

rl + 0. A constant 0 is stored in the r1 register. 
rl t rl. The content of the rl register is written back to itself 

FPGA Protoyping by Verilog Examples. By Pong P. Chu 
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Figure 6.1 Block and timing diagrams of an RT operation. 

r2 + r2 >> 3. The r2 register is shifted right three positions and then written back 
to itself. 
r2 + rl. The content of the rl register is transferred to the r2 register. 
i + i + 1 .  The content of the i register is incremented by 1 and the result is written 
back to itself. 
d +- sl + s2 + s3. The summation of the sl, s2, and s3 registers is written to the d 
register. 
y + a*a. The a squared is written to the y register. 

A single RT operation can be implemented by constructing a combinational circuit for 
the f (.) function and connecting the input and output ofthe registers. For example, consider 
the a + a-b+l operation. The f (.) function involves a subtractor and an incrementor. The 
block diagram is shown in Figure 6.l(a). For clarity, we use the r e g  and next suffixes to 
represent the input and output of a register. Note that an RT operation is synchronized by an 
embedded clock. The result from the f (.) function is not stored to the destination register 
until the next rising edge of the clock. The timing diagram of the previous RT operation is 
shown in Figure 6.l(b). 

6.1.2 ASMD chart 

A circuit based on the RT methodology specifies which RT operations should be executed 
in each step. Since an RT operation is done on a clock-by-clock basis, its timing is similar 
to a state transition of an FSM. Thus, an FSM is a natural choice to specify the sequencing 
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Figure 6.2 Realization of an ASMD segment. 

of an RT algorithm. We extend the ASM chart to incorporate RT operations and call it 
an ASMD (ASM with data path) chart. The RT operations are treated as another type of 
activity and can be placed where the output signals are used. 

A segment of an ASMD chart is shown in Figure 6.2(a). It contains one destination 
register, r l ,  which is initialized with 8, added with content of the 1-2 register, and then 
shifted left two positions. Note that the rl register must be specified in each state. When 
rl is not changed, the rl  t rl operation should be used to maintain its current content, as 
in the s3 state. In hture discussion, we assume that r t r is the default RT operation for the 
r register and do not include it in the ASMD chart. Implementing the RT operations of an 
ASMD chart involves a multiplexing circuit to route the desired next value to the destination 
register. For example, the previous segment can be implemented by a 4-to- 1 multiplexer, as 
shown in Figure 6.2(b). The current state (i.e., the output of the state register) of the FSM 
controls the selection signal of the multiplexer and thus chooses the result of the desired 
RT operation. 

An RT operation can also be specified in a conditional output box, as the r 2  register shown 
in Figure 6.3(a). Depending on the a>b condition, the FSMD performs either r 2  + r2+a or 
r 2  + r2+b. Note that all operations are done in parallel inside an ASMD block. We need 
to realize the a>b, r2+a, and r2+b operations and use a multiplexer to route the desired 
value to r2. The block diagram is shown in Figure 6.3(b). 

6.1.3 Decision box with a register 

The appearance of an ASMD chart is similar to that of a normal flowchart. The main 
difference is that the RT operation in an ASMD chart is controlled by an embedded clock 
signal and the destination register is updated when the FSMD exits the current ASMD block, 
but not within the block. The r + r-1 operation actually means that: 

r n e x t  = r-reg - 1; 
r-reg <= r n e x t  at the rising edge of the clock (i.e., when the FSMD exits the 
current block). 
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Figure 6.3 Realization of an RT operation in a conditional output box 



(a) Use old value o f  r (b) Use new value of r 

Figure 6.4 ASM block affected by a delayed store. 

This "delayed store" may introduce subtle errors when a register is used in a decision box. 
Consider the FSMD segment in Figure 6.4(a). The r register is decremented in the state 
box and used in the decision box. Since the r register is not updated until the FSMD exits 
the block, the old content of r is used for comparison in the decision box. If the new value 
of r is desired, we should use the output of the combinational logic (i.e., r n e x t )  in the 
decision box (i.e., replace the r = = O  expression with rnext==O), as shown in Figure 6.4(b). 

Block diagram of an FSMD The conceptual block diagram of an FSMD is divided 
into a data path and a control path, as shown in Figure 6.5. The data path performs the 
required RT operations. It consists oE 

Data registers: store the intermediate computation results 
Functional units: perform the functions specified by the RT operations 
Routing network: routes data between the storage registers and the functional units 

The data path follows the c o n t r o l  signal to perform the desired RT operations and generates 
the i n t e r n a l  s t a t u s  signal. 

The control path is an FSM. As a regular FSM, it contains a state register, next-state 
logic, and output logic. It uses the external command signal and the data path's s t a t u s  
signal as the input and generates the c o n t r o l  signal to control the data path operation. 
The FSM also generates the e x t e r n a l  s t a t u s  signal to indicate the status of the FSMD 
operation. 

Note that although an FSMD consists of two types of sequential circuits, both circuits 
are controlled by the same clock, and thus the FSMD is still a synchronous system. 

6.2 CODE DEVELOPMENT OF AN FSMD 

We use an improved debouncing circuit to demonstrate derivation of the FSMD code. 
Although the debouncing circuit in Section 5.3.2 uses an FSM and a timer (which is a 
regular sequential circuit), it is not based on the RT methodology because the two units are 
running independently and the FSM has no control over the timer. Since the 10-ms enable 
tick can be asserted at any time, the FSM does not know how much time has elapsed when 
the first tick is detected in the w a i t l - l  or wai t0- l  state. Thus, the waiting period in this 
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Figure 6.5 Block diagram of an FSMD. 

design is between 20 and 30 ms but is not an exact interval. This deficiency can be overcome 
by applying the RT methodology. In this section, we use this improved debouncing circuit 
to illustrate FSMD code development. 

6.2.1 Debouncing circuit based on RT methodology 

With the RT methodology, we can use an FSM to control the initiation of the timer to obtain 
the exact interval. The ASMD chart is shown in Figure 6.6. The circuit is expanded to 
include two output signals: db-level,  which is the debounced output, and db-t ick,  which 
is a one-clock-cycle enable pulse asserted at the zero-to-one transition. The z e r o  and one 
states mean that the s w  input has been stabilized for 0 and 1, respectively. The wai t  1 and 
wai t0  states are used to filter out short glitches. The s w  signal must be stable for a certain 
amount of time or the transition will be treated as a glitch. The data path contains one 
register, q, which is 21 bits wide. Assume that the FSMD is originally in the ze ro  state. 
When the s w  input signal becomes 1, the FSMD moves to the wai t  1 state and initializes q 
to "1 . . .  1". In the wai t1  state, the q decrements in each clock cycle. If s w  remains as 1, 
the FSMD returns to this state repeatedly until q reaches "0 .  . . O w  and then moves to the 
one state. 

Recall that the 50-MHz (i.e., 20-ns period) system clock is used on the prototyping 
board. Since the FSMD stays in the w a i t l  state for 2'l clock cycles, it is about 40 ms 



Figure 6.6 ASMD chart of a debouncing circuit. 



(i.e., 221*20 ns). We can modify the initial value of the q register to obtain the desired wait 
interval. 

There are two ways to derive the HDL code: one with explicit description of the data 
path components and the other with implicit description of the data path components. 

6.2.2 Code with explicit data path components 

The first approach to FSMD code development is to separate the control FSM and the 
key data path components. From an ASMD chart, we first identify the key components 
in the data path and the associated control signals and then describe these components in 
individual code segments. 

The key data path component of the debouncing circuit ASMD chart is a custom 21-bit 
decrement counter that can: 

Be initialized with a specific value 
Count downward or pause 
Assert a status signal when the counter reaches 0 

We can create a binary counter with a q-load signal to load the initial value and a q-dec 
signal to enable the counting. The counter also generates a q-zero status signal, which 
is asserted when the counter reaches zero. The complete data path is composed of the q 
register and the next-state logic of the custom decrement counter. A comparison circuit is 
included to generate the q-zero status signal. The control path consists of an FSM, which 
takes the s w  input and the q-zero status and asserts the control signals, q-load and q-dec, 
according to the desired action in the ASMD chart. The HDL code follows the data path 
specification and the ASMD chart, and is shown in Listing 6.1. 

Listing 6.1 Debouncing circuit with an explicit data path component 

m o d u l e  debounce-explicit 
( 

i n p u t  w i r e  clk, reset, 

i n p u t  w i r e  sw, 
o u t p u t  r e g  db-level , db-tick 

1;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [I : 01 

I O  zero = 2'b00, 
wait0 = 2'b01, 
one = 2'b10, 
wait1 = 2'bll; 

I 5  / /  number of  c o u n t e r  b i t s  ( 2 - N  * 20ns = 40ms) 
l o c a l p a r a m  N=21; 

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [I: 01 state-reg , state-next ; 

20 r e g  CN-1:Ol q-reg; 
w i r e  [N-1: 01 q-next ; 
w i r e  q-zero; 
r e g  q-load, q-dec; 



// fsmd s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  c l k  , p o s e d g e  r e s e t )  

i f  ( r e s e t )  
b e g i n  

s t a t e - r e g  <= z e r o ;  
q - r e g  <= 0 ;  

end 
e  1 s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t  ; 
q - r e g  <= q - n e x t ;  

end 

// FSMD d a t a  pa th  ( c o u n t e r )  n e x t - s t a t e  l o g i c  
40 a s s i g n  q-nex t  = ( q - l o a d )  ? ( N ( l ' b 1 ) )  : / /  l o a d  1 . . 1  

( q - d e c )  ? q - r e g  - 1 : / /  d e c r e m e n t  
q - r e g ;  

/ /  s t a t u s  s i g n a l  
a s s i g n  q - z e r o  = ( q - n e x t  ==O) ; 

45 

// FSMD c o n t r o l  pa th  n e x t - s t a t e  l o g i c  
a l w a y s  Q* 
b e g i n  

s t a t e - n e x t  = s t a t e - r e g ;  // d e f a u l t  s t a t e :  the  same 
q - l o a d  = l ' b O ;  // d e f a u l t  o u t p u t :  0 
q-dec  = 1 'bO; // d e f a u l t  o u t p u t :  0 
d b - t i c k  = l ' b O ;  // d e f a u l t  o u t p u t :  0 
c a s e  ( s t a t e - r e g )  

z e r o  : 
b e g i n  

d b - l e v e l  = l ' b O ;  
i f  (SW)  

b e g i n  
s t a t e - n e x t  = w a i t l ;  
q - l o a d  = l ' b l ;  

end 
end 

w a i t l  : 
b e g i n  

d b - l e v e l  = l ' b O ;  
i f  (sw) 

b e g i n  
q-dec  = l ' b l ;  
i f  ( q - z e r o )  

b e g i n  
s t a t e - n e x t  = o n e ;  
d b - t i c k  = l ' b l ;  

end 
end 

e l s e  // sw==O 
s t a t e - n e x t  = z e r o ;  

end 
one : 



begin 
d b - l e v e l  = l ' b l ;  
i f  ( -sw)  

begin 
s t a t e - n e x t  = w a i t 0 ;  
q - l o a d  = l ' b l ;  

end 
end 

w a i t 0  : 
begin 

d b - l e v e l  = 1 ' b l ;  
i f  (-sw) 

begin 
q-dec = 1  ' b l ;  
i f  ( q - z e r o )  

s t a t e - n e x t  = z e r o ;  
end 

e l s e  // sw==I 
s t a t e - n e x t  = o n e ;  

end 
d e f a u l t  : s t a t e - n e x t  = z e r o ;  

endcase  
end 

endmodule 

6.2.3 Code with implicit data path components 

An alternative coding style is to embed the RT operations within the FSM control path. 
Instead of explicitly defining the data path components, we just list RT operations with the 
corresponding FSM state. The code of the debouncing circuit is shown in Listing 6.2. 

Listing 6.2 Debouncing circuit with an implicit data path component 

module debounce 
( 

input  wire c l k ,  r e s e t ,  
input  wire sw, 

s output  reg d b - l e v e l  , d b - t i c k  
1;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
localparam [ I  : 01 

1 0  z e r o  = 2 ' b 0 0 ,  
w a i t 0  = 2 ' b 0 1 ,  
one = 2 ' b 1 0 ,  
w a i t 1  = 2 ' b l l ;  

15 // number o f  c o u n t e r  b i t s  ( 2 - N  * 2Ons = 40ms) 
localparam N=21; 

// s i g n a l  d e c l a r a t i o n  
reg [N-1:0] q - r e g ,  q - n e x t ;  



l o  r e g  [ I  : 01 s t a t e - r e g  , s t a t e - n e x t  ; 

/ /  body 
/ /  fsmd s t a t e  & d a t a  r e g i s t e r s  

a l w a y s  @ ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  
5 i f  ( r e s e t )  

b e g i n  
s t a t e - r e g  <= z e r o ;  
q - r e g  <= 0 ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t ;  
q - r e g  <= q - n e x t ;  

end 
35 

// n e x t - s t a t e  l o g i c  & d a t a  pa th  f u n c t i o n a l  u n i t s  / r o u t i n g  
a l w a y s  @ *  
b e g i n  

s t a t e - n e x t  = s t a t e - r e g ;  / /  d e f a u l t  s t a t e :  the  same 
q-nex t  = q - r e g ;  / /  d e f a u l t  q :  unchnaged 
d b - t i c k  = l ' b O ;  // d e f a u l t  o u t p u t :  0  
c a s e  ( s t a t e - r e g )  

z e r o  : 
b e g i n  

d b - l e v e l  = l ' b O ;  
i f  ( S W )  

b e g i n  
s t a t e - n e x t  = w a i t l ;  
q -nex t  = CN.El'bl}); / /  l oad  I . . ]  

end 
end 

w a i t  1 : 
b e g i n  

d b - l e v e l  = l ' b O ;  
i f  (SW)  

b e g i n  
q-nex t  = q - r e g  - 1 ;  
i f  (q -nex t==O)  

b e g i n  
s t a t e - n e x t  = o n e ;  
d b - t i c k  = l ' b l ;  

end 
end 

e l s e  // sw==O 
s t a t e - n e x t  = z e r o ;  

end 
one : 

b e g i n  
d b - l e v e l  = l ' b l ;  
i f  ( - S W )  

b e g i n  
s t a t e - n e x t  = w a i t 0 ;  



q-next  = {N{l 'b l ) ) ;  // load I.. I 
end 

end 
w a i t 0  : 

b e g i n  
d b - l e v e l  = l ' b l ;  
i f  ("sw) 

b e g i n  
q-nex t  = q- reg  
i f  ( q - n e x t  ==O) 

s t a t e - n e x t  = z e r o ;  
end 

e l s e  // sw==l 
s t a t e - n e x t  = o n e ;  

end 
d e f a u l t  : s t a t e - n e x t  = z e r o ;  

90 e n d c a s e  
end 

endmodule 

The code consists of a memory segment and a combinational logic segment. The former 
contains the state register of the FSM and the data register of the data path. The latter 
basically specifies the next-state logic of the control path FSM. Instead of generating control 
signals, the next data register values are specified in individual states. The next-state 
logic of the data path, which consists of functional units and a routing network, is created 
accordingly. 

6.2.4 Comparison 

Code with implicit data path components essentially follows the ASMD chart. We just 
convert the chart to an HDL description. Although this approach is simpler and more 
descriptive, we rely on synthesis software for data path construction and have less control. 
This can best be explained by an example. Consider the ASMD segment in Figure 6.7. The 
implicit description becomes 

c a s e  ( s t a t e - r e g )  
s l :  

b e g i n  
d l - n e x t  = a  * b ;  
. . . 

end 
s 2  : 

b e g i n  
d2-next  = b  * c ;  

end 
s 3  : 

b e g i n  
d3-next  = a  * c ;  
. . .  

end 



Figure 6.7 ASMD segment with sharing opportunity. 

. . .  
e n d c a s e  

The synthesis software may infer three multipliers. Since a combinational multiplier is a 
complex circuit, it is more efficient to share the circuit. We can use explicit description to 
isolate the multiplier: 

c a s e  ( s t a t e - r e g )  
s l :  

b e g i n  
i n 1  = a ;  
i n 2  = b ;  
d l - n e x t  = m-ou t ;  
. . . 

end 
s 2  : 

b e g i n  
i n 1  = b ;  
i n 2  = c ;  
d 2 - n e x t  = m-ou t ;  
. . .  

end 
s3 : 

b e g i n  
i n 1  = a ;  
i n 2  = c ;  
d 3 - n e x t  = m-ou t ;  



Figure 6.8 Debouncing testing circuit. 

end 

btn[l] - . 

e n d c a s e  

en q 

>Counter 

// e x p l i c i t  d e s c r i p t i o n  o f  a  s i n g l e  m u l t i p l i e r  
/ /  o u t s i d e  t h e  a l w a y s  b l o c k  
a s s i g n  m-out = i n 1  * i n 2 ;  

level tick 

edge 
> detector 

The code ensures that only one multiplier is inferred during synthesis. The implicit and 
explicit descriptions can be mixed for a complex FSMD design. We frequently isolate and 
extract complex data path components for code clarity and efficiency. 

- - 

hex2 
hex3 

disp-mux-hex 

reset 

6.2.5 Testing circuit 

> 

-en q 

> counter clk - 

The debouncing testing circuit discussed in Section 5.3.3 can be used to verify operation of 
the new design. Since the revised debouncing circuit's outputs include a one-clock-cycle 
tick signal, no edge detector is needed after the debouncing circuit. The revised block 
diagram is shown in Figure 6.8, and the corresponding code is shown in Listing 6.3.  

- 
sw dbtick 

debouncing 

Listing 6.3 Verification circuit for a debouncing circuit 

module  d e b o u n c e - f  s m d - t e s t  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  [ 1 : 0 ]  b t n ,  
o u t p u t  w i r e  [ 3 : 0 1  a n ,  
o u t p u t  w i r e  [ 7 : 0 1  s s e g  

1; 

- 

// s i g n a l  d e c l a r a t i o n  
l o  r e g  [ 7 : 0 ]  b - r e g  , d - r e g ;  

w i r e  [ 7 : 0 1  b - n e x t  , d - n e x t ;  
r e g  b t n - r e g ;  
w i r e  d b - t i c k  , b t n - t i c k  , c l r  ; 

hex0 sseg 

15 / /  i n s t a n t i a t e  7 - s e g  LED d i s p l a y  t i m e - m u l t i p l e x i n g  m o d u l e  
d i s p - h e x - m u x  d i s p - u n i t  

( .  c l k ( c l k ) ,  . r e s e t  ( r e s e t ) ,  

sseg 
hex1 an- an 



// i n s t a n t i a t e  d e b o u n c i n g  c i r c u i t  
debounce d b - u n i t  

( .  c l k ( c l k 1 ,  . r e s e t  ( r e s e t ) ,  . s w ( b t n  [ I ] )  , 
zs  . d b - l e v e l 0  , . d b - t i c k ( d b - t i c k ) )  ; 

/ /  edge  d e t e c t i o n  c i r c u i t  f o r  un-debounced  i n p u t  
always  @ ( p o s e d g e  c l k )  

b t n - r e g  <= btn  [ l ]  ; 
30 a s s i g n  b t n - t i c k  = " b t n - r e g  & b t n [ l l ;  

// two  c o u n t e r s  
a s s i g n  c l r  = b t n  [O] ; 
always  @ ( p o s e d g e  c l k )  

35 begin  
d -reg  <= d - n e x t ;  
b -reg  <= b - n e x t ;  

end 
/ / n e x t - s t a t e  l o g i c  f o r  t h e  c o u n t e r  

40 a s s i g n  b -nex t  = ( c l r  ) ? O :  
( b t n - t i c k )  ? b-reg  + 1  : 

b-reg  ; 
a s s i g n  d-next  = ( c l r  ) ? O :  

( d b - t i c k )  ? d-reg  + 1  : 
45 d - r e g  ; 

endmodule 

6.3 DESIGN EXAMPLES 

6.3.1 Fibonacci number circuit 

The Fibonacci numbers constitute a sequence defined as 

i f i  = O  
i f i  = 1 

f ib(i - 1) + fib(i - 2) if i > 1 

One way to calculate f ib(i) is to construct the function iteratively, from 0 to the desired i. 
This approach requires two temporary registers to store the two most recently calculated 
values [i.e., f ib(i - 1) and f ib(i - 2)] and one index register to keep track of the number 
of iterations. The ASMD chart is shown in Figure 6.9, in which t 1 and to are temporary 
storage registers and n is the index register. In addition to the regular data input and output 
signals, i and f ,  we include a command signal, s t a r t ,  which signals the beginning of 
operation, and two status signals: ready, which indicates that the circuit is idle and ready 
to take new input, and done-tick,  which is asserted for one clock cycle when the operation 
is completed. Since this circuit, like many other FSMD designs, is probably a part of a 
larger system, these signals are needed to interface with other subsystems. 



Figure 6.9 ASMD chart of a Fibonacci circuit. 



The ASMD chart has three states. The i d l e  state indicates that the circuit is currently 
idle. When s t a r t  is asserted, the FSMD moves to the op state and loads initial values to 
three registers. The t o  and t I registers are loaded with 0 and 1, which represent f i b ( 0 )  
and f i b ( l ) ,  respectively. The n register is loaded with i, the desired number of iterations. 

The main computation is iterated through the op state by three RT operations: . tl  + tl + t o  . t o t  t l  
n + n  - I 

The first two RT operations obtain a new value and store the two most recently calculated 
values in t 1 and t o .  The third RT operation decrements the iteration index. The iteration 
ended when n reaches 1 or its initial value is 0 [i.e., f i b ( 0 ) l .  Unlike a regular flowchart, the 
operations in an ASMD block can be performed concurrently in the same clock cycle. We 
put all comparison and RT operations in the op state to reduce the computation time. Note 
that the new values of the t I and t o  registers are loaded at the same time when the FSMD 
exits the op state (i.e., at the next rising edge of the clock). Thus, the original value o f t  I, 
not t l+ tO,  is stored to t o .  The purpose of the done state is to generate the one-clock-cycle 
done-tick signal to indicate completion of the computation. This state can be omitted if 
this status signal is not needed. 

The code follows the ASMD chart and is shown in Listing 6.4. Note that the Fibonacci 
function grows rapidly and the output signal should be wide enough to accommodate the 
desired result. 

Listing 6.4 Fibonacci number circuit 

module f i b  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  s t a r t ,  

c i n p u t  w i r e  [4 :01  i ,  
o u t p u t  r e g  r e a d y ,  d o n e - t i c k ,  
o u t p u t  w i r e  [19:01  f  

1;  

10 // s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [ I :  01 

i d l e  = 2  ' b 0 0 ,  
op  = 2 ' b 0 1 ,  
done = 2 ' b l O ;  

I c 

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [ I :  01 s t a t e - r e g  , s t a t e - n e x t  ; 
r e g  [19:01  t o - r e g ,  t o - n e x t ,  t l - r e g ,  t l - n e x t ;  
r e g  [4 :01  n - r e g  , n-nex t  ; 

20 

// bod,v 
/ /  FSMD s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  @ ( p o s e d g e  c l k  , p o s e d g e  r e s e t  ) 

i f  ( r e s e t )  
21 b e g i n  

s t a t e - r e g  <= i d l e ;  
t o - r e g  <= 0 ;  
t l - r e g  <= 0 ;  



n - r e g  <= 0 ;  
30 end 

e l s e  
b e g i n  

s t a t e - r e g  <= s t a t e - n e x t  ; 
t o - r e g  <= t o - n e x t ;  
t l - r e g  <= t l - n e x t ;  
n - r e g  <= n - n e x t ;  

end 
/ /  FSMD n e x t - s t a t e  l o g i c  
a l w a y s  Q* 

40 b e g i n  
s t a t e - n e x t  = s t a t e - r e g ;  
r e a d y  = l ' b O ;  
d o n e - t i c k  = l J b O ;  
t o - n e x t  = t o - r e g ;  
t l - n e x t  = t l - r e g ;  
n -nex t  = n - r e g ;  
c a s e  ( s t a t e - r e g )  

i d l e  : 
b e g i n  

r e a d y  = l ' b l ;  
i f  ( s t a r t )  

b e g i n  
t o - n e x t  = 0 ;  
t l - n e x t  = 2 0 J d l ;  
n - n e x t  = i ;  
s t a t e - n e x t  = o p ;  

end 
end 

op : 
i f  (n - r eg==O)  

b e g i n  
t l - n e x t  = 0 ;  
s t a t e - n e x t  = d o n e ;  

end 
e l s e  i f  ( n - r e g = = l )  

s t a t e - n e x t  = d o n e ;  
e l s e  

b e g i n  
t l - n e x t  = t l - r e g  + t o - r e g ;  
t o - n e x t  = t l - r e g ;  
n -nex t  = n - r e g  - 1; 

end 
done : 

b e g i n  
d o n e - t i c k  = l J b l ;  
s t a t e - n e x t  = i d l e ;  

end 
d e f a u l t  : s t a t e - n e x t  = i d l e  ; 

e n d c a s e  
80 end 

// o u t p u t  



-- divisor 

/ 0 0 11 0 - quotient 
0010/00001101 - dividend 

0010 
0 0 0 1 - remainder 

Figure 6.10 Long division of two 4-bit unsigned integers. 

a s s i g n  f = tl-reg; 

endmodule  

6.3.2 Division circuit 

Because of complexity, the division operator cannot be synthesized automatically. We use 
an FSMD to implement the long-division algorithm in this subsection. The algorithm is 
illustrated by the division of two Cbit unsigned integers in Figure 6.10. The algorithm can 
be summarized as follows: 

1.  Double the dividend width by appending 0's in front and align the divisor to the 
leftmost bit of the extended dividend. 

2. If the corresponding dividend bits are greater than or equal to the divisor, subtract the 
divisor from the dividend bits and make the corresponding quotient bit 1. Otherwise, 
keep the original dividend bits and make the quotient bit 0. 

3 .  Append one additional dividend bit to the previous result and shift the divisor to the 
right one position. 

4. Repeat steps 2 and 3 until all dividend bits are used. 
The sketch of the data path is shown in Figure 6.1 1. Initially, the divisor is stored in the 

d register and the extended dividend is stored in the r h  and r l  registers. In each iteration, 
the r h  and r l  registers are shifted to the left one position. This corresponds to shifting the 
divisor to the right of the preceding algorithm. We can then compare r h  and d and perform 
subtraction if r h  is greater than or equal to d. When r h  and r l  are shifted to the left, the 
rightmost bit of r l  becomes available. It can be used to store the current quotient bit. After 
we iterate through all dividend bits, the result of the last subtraction is stored in r h  and 
becomes the remainder of the division, and all quotients are shifted into r l .  

The ASMD chart of the division circuit is somewhat similar to that of the previous 
Fibonacci circuit. The FSMD consists of four states: i d l e ,  op, l a s t ,  and done. To make 
the code clear, we extract the compare and subtract circuit to separate code segments. The 
main computation is performed in the op state, in which the dividend bits and divisor are 
compared and subtracted and then shifted left 1 bit. Note that the remainder should not be 
shifted in the last iteration. We create a separate state, l a s t ,  to accommodate this special 
requirement. As in the preceding example, the purpose of the done state is to generate a 
one-clock-cycle done-tick signal to indicate completion of the computation. The code is 
shown in Listing 6.5. 



I I compare and subtract I 

Figure 6.1 1 Sketch of  division circuit's data path. 

Listing 6.5 Division circuit 

module d i v  
# ( 

p a r a m e t e r  W = 8 ,  
CBIT = 4 / /  CBIT=log2 (W)+I 

5 1  

( 
i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  s t a r t ,  
i n p u t  w i r e  [W-1:0] d v s r ,  dvnd ,  

1 0  o u t p u t  r e g  r e a d y ,  d o n e - t i c k  , 
o u t p u t  w i r e  [W-1:Ol q u o ,  rmd 

1 ;  

/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
15  l o c a l p a r a m  [1 :01  

i d l e  = 2 ' b 0 0 ,  
op = Z ' b 0 1 ,  
l a s t  = 2 ' b 1 0 ,  
done = 2 ' b l l ;  

// s i g n a l  d e c l a r a t i o n  
r e g  [ I  : 01 s t a t e - r e g  , s t a t e - n e x t  ; 
r e g  [W-1:0] r h - r e g ,  r h - n e x t ,  r l - r e g ,  r l - n e x t ,  r h - t m p ;  
r e g  [W-1:Ol d - r e g ,  d - n e x t ;  

zr r e g  [CBIT -1 : 01 n - r e g  , n - n e x t  ; 
r e g  q - b i t ;  

// body 
// FSMD s t a t e  & d a t a  r e g i s t e r s  



30 a l w a y s  @ ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  
i f  ( r e s e t )  

b e g i n  
s t a t e - r e g  <= i d l e ;  
r h - r e g  <= 0 ;  
r l - r e g  <= 0 ;  
d - r e g  <= 0 ;  
n - reg  <= 0 ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t  ; 
r h - r e g  <= r h - n e x t ;  
r l - r e g  <= r l - n e x t ;  
d - r e g  <= d - n e x t ;  
n - reg  <= n - n e x t ;  

end 

/ /  FSMD n e x t - s t a t e  l o g i c  
a l w a y s  O* 

ro b e g i n  
s t a t e - n e x t  = s t a t e - r e g ;  
r e a d y  = l ' b O ;  
d o n e - t i c k  = l ' b O ;  
r h - n e x t  = r h - r e g ;  
r l - n e x t  = r l - r e g ;  
d -nex t  = d - r e g ;  
n -nex t  = n - r e g ;  
c a s e  ( s t a t e - r e g )  

i d l e  : 
b e g i n  

r e a d y  = l ' b l ;  
i f  ( s t a r t )  

b e g i n  
r h - n e x t  = 0 ;  
r l - n e x t  = dvnd ;  // d i v i d e n d  
d-nex t  = d v s r ;  // d i v i s o r  
n-nex t  = C B I T ;  // index  
s t a t e - n e x t  = o p ;  

end 
end 

op : 
b e g i n  

// s h i f t  rh and r l  l e f t  
r l - n e x t  = { r l - r e g  [W-2:01 , q - b i t ) ;  
r h - n e x t  = {rh-tmp [W-2: 01 , r l - r e g  [W-l l ) ;  
// d e c r e a s e  index  
n-next  = n - r e g  - 1 ;  
i f  ( n - n e x t  ==l) 

s t a t e - n e x t  = l a s t ;  
end 

l a s t :  // l a s t  i t e r a t i o n  
b e g i n  



r l - n e x t  = C r l - r e g  [W-2:Ol , q - b i t ) ;  
rh -nex t  = rh- tmp;  
s t a t e - n e x t  = done ;  

end 
done : 

b e g i n  
d o n e - t i c k  = l J b l ;  
s t a t e - n e x t  = i d l e ;  

end 
d e f a u l t  : s t a t e - n e x t  = i d l e ;  

e n d c a s e  
end 

95 

// compare and s u b t r a c t  c i r c u i t  
a l w a y s  O *  

i f  ( r h - r e g  >= d - r e g )  
b e g i n  

rh-tmp = r h - r e g  - d - r e g ;  
q - b i t  = 1 ' b l ;  

end 
e l s e  

b e g i n  
10s rh-tmp = r h - r e g ;  

q - b i t  = l l b O ;  
end 

/ / o u t p u t  
I I O  a s s i g n  quo = r l - r e g ;  

a s s i g n  rmd = r h - r e g ;  

endmodule 

6.3.3 Binary-to-BCD conversion circuit 

We discussed the BCD format in Section 4.5.2. In this format, a decimal number is rep- 
resented as a sequence of 4-bit BCD digits. A binary-to-BCD conversion circuit converts 
a binary number to the BCD format. For example, the binary number "0010 0000 0000" 
becomes "0101 0001 0010" (i.e., 51210) after conversion. 

The binary-to-BCD conversion can be processed by a special BCD shift register, which 
is divided into 4-bit groups internally, each representing a BCD digit. Shifting a BCD 
sequence to the left requires adjustment if a BCD digit is greater than after shifting. 
For example, if a BCD sequence is "0001 01 11" (i.e., 1710), it should become "001 1 0100" 
(i.e., 3410) ratherthan "0010 11 10". The adjustment requires subtracting lolo (i.e., "1010") 
from the right BCD digit and adding 1 (which can be considered as a carry-out) to the next 
BCD digit. Note that subtracting lolo is equivalent to adding for a 4-bit binary number. 
Thus, the foregoing adjustment can also be achieved by adding 610 to the right BCD digit. 
The carry-out bit is generated automatically in this process. 

In the actual implementation, it is more efficient to first perform the necessary adjustment 
on a BCD digit and then shift. We can check whether a BCD digit is greater than and, 
if this is the case, add to the digit. After all the BCD digits are corrected, we can then 
shift the entire register to the left one position. A binary-to-BCD conversion circuit can 
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Table 6.1 Binary-to-BCD conversion example 

be constructed by shifting the binary input to a BCD shift register bit by bit, from MSB to 
LSB. Its operation can be summarized as follows: 

Bit 3 

Bit 2 

Bit 1 

Bit 0 

1 .  For each Cbit BCD digit in a BCD shift register, check whether the digit is greater 
than 4. If this is the case, add 310 to the digit. 

2. Shift the entire BCD register left one position and shift in the MSB of the input binary 
sequence to the LSB of the BCD register. 

3. Repeat steps 1 and 2 until all input bits are used. 
The conversion process of a 7-bit binary input, "1 1 1 1 11 1" (i.e., 12710), is demonstrated in 
Table 6.1. 

The code of a 13-bit conversion circuit is shown in Listing 6.6. It uses a simple FSMD 
to control the overall operation. When the start signal is asserted, the binary input is 
stored to the p2s register. The FSM then iterates through the 13 bits, similar to the process 
described in previous examples. Four adjustment circuits are used to correct the four BCD 
digits. For clarity, they are isolated from the next-state logic and described in a separate 
code segment. 

shift left 1 bit 

BCD digit 0 adjustment 
shift left 1 bit 

BCD digit 0 adjustment 
shift left 1 bit 

no adjustment 
shift left 1 bit 

BCD digit 1 adjustment 
shift left 1 bit 1 

(110) 

1 

(1 10) 
1 

11 

(310) 

110 

(610) 
1001 
0010 

(2 I 0) 

111 
(7 I 0) 
10 10 
0101 

(510) 
1000 
0001 

(1 10) 

0011 

(310) 
0011 
0111 

(710) 

1111 

111 

11 

1 



Listing 6.6 Binary-to-BCD conversion circuit 

module bin2bcd 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  start, 

5 i n p u t  w i r e  [12:0] bin, 
o u t p u t  reg  ready, done-tick, 
o u t p u t  w i r e  [3:0] bcd3, bcd2, bcdl, bcdO 

1; 

10 // s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [I : 01 

idle = 2 'b00, 
op = 2'b01, 
done = 2 'b10; 

I S  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [I: 01 state-reg , state-next ; 
r e g  112: 01 p2sdreg, p2s-next ; 
r e g  [3:01 n-reg , n-next ; 

20 r e g  [3: 01 bcd3_reg, bcd2_reg, bcdl-reg , bcd0-reg ; 
r e g  [3:01 bcd3-next , bcd2-next , bcdl-next , bcd0-next ; 
w i r e  C3: 01 bcd3_tmp, bcd2-tmp , bcdl-tmp , bcd0-tmp ; 

25 // body 
// FSMD s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset 1 

i f  (reset) 
b e g i n  

state-reg <= idle; 
p2s-reg <= 0; 
n-reg <= 0; 
bcd3-reg <= 0; 
bcd2-reg <= 0; 
bcdl-reg <= 0; 
bcd0-reg <= 0; 

end 
e l s e  

b e g i n  
state-reg <= state-next; 
p2s-reg <= p2s-next ; 
n-reg <= n-next; 
bcd3-reg <= bcd3-next ; 
bcd2-reg <= bcd2-next ; 
bcdl-reg <= bcdl-next ; 
bcd0-reg <= bcd0-next ; 

end 

so / /  FSMD n e x t - s t a t e  l o g i c  
a l w a y s  Q *  
b e g i n  



state-next = state-reg; 
ready = l'bO; 
done-tick = l'bO; 

n-next = n-reg; 
c a s e  (state-reg) 

idle : 
b e g i n  

ready = l'bl; 
i f  (start) 

b e g i n  
state-next = op; 
bcd3-next = 0; 

bcdl-next = 0; 
bcd0-next = 0; 
n-next = 4'b1101; // i n d e x  
p2s-next = bin; // s h i f t  r e g i s t e r  
state-next = op; 

end 
end 

op : 
b e g i n  

// s h i f t  in  b i n a r y  b i t  
p2s-next = p2s-reg << 1; 
/ /  s h i f t  4 BCD d i g i t s  
/ / { b c d 3 _ n e x t ,  b c d 2 _ n e x t ,  b c d l - n e x t ,  b c d O - n e x t ) =  
/ / {  b c d 3 - t m p  [ 2 : 0 ] ,  b c d 2 _ t m p ,  b c d l - t m p  , b c d 0 - t m p  , 
// p 2 s _ r e g [ l 2 ] )  

bcd0-next = CbcdO-tmp [2: 01 , p2s-reg [I21 ; 
bcdl-next = {bcdl-tmp C2:Ol , bcd0-tmp C311; 
bcd2-next = Cbcd2-tmp [2: 01 , bcdl-tmp [31); 
bcd3-next = (bcd3-tmp [2 : 01 , bcd2-tmp [31) ; 
n-next = n-reg - 1; 
i f  (n-next==O) 

state-next = done; 
end 

done : 
b e g i n  

done-tick = l'bl; 
state-next = idle; 

end 
d e f a u l t :  state-next = idle; 

e n d c a s e  
end 

/ /  d a t a  p a t h  f u n c t i o n  u n i t s  
lor a s s i g n  bcd0-tmp = (bcdO-reg > 4) ? bcdO_reg+3 : bcd0-reg; 



a s s i g n  bcdl-tmp = (bcdl-reg > 4) ? bcdl_reg+3 : bcdl-reg; 
a s s i g n  bcd2-tmp = (bcd2-reg > 4) ? bcd2_reg+3 : bcd2-reg; 
a s s i g n  bcd3-tmp = (bcd3-reg > 4) ? bcd3_reg+3 : bcd3-reg; 

1 1 0  // o u t p u t  
a s s i g n  bcdO = bcd0-reg; 
a s s i g n  bcdl = bcdl-reg; 
a s s i g n  bcd2 = bcd2-reg; 
a s s i g n  bcd3 = bcd3-reg; 

1 1 5  

endmodule 

6.3.4 Period counter 

A period counter measures the period of a periodic input waveform. One way to construct 
the circuit is to count the number of clock cycles between two rising edges of the input 
signal. Since the frequency of the system clock is known, the period of the input signal 
can be derived accordingly. For example, if the frequency of the system clock is f and the 
number of clock cycles between two rising edges is N, the period of the input signal is 
N * f .  

The design in this subsection measures the period in milliseconds. Its ASMD chart is 
shown in Figure 6.12. The period counter takes a measurement when the s t a r t  signal is 
asserted. We use a rising-edge detection circuit to generate a one-clock-cycle tick, edge, to 
indicate the rising edge of the input waveform. After s t a r t  is asserted, the FSMD moves to 
the waite state to wait for the first rising edge of the input. It then moves to the count state 
when the next rising edge of the input is detected. In the count state, we use two registers 
to keep track of the time. The t register counts for 50,000 clock cycles, from 0 to 49,999, 
and then wraps around. Since the period of the system clock is 20 ns, the t register takes 
1 ms to circulate through 50,000 cycles. The p register counts in terms of milliseconds. It 
is incremented once when the t register reaches 49,999. When the FSMD exits the count 
state, the period of the input waveform is stored in the p register and its unit is milliseconds. 
The FSMD asserts the done-tick signal in the done state, as in previous examples. 

The code follows the ASMD chart and is shown in Listing 6.7. We use a constant, 
CLKMS-COUNT, for the boundary ofthe millisecond counter. It can be replaced if a different 
measurement unit is desired. 

Listing 6.7 Period counter 

module period-counter 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  wire  start, si, 

5 o u t p u t  reg  ready, done-tick , 
o u t p u t  w i r e  [9:01 prd 

) ;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
IO l o c a l p a r a m  [1:01 

idle = 2'b00, 
waite = 2'b01, 
count = 2'b10, 
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Figure 6.12 ASMD chart of a period counter. 



done = 2 ' b l l ;  
15 

// c o n s t a n t  d e c l a r a t i o n  
localparam CLK-MS-COUNT= 50000; // I ms t i c k  

// s i g n a l  d e c l a r a t i o n  
20 reg [1:01 s t a t e - r e g  , s t a t e - n e x t  ; 

reg [15:01 t - r e g ,  t - n e x t ;  // up t o  50000 
reg [9:01 p - r e g ,  p - n e x t ;  // up t o  1 s e c  
reg d e l a y - r e g  ; 
wire e d g ;  

25 

// body 
// FSMD s t a t e  & d a t a  r e g i s t e r s  
always  Q ( p o s e d g e  c l k ,  posedge r e s e t  ) 

i f  ( r e s e t )  
begin 

s t a t e - r e g  <= i d l e ;  
t - r e g  <= 0 ;  
p - reg  <= 0 ;  
d e l a y - r e g  <= 0 ;  

end 
e l s e  

begin  
s t a t e - r e g  <= s t a t e - n e x t  ; 
t - r e g  <= t - n e x t ;  
p - reg  <= p - n e x t ;  
d e l a y - r e g  <= s i ;  

end 

// r i s i n g - e d g e  t i c k  
45 a s s i g n  edg = - d e l a y - r e g  & s i ;  

// FSMD n e x t - s t a t e  l o g i c  
always Q* 
begin  

s t a t e - n e x t  = s t a t e - r e g ;  
r eady  = 1 'bO; 
d o n e - t i c k  = l ' b O ;  
p-next  = p - r e g ;  
t - n e x t  = t - r e g ;  
case  ( s t a t e - r e g )  

i d l e  : 
begin 

r e a d y  = l ' b l ;  
i f  ( s t a r t )  

s t a t e - n e x t  = w a i t e ;  
end 

w a i t e :  // w a i t  f o r  the  f i r s t  edge  
i f  ( e d g )  

begin 
s t a t e - n e x t  = c o u n t ;  
t - n e x t  = 0 ;  



p - n e x t  = 0 ;  
end 

c o u n t  : 
i f  ( e d g )  / /  2nd e d g e  a r r i v e d  

s t a t e - n e x t  = d o n e ;  
e l s e  // o t h e r w i s e  c o u n t  

i f  ( t - r e g  == CLK-MS-COUNT-1) / /  I ms t i c k  
b e g i n  

t - n e x t  = 0 ;  
p - n e x t  = p - r e g  + 1 ;  

end 
e l s e  

t - n e x t  = t - r e g  + 1 ;  
done  : 

b e g i n  
d o n e - t i c k  = l ' b l ;  
s t a t e - n e x t  = i d l e ;  

end 
d e f a u l t  : s t a t e - n e x t  = i d l e ;  

e n d c a s e  
end 

/ /  ouput  
911 a s s i g n  p r d  = p - r e g ;  

endmodule  

6.3.5 Accurate low-frequency counter 

A frequency counter measures the frequency of a periodic input waveform. The common 
way to construct a frequency counter is to count the number of input pulses in a fixed amount 
of time, say, 1 second. Although this approach is fine for high-frequency input, it cannot 
measure a low-frequency signal accurately. For example, if the input is around 2 Hz, the 
measurement cannot tell whether it is 2.123 Hz or 2.567 Hz. Recall that the frequency 
is the reciprocal of the period (i.e., frequency = A). An alternative approach is to 
measure the period of the signal and then take the reciprocal to find the frequency. We use 
this approach to implement a low-frequency counter in this subsection. 

This design example demonstrates how to use the previously designed parts to construct 
a large system. For simplicity, we assume that the frequency of the input is between 1 and 
10 Hz (i.e., the period is between 100 and 1000 ms). The operation of this circuit includes 
three tasks: 

1. Measure the period. 
2. Find the frequency by performing a division operation. 
3. Convert the binary number to BCD format. 
We can use the period counter, division circuit, and binary-to-BCD converter to perform 

the three tasks and create another FSM as the master control to sequence and coordinate 
the operation of the three circuits. The block diagram is shown in Figure 6.13(a), and the 
ASM chart of the master control is shown in Figure 6.13(b). The FSM uses the start and 
done-tick signals of these circuits to initialize each task and to detect completion of the 
task. The code is shown in Listing 6.8. 
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Listing 6.8 Low-frequency counter 

module low-f req-counter 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  start, si, 

i o u t p u t  w i r e  [3:01 bcd3, bcd2, bcdl, bcdO 

1;  

/ /  s v m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [I : 01 

idle = 2'b00, 
count = 2'b01, 

frq = 2'b10, 
b2b = 2'bll; 

15  / /  s i g n a l  d e c l a r a t i o n  
r e g  [I: 01 state-reg , state-next ; 
w i r e  [9:0] prd; 
w i r e  [19:01 dvsr , dvnd, quo; 
r e g  prd-start , div-start , b2b-start ; 

20 w i r e  prd-done-tick , div-done-tick , b2b-done-tick; 

................................................. 

/ /  component i n s t a n t i a t i o n  
................................................. 

25 // i n s t a n t i a t e  p e r i o d  c o u n t e r  
period-counter prd-count-unit 

( .  clk(c1k) , .reset (reset), . start (~rd-start) , . si(si), 
.ready(), .done-tick(prd-done-tick), .~rd(~rd)); 

/ /  i n s t a n t i a t e  d i v i s i o n  c i r c u i t  
M div # ( .  W (20) , . CBIT ( 5 ) )  div-unit 

( . clk (clk) , . reset (reset), . start (div-start ) , 
. dvsr (dvsr) , . dvnd (dvnd) , . quo (quo) , . rmd , 
.ready(), .done-tick(div-done-tick)); 

// i n s t a n t i a t e  binary-to-BCD c o n v e r t o r  
35 bin2bcd b2b-unit 

( .  clk (clk) , . reset (reset), . start (b2b-start), 
. bin(quo [12:O]) , .ready ( )  , . done_tick(b2b_done_tick), 
.bcd3(bcd3), . bcd2 (bcd2), . bcdl (bcdl) , . bcd0 (bcdo)) ; 

/ /  s i g n a l  w i d t h  e x t e n s i o n  
40 a s s i g n  dvnd = 20'd1000000; 

a s s i g n  dvsr = IlO'b0, prd); 

................................................. 

// m a s t e r  FSM 
................................................. 

a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset 
i f  (reset) 

state-reg <= idle; 
e l s e  

50 state-reg <= state-next ; 

a l w a y s  Q *  



b e g i n  
s t a t e - n e x t  = s t a t e - r e g ;  
p r d - s t a r t  = l ' b O ;  
d i v - s t a r t  = l ' b O ;  

c a s e  ( s t a t e - r e g )  
i d l e  : 

i f  ( s t a r t )  
b e g i n  

p r d - s t a r t  = l ' b l ;  
s t a t e - n e x t  = c o u n t ;  

end 
c o u n t  : 

i f  ( p r d - d o n e - t  i c k )  
b e g i n  

d i v - s t a r t  = l ' b l ;  
s t a t e - n e x t  = f r q ;  

end 
f r q :  

i f  ( d i v - d o n e - t i c k )  
b e g i n  

b 2 b - s t a r t  = l ' b l ;  
71  s t a t e - n e x t  = b 2 b ;  

end 
b2b : 

i f  ( b 2 b - d o n e - t i c k )  
s t a t e - n e x t  = i d l e ;  

xo e n d c a s e  
end 

endmodule 

6.4 BIBLIOGRAPHIC NOTES 

FSMD is usually discussed in the context of high-level synthesis. Principles of Digital 
Design by D. D. Gajski contains a comprehensive chapter discussing relevant issues and 
algorithms of FSMD design and implementation. 

6.5 SUGGESTED EXPERIMENTS 

6.5.1 Alternative debouncing circuit 

Consider the alternative debouncing circuit in Experiment 5.5.2 .  Redesign the circuit using 
the RT methodology: 

1. Derive the ASMD chart for the circuit. 
2 .  Derive the HDL code based on the ASMD chart. 
3. Replace the debouncing circuit in Section 6.2.5 with the alternative design and verify 

its operation. 



6.5.2 BCD-to-binary conversion circuit 

A BCD-to-binary conversion converts a BCD number to the equivalent binary representa- 
tion. Assume that the input is an 8-bit signal in BCD format (i.e., two BCD digits) and the 
output is a 7-bit signal in binary representation. Follow the procedure in Section 6.3.3 to 
design a BCD-to-binary conversion circuit: 

1 .  Derive the conversion algorithm and ASMD chart. 
2. Derive the HDL code based on the ASMD chart. 
3. Derive a testbench and use simulation to verify operation of the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 

6.5.3 Fibonacci circuit with BCD 110: design approach 1 

To make the Fibonacci circuit more user friendly, we can modify the circuit to use the BCD 
format for the input and output. Assume that the input is an 8-bit signal in BCD format 
(i.e., two BCD digits) and the output is displayed as four BCD digits on the seven-segment 
LED display. Furthermore, the LED will display "9999" if the resulting Fibonacci number 
is larger than 9999 (i.e., overflow). The operation can be done in three steps: convert input 
to the binary format, compute the Fibonacci number, and convert the result back to BCD 
format. 

The first design approach is to follow the procedure outlined in Section 6.3.5. We 
first construct three smaller subsystems, which are the BCD-to-binary conversion circuit, 
Fibonacci circuit, and binary-to-BCD conversion circuit, and then use a master FSM to 
control the overall operation. Design the circuit as follows: 

1. Implement the BCD-to-binary conversion circuit in Experiment 6.5.2. 
2. Modify the Fibonacci number circuit in Section 6.3.1 to include an output signal to 

indicate the overflow condition. 
3. Derive the top-level block diagram and the master control FSM state diagram. 
4. Derive the HDL code. 
5. Derive a testbench and use simulation to verify operation of the code. 
6. Synthesize the circuit, program the FPGA, and verify its operation. 

6.5.4 Fibonacci circuit with BCD 110: design approach 2 

An alternative to the "subsystem approach" in Experiment 6.5.3 is to integrate the three 
subsystems into a single system and derive a customized FSMD for this particular applica- 
tion. The approach eliminates the overhead of the control FSM and provides opportunities 
to share registers among the three tasks. Design the circuit as follows: 

1. Redesign the circuit of Experiment 6.5.3 using one FSMD. The design should elimi- 
nate all unnecessary circuits and states, such as the various done-tick signals and the 
done states, and exploit the opportunity to share and reuse the registers in different 
steps. 

2. Derive the ASMD chart. 
3. Derive the HDL code based on the ASMD chart. 
4. Derive a testbench and use simulation to verify operation of the code. 
5. Synthesize the circuit, program the FPGA, and verify its operation. 
6. Check the synthesis report and compare the number of LEs used in the two approaches. 
7. Calculate the number of clock cycles required to complete the operation in the two 

approaches. 



6.5.5 Auto-scaled low-frequency counter 

The operation ofthe low-frequency counter in Section 6.3.5 is very restricted. The frequency 
range of the input signal is limited between 1 and 10 Hz. It loses accuracy when the 
frequency is beyond this range. Recall that the accuracy of this frequency counter depends 
on the accuracy of the period counter of Section 6.3.5, which counts in terms of millisecond 
ticks. We can modify the t counter to generate a microsecond tick (i.e., counting from 0 
to 49) and increase the accuracy 1000-fold. This allows the range of the frequency counter 
to increase to 9999 Hz and still maintain at least four-digit accuracy. 

Using a microsecond tick introduces more than four accuracy digits for low-frequency 
input, and the number must be shifted and truncated to be displayed on the seven-segment 
LED. An auto-scaled low-frequency counter performs the adjustment automatically, dis- 
plays the four most significant digits, and places a decimal point in the proper place. For 
example, according to their range, the frequency measurements will be shown as " 1.234", 
" 12.34", "123.4", or "1234". 

The auto-scaled low-frequency counter needs an additional BCD adjustment circuit. It 
first checks whether the most significant BCD digit (i.e., the four MSBs) of a BCD sequence 
is zero. If this is the case, the circuit shifts the BCD sequence to the left four positions and 
increments the decimal point counter. The operation is repeated until the most significant 
BCD digit is not "0000". 

The complete auto-scaled low-frequency counter can be implemented as follows: 
1. Modify the period counter to use the microsecond tick. 
2. Extend the size of the binary-to-BCD conversion circuit. 
3. Derive the ASMD chart for the BCD adjustment circuit and the HDL code. 
4. Modify the control FSM to include the BCD adjustment in the last step. 
5. Design a simple decoding circuit that uses the decimal-point counter's output to 

activate the desired decimal point of the seven-segment LED display. 
6. Derive a testbench and use simulation to verify operation of the code. 
7. Synthesize the circuit, program the FPGA, and verify its operation. 

6.5.6 Reaction timer 

Eye-hand coordination is the ability of the eyes and hands to work together to perform a 
task. A reaction timer circuit measures how fast a human hand can respond after a person 
sees a visual stimulus. This circuit operates as follows: 

1. The circuit has three input pushbuttons, corresponding to the c l e a r ,  s t a r t ,  and s t o p  
signals. It uses a single discrete LED as the visual stimulus and displays relevant 
information on the seven-segment LED display. 

2. A user pushes the c l e a r  button to force the circuit to return to the initial state, in 
which the seven-segment LED shows a welcome message, "HI," and the stimulus 
LED is off. 

3. When ready, the user pushes the start button to initiate the test. The seven-segment 
LED goes off. 

4. After a random interval between 2 and 15 seconds, the stimulus LED goes on and 
the timer starts to count upward. The timer increases every millisecond and its value 
is displayed in the format of "0.000" second on the seven-segment LED. 

5. After the stimulus LED goes on, the user should try to push the s t o p  button as soon 
as possible. The timer pauses counting once the s t o p  button is asserted. The seven- 



segment LED shows the reaction time. It should be around 0.15 to 0.30 second for 
most people. 

6. If the s t o p  button is not pushed, the timer stops after 1 second and displays " 1 .00OU. 
7. If the s t o p  button is pushed before the stimulus LED goes on, the circuit displays 

"9.999" on the seven-segment LED and stops. 
Design the circuit as follows: 

1. Derive the ASMD chart. 
2. Derive the HDL code based on the ASMD chart. 
3. Synthesize the circuit, program the FPGA, and verify its operation. 

6.5.7 Babbage difference engine emulation circuit 

The Babbage difference engine is a mechanical digital computation device designed to 
tabulate a polynomial function. It was proposed by Charles Babbage, an English mathe- 
matician, in the nineteenth century. The engine is based on Newton's method of differences 
and avoids the need for multiplication. For example, consider a second-order polynomial 
f (n)  = 2n2 + 3n + 5. We can find the difference between f (n)  and f (n  - I ) :  

Assume that 71 is an integer and n  2 0. The f (n)  can be defined recursively as 

i f n  = 0 
f ( n ) = {  ? ( n - l ) + 4 n + l  i f n > o  

This process can be repeated for the 4n + 1 expression. Let g(n) = 4n + 1. We can find 
the difference between g(n) and g(n - 1) :  

The g(n) can be defined recursively as 

and f (n)  can be rewritten as 

Note that only additions are involved in the recursive definitions o f f  (n)  and g(n). 
Based on the definition of the last two recursive equations, we can derive an algorithm 

to compute f (n) .  TWO temporary registers are needed to keep track of the most recently 
calculated f (n) and g(n), and two additions are needed to update f (n)  and g(n). Assume 
that n  is a 6-bit input and interpreted as an unsigned integer. Design this circuit using the 
RT methodology: 

1. Derive the ASMD chart. 
2. Derive the HDL code based on the ASMD chart. 
3. Derive a testbench and use simulation to verify operation of the code. 
4. Synthesize the circuit, program the FPGA, and verify its operation. 
5. Let h(n) = n3 + 2n2 + 2n + 1. Use the method above to find the recursive rep- 

resentation of h(n) (note that three levels of recursive equations are needed for a 
three-order polynomial). Repeat steps 1 to 4. 
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CHAPTER 7 

SELECTED TOPICS OF VERILOG 

Since the main focus of this book is on digital design, we just introduce the minimal subset 
of Verilog and rely on some simple guidelines and templates. In this chapter, we examine 
several selected Verilog topics in more detail. Except for the last section, which provides 
an overview of simulation-related constructs, these topics are related to synthesis and help 
us to develop more sophisticated codes. This chapter can be skipped without affecting the 
remaining chapters. 

7.1 BLOCKING VERSUS NONBLOCKING ASSIGNMENT 

There are two kinds of assignments that can be used in an always block: blocking assignment 
and nonblocking assignment. Three simple guidelines were given in the earlier chapters: 

Separate the circuit into registers and combinational circuits. 
Select a proper template for the registers, which use nonblocking assignments inside. 
Use blocking assignments to describe the combinational circuits. 

We examine the two kinds of assignments and explain the rationale behind the guidelines 
in this section, and introduce an alternative coding style in the next section. 

7.1.1 Overview 

Blocking assignment The basic syntax of a blocking assignment is 

[var] = [expressionl ; 

FPGA Protoyping by Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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When the assignment is executed, the right-hand-side expression is evaluated and assigned 
to the left-hand-side variable without intenuption from any other statements. Thus, it 
"blocks" the other assignments until execution of the current assignment is completed. The 
behavior of the blocking assignment is similar to the variable assignment in the C language. 

Nonblocking assignment The basic syntax of a nonblocking assignment is 

[var] <= [expression] ; 

The behavior of a nonblocking assignment is more subtle and can best be explained from 
a hardware's perspective. Recall that an always block can be thought of as an abstract 
hardware part. Timing control constructs can be added to the block to model the propagation 
delays. When there is no explicit timing control, as in our synthesizable codes, an implicit 
hypothetical time step is used to model the delay. When an always block is activated, the 
right-hand-side expressions of nonblocking assignments are evaluated at the beginning of 
the time step. When the execution reaches the end of the always block (i.e., at the end 
of the time step), the evaluated values are assigned to the left-hand-side variables of the 
nonblocking assignment. The assignment is known as "nonblocking" since other statements 
can be executed between the evaluation and the assignment. 

Let x be the variable assigned in a nonblocking assignment. While the actual scheduling 
in the Verilog model is quite complex, the behavior of a nonblocking assignment can be 
interpreted as follows: 

The value of x is assigned to xent,, in the beginning of the always block. 
xeZLt  replaces x in left-hand-side variable. 
x,,,~,., replaces x in right-hand-side expressions. 
The value of x , , , ~  is assigned to x at the end of the always block. 

An interpretation is shown in the comments of the following code segment: 

a l w a y s  Q* 
b e g i n  / /  Xentry = X 

. . . 
end // x = x e z L t  

Example To understand the difference between the blocking and nonblocking assign- 
ments, let us reconsider the three-input and circuit discussed in Section 3.3.4. The code is 
repeated in Listing 7.1. It uses blocking assignments and the inferred circuit is shown in 
Figure 3.3(a). 

Listing 7.1 And circuit using blocking assignments 

module and-block 

( 
i n p u t  w i r e  a ,  b ,  c ,  
o u t p u t  reg  y 

5 1;  

a l w a y s  @* 
b e g i n  

y = a; 



I0 y = y & b ;  
y = y & c ;  

end 

endmodule  

The behavior of the assignments is similar to the sequential statements in the C language 
and y gets the values of a & b & c in the end. Note that the code is just for demonstration 
purposes. I t  is a poor practice to describe hardware using sequential semantics. 

If we replace the blocking assignments with nonblocking assignments, the revised code 
is shown in Listing 7.2. The interpretation of the use of y is shown as comments. 

Listing 7.2 And circuit using nonblocking assignments 

module a n d - n o n b l o c k  

( 
i n p u t  w i r e  a ,  b, c ,  
o u t p u t  r e g  y 

5 1;  

a l w a y s  Q* 
b e g i n  // y e n t r y  = Y 

y < = a ;  // y e x t t  = a 
10 y <= y & b ;  / /  y e x t t  = y e n t r y  & b 

y <= y & C; // Y e x z t  = Y e n t r y  & C 

end // .v = y e x , t  

endmodule  

Note that the first two assignments have no effect and the code is the same as 

a l w a y s  Q* 
y <= y & c ;  

The corresponding circuit diagram is shown in Figure 3.3(b) and it is not the desired circuit. 

7.1.2 Combinational circuit 

The example of the previous subsection is an extreme case. Except for the default value, 
most codes for combinational circuits do not assign the same variable multiple times. Both 
blocking and nonblocking assignments can be used to describe the same circuit. However, 
there are subtle differences. The following example explains the differences. Let us con- 
sider the 1-bit equality circuit discussed in Section 1.2. The revised code using blocking 
assignments is shown in Listing 7.3. We explicitly list the variables in the sensitivity list. 

Listing 7.3 Equality circuit using blocking assignments 

module eql-block 
( 
i n p u t  w i r e  i O ,  i 1 ,  
o u t p u t  r e g  eq 

5 1; 

r e g  p O ,  P I ;  



a l w a y s  @(iO,il) / /  o n l y  iO and i l  in  s e n s i t i v i t y  l i s t  
l o  / /  t h e  o r d e r  o f  s t a t e m e n t s  i s  i m p o r t a n t  

b e g i n  
PO = -iO & - i l ;  
pl = i 0  & i l ;  
eq = pO I p i ;  

I ?  end 

endmodule 

Note that the sensitivity list consists of only i O  and i l .  When one of them changes, the 
always block is activated, PO, p l ,  and eq are evaluated sequentially, and eq is updated at 
the end of the first time step. 

The order of the statements is important. Assume that we move the last statement to the 
beginning: 

a l w a y s  @(iO, ill 
b e g i n  

eq = pO I p i ;  
PO = -iO & - i l ;  
pl = i 0  & il; 

end 

In the first statement, since pO and p l  have not yet been assigned new values, the values 
from the previous activation will be used. The previous values infer latches and thus the 
code is not correct. 

We can replace the blocking assignments with nonblocking assignments, as shown in 
Listing 7.4. The interpretations of these assignments are shown as comments. 

Listing 7.4 Equality circuit using nonblocking assignments 

module eql-non-block 
( 
i n p u t  w i r e  i O ,  i l ,  
o u t p u t  r e g  eq 

s 1; 

a l w a y s  Q(iO,il,pO,pl) //pO,plalso~nsensitivitylist 
l o  // the order of statements is not important 

b e g i n  // P O W L ~ , ,  =PO; plent, ,  = p l ;  
pO <= - iO & - il ; / /  pOezzt = iO & i l ;  
pl <= iO & i l ;  / / p l , , , t = i O & i l  
eq <= PO I p l ; // eq,,,t =pO,,t,, Ipl,,t,, 

1 5  end / /  eq = eq,,,t;pO =pOeZt t ;p l  = p l e z Z t ;  

endmodule 

Note that pO and p l  are also included in the sensitivity list. When i O  or il changes, the 
always block is activated and the new values are assigned to pO and p i  in the end of the 
first time step. Since eq is based on the old values of pO and p l  (i.e., pOentry and pientry), 
it remains the same. After completion of the execution of the current time step, the always 
block is activated again because pO and p l  change (and this is the reason that pO and p l  are 



included in the sensitivity list). The eq variable is updated with the new values of pO and 
p l  at the end of the second time step. Note that the result will be the same if we change the 
order of these statements. 

While both codes describe the same circuits, it takes more time to simulate the code 
with nonblocking assignments. Because of this, the guideline recommends using blocking 
assignments to describe combinational circuits. 

7.1.3 Memory element 

In the memory element templates in Section 4.2, nonblocking assignments are used to infer 
memory. For example, the code for a D FF is 

a l w a y s  Q ( p o s e d g e  c l k )  
q <= d ;  

It is possible to infer a memory element using a blocking assignment, as in 

a l w a y s  Q ( p o s e d g e  c l k )  
q = d ;  

Although the code works properly for an isolated FF, there are some subtle problems when 
multiple registers interact with each other. 

Consider two registers that switch data in every clock cycle. With blocking assignments, 
the code becomes 

a l w a y s  Q ( p o s e d g e  c l k )  
a  = b ;  

a l w a y s  Q ( p o s e d g e  c l k )  
b  = a ;  

At the rising edge of c l k ,  both always blocks are activated and operated in parallel. The 
two operations should be completed in a time step. According to the Verilog standard, the 
execution of the two always blocks can be scheduled in any order. If the first always block is 
executed first, a gets the value of b immediately because of the blocking assignment. When 
the second always block is executed, b gets the updated value of a, which is its original 
value and thus its value remains the same. Similarly, a gets its original value if the second 
always block is executed first. This is known as a race condition in Verilog. From Verilog's 
point of view, both results are valid. 

Now let us revise the code with nonblocking assignments (the begin and end delimiters 
are added to accommodate the comments): 

a l w a y s  Q ( p o s e d g e  c l k )  
b e g i n  / /  bentTy = b 

a  <= b  ; // aez,t = bentry 

end / /  a = aer,t 

a l w a y s  Q ( p o s e d g e  c l k )  
b e g i n  - //  arnt7.y - a 

b  <= a ;  / /  bezit = sent,, 
end / /  b = b,,it 

The interpretation of blocking assignment is shown in the comments. Since the original 
entry values are used in assignments, both a and b get the correct values regardless of the 
order of execution. 



Figure 7.1 Circuits inferred by mixed assignment. 

Because the blocking assignments model the desired behavior and avoid the race con- 
dition, the templates in Section 4.2 always use nonblocking assignments to infer FFs and 
registers. 

7.1.4 Sequential circuit with mixed blocking and nonblocking assignments 

The memory element templates discussed in Section 4.2 are the simplest sequential codes. 
It is possible to put multiple assignments, including both blocking and nonblocking assign- 
ments, in the same always block. We use a simple example to explain the behaviors of 
various combinations and to better understand the assignments. 

Consider the circuit in Figure 7.l(b). It performs the and operation over a and b and 
stores the result to a D FF at the rising edge of the clock. Based on our previous approach, 
we can separate memory and the combinational circuit and derive the two-segment code, 
as shown in Listing 7.5. 

Listing 7.5 Two-segment implementation 

module ab-f f  -2seg  
( 

i n p u t  w i r e  clk, 
i n p u t  w i r e  a ,  b ,  

5 o u t p u t  r e g  q  

) ;  

r e g  q - n e x t ;  

10 // D FF 
a l w a y s  Q ( p o s e d g e  clk) 

q  <= q - n e x t ;  

// c o m b i n a t i o n a l  c i r c u i l  
15  a l w a y s  Q *  

q-next  = a  & b ;  

endmodule 



Alternatively, we can combine the two segments and describe the circuit in a single always 
block. Six attempts, with various combinations of blocking and nonblocking assignments, 
are made in Listing 7.6. 

Listing 7.6 Mixed assignment example 

module ab-f f  - a l l  
( 

i n p u t  w i r e  c l k ,  
i n p u t  w i r e  a ,  b ,  

5 o u t p u t  r e g  qO, q l ,  q 2 ,  q 3 ,  q 4 ,  q5 

1; 

r e g  abO, a b l ,  a b 2 ,  a b 3 ,  a b 4 ,  a b 5 ;  

lo  // attempt 0 
a l w a y s  Q ( p o s e d g e  c l k )  
b e g i n  

abO = a  & b ;  
qO <= abO; 

15 end 

// attempt I 
a l w a y s  Q ( p o s e d g e  c l k )  
b e g i n  // ablent,, = abl;  qlentTy = q l ;  

20 a b l  <= a  & b ;  / / a b l e z i t  = a & b  
q l  <= a b l ;  // qlezit = ablentry 

end // abl = ablezt t ;  q l  = qlezit  

/ /  attempt 2 
25 a l w a y s  Q ( p o s e d g e  c l k )  

b e g i n  
ab2 = a  & b ;  
q2 = a b 2 ;  

30 end 

/ /  attempt 3 (switch the order of attempt 0) 
a l w a y s  Q ( p o s e d g e  c l k )  
b e g i n  

35 q3 <= ab3 ;  
ab3 = a  & b ;  

end 

// attempt 4 (switch the order of attempt I) 
40 a l w a y s  Q ( p o s e Q g e  c l k )  

b e g i n  // ab4,,tTy = ab4; q4,,tTY = q4; 
q4 <= ab4 ;  // q4ezit = ab4entry 
ab4 <= a  & b  ; // ab4,,,t = a  & b 

end // ab4 = able,,t; q4 = q4,,it 
45 

// attempt 5 (switch the order of attempt 2) 
a l w a y s  Q ( p o s e d g e  c l k )  
b e g i n  
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q5 = a b 5 ;  
50 ab5 = a & b ;  

end 

endmodule 

In attempt 0, assignments to abO and qO infer two registers initially, one to store the 
registered abO and one to store the registered qO. Since abO is updated immediately by 
the blocking assignment, qO gets the value of a & b. The corresponding circuit diagram 
is shown in Figure 7.l(a). Since abO is not used outside the always block, the registered 
abO output is not needed and thus the corresponding register can be removed. The resulting 
diagram is shown in Figure 7.l(b), which is the desired circuit. 

In attempt 1 ,  a blocking assignment is used for abl. The corresponding interpretation 
is shown in the comments. Note that q l  gets abIent,,, not ablezit. The ablent,, is the 
previous stored value of abl and corresponds to the registered output. The corresponding 
diagram is shown in Figure 7.l(c). An unintended input buffer is inferred and the storage 
of a & b is delayed by one clock cycle. 

In attempt 2, blocking assignments are used for both ab2 and q2. The circuit inferred 
is identical to that in attempt 0, as shown in Figure 7.l(a) and (b). Since using blocking 
assignments to infer FFs may introduce a race condition, as discussed in Section 7.1.3, this 
type of code is not recommended. 

For demonstration purposes, let us examine what happens after switching the order of 
the assignments of attempts 0, 1, and 2. The results are shown in attempts 3, 4, and 5. 
In attempt 3, ab3 is used before it is assigned a new value. Thus, q3 gets the "previous 
value" from the earlier activation. The value is stored in a register and corresponds to the 
registered a & b. The inferred circuit corresponds to the diagram in Figure 7.l(c). In 
attempt 4, switching the order has no effect on the code, as explained by the interpretation 
in the comments. It is identical to the code in attempt 1. In attempt 5, ab5 is used before it 
is assigned a new value and thus q5 gets the registered a & b. It infers a circuit identical 
to that in attempt 3. 

In summary, only the code in attempt 0 describes the desired circuit correctly and reliably. 

7.2 ALTERNATIVE CODING STYLE FOR SEQUENTIAL CIRCUIT 

Our sequential code template follows the block diagram in Figure 4.2 and separates the 
register to an individual code segment. With an understanding of blocking and nonblocking 
assignments, we can merge the register and the next-state logic into a single always block. 
This style of coding tends to be more compact. The code should follow the approach of 
attempt 1 in Section 7.1.4: 

Use blocking assignments to obtain intermediate results ofthe next-state logic. These 
assignments should be sequenced in proper order. 
Use nonblocking assignments to assign the intermediate results to registers. 

In the following subsections, we use several examples to illustrate this style. 

7.2.1 Binary counter 

The free-running counter is discussed in Section 4.3.2. We can revise the code in Listing 4.9 
to combine the next-state logic and the register, as shown in Listing 7.7. 



Listing 7.7 Free-running binary counter with merged register and next-state logic 

module bin-counter-merge 
# ( p a r a m e t e r  N=8) 
( 

i n p u t  w i r e  clk, reset, 
5 o u t p u t  w i r e  max-tick, 

o u t p u t  w i r e  [N-1:Ol q 
) ;  

/ / s i g n a l  d e c l a r a t i o n  
l o  r e g  [N-1:Ol r-next, r-reg; 

// body  
// r e g i s t e r  and n e x t - s t a t e  l o g i c  
a l w a y s  @ ( p o s e d g e  clk, p o s e d g e  reset) 

1 5  i f  (reset) 
r-reg <= 0 ;  // { N { l b  ' 0 ) )  

e l s e  
b e g i n  

// n e x t - s t a t e  l o g i c  
r-next = r-reg + 1; 
// r e g i s t e r  
r-reg <= r-next; 

end  
// ott tpt t t  l o g i c  

25 a s s i g n  q = r-reg; 
a s s i g n  max-tick = (r-reg==2**N-1) ? l'bl : l J b O ;  

endmodule  

Note that the output logic description 

a s s i g n  max-tick = (r-reg==2**N-1) ? l'bl : l'bO; 

must be placed outside the always block. If it is within the block, an extra FF is inferred 
for max-tick and introduces a delay of one clock cycle. 

Since r n e x t  is not used in another place, we can merge the two statements 

r-next = r-reg + 1 ;  
r-reg <= r-next; 

into 

r-reg <= r-reg + 1; 

After we replace r-reg with q, the code can be simplified further, as shown in Listing 7.8. 

Listing 7.8 Free-running binary counter with compact code 

module bin-counter-terse 
# ( p a r a m e t e r  N=8) 
( 

i n p u t  w i r e  clk, reset, 
5 o u t p u t  w i r e  max-tick, 

o u t p u t  r e g  [N-1:Ol q 
1;  



// b o d y  
1 0  a l w a y s  Q ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  

i f  ( r e s e t )  
q  <= 0 ;  

e l s e  
q  <= q  + 1 ;  

15  / /  o u t p u t  l o g i c  
a s s i g n  m a x - t i c k  = (q==2**N-1) ? l ' b l  : l J b O ;  

e n d m o d u l e  

In this code, q in the right-hand-side expression is the output of the register and q on the 
left-hand side is the new value, which is stored to the register at the rising edge of the next 
clock. 

The universal binary counter in Listing 4.10 can be modified in a similar way and the 
code is shown in Listing 7.9. 

Listing 7.9 Universal binary counter with merged register and next-state logic 

module  u n i v - b i n - c o u n t e r - m e r g e d  
# ( p a r a m e t e r  N=8) 

( 
i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  s y n - c l r  , l o a d ,  e n ,  u p ,  
i n p u t  w i r e  [ N - 1 : O l  d ,  
o u t p u t  w i r e  m a x - t i c k ,  m i n - t i c k ,  
o u t p u t  r e g  [N-1:01 q  

) ;  
10 

/ /  body  
/ /  r e g i s t e r  and n e x t - s t a t e  l o g i c  
a l w a y s  Q (  p o s e d g e  c l k  , p o s e d g e  r e s e t  ) 

i f  ( r e s e t )  
q  <= 0 ;  / /  

e l s e  i f  ( s y n - c l r )  
q  <= 0 ;  

e l s e  i f  ( l o a d )  
q  <= d ;  

e l s e  i f  ( e n  & up  ) 
q  <= q  + 1 ;  

e l s e  i f  ( e n  & - u p  ) 
q  <= q  - 1 ;  

/ /  no e l s e  b r a n c h  s i n c e  q <= q i s  i m p l i c i t l y  i m p l i e d  

/ /  ozctput l o g i c  
a s s i g n  m a x - t i c k  = (q==2**N-1) ? l J b l  : l J b O ;  
a s s i g n  m i n - t i c k  = (q==O)  ? l ' b l  : l ' b O ;  

Note that the last else branch is omitted. It implies that q gets its previous value, i.e., 



This is exactly the desired behavior. 

7.2.2 FSM 

The state register and next-state logic of an FSM can be merged in a similar way. For 
example, consider the FSM in Listing 5.1. The revised code is shown in Listing 7.10. 

Listing 7.10 FSM with merged register and next-state logic 

module f sm-eg-merged 
( 

i n p u t  w i r e  clk, r e s e t ,  
i n p u t  w i r e  a ,  b ,  

5 o u t p u t  w i r e  y o ,  y l  
) ;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
p a r a m e t e r  [1 :0 ]  S O  = 2 ' b 0 0 ,  

1 0  s l  = 2 ' b 0 1 ,  
s 2  = 2 ' b l O ;  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [1:01 s t a t e - r e g ;  

I5 

// s t a t e  r e g i s t e r  and n e x t - s t a t e  l o g i c  
a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  r e s e t )  

i f  ( r e s e t )  
s t a t e - r e g  <= SO; 

e l s e  
c a s e  ( s t a t e - r e g )  

SO: i f  ( a )  
i f  ( b )  

s t a t e - r e g  <= s 2 ;  
e l s e  

s t a t e - r e g  <= s l ;  
e l s e  

s t a t e - r e g  <= SO; 
s l :  i f  ( a )  

s t a t e - r e g  <= SO; 
e l s e  

s t a t e - r e g  <= s l ;  
s 2 :  s t a t e - r e g  <= SO; 
d e f a u l t  s t a t e - r e g  <= SO; 

e n d c a s e  

// Moore o u t p u t  l o g i c  
a s s i g n  y l  = ( s t a t e - r e g = = s O )  I I ( s t a t e - r e g = = s l )  ; 

40 / /  Mealy o u t p u t  l o g i c  
a s s i g n  yo = ( s t a t e - r e g = = s O )  & a  & b ;  

endmodule  



Since the outputs are not registered, the corresponding statements must be placed outside 
the always block. 

7.2.3 FSMD 

We can apply the same approach to an FSMD as well. Consider the division FSMD example 
in Listing 6.5. The revised code is shown in Listing 7.1 1. 

Listing 7.11 Division FSMD with merged register and combinational circuit 

module d iv -combined  
# ( 

p a r a m e t e r  W = 8 ,  
CBIT = 4 / /  CBIT=log2 (W)+l 

5 

( 
i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  s t a r t ,  
i n p u t  w i r e  [W-1:Ol d v s r ,  d v n d ,  

1 0  o u t p u t  w i r e  r e a d y ,  d o n e - t i c k  , 
o u t p u t  w i r e  [W-1:Ol q u o ,  rmd 

1; 

/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
I S  l o c a l p a r a m  [1 :01  

i d l e  = 2 ' b 0 0 ,  
op = 2 ' b 0 1 ,  
l a s t  = 2 ' b 1 0 ,  
done = 2 ' b l l ;  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [ I :  01 s t a t e - r e g  ; 
r e g  [W-1:0] r h - r e g ,  r l - r e g ,  r h - t m p ,  d - r e g ;  
r e g  [CBIT -1 : 01 n - r e g  , n-nex t  ; 

s r e g  q - b i t ;  

// fsmd r e g i s t e r s  and n e x t - s t a t e  l o g i c  
a l w a y s  O ( p o s e d g e  c l k  , p o s e d g e  r e s e t  
b e g i n  

30 i f  ( r e s e t )  
b e g i n  

s t a t e - r e g  <= i d l e ;  
r h - r e g  <= 0 ;  
r l - r e g  <= 0 ;  
d - r e g  <= 0 ;  
n - r e g  <= 0 ;  

end 
e l s e  

b e g i n  
................................................ 

// d a t a  p a t h  f u n c t i o n a l  u n i t s  
// t o  g e t  i n t e r m e d i a t e  r e s u l t s  
................................................ 

// compare  and s u b t r a c t  c i r c u i t  



i f  ( r h - r e g  >= d - r e g )  
begin 

rh-tmp = r h - r e g  - d - r e g ;  
q - b i t  = l ' b l ;  

end 
e l s e  

begin  
rh-tmp = r h - r e g ;  
q - b i t  = l ' b O ;  

end 
// index  dec remen t  c i r c u i t  
n-next  = n- reg  - 1; 

// s t a t e  and d a t a  r e g i s t e r s  and n e x t - s t a t e  l o g i c  
................................................ 

case  ( s t a t e - r e g )  
i d l e  : 

begin 
i f  ( s t a r t )  

begin 
r h - r e g  <= 0 ;  
r l - r e g  <= dvnd;  // d i v i d e n d  
d-reg <= d v s r ;  // d i v i s o r  
n-reg <= C B I T ;  // index  
s t a t e - r e g  <= op ;  

end 
end 

op : 
begin 

// s h i f t  rh and r l  l e f t  
r l - r e g  <= { r l - r e g  [W-2:01 , q - b i t ) ;  
r h - r e g  <= {rh-tmp [w-2: O I  , r l - r e g  [W-11); 
// d e c r e a s e  index  
n- reg  <= n - n e x t ;  
i f  ( n - n e x t = = l )  

s t a t e - r e g  <= l a s t ;  
end 

l a s t :  // l a s t  i t e r a t i o n  
begin 

r l - r e g  <= { r l - r e g  [w-2:0l  , q - b i t 3 ;  
r h - r e g  <= rh- tmp;  
s t a t e - r e g  <= done ;  

end 
done : 

s t a t e - r e g  <= i d l e ;  
d e f a u l t  : s t a t e - r e g  <= i d l e ;  

endcase  
end 

end 
95 

/ /  o u t p u t  
a s s i g n  quo = r l - r e g ;  



a s s i g n  rmd = r h - r e g ;  
/ /  u n r e g i s t e r e d  o u t p u t  

loo a s s i g n  r e a d y  = ( s t a t e - r e g = = i d l e )  ; 
a s s i g n  d o n e - t i c k  = ( s t a t e - r e g = = d o n e )  ; 

endmodule 

The code is more complex and includes a section for data path functional units, which 
generates the intermediate results. Note that some intermediate variables, such as nnext, 
are used in multiple places later. 

7.2.4 Summary 

In summary, it is possible to merge the next-state logic and register in one always block. 
This style tends to be more compact and requires fewer variables. However, the code must 
be crafted carefully to avoid unintended registers. It is recommended only after we have a 
good comprehension of blocking and nonblocking assignments. 

7.3 USE OF THE SIGNED DATA TYPE 

7.3.1 Overview 

Depending on the nature of an application, we can use an unsigned integer, which consists of 
zero and the positive numbers, or a signed integer, which consists of zero and both negative 
and positive numbers, in a digital system. We may even need to use both types in a complex 
system. 

The signed integer is usually represented in 2's-complement format. A 4-bit "binary 
wheel" is shown in Figure 7.2, which lists the binary representations and the corresponding 
unsigned and signed numbers. Close observation shows that the addition and subtraction 
operations are identical for the two types of numbers. The addition and subtraction of a 
positive amount corresponds to moving clockwise and counterclockwise along the wheel. 
For example, " 100 1 "+"0 100" means to move four positions clockwise from " 100 1 " and the 
result is " 1 101 ". In the unsigned integer format, it is interpreted as (+9) + (+4) = + 13, and 
in the signed integer format, it is interpreted as (-7) + (+4) = -3. The overflow in addition 
corresponds to a move over the "threshold" of the binary wheel. Note that the thresholds 
are different for the unsigned and signed interpretations. It is between " 1 11 1" and "0000" 
for the unsigned integer and between "01 1 1" and " 1000" for the signed integer. 

The behavior of a physical adder or subtractor is just like the movement in the binary 
wheel. The same circuit can be applied to both unsigned and signed formats as long as all 
operands and the result have the same bit length. For example, let a, b, and sum be three 
8-bit signals. The statement 

sum = a  + b ;  

infers the same hardware and uses the same binary representations regardless of whether 
these signals are interpreted as unsigned or signed format. This observation is also correct 
in other arithmetic operations (however, it cannot be applied for nonarithmetic operations, 
such as relational operations or overflow status generation). 

On the other hand, we need to distinguish the format when the operands or the result have 
different bit lengths. This is due to the different requirements in width extension. The 0's 
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Figure 7.2 Four-bit binary wheel. 

are appended to the front for the unsigned format, which is known as zero extension, but 
the sign bits are appended to the front for the signed format, which is known as sign 
extension. For example, the 4-bit representation of -5 is "101 1". It becomes " 1 1 1 1-101 1 ", 
not "0000-101 1" when extended to 8 bits. 

For example, let a and sum be two 8-bit signals and b be a 4-bit signal, b3b2bl bO. The 
statement 

sum = a + b ;  

requires b to be extended to 8 bits. The extended b becomes 0000b3b2b1bo if it is in the 
unsigned format but becomes b3b3b3b3b3b2blb0 if it is in the signed format. The inferred 
hardware for this statement consists of the width extension circuit and an adder. Since 
the extension circuit is different for the unsigned and signed formats, the statement infers 
different hardware implementations for the unsigned and signed formats. 

7.3.2 Signed number in Verilog-1995 

In Verilog- 1995, only the integer data type is interpreted as a signed number, and the reg 
and wire data types are interpreted as unsigned numbers. Since the integer data type has a 
fixed size (usually 32 bits), it is not flexible. To achieve the signed operation, we frequently 



need to manipulate the code manually. The signed and unsigned operations are illustrated 
in the following code segment: 

r e g  [7:01 a ,  b; 
r e g  [3:01 c ;  
r e g  [7: 01 suml , sum2, sum3, sum4; 

/ /  same w i d t h ,  can  be  a p p l i e d  t o  s i g n e d  and u n s i g n e d  
suml = a + b ;  
// a u t o m a t i c  0 e x t e n s i o n  
sum2 = a + c ;  
/ /  rnanztal 0 e x t e n s i o n  
sum3 = a + {4(l'b0), c); 
/ /  manual  s i g n  e x t e n s i o n  
sum4 = a + (4CcC313, c l ;  

In the first statement, a, b, and suml have identical width and thus infer the same adder 
circuit regardless of whether they are interpreted as unsigned or signed numbers. 

In the second statement, c is only 4 bits wide. Its bit length is adjusted according to the 
rules discussed in Section 3.2.8. Since the reg type is treated as an unsigned number, zero 
extension is performed and four zeros are appended in front of c. 

In the third statement, we manually append four zeros in front of c and achieve the same 
effect as in the previous statement. 

In the fourth statement, we interpret the variables as signed numbers. To achieve the 
desired behavior, c must be sign-extended to 8 bits. This can only be done manually. In 
the code, we replicate the MSB of c four times (i.e., 4{c [31)) to create the sign-extended 
8-bit number. 

7.3.3 Signed number in Verilog-2001 

In Verilog-2001, the signed format is extended to the reg and wire data types. This is done 
by adding the keyword, signed, in declaration, as in 

r e g  s i g n e d  [7: 01 a ,  b; 

With the signed data type, the previous code segment can be revised as 

reg  s i g n e d  [7:01 a ,  b; 
r e g  s i g n e d  [3:01 c ;  
r e g  s i g n e d  [7:01 suml , sum4; 
. . .  
// same w i d t h ,  can  be a p p l i e d  l o  s i g n e d  and u n s i g n e d  
suml = a + b; 
// a u t o m a t i c  s i g n  e x t e n s i o n  
sum4 = a + c ;  

The first statement infers a regular adder since a, b, and suml have identical bit length. The 
signed data type just helps us to be aware of the interpretation of the binary representation. 

In the second statement, all variables in the right-hand-side expression are with the 
signed data type and c is sign-extended to 8 bits automatically. Thus, we don't need to pad 
the variable manually. 

In a small digital system, we usually use either unsigned or signed format. However, 
a larger system may contain subsystems of different formats. Verilog is a loosely typed 
language and the unsigned and signed variables can be mixed in the same expression. 
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According to the Verilog standard, the sign extension is performed only if all variables in 
the right-hand-side expression are with the signed data type. Otherwise, zero extension is 
performed for all variables. Consider the code segment 

r e g  s i g n e d  [7:01 a, sum; 
r e g  s i g n e d  [3:01 b ;  
r e g  [3:01 c; 
. . . 
sum = a + b + c; 

Since c is not with the signed data type, the variables in the right-hand-side expression, b 
and c, are zero extended. 

Verilog consists of two system functions, $signed( ) and $unsigned( ), which convert 
the enclosed expression to the signed and unsigned data types, respectively. For example, 
we can convert the data type of c in the preceding statement: 

sum = a + b + $ s i g n e d  (c); 

Now all three variables in the right-hand-side expression are with the signed data type and 
thus b and c are sign extended. 

Mixed signed and unsigned data types in a complex expression can introduce subtle 
errors and should be avoided. If it is really necessary, the expression should be kept simple 
and the conversion functions should be used to ensure the consistency of the data type. 

7.4 USE OF FUNCTION IN SYNTHESIS 

7.4.1 Overview 

In a Verilog module, some expressions may occur at many places. Instead of repeating the 
code, the commonly used part should be abstracted into a routine. This can be achieved by 
defining functions within a module. A Verilog function takes one or more input arguments 
and returns a single value. During synthesis, the functions are expanded and "flattened" 
and mapped to hardware. Thus, for synthesis purposes, functions should be kept simple 
and treated as shorthand for a complex expression. The basic syntax of a function is 

module 
. . .  
// f u n c t i o n  d e f i n e d  w i t h i n  m o d u l e  
f u n c t i o n  [result-type] [func-id] ([input-argl) ; 

b e g i n  
[statements] ; 

end 
e n d f u n c t i o n  
. . .  
endmodule  

A function is defined within the function and endfunction delimiters. The optional 
[result-type] specifies the data type of the returned result, which is usually reg with 
range or integer. The input arguments are declared in [input-argl and the name of the 
function is specified by [f unc-id] . A function is described by the statements and the result 
is returned by a statement like 



7.4.2 Examples 

Consider the binary-to-BCD conversion circuit in Listing 6.6. During the conversion, each 
BCD digit needs to be incremented in a specific way. To make the FSMD portion clear, we 
use a separate segment in code: 

module . . . 
. . . 
a s s i g n  bcd0-tmp = (bcdO-reg > 4) ? bcdO_reg+3 : bcd0-reg; 
a s s i g n  bcdl-tmp = (bcdl-reg > 4) ? bcdl_reg+3 : bcdl-reg; 
a s s i g n  bcd2-tmp = (bcd2-reg > 4) ? bcd2_reg+3 : bcd2-reg; 
a s s i g n  bcd3-tmp = (bcd3-reg > 4) ? bcd3_reg+3 : bcd3-reg; 

endmodule 

Instead of repeating the same expression four times, we can define a function, b a 0 ,  for 
this purpose. The revised code segment becomes 

module . . . 

a s s i g n  bcd0-tmp = ba(bcd0-reg) ; 
a s s i g n  bcdl-tmp = ba(bcd1-reg) ; 
a s s i g n  bcd2-tmp = ba(bcd2-reg) ; 
a s s i g n  bcd3-tmp = ba(bcd3-reg) ; 
. . .  
// f u n c t i o n  d e f i n i t i o n  ( b a :  bcd a d j u s t )  
f u n c t i o n  [3: 11 b a ( r e g  [3:0] bcd-in) ; 
b e g i n  

ba = (bcd-in > 4) ? bcd-in + 3 : bcd-in; 
end 
e n d f u n c t i o n  
. . .  

endmodule 

The function b a 0  (for BCD adjust) is defined in the end. It takes a 4-bit argument and 
returns a Cbit result. We can use this function to replace the previous expression. In fact, 
we can use bc (bcdoreg) to substitute bcd0-tmp directly and eliminate these variables 
from the code. 

Another common application of a function is to calculate the constants whose values 
depend on other parameters. Consider the mod-m counter discussed in Listing 4.1 1. There 
are two parameters: M, which specifies the m value, and, N, which specifies the number of 
bits needed in the counter. The value of N is [log, M1 and should not be an independent 
parameter. A better approach is to specify N as a local constant and calculate its value 
inside the module. This can be achieved by using a function. The modified code is shown 
in Listing 7.12. 

Listing 7.12 Mod-m counter with function 

module mod-m-counter-f c 
# ( p a r a m e t e r  M=10) // mod-M 
( 

i n p u t  w i r e  clk, reset, 
5 o u t p u t  w i r e  max-tick , 

o u t p u t  w i r e  [log2 (M) -1 :O] q 
) ;  
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/ / s i g n a l  d e c l a r a t i o n  
10 localparam N = l og2 (M);  // number o f  b i t s  f o r  M 

reg [N-1:0]  r - r e g ;  
wire CN-1: 01 r - n e x t  ; 

// body 
I 5  // r e g i s t e r  

always Q ( p o s e d g e  c l k ,  posedge r e s e t )  
i f  ( r e s e t )  

r - r e g  <= 0 ;  
e l s e  

20 r - r e g  <= r - n e x t ;  

// n e x t - s t a t e  l o g i c  
a s s i g n  r - n e x t  = ( r - r e g = = ( M - 1 ) )  ? 0  : r - r e g  + 1 ;  
// o u t p u t  l o g i c  

25 a s s i g n  q = r - r e g ;  
a s s i g n  max- t i ck  = ( r - reg==(M-1) )  ? 1 7 b l  : l 'bO;  

// l o g 2  c o n s t a n t  f u n c t i o n  
f u n c t i o n  i n t e g e r  l o g 2  ( i n p u t  i n t e g e r  n )  ; 

30 i n t e g e r  i ;  
begin  

l o g 2  = 1 ;  
f o r  (i = 0 ;  2 * * i  < n ;  i = i + 1)  

l o g 2  = i + 1 ;  
35 end 

endfunct ion  

endmodule 

A function, log2 ( ) , which computes [log, (x) l  , is defined inside the module and used 
to obtain the local parameter N. Since the computation is performed when the code is 
elaborated, the value is determined before synthesis and no physical circuit will be inferred 
for this function. 

7.5 ADDITIONAL CONSTRUCTS FOR TESTBENCH DEVELOPMENT 

Since our focus is mainly on hardware development, we examine only a small synthesizable 
subset of Verilog and use two basic testbench templates for verification. Although detailed 
coverage of the Verilog language and testbench is beyond the scope of this book, in this 
section we provide a brief overview of several language constructs that help us to develop 
a more sophisticated testbench. 

Unlike the synthesizable code, the testbench code is fed to a simulator and executed on 
a host computer. We can include complex language constructs and sequential algorithms 
in the code. Many of Verilog constructs resemble those in the C language and can be used 
in a similar way. 



7.5.1 Always block and initial block 

Verilog has two types of procedural blocks: always block and initial block. An always block 
contains procedural statements inside and models an abstract circuit part. We examine one 
special type of always block in Section 3.3. It is intended for synthesis. The block has 
a sensitivity list but contains no other explicit timing control constructs. Activation and 
execution of the always block are trigged by the designated events of the sensitivity list. 

For modeling purposes, an always block can contain timing constructs to specify the 
relevant propagation delays of various constructs or to wait for a specific event. The sen- 
sitivity list can sometimes be omitted. For example, we can use the following segment to 
model a clock signal, which alternates between 0 and 1 every 20 time units and runs forever. 

a l w a y s  
b e g i n  

clk = l'bl; 
#20; 
clk = l'bO; 
#20; 

end 

An initial block also contains procedural statements inside. However, it is executed only 
once at the beginning of simulation. The simplified syntax is 

i n i t i a l  
b e g i n  

[procedural statements] 
end 

An initial block is frequently used to set the initial values of variables. In Listing 1.7, it is 
used to generate the entire testing sequence. The "run-once" behavior of an initial block 
usually cannot be synthesized. 

7.5.2 Procedural statements 

Procedural statements are used within initial blocks, always blocks, functions, and tasks. 
Commonly used procedural statements are 

a Blocking assignment 
a Nonblocking assignment 
a If statement 
a Various case statements 
a Various loop statements 

We discuss the blocking and nonblocking assignments in Section 7.1 and the if and case 
statements in Sections 3.4 and 3.5. 

Verilog supports four loop constructs: for, while, repeat, and forever. The simplified 
syntax of the for loop is 

f o r  ([initial-assignment]; [end-condition]; [step-assignment]) 
b e g i n  

[procedural-statements;] 
end 

For example, we can clear the content of a 16-word register file: 

i n t e g e r  i ;  



for (i=O; i<16; i=i+l) 
reg-file [il = 0 ;  

Note that the begin and end delimiters can be omitted if there is only one statement inside 
the body. 

The simplified syntax of the while loop is 

while ([end-condition]) 
begin 

[procedural-statements ; I  
end 

The statements in the loop body are repeated continuously until the condition specified 
by the [end-condition] expression is met. For example, the previous clearing register 
operation can also be done with a while loop: 

integer i ;  
. . .  
i=O; 
while (i(16) 
begin 

reg-file [i] = 0; 
i = i + 1 ;  

end 

The simplified syntax of the repeat loop is 

repeat([number]) 
begin 

[procedural-statements ; I  
end 

The statements in the loop body are repeated a specific number of times, which is specified 
by [number]. For example, the previous operation can also be done with a repeat loop: 

integer i ;  
. . .  
i=O; 
repeat (16) 
begin 

reg-file [i] = 0 ;  
i = i + 1 ;  

end 

The simplified syntax of the forever loop is 

forever 
begin 

[procedural-statements ; I  
end 

The forever loop, as its name shows, repeats its body until the end of the simulation. 
The loop body usually contains certain timing control constructs and thus is suspended 
periodically. For example, the following segment is another way to describe a clock signal, 
which toggles its value every 10 time units and runs forever. 



i n i t i a l  beg in  
clk = l'bO; 
f o r e v e r  

#I0 clk = -elk; 
end 

7.5.3 Timing control 

In a testbench, we must specify the time that various signals are activated and deactivated 
or wait for certain events or conditions. There are three timing control constructs: 

Delay control: # [delay-time1 
Event control: Q ( [eventl , [eventl , . . . 1 
Wait statement: wait ( ~boolean~expressionl 1 

In addition, a compiler directive, 'timescale, is also related to the timing specification. 

7.5.4 Delay control 

Delay control is indicated by the # symbol, followed by the amount of the time unit to be 
delayed. It delays execution of a procedural statement by the amount specified. 

If the delay control is placed on the left-hand side, execution of the entire statement is 
delayed. For example, consider the segment 

Assume that the current simulation time is t. The statements mean that a gets 0 at t + 10 
and after another 5 time units (i.e., at t + 15) the a I b expression is evaluated and the result 
is assigned to y. 

If the delay control is placed on the right-hand side, the expression is executed immedi- 
ately but the assignment to the left-hand-side variable is delayed. Consider the segment 

Again, a gets 0 at t + 10. The a I b expression is evaluated immediately (i.e., at t + 10) but 
the result is assigned to y at t + 15. 

Instead ofmodeling the propagation delay, we generally use the delay control to generate 
a stimulus in the testbench. The following format makes the code more intuitive: 

a = l J b O ;  / /  a  g e t s  0 
#lo; // t h e  0 v a l u e  l a s t s  10 t i m e  u n i t s  
a = 1 'bl; // a  c h a n g e s  t o  I 
#5 // t h e  1 v a l u e  l a s t s  5 t i m e  u n i t s  
a = 1' b O ;  // a  c h a n g e s  t o  0 
#20 // t h e  0 v a l u e  l a s t s  20 t i m e  u n i t s  



7.5.5 Event control 

Event control is indicated by the @ symbol, followed by the sensitivity list, which specified 
the desired events. The event control is similar to that used in an always block. An event 
is the occasion that a signal in the sensitivity list changes its value (i.e., a signal transition). 
The posedge and negedge keywords can be added to specify the desired transition edge 
(i.e., rising edge or falling edge). In a testbench, the execution is suspended until one of 
the specified events occurs. One common application of event control is to synchronize the 
stimulus generation with a clock signal. For example, the following segment activated the 
enable signal, en, for one clock cycle: 

localparam delta=l; 
. . .  
Q(posedge clk) // w a i t  f o r  t h e  r i s i n g  e d g e  o f  c l k  
#delta; / /  w a i t  f o r  d e l t a  t o  a v o i d  h o l d - t i m e  v i o l a t i o n  
en = l'bl; / /  a s s e r t  en t o  1 
Q(posedge clk) / /  w a i t  f o r  t h e  n e x t  r i s i n g  e d g e  o f  c l k  
#delta; // w a i t  f o r  d e l t a  t o  a v o i d  h o l d - t i m e  v i o l a t i o n  
en = l'bO; / /  d e a s s e r t  e n  t o  0 

Alternatively, we can also assert and deassert en at the falling edge of the clock signal: 

Q(negedge clk) // w a i t  f o r  t h e  f a l l i n g  e d g e  o f  c l k  
en = l'bl; / /  a s s e r t  e n  t o  I 
Q(negedge clk) / /  w a i t  f o r  t h e  n e x t  f a l l i n g  e d g e  o f  c l k  
en = l'bO; / /  d e a s s e r t  e n  t o  0 

7.5.6 Wait statement 

The wait statement waits for a specific condition. The simplified syntax is 

wait [boolean-expression] 

Execution of the subsequent statements is suspended until the condition specified by the 
[boolean-expression] term is evaluated to be true. For example, we can write code like 

wait (state==READ && men-ready==l 'bl) [statement-to-get-data] ; 

We can also use the wait statement to suspend the execution. For example, we can wait for 
a counter to reach 15 and then activate certain signals: 

wait (counter==4'bl111); // w a i t  u n i t  c o u n t e r  i s  15  
. . . // c o n t i n u e  

The wait statement is somewhat similar to the event control. The latter waits for the 
transition edges of certain signals and the former waits for a specific condition and is 
sometimes known as level-sensitive. 

7.5.7 Timescale directive 

Compiler directives are used to control the compiling and processing of Verilog code. They 
are preceded by the grave accent mark (0, which is usually located in the top-left comer 
of the keyboard. A timing-related directive is the ' timescale directive, whose syntax is 



' t imesca le  [t ime-unit]  / [ t ime-precis ion]  

The [t ime-unit]  term specifies the unit of measurement for time and delays and the 
[t ime-precision] term specifies the "resolution" of simulation. 

For example, the directive 

' t imesca le  10 n s  / 1 ns  

indicates that he simulation unit is 10 ns and the resolution is 1 ns. When a delay is specified 
in the code, as in 

it indicates that the actual delay is 50 ns (i.e., 5 * 10 ns). 
The delay specification can be a fraction of a unit, as in 

which indicates that the actual delay is 5 1.2345 ns. Since the precision is 1 ns, the number is 
rounded to 5 1 ns in simulation. Finer precision can increase the accuracy of the simulation 
but may reduce the simulation speed. 

The number portion of the [t ime-unit]  and [ t ime-precis ion]  terms can be 1, 10, 
or 100, and the time units can be s (second), ms (millisecond), us (microsecond), ns 
(nanosecond), ps (picosecond), or fs (femtosecond). 

7.5.8 System functions and tasks 

Verilog has a set of predefined system functions and tasks. They perform system-related 
operations, such as simulation control and file access. Their names begin with a dollar sign 
($). We examine several commonly used functions and tasks in this subsection. 

Data type conversion functions The $unsigned and $signed functions perform the 
conversion between the unsigned and signed data types. Their use is discussed in Sec- 
tion 7.3. 

Simulation time functions Simulation time functions return the current simulation 
time. The $time, Sstime, and $realtime functions return the time as a 64-bit integer, a 
32-bit integer, and a real number, respectively. 

Simulation control tasks There are two simulation control tasks: $finish and $stop. 
The $finish task terminates the simulation and exits the simulation program. The $stop task 
suspends simulation. In ModelSim, it returns simulation to the interactive mode. In our 
development flow, we usually stay within the ModelSim environment to do further editing 
or to examine the waveform, and thus $stop is used in the code. 

Display tasks The development flow discussed in Section 2.4 resembles doing an ex- 
periment at a lab bench. The simulated result is shown in waveform format in ModelSim, 
which emulates a logic analyzer used at a lab bench. An alternative is to display the results 
in textual format. The four main display system tasks are $display, $write, $strobe, and 
$monitor. They have similar syntax and display the text during simulation. In ModelSim, 
the text is shown in the console panel. 

The format of $display is similar to the print function in the C language. Its simplified 
syntax is 
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$ d i s p l a y  ([format-string] , [argument], [argument], . . . ) ;  

The Cf ormat-string1 term contains regular character and "escape sequences" to specify 
the format of the corresponding arguments. When the string is displayed, the values of the 
corresponding arguments are substituted into the string and shown in the designated format. 
For example, in the the statement 

$ d i s p l a y  ("at %d; signal x = %bb", $ t i m e ,  x); 

%d and %b are escape sequences and specify that current simulation time and x are to be 
displayed in the decimal and binary formats, respectively. The rustling display looks like 

at 5100; signal x = OO11OOO1 

The commonly used escape sequences in our simulation include %d, %b, %o, %h, %c, 
%s, and %g, which are for decimal, binary, octal, hexadecimal, character, string, and real 
number, respectively. 

The $write task is almost identical to the $display task except that $write does not add 
a newline character in the end. The output of the display-related task continues from the 
current position. The newline character, \n, must be added to the string manually to create 
a line break. 

Verilog incorporates the concept of a time step to model the propagation delay, as dis- 
cussed in Section 7.5.7. Many activities can take place within a time step. The $strobe task 
is similar to the $display task. Instead of being executed immediately, the $strobe task is 
executed at the end of the current simulation time step. It avoids mismatched data display 
due to the race condition. 

The $monitor task is a very versatile command. Whereas the $display, $write, or 
$strobe task displays the text once every time it is executed, the $monitor task displays 
text when an argument changes its value. The $monitor task provides a simple and flexible 
way to keep track of the simulation. For example, we can add the following segment to the 
testbench in Listing 1.7: 

i n i t i a l  
b e g i n  

$ d i s p l a y  ("time test-in0 test-in1 test-out " 1  ; 
$ m o n i t o r  ("%d %b % b %b" , 

$ t i m e ,  test-in0 , test-in1 , test-out) ; 
end 

The textual simulation result is displayed in the control console panel: 

time 
0 

200 
400 
600 
800 
1000 
1200 

tes t - in1 test-out  
00 1 
00 0 
11 0 
10 1 
00 0 
I1 1 
01 0 

File I/O system functions and tasks Verilog provides a set of functions and tasks 
to access external data files. A file can be opened and closed by the $fopen and $fclose 
functions. The simplified syntax of using $fopen is 

[mcd-name] = $ f o p e n  ( "  [f ile-name1 " )  ; 
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The $fopen function returns a 32-bit multichannel descriptor associated with the file. The 
descriptor can be thought of as a 32-bit flag, in which each bit represents a file (i.e., a 
channel). The LSB is resewed for the standard output (i.e., the console). When the function 
is called and the file is opened successfully, it returns a descriptor value with one bit asserted. 
For example, 0 .  . .0010 is returned for the first opened file, 0 .  . .0100 is returned for the 
second opened file, and so on. The function returns all 0's if the open operation fails. 

Once a file is opened, we can write data to the file with four modified display system 
tasks: Sfdisplay, Sfwrite, Sfstrobe, and $fmonitor. These tasks are similar to the original 
ones except that a multichannel descriptor is used as the first argument, as in 

A simple example segment is shown in Listing 7.13. 

Listing 7.13 File write example 

i n t e g e r  l og - f  i l e  , b o t h - f  i l e  ; 
l o c a l p a r a m  con-f  i l e = 1 6  ' h 0 0 0 0 ~ 0 0 0 1 ;  // c o n s o l e  

i n i t i a l  
5 beg in  

l o g - f  i l e  = Sfopen  ( " m y - l o g " )  ; 
i f  ( l o g - f  i l e  ==O) 

S d i s p l a y ( " F a i 1  t o  open  l o g  f i l e " ) ;  // w r i t e  c o n s o l e  
b o t h - f i l e  = l o g - f i l e  I c o n - f i l e ;  

l o  

/ /  w r i t e  t o  b o t h  c o n s o l e  and  l o g  f i l e  
S f d i s p l a y  ( b o t h - f i l e  , " S i m u l a t i o n  s t a r t e d " )  ; 
. . . 
/ /  w r i t e  t o  l o g  f i l e  o n l y  

I S  S f d i s p l a y  ( l o g - f  i l e  , . . . )  ; 

/ /  w r i t e  t o  b o t h  c o n s o l e  and  l o g  f i l e  
S f d i s p l a y  ( b o t h - f  i l e  , " S i m u l a t i o n  e n d e d " )  ; 
S f c l o s e  ( l o g - f  i l e )  ; 

zo end 

Note that we can create a descriptor by performing a bitwise or operation over the 
multichannel descriptors, as for the b o t h f  i l e  variable. When b o t h f  i l e  is used, the 
text will be written to the console and the log file. 

There are two simple system tasks to retrieve data from an external file: $readmemb 
and Sreadmemh. These tasks assume that the external file stores the content of a memory 
array and reads the content into a variable. The Sreadmemb and Sreadmemh tasks fur- 
ther assume that the content is in the binary and hexadecimal formats, respectively. The 
simplified syntax is 

$readmemb("  [ f  i l e - n a m e ]  " , [ m e m - v a r i a b l e ] )  ; 
$readmemhcu [ f  i l e - n a m e ]  " , [ m e m - v a r i a b l e ] )  ; 

The following code segment illustrates the retrieval of an 8-by4 memory array: 

r e g  C3: 01 v-mem [O: 71 ; 
. . . 
$readmemb ( "  v e c t o r .  t x t  " , v-mem) ; 
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The file should contain eight 4-bit binary data separated by white spaces. 
With the file operation functions and tasks, it is possible to use external files to specify 

the test patterns and to record the simulation result. Consider the testbench in Listing 1.7. 
We can modify it using file operations, as shown in Listing 7.14. 

Listing 7.14 Testbench based on file operation 

' t i m e s c a l e  1  n s / l O  p s  

module eq2-f  i l e - t b  ; 
// s i g n a l  d e c l a r a t i o n  

5 reg  [1 :0]  t e s t - i n 0 ,  t e s t - i n l ;  
w i r e  t e s t - o u t  ; 
i n t e g e r  l og - f  i l e  , c o n s o l e - f  i l e  , o u t - f  i l e  ; 
reg  [ 3 :  01 v-mem CO: 71 ; 
i n t e g e r  i ;  

10 

/ /  i n s t a n t i a t e  t h e  c i r c u i t  under  t e s t  
eq2-sop u u t  

( . a ( t e s t - i n O ) ,  . b ( t e s t - i n l ) ,  . a e q b ( t e s t - o u t ) ) ;  

1 5  i n i t i a l  
b e g i n  

// s e t u p  o u t p u t  f i l e  
l o g - f  i l e = $ f o p e n  ( "  e q l o g  . t x t  " )  ; 
i f  ( ! l o g - f  i l e )  

20 $ d i s p l a y  ( "Canno t  open l o g  f i l e " ) ;  
c o n s o l e - f i l e  = 32'hOOOO-0001; 
o u t - f  i l e  = l o g - f  i l e  1 c o n s o l e - f  i l e  ; 

// r e a d  t e s t  v e c t o r  
25 sreadmemb ( "  v e c t o r .  t x t  " , v-mem) ; 

// t e s t  g e n e r a t o r  i t e r a t i n g  t h r o u g h  8 p a t t e r n s  
f o r  ( i = O ;  i < 8 ;  i = i + l )  

b e g i n  
30 { t e s t - i n 0  , t e s t - i n l )  = v-mem [ i l  ; 

#200 ;  
end 

// s t o p  s i m u l a t i o n  
35 $ f c l o s e  ( l o g - f  i l e )  ; 

$ s t o p  ; 
end 

/ /  t e x t  d i s p l a y  
40 i n i t i a l  

b e g i n  
$ f d i s p l a y  ( o u t - f  i l e  , " t i m e  t e s t - i n 0  t e s t - i n 1  t e s t - o u t " ) ;  
S f d i s p l a y  ( o u t - f  i l e  , " ( a )  ( b  ( a e q b )  "1;  
S f m o n i t o r  ( o u t - f  i l e  , "%10d % b  %b % b " ,  

45 $ t i m e ,  t e s t - i n 0  , t e s t - i n 1  , t e s t - o u t )  ; 
end 
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endmodule 

The test patterns are specified in 4-bit binary format and are stored in the v e c t o r .  t x t  
file. The content of the file is 

The file is read into the two-dimensional vAem variable. The test pattern generator uses a 
for loop to iterate through the eight patterns. The simulated result is written to the console 
and the log file, eqlog . t x t .  The content of the log file is 

t ime t e s t - o u t  
(aeqb) 

I 
0 
0 
1 
0 
1 
0 
0 

The log file is a regular text file and can be examined later by any text editor. 

7.5.9 User-defined functions and tasks 

A comprehensive testbench can be lengthy and involved. One way to manage the complexity 
is to divide the code into smaller portions. The functions and tasks can help us to achieve 
this. We discuss Verilog functions in Section 7.4. A function takes input arguments and 
returns a single value. When called, a function is executed immediately and thus no timing 
control construct is allowed within the function. 

A task is more flexible and versatile. It can have input, output, and bidirectional argu- 
ments and can incorporate timing control constructs. Multiple values can be returned via 
the output and bidirectional arguments. As with a function, a task must be declared within 
a module. The basic syntax of a task is 

t a s k  [task-id] ([arg] ; 
b e g i n  

[statements] ; 
end 

e n d t a s k  

The [argl term is the argument declaration. Its format is similar to the port declaration 
of a module except that the default data type is reg and the wire data type cannot be used. 
The example in Listing 7.15 shows the modeling of a 2-bit equality comparator using a 
task. 



Listing 7.15 Two-bit comparator using a task 

module e q 2 - t a s k  
( 
i n p u t  w i r e  [1 :01  a ,  b ,  
o u t p u t  r e g  aeqb  

5 ) ;  

r e g  eO, e l ;  

a l w a y s  O *  
10 b e g i n  

e q u - t s k ( 2 ,  a [ O l ,  b [ 0 1 ,  e O ) ;  
e q u - t s k ( 2 ,  a l l ]  , b [ l l  , e l )  ; 
aeqb  = eO & e l ;  

end 
15 

/ /  task definition 
t a s k  e q u - t s k  

( 
i n p u t  i n t e g e r  d e l a y ,  

20 i n p u t  i O ,  i l ,  
o u t p u t  e q l  

) ;  
b e g i n  

# d e l a y  e q l  = ( - i ~  & " i l )  I ( i O  & i l ) ;  

2 5  end 
e n d t a s k  

endmodule  

Note that the propagation delay of the operation is specified by #delay and its value is 
passed into the task via the delay argument. 

For comparison purposes, we rewrite the code using a function, as shown in Listing 7.16. 

Listing 7.16 Two-bit comparator using a function 

module eq2-f  u n c t i o n  
( 
i n p u t  w i r e  [1 :01  a ,  b ,  
o u t p u t  r e g  aeqb  

5 ) ;  

r e g  eO, e l ;  

a l w a y s  Q* 
1 0  b e g i n  

#2 eO = e q u - f n c  (aC01 , b  LO]) ; 
# 2  e l  = equ- fnc (aC11  , b  E l l )  ; 
aeqb  = eO & e l ;  

end 
15 

// f u n c t i o n  definition 
f u n c t i o n  e q u - f n c ( i n p u t  i O ,  i l l  ; 

b e g i n  
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Figure 7.3 Block diagram of a comprehensive testbench. 

e q u - f n c  = ( - i O  & " i l )  I ( i O  & i l l ;  
20 end 

e n d f u n c t i o n  

endmodule 

Note that a hnction cannot incorporate timing control. To achieve the same effect, the 
delay must only be specified in the always block. 

7.5.10 Example of a comprehensive testbench 

After learning additional language constructs, we can develop a more sophisticated test- 
bench. Let us consider the testbench again for the universal binary counter in Listing 4.10. 
The conceptual block diagram of a new testbench is shown in Figure 7.3. There are three 
modules. In addition to the counter, the bin-gen module generates the testing vector and 
the monitor module monitors the input stimulus and the output responses. 

Test vector generator module Generating test vectors directly, as in Listing 4.12, is 
a lengthy and tedious process. A better alternative is to develop a set of abstract procedures 
that correspond to various operations. This makes the code better organized and easier to 
comprehend. An individual procedure can be done by a task. For example, in the preceding 
testbench, we can define a task to perform the counter's data load operation: 

t a s k  l o a d - d a t a ( i n p u t  w i r e  [N-1:OI d a t a - i n ) ;  
b e g i n  

Q ( n e g e d g e  c l k ) ;  // w a i t  f o r  f a i l i n g  edge  
l o a d  = l ' b l ;  
d  = d a t a - i n ;  
Q (  n e g e d g e  c l k )  ; 
l o a d  = 1  'bO; 

end 
e n d t a s k  

In the task, load is asserted for one clock cycle between two falling edges and the data, 
data-in, is placed on d. 



Several other tasks are defined in a similar way: 
clr-counter-async: clear the counter asynchronously by generating a short r e s e t  
pulse. 
clr-counter-sync: clear the counter synchronously by activating the syn-c l r  
signal for one clock cycle. 
count:  enable the counter to count up or down for a certain number of cycles. 
i n i t i a l i z e :  set up the initial values for simulation and generate a r e s e t  pulse. 

With these procedures, we can generate the test vector in a more abstract way: 

i n i t i a l  
b e g i n  

initialize 0 ; 
count(l2, 1); // c o u n t  up 12 c y c l e s  
count (6, 0); // c o u n t  down 6 c y c l e s  
load-data ( 3 '  boll) ; // l o a d  01 I 
count (2, 1); / /  c o u n t  up 2 c y c l e s  
clr-counter-sync 0 ; // c l e a r  c o u n t e r  s y n c h r o n o u s l ~ ~  
count ( 3 ,  1); // c o u n t  up 3 c y c l e s  
clr-counter-async 0 ; // c l e a r  c o u n t e r  a s y n c h r o n o u s l y  
count ( 5 ,  1); // c o u n t  up 5 c y c l e s  
$ s t o p  ; // s t o p  s i m u l a t i o n  

end 

The complete code is shown in Listing 7.17. 

Listing 7.17 Test vector generator 

module bin-gen 
# ( p a r a m e t e r  N=8, T=20) 
( 

o u t p u t  r e g  clk, reset, 
5 o u t p u t  r e g  syn-clr, load, en, up, 

o u t p u t  r e g  [N-1:Ol d 

) ;  

l o  / /  c l o c k  
// c l o c k  r u n n i n g  f o r e v e r  
a l w a y s  
b e g i n  

clk = l'bl; 
#(T/2) ; 
clk = 1 'bO; 
#(T/2) ; 

end 

// r e s t  p r o c e d u r e  
i n i t i a l  
b e g i n  

initialize 0 ; 
count (12, 1) ; / /  c o u n t  up I2  c y c l e s  
count (6, 0); / /  c o u n t  down 6 c y c l e s  
load-data(3'bOll) ; / /  c o u n t  down 6 c y c l e s  



c o u n t  ( 2 ,  1 ) ;  / /  count  up 2 c y c l e s  
c l r - c o u n t e r - s y n c  0 ; 
c o u n t  ( 3 ,  1 )  ; // count  up 3 c y c l e s  
c l r - c o u n t e r - a s y n c  0 ; 
c o u n t  ( 5 ,  1 ) ;  // count  up 3 c y c l e s  
$ s t o p  ; // s t o p  s i m u l a t i o n  

end  
35 

........................................ 

/ /  t a s k  d e f i n i t i o n s  
........................................ 

/ /  a s s e r t  r e s e t  be tween c l o c k  e d g e s  
.lo t a s k  c l r - c o u n t e r - a s y n c  0 ; 

b e g i n  
Q ( n e g e d g e  c l k ) ;  // w a i t  f o r  f a i l i n g  edge  
r e s e t  = l ' b l ;  
#(T/4) ; // a s s e r t  4 / T  

45 r e s e t  = l ' b O ;  
end  
e n d t a s k  

t a s k  i n i t i a l i z e  0 ; 
50 // s y s t e m  i n i t i a l i z a t i o n  

b e g i n  

up  = 0 ;  
l o a d  = 0 ;  
s y n - c l r  = 0 ;  
d  = 3'bOOO; 
c l r - c o u n t e r - a s y n c 0 ;  

end  
e n d t a s k  

/ /  a s s e t  s y n - c l r  one c l o c k  c y c l e  
t a s k  c l r - c o u n t e r - s y n c  0 ; 
b e g i n  

Q ( n e g e d g e  c l k ) ;  // w a i t  f o r  f a i l i n g  edge  
s y n - c l r  = l ' b l ;  // a s s e r t  c l e a r  
Q ( n e g e d g e  c l k )  ; 
s y n - c l r  = l ' b O ;  

end  
e n d t a s k  

/ /  l o a d  r e g i s t e r  
t a s k  l o a d - d a t a (  i n p u t  w i r e  [N-1:01 d a t a - i n )  ; 
b e g i n  

@ ( n e g e d g e  c l k ) ;  // w a i t  f o r  f a i l i n g  edge  
l o a d  = l ' b l ;  
d  = d a t a - i n ;  
Q ( n e g e d g e  c l k )  ; 
l o a d  = l ' b O ;  

end 
XU e n d t a s k  



// coun t  up or  down f o r  C c y c l e s  
t a s k  c o u n t ( i n p u t  i n t e g e r  C,  i n p u t  i n t e g e r  UP-DOWN); 
b e g i n  

85 Q ( n e g e d g e  clk); // w a i t  f o r  f a i l i n g  e d g e  
en = l'bl; 
i f  (UP-DOWN==1) // coun t  up i f  up-down i s  I 

up = l'bl; 
r e p e a t  (C) @ ( n e g e d g e  clk) ; 

90 en = l'bO; 
up = l'bO; 

end 
e n d t a s k  

Monitor module The monitor module monitors and records the activities of the counter 
and verifies its operation. The complete code is shown in Listing 7.18. 

Listing 7.18 Monitor 

module bin-monitor 
# ( p a r a m e t e r  N=3) 
( 

i n p u t  w i r e  clk, reset, 
5 i n p u t  w i r e  syn-clr, load, en, up, 

i n p u t  w i r e  [N-1:0] d, 
i n p u t  w i r e  max-tick, min-tick, 
i n p u t  w i r e  [N-1:0] q 

) ;  
10 

r e g  [N-1:O] q-old, d-old, gold; 
r e g  syn-clr-old , en-old , load-old , up-old; 
r e g  [39:01 err-msg; // 5 - l e t t e r  message  

15  i n i t i a l  / /  head 
$ d i s p l a y  ("time syn-clr/load/en/up q\n") ; 

a l w a y s  Q ( p o s e d g e  elk) 
b e g i n  

20 // - o l d :  the  v a l u e  samp led  a t  the  p r e v i o u s  c l o c k  edge  
syn-clr-old <= syn-clr ; 
en-old <= en; 
load-old <= load; 
up-old <= up; 

25 q-Old <= q; 
d-old <= d ;  

/ /  c a l c u l a t e  the  d e s i r e d  " g o l d "  v a l u e  
i f  (syn-clr-old) 

30 gold = 0 ;  
e l s e  i f  (load-old) 

gold = d-old; 



e l s e  i f  ( e n - o l d  & u p - o l d )  
g o l d  = q - o l d  + 1 ;  

e l s e  i f  ( e n - o l d  & - u p - o l d )  
g o l d  = q - o l d  - 1 ;  

e  1 s  e  
g o l d  = q - o l d ;  

// e r r o r  message  
i f  ( q = = g o l d )  

e r r - m s g  = " " ;  // r e s u l t  p a s s e s  
e l s e  

e r r - m s g  = "ERROR"; / /  r e s u l t  f a i l s  
// 
% d i s p l a y  ( " % 5 d ,  %b%b%b%b %d % s "  , 

$ t i m e ,  s y n - c l r  , l o a d ,  e n ,  u p ,  q ,  e r r - r n s g ) ;  
end 

50 endmodule 

Since the counter is a synchronous sequential circuit, the monitor module focuses on 
the activities at the rising edge of the clock signal. The key is to check the correctness of 
the counter operation. Since the circuit under test is a simple counter, we can record the 
sampled input values and counter state from the previous sampling edge and determine the 
new counter state. For example, if the previous sampled value of syn-clr is 1, the counter 
is cleared and becomes 0 in the next rising edge of the clock. 

The main part of the code is an always block, which is activated at the rising edge of the 
clock. There are three segments. The first segment uses nonblocking statements to infer 
registers, which are designated with the -old suffix and store the values sampled from the 
previous sampling edge. The second segment uses these values to calculate the expected 
counter output, gold. The last segment compares the expected counter output with the 
actual output and displays the values of the sampled input signals and the counter output. If 
a mismatch occurs, an ERROR message will be generated. Note that in Verilog a character 
is treated as an 8-bit number and thus the five-character message, errmsg, is declared as 
reg [39:01. 

Top-level module The code of the top-level testbench module is shown in Listing 7.19, 
which follows the block diagram in Figure 7.3. 

Listing 7.19 Top-level module of testbench 

' t i m e s c a l e  1  n s / l O  p s  

module b i n - c o u n t e r - t b 3  0 ; 

5 // d e c l a r a t i o n  
l o c a l p a r a m  T=20 ;  // c l o c k  p e r i o d  
wire  c l k ,  r e s e t ;  
wire  s y n - c l r  , l o a d ,  e n ,  u p ;  
wire  [2 :01  d ;  

l o  w i r e  max- t i ck  , r n i n - t i c k ;  
wire  [2 :01  q ;  

// uut i n s t a n t i a t i o n  



univ-bin-counter # (  . N (3)) uut 

I 5  (.clk(cik), .reset(reset), .syn_clr(syn-clr), 
. load(1oad) , .en(en), .up(up), .d(d), 
.max-tick(max-tick), .min-tick(min-tick), .q(q)); 

/ /  t e s t  v ec to r .  g e n e r a t o r  
bin-gen # (  . N (3) , . T (20)  ) gen-unit 

( .  clk(clk), .reset (reset), . syn-clr ( s ~ n - c l r )  3 

. load(load), . en(en), .up(up), .d(d)); 

// b i n - m o n i t o r  i n s t a n t i a t i o n  
bin-monitor # (  . N (3) man-unit 

(.cik(clk), .reset(reset), .syn-clr(sYn-clr), 
.load(load), .en(en), .up(up), .d(d), 
.max-tick(max-tick), .min-tick(min-tick), .q(q)); 

In addition to the waveform, the testbench also generates textual output on the console 
panel: 

time syn-clr/load/en/up q 

x ERROR 
0 ERROR 
0 
1 
2 
3 
4 
5 
6 
7 
0 
1 
2 
3 
4 
4 
3 
2 
1 
0 
7 
6 
6 
3 
3 
4 
5 
5 
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0000 0 
0011 0 
0011 1 
0011 2 
0000 3 
0000 0 ERROR 
0011 0 
0011 1 
0011 2 
0011 3 
0011 4 

There are three ERROR messages. The messages at times 0 and 20 occur during system initial- 
ization and are not real errors. The message at time 660 is due to the clr-counter-async () 
operation, which generates a short asynchronous pulse between the sampling edges of 640 
and 660. Since the testbench monitors only synchronous activities, it misses the asynchro- 
nous reset and reports it as an error. 

7.6 BIBLIOGRAPHIC NOTES 

VerilogHDL, Zndedition, by S. PalnitkarandStarter 's Guide to Verilog2001 by M. D. Ciletti 
covers Verilog's syntax and constructs. IEEE Standard Verilog Hardware Description 
Language, IEEE Std 1364-2001, gives the rules regarding adjustment of an expression 
with mixed signed and unsigned data types. Writing Testbenches: Functional Verijication 
of HDL Models, 2nd edition, by J. Bergeron, provides detailed discussion of testbench 
development. The article "Nonblocking Assignments in Verilog Synthesis, Coding Styles 
That Kill!" by C. E. Cummings gives guidelines for proper use of blocking and nonblocking 
assignments. 

7.7 SUGGESTED EXPERIMENTS 

7.7.1 Shift register with blocking and nonblocking assignments 

The codes shown in Listing 7.20 are three attempts to describe a shift register. Derive the 
inferred circuits by the three attempts and determine whether they infer a shift register. 

Listing 7.20 Code for Experiment 7.7.1 

module expl 
( 

i n p u t  w i r e  c l k  , 
i n p u t  w i r e  xO, yo, 2 0 ,  

5 o u t p u t  r e g  x 3 ,  y 3 ,  2 3  
1; 

r e g  x l ,  x 2 ,  y l ,  y 2 ,  2 1 ,  2 2 ;  
/ /  a t t e m p t  1 

1 0  a l w a y s  @ ( p o s e d g e  clk) 
b e g i n  

xl <= xo: 
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x2 <= xl; 
x3 <= x2; 

I S  end 

/ /  a t t e m p t  2 
a l w a y s  Q ( p o s e d g e  clk) 
b e g i n  

?O yl = y o ;  

y2 = y l ;  
y3 = y2; 

end 

zr // a t t e m p t  3 
a l w a y s  Q ( p o s e d g e  clk) 
b e g i n  

21 = 2 0 ;  
23 = 2 2 ;  

10 2 2  = 2 1 ;  
end 

endmodule 

7.7.2 Alternative coding style for BCD counter 

Rewrite the BCD counter in Listing 4.18 using the coding style discussed in Section 7.2. 
Resynthesize the circuit and verify its operation. 

7.7.3 Alternative coding style for FIFO buffer 

Rewrite the FIFO buffer in Listing 4.20 using the coding style discussed in Section 7.2. 
Resynthesize the circuit and verify its operation. 

7.7.4 Alternative coding style for Fibonacci circuit 

Repeat the Fibonacci circuit discussed in Section 6.3.1 using the coding style discussed in 
Section 7.2. 

7.7.5 Dual-mode comparator 

A dual-mode comparator takes the two 8-bit data inputs, a and b, as unsigned or signed 
integers. A control signal, mode, indicates the desired mode. The circuit has one output, 
agtb, which is asserted when the interpreted value of a is greater than the interpreted value 
of b. 

1. Assume that the signed data type is allowed. Design the circuit and derive the code. 
2. Synthesize the circuit and verify its operation. 
3. Assume that the signed data type is not allowed in the code. Repeat steps 1 and 2. 
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7.7.6 Enhanced binary counter monitor 

The monitor module in Section 7.5.10 is intended to monitor a synchronous system and 
only checks the activities at the rising edges of the clock signal. The asynchronous reset 
operation is reported as an error. Modify the monitor circuit to take the asynchronous 
operation into consideration. Recreate the testbench and perform simulation to verify its 
operation. 

7.7.7 Testbench for FIFO buffer 

Follow the example in Section 7.5.10 to design a compressive testbench to verify operation 
of the FIFO buffer discussed in Section 4.5.3. The test vector generator module should 
generate various combinations of write and read operations and introduce the full and 
empty conditions. The monitor module should continuously watch data written into and 
retrieved from the buffer and check the correctness of the operations. 
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CHAPTER 8 

UART 

8.1 INTRODUCTION 

A universal asynchronous receiver and transmitter (UART) is a circuit that sends parallel 
data through a serial line. UARTs are frequently used in conjunction with the EIA (Elec- 
tronic Industries Alliance) RS-232 standard, which specifies the electrical, mechanical, 
functional, and procedural characteristics of two data communication equipment. Because 
the voltage level defined in RS-232 is different from that of FPGA 110, a voltage converter 
chip is needed between a serial port and an FPGA's 110 pins. 

The S3 board has an RS-232 port with a standard nine-pin connector. The board contains 
the necessary voltage converter chip and configures the various RS-232's control signals 
to automatically generate acknowledgment for the PC's serial port. A standard straight- 
through serial cable can be used to connect the S3 board and PC's serial port. The S3 board 
basically handles the RS-232 standard and we only need to concentrate on design of the 
UART circuit. 

A UART includes a transmitter and a receiver. The transmitter is essentially a special 
shift register that loads data in parallel and then shifts it out bit by bit at a specific rate. 
The receiver, on the other hand, shifts in data bit by bit and then reassembles the data. The 
serial line is 1 when it is idle. The transmission starts with a start bit, which is 0, followed 
by data bits and an optional parity bit, and ends with stop bits, which are 1 .  The number 
of data bits can be 6, 7, or 8. The optional parity bit is used for error detection. For odd 
parity, it is set to 0 when the data bits have an odd number of I 's. For even parity, it is set 
to 0 when the data bits have an even number of 1 's. The number of stop bits can be 1, 1.5, 

FPGA ProtoQping by Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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stop bit 

Figure 8.1 Transmission of a byte. 

or 2. Transmission with 8 data bits, no parity, and 1 stop bit is shown in Figure 8.1. Note 
that the LSB of the data word is transmitted first. 

No clock information is conveyed through the serial line. Before the transmission starts, 
the transmitter and receiver must agree on a set of parameters in advance, which include the 
baud rate (i.e., number of bits per second), the number of data bits and stop bits, and use of 
the parity bit. The commonly used baud rates are 2400,4800, 9600, and 19,200 bauds. 

We illustrate the design of the receiving and transmitting subsystems in the following 
sections. The design is customized for a UART with a 19,200 baud rate, 8 data bits, 1 stop 
bit, and no parity bit. 

8.2 UART RECEIVING SUBSYSTEM 

Since no clock information is conveyed from the transmitted signal, the receiver can retrieve 
the data bits only by using the predetermined parameters. We use an oversampling scheme 
to estimate the middle points of transmitted bits and then retrieve them at these points 
accordingly. 

8.2.1 Oversampling procedure 

The most commonly used sampling rate is 16 times the baud rate, which means that each 
serial bit is sampled 16 times. Assume that the communication uses N data bits and M 
stop bits. The oversampling scheme works as follows: 

1. Wait until the incoming signal becomes 0, the beginning of the start bit, and then start 
the sampling tick counter. 

2. When the counter reaches 7, the incoming signal reaches the middle point of the start 
bit. Clear the counter to 0 and restart. 

3. When the counter reaches 15, the incoming signal progresses for one bit and reaches 
the middle of the first data bit. Retrieve its value, shift it into a register, and restart 
the counter. 

4. Repeat step 3 N-1 more times to retrieve the remaining data bits. 
5. If the optional parity bit is used, repeat step 3 one time to obtain the parity bit. 
6. Repeat step 3 hf more times to obtain the stop bits. 
The oversampling scheme basically performs the function of a clock signal. Instead of 

using the rising edge to indicate when the input signal is valid, it utilizes sampling ticks to 
estimate the middle point of each bit. While the receiver has no information about the exact 
onset time of the start bit, the estimation can be off by at most &. The subsequent data bit 
retrievals are off by at most & from the middle point as well. Because of the oversampling, 
the baud rate can be only a small fraction of the system clock rate, and thus this scheme is 
not appropriate for a high data rate. 
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Figure 8.2 Conceptual block diagram of a UART receiving subsystem. 

The conceptual block diagram of a UART receiving subsystem is shown in Figure 8.2. 
It consists of three major components: 

a UART receiver: the circuit to obtain the data word via oversampling 
a Baud rate generator: the circuit to generate the sampling ticks 
a Interface circuit: the circuit that provides a buffer and status between the UART 

receiver and the system that uses the UART 

8.2.2 Baud rate generator 

The baud rate generator generates a sampling signal whose frequency is exactly 16 times 
the UART's designated baud rate. To avoid creating a new clock domain and violating the 
synchronous design principle, the sampling signal should function as enable ticks rather 
than the clock signal to the UART receiver, as discussed in Section 4.3.2. 

For the 19,200 baud rate, the sampling rate has to be 307,200 (i.e., 19,200* 16) ticks per 
second. Since the system clock rate is 50 MHz, the baud rate generator needs a mod-163 

i:;:::) counter, in which a one-clock-cycle tick is asserted once every 163 clock (i.e., - 
cycles. The parameterized mod-m counter discussed in Section 4.3.2 can be used for this 
purpose by setting the M parameter to 163. 

8.2.3 UART receiver 

With an understanding of the oversampling procedure, we can derive the ASMD chart 
accordingly, as shown in Figure 8.3. To accommodate future modification, two constants 
are used in the description. The DBIT constant indicates the number of data bits, and the 
SB-TICK constant indicates the number of ticks needed for the stop bits, which is 16, 24, 
and 32 for 1, 1.5, and 2 stop bits, respectively. DBIT and SB-TICK are assigned to 8 and 
16 in this design. 

The chart follows the steps discussed in Section 8.2.1 and includes three major states, 
s t a r t ,  da ta ,  and s top,  which represent the processing of the start bit, data bits, and stop 
bit. The s - t i c k  signal is the enable tick from the baud rate generator and there are 16 ticks 
in a bit interval. Note that the FSMD stays in the same state unless the s - t i c k  signal is 
asserted. There are two counters, represented by the s and n registers. The s register keeps 
track of the number of sampling ticks and counts to 7 in the s t a r t  state, to 15 in the d a t a  
state, and to SB-TICK in the s t o p  state. The n register keeps track of the number of data 
bits received in the d a t a  state. The retrieved bits are shifted into and reassembled in the b 



Figure 8.3 ASMD chart of a UART receiver. 



register. A status signal, rx-done-tick, is included. It is asserted for one clock cycle after 
the receiving process is completed. The corresponding code is shown in Listing 8.1. 

Listing 8.1 UART receiver 

module u a r t - r x  
# ( 

p a r a m e t e r  D B I T  = 8 ,  // # d a t a  b i t s  
SB-TICK = 16 // # t i c k s  f o r  s t o p  b i t s  

5 1 
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  r x ,  s - t i c k ,  
o u t p u t  r e g  r x - d o n e - t i c k ,  

1 0  o u t p u t  w i r e  [7 :01  d o u t  
1;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [ I  : 01 

I S  i d l e  = 2 ' b 0 0 ,  
s t a r t  = 2 '  b 0 1 ,  
d a t a  = 2 ' b 1 0 ,  
s t o p  = 2 ' b l l ;  

zo // s i g n a l  d e c l a r a t i o n  
r e g  [ I :  01 s t a t e - r e g  , s t a t e - n e x t  ; 
r e g  [3 :0 ]  s - r e g  , s - n e x t  ; 
r e g  [2 :0 ]  n - r e g  , n-nex t  ; 
r e g  [ 7 : 0 ]  b - r eg  , b - n e x t  ; 

2s 

/ /  bod,v 
// FSMD s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  Q (  p o s e d g e  c l k  , p o s e d g e  r e s e t )  

i f  ( r e s e t )  
30 b e g i n  

s t a t e - r e g  <= i d l e ;  
s - r e g  <= 0 ;  
n - r e g  <= 0 ;  
b - r e g  <= 0 ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t  ; 
s - r e g  <= s - n e x t ;  
n - r e g  <= n - n e x t ;  
b - r e g  <= b - n e x t ;  

end 

// FSMD n e x t - s t a t e  l o g i c  
15 a l w a y s  Q* 

b e g i n  
s t a t e - n e x t  = s t a t e - r e g  ; 
r x - d o n e - t i c k  = l ' b O ;  
s - n e x t  = s - r e g ;  



50 n-nex t  = n - r e g ;  
b -nex t  = b - r e g ;  
c a s e  ( s t a t e - r e g )  

i d l e  : 
i f  ( - r x )  

b e g i n  
s t a t e - n e x t  = s t a r t ;  
s - n e x t  = 0 ;  

end 
s t a r t  : 

i f  ( s - t i c k )  
i f  ( s _ r e g = = 7 )  

b e g i n  
s t a t e - n e x t  = d a t a ;  
s - n e x t  = 0 ;  
n -nex t  = 0 ;  

end 
e l s e  

s - n e x t  = s - r e g  + 1 ;  
d a t a  : 

i f  ( s - t i c k )  
i f  ( s _ r e g = = 1 5 )  

b e g i n  
s - n e x t  = 0 ;  
b - n e x t  = ( r x  , b - r e g  [7 : 11 1 ; 
i f  ( n - r e g = = ( D B I T - 1 ) )  

s t a t e - n e x t  = s t o p  ; 
e l s e  

n - n e x t  = n - r e g  + 1 ;  
end 

e l s e  
s - n e x t  = s - r e g  + 1 ;  

s t o p :  
i f  ( s - t i c k )  

i f  ( s - r eg==(SB-TICK-1) )  
b e g i n  

s t a t e - n e x t  = i d l e ;  
r x - d o n e - t i c k  = l ' b l ;  

end 
e l s e  

s - n e x t  = s - r e g  + 1; 
e n d c a s e  

end 
/ /  o u t p u t  
a s s i g n  d o u t  = b - r e g ;  

95 

endmodule 

8.2.4 Interface circuit 

In a large system, a UART is usually a peripheral circuit for serial data transfer. The 
main system checks its status periodically to retrieve and process the received word. The 
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receiver's interface circuit has two functions. First, it provides a mechanism to signal the 
availability of a new word and to prevent the received word from being retrieved multiple 
times. Second, it can provide buffer space between the receiver and the main system. There 
are three commonly used schemes: 

A flag FF 
A flag FF and a one-word buffer 
A FIFO buffer 

Note that the UART receiver asserts the rx-ready-tick signal one clock cycle after a data 
word is received. 

The first scheme uses aflag FF to keep track of whether a new data word is available. 
The FF has two input signals. One is set-f  lag,  which sets the flag FF to 1,  and the other 
is c lr-f  lag, which clears the flag FF to 0. The rx-ready-tick signal is connected to 
the set-f l a g  signal and sets the flag when a new data word arrives. The main system 
checks the output of the flag FF to see whether a new data word is available. It asserts the 
clr-f  l a g  signal one clock cycle after retrieving the word. The top-level block diagram is 
shown in Figure 8.4(a). To be consistent with other schemes, the flag FF's output is inverted 
to generate the final rx-empty signal, which indicates that no new word is available. In 
this scheme, the main system retrieves the data word directly from the shift register of the 
UART receiver and does not provide any additional buffer space. If the remote system 
initiates a new transmission before the main system consumes the old data word (i.e., the 
flag FF is still asserted), the old word will be overwritten, an error known as data overrun. 

To provide some cushion, a one-word buffer can be added, as shown in Figure 8.4(b). 
When the rx-ready-tick signal is asserted, the received word is loaded to the buffer 
and the flag FF is set as well. The receiver can continue the operation without destroying 
the content of the last received word. Data overrun will not occur as long as the main 
system retrieves the word before a new word arrives. The code for this scheme is shown in 
Listing 8.2. 

Listing 8.2 Interface with a flag FF and buffer 

module f  l a g - b u f  
# ( p a r a m e t e r  W = 8) / /  # b u f f e r  b i t s  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
5 i n p u t  w i r e  c l r - f  l a g ,  s e t - f  l a g ,  

i n p u t  w i r e  [W-1:O] d i n ,  
o u t p u t  w i r e  f l a g ,  
o u t p u t  w i r e  [W-1:Ol d o u t  

1 ;  
10 

// s i g n a l  d e c l a r a t i o n  
r e g  [ W - 1  : 01 buf - r e g ,  buf  - n e x t  ; 
r e g  f  l a g - r e g  , f  l a g - n e x t  ; 

1 i 

/ /  bod-v 
// FF & r e g i s t e r  
a l w a y s  @ ( p o s e d g e  c l k  , p o s e d g e  r e s e t )  

i f  ( r e s e t )  
29 b e g i n  

b u f - r e g  <= 0 ;  
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flag-reg <= l J b O ;  
end 

e l s e  
25 b e g i n  

buf -reg <= buf -next ; 
f lag-reg <= f lag-next ; 

end 

30 // n e x t - s t a t e  l o g i c  
a l w a y s  Q* 
b e g i n  

buf-next = buf -reg; 
flag-next = flag-reg; 

35 i f  (set-flag) 
b e g i n  

buf-next = din; 
flag-next = l'bl; 

end 
JO e l s e  i f  (clr-flag) 

flag-next = l'bO; 
end 
// o u t p u t  l o g i c  
a s s i g n  dout = buf-reg; 

45 a s s i g n  flag = flag-reg; 

endmodule  

The third scheme uses a FIFO buffer discussed in Section 4.5.3. The FIFO buffer provides 
more buffering space and further reduces the chance of data overrun. We can adjust the 
desired number of words in FIFO to accommodate the processing need of the main system. 
The detailed block diagram is shown in Figure 8.4(c). 

The rx-ready-t i c k  signal is connected to the w r  signal of the FIFO. When a new data 
word is received, the w r  signal is asserted one clock cycle and the corresponding data is 
written to the FIFO. The main system obtains the data from FIFO's read port. After retrieving 
a word, it asserts the rd  signal of the FIFO one clock cycle to remove the corresponding 
item. The empty signal of the FIFO can be used to indicate whether any received data word 
is available. A data-overrun error occurs when a new data word arrives and the FIFO is full. 

8.3 UART TRANSMITTING SUBSYSTEM 

The organization of a UART transmitting subsystem is similar to that of the receiving 
subsystem. It consists of a UART transmitter, baud rate generator, and interface circuit. 
The interface circuit is similar to that of the receiving subsystem except that the main system 
sets the flag FF or writes the FIFO buffer, and the UART transmitter clears the flag FF or 
reads the FIFO buffer. 

The UART transmitter is essentially a shift register that shifts out data bits at a specific 
rate. The rate can be controlled by one-clock-cycle enable ticks generated by the baud 
rate generator. Because no oversampling is involved, the frequency of the ticks is 16 times 
slower than that of the UART receiver. Instead of introducing a new counter, the UART 
transmitter usually shares the baud rate generator of the UART receiver and uses an internal 



counter to keep track of the number of enable ticks. A bit is shifted out every 16 enable 
ticks. 

The ASMD chart of the UART transmitter is similar to that of the UART receiver. 
After assertion of the t x - s t a r t  signal, the FSMD loads the data word and then gradually 
progresses through the s t a r t ,  data,  and s t op  states to shifi out the corresponding bits. 
It signals completion by asserting the tx-done-tick signal for one clock cycle. A 1-bit 
buffer, tx-reg, is used to filter out any potential glitch. The corresponding code is shown 
in Listing 8.3. 

Listing 8.3 UART transmitter 

module u a r t - t x  
# ( 

parameter  D B I T  = 8 ,  / /  # d a t a  b i t s  
SB-TICK = 16 / /  # t i c k s  f o r  s t o p  b i t s  

> 
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  t x - s t a r t  , s - t i c k ,  
i n p u t  w i r e  [7 :01  d i n ,  
o u t p u t  r e g  t x - d o n e - t i c k  , 
o u t p u t  w i r e  t x  

1; 

// s y n l b o l i c  s t a t e  d e c l a r a t i o n  
( 5  l o c a l p a r a m  [1 :01  

i d l e  = 2 ' b 0 0 ,  
s t a r t  = 2 ' b 0 1 ,  
d a t a  = 2 ' b 1 0 ,  
s t o p  = 2 ' b l l ;  

?o 

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [ I :  01 s t a t e - r e g  , s t a t e - n e x t  ; 
r e g  [ 3 : 0 ]  s - r e g  , s - n e x t ;  
r e g  [ 2 : 0 ]  n - r e g ,  n - n e x t ;  

2.; r e g  [7 :01  b - r e g  , b - n e x t ;  

r e g  t x - r e g  , t x - n e x t  ; 

/ /  bod?/ 
/ /  FSMD s t a t e  & d a t a  r e g i s t e r s  

o a l w a y s  Q ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  
i f  ( r e s e t )  

b e g i n  
s t a t e - r e g  <= i d l e ;  
s - r e g  <= 0 ;  
n - r e g  <= 0 ;  
b - r e g  <= 0 ;  
t x - r e g  <= l ' b l ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t ;  
s - r e g  <= s - n e x t ;  



n - r e g  <= n - n e x t ;  
b - r e g  <= b - n e x t ;  
t x - r e g  <= t x - n e x t ;  

end 

// FSMD n e x t - s t a t e  l o g i c  & f u n c t i o n a l  u n i t s  
a l w a y s  Q* 

so b e g i n  
s t a t e - n e x t  = s t a t e - r e g ;  
t x - d o n e - t i c k  = l J b O ;  
s - n e x t  = s - r e g ;  
n - n e x t  = n - r e g ;  
b - n e x t  = b - r e g ;  
t x - n e x t  = t x - r e g  ; 
c a s e  ( s t a t e - r e g )  

i d l e  : 
b e g i n  

t x - n e x t  = l ' b l ;  
i f  ( t x - s t a r t )  

b e g i n  
s t a t e - n e x t  = s t a r t ;  
s - n e x t  = 0 ;  
b -nex t  = d i n ;  

end 
end 

s t a r t  : 
b e g i n  

t x - n e x t  = l ' b O ;  
i f  ( s - t i c k )  

i f  ( s _ r e g = = 1 5 )  
b e g i n  

s t a t e - n e x t  = d a t a ;  
s - n e x t  = 0 ;  
n -nex t  = 0 ;  

end 
e l s e  

s - n e x t  = s - r e g  + 1 ;  
end 

d a t a :  
b e g i n  

t x - n e x t  = b - r e g  [ O ]  ; 
i f  ( s - t i c k )  

i f  ( s _ r e g = = 1 5 )  
b e g i n  

s - n e x t  = 0 ;  
b - n e x t  = b - r e g  >> 1 ;  
i f  (n - r eg==(DBIT-1 ) )  

s t a t e - n e x t  = s t o p  ; 
e l s e  

n - n e x t  = n - r e g  + 1;  
end 

e l s e  
s - n e x t  = s - r e g  + 1 ;  



Figure 8.5 Block diagram of a complete UART. 

end 
s t o p  : 

b e g i n  
t x - n e x t  = 1  ' b l ;  
i f  ( s - t i c k )  

i f  (s-reg==(SB-TICK - 1 ) )  
b e g i n  

s t a t e - n e x t  = i d l e ;  
t x - d o n e - t i c k  = l ' b l ;  

end 
e l s e  

s - n e x t  = s - r e g  + 1; 
end 

e n d c a s e  
I I O  end 

// o u t p u t  
a s s i g n  t x  = t x - r e g ;  

endmodule 

8.4 OVERALL UART SYSTEM 

8.4.1 Complete UART core 

By combining the receiving and transmitting subsystems, we can construct the complete 
UART core. The top-level diagram is shown in Figure 8.5. The block diagram can be 
described by component instantiation, and the corresponding code is shown in Listing 8.4. 



Listing 8.4 UART top-level description 

module uart 
# (  // D e f a u l t  s e t t i n g :  

// 1 9 , 2 0 0  b a u d ,  8 d a t a  b i t s  , I s t o p  b i t ,  2 ' 2  FIFO 
p a r a m e t e r  DBIT = 8 ,  / /  # d a t a  b i t s  

SB-TICK = 1 6 ,  // # t i c k s  f o r  s t o p  b i t s  , 
/ /  1 6 / 2 4 / 3 2  f o r  1 / 1 . 5 / 2  b i t s  

DVSR = 163, / /  baud r a t e  d i v i s o r  
// DVSR = 50M/(16*  baud r a t e )  

DVSR-BIT = 8, // # b i t s  o f  DVSR 
IU FIFO-W = 2 // # addr  b i t s  o f  FIFO 

// # words i n  FIFO=2"FIFO-W 
1 
( 

i n p u t  w i r e  clk, reset , 
I S  i n p u t  w i r e  rd-uart , wr-uart , rx, 

i n p u t  w i r e  [ 7 : 0 ]  w-data, 
o u t p u t  w i r e  tx-full, rx-empty, tx, 
o u t p u t  w i r e  [ 7 : 0 1  r-data 

1;  
20 

// s i g n a l  d e c l a r a t i o n  
w i r e  tick, rx-done-tick , tx-done-tick; 
w i r e  tx-empty, tx-fifo-not-empty; 
w i r e  [ 7 :  01 tx-f if o-out , rx-data-out ; 

25 

/ / b o d y  
mod-m-counter #(.M(DVSR), .N(DVSR-BIT)) baud-gen-unit 

( .  clk(c1k) , .reset (reset), . q O  , .max-tick(tick)) ; 

uart-rx # ( .  DBIT(DB1T) , . SB-TICK (SB-TICK)) uart-rx-unit 
( .  clk(clk), .reset (reset), .rx(rx), . s-tick(tick), 
.rx-done-tick(rx-done-tick), .dout(rx-data-out)); 

fifo #(.B(DBIT), .W(FIFO-W)) fifo-tx-unit 
(.clk(clk), .reset(reset), .rd(tx-done-tick), 
.wr(wr-uart), .w-data(w-data), .empty(tx-empty), 
.full(tx-full), .r-data(tx-fifo-out)); 

a s s i g n  tx-f if o-not-empty = -tx-empty; 
U 

endmodule  



Figure 8.6 Block diagram of a UART verification circuit. 

In the picoBlaze source file (discussed in Chapter 15), Xilinx supplies a customized 
Xilinx UART module with similar functionality. Unlike our implementation, the module is de- 
specific scribed using low-level Xilinx primitives. It can be considered as a gate-level description 

that utilizes Xilinx-specific components. Since the designer has the expert knowledge of 
Xilinx devices and takes advantage of its architecture, its implementation is more efficient 
than the generic RT-level device-independent description of this chapter. It is instructive to 
compare the code complexity and the circuit size of the two descriptions. 

8.4.2 UART verification configuration 

Verification circuit We use a loop-back circuit and a PC to verify the UART's operation. 
The block diagram is shown in Figure 8.6. In the circuit, the serial port of the S3 board is 
connected to the serial port of a PC. When we send a character from the PC, the received 
data word is stored in the UART receiver's four-word FIFO buffer. When retrieved (via the 
r-data port), the data word is incremented by 1 and then sent back to the transmitter (via 
the w-data port). The debounced pushbutton switch produces a single one-clock-cycle tick 
when pressed and it is connected to the rd-uart and wr-uart signals. When the tick is 
generated, it removes one word from the receiver's FIFO and writes the incremented word 
to the transmitter's FIFO for transmission. For example, we can first type HAL in the PC 
and the three data words are stored in the FIFO buffer of the UART receiver. We can then 
push the button on the S3 board three times. The three successive characters, IBM, will be 
transmitted back and displayed. The UART's r -data  port is also connected to the eight 
LEDs of the S3 board, and its t x - f u l l  and rx-empty signals are connected to the two 
horizontal bars of the rightmost digit of the seven-segment display. The code is shown in 
Listing 8.5. 

Listing 8.5 UART verification circuit 

module u a r t - t e s t  
( 

i n p u t  w i r e  clk, r e s e t ,  
i n p u t  w i r e  r x ,  

5 i n p u t  w i r e  [ 2 :0 ]  b t n ,  
o u t p u t  w i r e  t x ,  
o u t p u t  w i r e  [3 :01  a n ,  
o u t p u t  w i r e  [ 7 :0 ]  s s e g ,  l e d  

1;  
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/ /  s i g n a l  d e c l a r a t i o n  
w i r e  tx-full, rx-empty , btn-tick; 
w i r e  [7: 01 rec-data , rec-data1 ; 

I 5  / /  body 
/ /  i n s t a n t i a t e  u a r t  
uart uart-unit 

( .  clk(clk1, .reset (reset), . rd-uart (btn-tick) , 
. wr-uart (btn-tick), .rx(rx), .w-data(rec-datai), 
. tx-full(tx-full), .rx-empty (rx-empty), 
.r-data(rec-data), .tx(tx)); 

/ /  i n s t a n t i a t e  debounce  c i r c u i t  
debounce btn-db-unit 

( . elk( clk) , . reset (reset) , . sw (btn [Ol ) , 
25 .db-level(), . db-tick(btn-tick)) ; 

// incrernented  d a t a  l o o p s  back 
a s s i g n  rec-data1 = rec-data + 1; 
// LED d i s p l a y  
a s s i g n  led = rec-data; 

30 a s s i g n  an = 4'blliO; 
a s s i g n  sseg = {l'bl, -tx-full, 2'bll, -rx-empty, 3'blll); 

endmodule 

HyperTerminal of Windows On the PC side, Windows' HyperTerminal program can 
be used as a virtual terminal to interact with the S3 board. To be compatible with our 
customized UART, it has to be configured as 19,200 baud, 8 data bits, 1 stop bit, and no 
parity bit. The basic procedure is: 

1. Select Start F Programs + Accessories + Communications + HyperTerminal. The 
HyperTerminal dialog appears. 

2. Type a name for this connection, say fpga-192. Click OK. This connection can be 
saved and invoked later. 

3. A Connect-to dialog appears. Press the Connecting Using field and select the desired 
serial port (e.g., COM1). Click OK. 

4. The Port Setting dialog appears. Configure the port as follows: 
Bits per second: 19200 

a Data bits: 8 
Parity: None 
Stop bits: 1 

a Flow control: None 
Click OK. 

5. Select File + Properties F Setting. Click ASCII Setup and check the Echo typed 
characters locally box. Click OK twice. This will allow the typed characters to be 
shown on the screen. 

The HyperTerminal program is set up now and ready to communicate with the S3 board. 
We can type a few keys and observe the LEDs of the S3 board. Note that the received 
words are stored in the FIFO buffer and only the first received data word is displayed. 
After we press the pushbutton, the first data word will be removed from the FIFO and 
the incremented word will be looped back to the PC's serial port and displayed in the 



HyperTerminal window. The full and empty status of the respective FIFO buffers can be 
tested by consecutively receiving and transmitting more than four data words. 

ASCII code In HyperTerminal, characters are sent in ASCII code, which is 7 bits and 
consists of 128 code words, including regular alphabets, digits, punctuation symbols, and 
nonprintable control characters. The characters and their code words (in hexadecimal for- 
mat) are shown in Table 8.1. The nonprintable characters are shown enclosed in parentheses, 
such as (del). Several nonprintable characters may introduce special action when received: 

(nul): null byte, which is the all-zero pattern 
(bel): generate a bell sound, if supported 
(bs): backspace 
(ht): horizontal tab 
(nl): new line 
(vt): vertical tab 
(np): new page 
(cr): carriage return 
(esc): escape 
(sp): space 
(del): delete, which is also the all-one pattern 

Since we use the PC's serial port to communicate with the S3 board in many experiments 
and projects, the following observations help us to manipulate and process the ASCII code: 

When the first hex digit in a code word is 016 or 116, the corresponding character is 
a control character. 
When the first hex digit in a code word is 216 or 316, the corresponding character is 
a digit or punctuation. 
When the first hex digit in a code word is or 516, the corresponding character is 
generally an uppercase letter. 
When the first hex digit in a code word is 616 or 716, the corresponding character is 
generally a lowercase letter. 
If the first hex digit in a code word is 316, the lower hex digit represents the corre- 
sponding decimal digit. 
The upper- and lowercase letters differ in a single bit and can be converted to each 
other by adding or subtracting 2016 or inverting the sixth bit. 

Note that the ASCII code uses only 7 bits, but a data word is normally composed of 
8 bits (i.e., a byte). The PC uses an extended set in which the MSB is 1 and the characters 
are special graphics symbols. This code, however, is not part of the ASCII standard. 

8.5 CUSTOMIZING A UART 

The UART discussed in previous sections is customized for a particular configuration. The 
design and code can easily be modified to accommodate other required features: 

Baud rate. The baud rate is controlled by the frequency of the sampling ticks of the 
baud rate generator. The frequency can be changed by revising the M parameter of 
the mod-m counter, which is represented as the DVSR constant in code. 
Number of data bits. The number of data bits can be changed by modifying the upper 
limit of the n-reg register, which is specified as the DBIT constant in code. 
Parity bit. A parity bit can be included by introducing a new state between the data 
and s t o p  states in the ASMD chart in Figure 8.3. 



Table 8.1 ASCII codes 

Code Char Code Char Code Char Code Char 

00 (nul) 
01 (soh) 
02 (stx) 
03 (etx) 
04 (eot) 
05 
06 (ack) 
07 (bel) 
08 (bs) 
09 (ht) 
Oa (nl) 
Ob (vt) 
Oc (np) 
Od (cr) 
Oe (so) 
Of (si) 
10 (dle) 
11 (dcl) 
12 (dc2) 
13 (dc3) 
14 (dc4) 
15 (nak) 
16 (syn) 
17 (etb) 
18 (can) 
19 (em) 
la  (sub) 
lb  (esc) 
l c  (fs) 
Id (gs) 
l e  (rs) 
If (us) 

60 
6 1 a 
62 b 
63 c 
64 d 
65 e 
66 f 
67 g 
68 h 
69 i 
6a j 
6b k 
6c 1 
6d m 
6e n 
6f o 
70 P 
71 q 
72 r 
73 S 

74 t 
7 5 u 
76 v 
77 w 
78 x 
79 Y 
7a z 
7b { 
7'2 I 
7d 1 
7e - 
7f (del) 



Number of stop bits. The number of stop bits can be changed by modifying the 
upper limit of the s - reg  register in the s t o p  state of the ASMD chart. The SB-TICK 
constant is used for this purpose. It can be 16,24, or 32, which is for 1, 1.5, or 2 stop 
bits, respectively. 
Error checking. Three types of errors can be detected in the UART receiving subsys- 
tem: 

- Parity error. If the parity bit is included, the receiver can check the correctness 
of the received parity bit. 

- Frame error. The receiver can check the received value in the s t o p  state. If 
the value is not 1, a frame error occurs. 

- Buffer overrun error. This happens when the main system does not retrieve the 
received words in a timely manner. The UART receiver can check the value 
of the buffer's f lag-reg signal or FIFO's f u l l  signal when the received word 
is ready to be stored (i.e., when the rx-done-tick signal is generated). Data 
overrun occurs if the f lag-reg or f u l l  signal is still asserted. 

8.6 BIBLIOGRAPHIC NOTES 

Although the RS-232 standard is very old, it still provides a simple and reliable low-speed 
communication link between two devices. The Wikipedia Web site has a good overview 
article and several useful links on the subject (search with the keyword RS232). Serial Port 
Complete by Jan Axelson provides information on interfacing hardware devices to a PC's 
serial port. 

8.7 SUGGESTED EXPERIMENTS 

8.7.1 Full-featured UART 

The alternative to the customized UART is to include all features in design and to dynam- 
ically configure the UART as needed. Consider a full-featured UART that uses additional 
input signals to specify the baud rate, type of parity bit, and the numbers of data bits and 
stop bits. The UART also includes an error signal. In addition to the I10 signals of the 
ua r t - top  design in Listing 8.4, the following signals are required: 

bd-rate:  2-bit input signal specifying the baud rate, which can be 1200,2400,4800, 
or 9600 baud 
dnum: I-bit input signal specifying the number of data bits, which can be 7 or 8 
snum: 1 -bit input signal specifying the number of stop bits, which can be 1 or 2 
pa r :  2-bit input signal specifying the desired parity scheme, which can be no parity, 
even parity, or odd parity 
e r r :  3-bit output signal in which the bits indicate the existence of the parity error, 
frame error, and data overrun error 

Derive this circuit as follows: 
1. Modify the ASMD chart in Figure 8.3 to accommodate the required extensions. 
2. Revise the UART receiver code according to the ASMD chart. 
3. Revise the UART transmitter code to accommodate the required extensions. 



4. Revise the top-level UART code and the verification circuit. Use the onboard switches 
for the additional input signals and three LEDs for the error signals. Synthesize the 
verification circuit. 

5. Create different configurations in HyperTerrninal and verify operation of the UART 
circuit. 

8.7.2 UART with an automatic baud rate detection circuit 

The most commonly used number of data bits of a serial connection is eight, which cor- 
responds to a byte. When a regular ASCII code is used in communication (as we type in 
the HyperTerrninal window), only seven LSBs are used and the MSB is 0. If the UART is 
configured as 8 data bits, 1 stop bit, and no parity bit, the received word is in the form of 
0-dddd-dddO-I, in which d is a data bit and can be 0 or 1. Assume that there is sufficient 
time between the first word and subsequent transmissions. We can determine the baud rate 
by measuring the time interval between the first 0 and last 0. Based on this observation, 
we can derive a UART with an automatic baud rate detection circuit. In this scheme, the 
transmitting system first sends an ASCII code for rate detection and then resumes normal 
operation afterward. The receiving subsystem uses the first word to determine a baud rate 
and then uses this rate for the baud rate generator for the remaining transmission. 

Assume that the UART configuration is 8 data bits, 1 stop bit, and no parity bit, and the 
baud rate can be 4800,9600, or 19,200 baud. The revised UART receiver should have two 
operation modes. It is initially in the "detection mode" and waits for the first word. After 
the word is received and the baud rate is determined, the receiver enters "normal mode" 
and the UART operates in a regular fashion. Derive the UART as follows: 

1. Draw the ASMD chart for the automatic baud rate detector circuit. 
2. Derive the VHDL code for the ASMD chart. Use three LEDs on the S3 board to 

indicate the baud rate of the incoming signal. 
3. Modify the UART to include three different baud rates: 4800, 9600, and 19,200. 

This can be achieved by using a register for the divisor of the baud rate generator and 
loading the value according to the desired baud rate. 

4. Create a top-level FSMD to keep track of the mode and to control and coordinate 
operation of the baud rate detection circuit and the regular UART receiver. Use a 
pushbutton switch on the S3 board to force the UART into the detection mode. 

5. Revise the top-level UART code and the verification circuit. Synthesize the verifica- 
tion circuit. 

6. Create different configurations in HyperTerrninal and verify operation of the UART. 

8.7.3 UART with an automatic baud rate and parity detection circuit 

In addition to the baud rate, we assume that the parity scheme also needs to be determined 
automatically, which can be no parity, even parity, or odd parity. Expand the previous 
automatic baud rate detection circuit to detect the parity configuration and repeat Experi- 
ment 8.7.2. 

8.7.4 UART-controlled stopwatch 

Consider the enhanced stopwatch in Experiment 4.7.6. Operation of the stopwatch is con- 
trolled by three switches on the S3 board. With the UART, we can use PC's HyperTerrninal 
to send commands to and retrieve time from the stopwatch: 



When a c or C (for "clear") ASCII code is received, the stopwatch aborts current 
counting, is cleared to zero, and sets the counting direction to "up." 
When a g or G (for "go") ASCII code is received, the stopwatch starts to count. 
When a p or P (for "pause") ASCII code is received, counting pauses. 
When a u or U (for "up-down") ASCII code is received, the stopwatch reverses the 
direction of counting. 
When a r or R (for "receive") ASCII code is received, the stopwatch transmits the 
current time to the PC. The time should be displayed as " DD . D ", where D is a decimal 
digit. 
All other codes will be ignored. 

Design the new stopwatch, synthesize the circuit, connect it to a PC, and use HyperTerminal 
to verify its operation. 

8.7.5 UART-controlled rotating LED banner 

Consider the rotating LED banner circuit in Experiment 4.7.5. With the UART, we can 
use a PC's HyperTerminal to control its operation and dynamically modify the digits in the 
banner: 

When a g or G (for "go") ASCII code is received, the LED banner rotates. 
When a p or P (for "pause") ASCII code is received, the LED banner pauses. 
When a d or D (for "direction") ASCII code is received, the LED banner reverses the 
direction of rotation. 
When a decimal-digit (i.e., 0, 1, . . . , 9) ASCII code is received, the banner will be 
modified. The banner can be treated as a 10-word FIFO buffer. The new digit will be 
inserted at the beginning (i.e., the leftmost position) of the banner and the rightmost 
digit will be shifted out and discarded. 
All other codes will be ignored. 

Design the new rotating LED banner, synthesize the circuit, connect it to a PC, and use 
HyperTerminal to verify its operation. 



PS2 KEYBOARD 

9.1 INTRODUCTION 

The PS2 port was introduced in IBM's Personal System/2 personnel computers. It is a 
widely supported interface for a keyboard and mouse to communicate with the host. The 
PS2 port contains two wires for communication purposes. One wire is for data, which is 
transmitted in a serial stream. The other wire is for the clock information, which specifies 
when the data is valid and can be retrieved. The information is transmitted as an 11-bit 
"packet" that contains a start bit, 8 data bits, an odd parity bit, and a stop bit. Whereas the 
basic format of the packet is identical for a keyboard and a mouse, the interpretation for the 
data bits is different. The FPGA prototyping board has a PS2 port and acts as a host. We 
discuss the keyboard interface in this chapter and cover the mouse interface in Chapter 10. 

The communication of the PS2 port is bidirectional and the host can send a command 
to the keyboard or mouse to set certain parameters. For our purposes, the bidirectional 
communication is hardly required for the PS2 keyboard, and thus our discussion is limited to 
one direction, from the keyboard to the prototyping board. Bidirectional design is examined 
in the mouse interface in Chapter 10. 

FPGA ProtoQping by Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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Figure 9.1 Timing diagram of a PS2 port. 

9.2 PS2 RECEIVING SUBSYSTEM 

9.2.1 Physical interface of a PS2 port 

In addition to data and clock lines, the PS2 port includes connections for power (i.e., V,,) 
and ground. The power is supplied by the host. In the original PS2 port, Vcc is 5 V and the 
outputs of the data and clock lines are open-collector. However, most current keyboards 
and mice can work well with 3.3 V. For an older keyboard and mouse, the 5-V supply can 
be obtained by switching the 52 jumper on the S3 board. The FPGA should still function 
properly since its 110 pins can tolerate a 5-V input. 

9.2.2 Device-to-host communication protocol 

A PS2 device and its host communicate via packets. The basic timing diagram of trans- 
mitting a packet from a PS2 device to a host is shown in Figure 9.1, in which the data and 
clock signals are labeled ps2d and ps2c, respectively. 

The data is transmitted in a serial stream, and its format is similar to that of a UART. 
Transmission begins with a start bit, followed by 8 data bits and an odd parity bit, and ends 
with a stop bit. Unlike a UART, the clock information is carried in a separate clock signal, 
ps2c. The falling edge of the ps2c signal indicates that the corresponding bit in the ps2d 
line is valid and can be retrieved. The clock period of the ps2c signal is between 60 and 
100 ~ L S  (i.e., 10 kHz to 16.7 kHz), and the ps2d signal is stable at least 5 ps before and after 
the falling edge of the ps2c signal. 

9.2.3 Design and code 

The design of the PS2 port receiving subsystem is somewhat similar to that of a UART 
receiver. Instead of using the oversampling scheme, the falling edge of the ps2c signal is 
used as the reference point to retrieve data. The subsystem includes a falling-edge detection 
circuit, which generates a one-clock-cycle tick at the falling edge of the ps2c signal, and 
the receiver, which shifts in and assembles the serial bits. 

The edge detection circuit discussed in Section 5.3.1 can be used to detect the falling edge 
and generate an enable tick. However, because of the potential noise and slow transition, a 
simple filtering circuit is added to eliminate glitches. Its code is 

a l w a y s  @ ( p o s e d g e  clk, p o s e d g e  reset) 

f ilter-reg <= f ilter-next ; 
. . .  



// I - b i t  s h i f t e r  
a s s i g n  f ilter-next = {ps2c, f ilter-reg [ 7 :  11 1 ;  
// " f i l t e r "  
a s s i g n  f _ps2c_next = (f ilter_reg==8' bllllllll) ? l'bl : 

(filter~reg==8'b00000000) ? 1'bO : 
f-ps2c-reg; 

The circuit is composed of an 8-bit shift register and returns a 1 or 0 when eight consec- 
utive 1's or 0's are received. Any glitches shorter than eight clock cycles will be ignored 
(i.e., filtered out). The filtered output signal is then fed to the regular falling-edge detection 
circuit. 

The ASMD chart of the receiver is shown in Figure 9.2. The receiver is initially in 
the idle state. It includes an additional control signal, rx-en, which is used to enable or 
disable the receiving operation. The purpose of the signal is to coordinate the bidirectional 
operation. It can be set to 1 for the keyboard interface. 

After the first falling-edge tick and the rx-en signal are asserted, the FSMD shifts in the 
start bit and moves to the dps state. Since the received data is in fixed format, we shift in 
the remaining 10 bits in a single state rather than using separate data, parity, and stop 
states. The FSMD then moves to the load state, in which one extra clock cycle is provided 
to complete the shifting of the stop bit, and the psrx-done-tick signal is asserted for one 
clock cycle. The HDL code consists of the filtering circuit and an FSMD, which follows 
the ASMD chart. It is shown in Listing 9.1. 

Listing 9.1 PS2 port receiver 

module ps2-rx 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  ps2d, ps2c, rx-en, 

5 o u t p u t  r e g  rx-done-tick, 
o u t p u t  w i r e  [7:0] dout 

) ;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
10 l o c a l p a r a m  [1:01 

idle = 2 'b00, 
dps = 2'b01, 
load = 2'biO; 

IS // s i g n u l  d e c l a r a t i o n  
r e g  [I : 01 state-reg , state-next ; 
r e g  [7:01 f ilter-reg; 
w i r e  [7:01 f ilter-next ; 
r e g  f -ps2c_reg ; 

20 w i r e  f -ps2c_next ; 
r e g  [3:0] n-reg , n-next ; 
r e g  [10:0] b-reg, b-next; 
w i r e  f all-edge ; 

/ /  f i l t e r  and f a l l i n g - e d g e  t i c k  g e n e r a t i o n  f o r  ps2c  
................................................... 



Figure 9.2 ASMD chart of PS2 port receiver. 



a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  reset ) 
30 i f  (reset) 

b e g i n  
filter-reg <= 0 ;  
f-ps2c-reg <= 0; 

end 
35 e l s e  

b e g i n  
f ilter-reg <= f ilter-next ; 
f -ps2c-reg <= f -ps2c_next ; 

end 
40 

a s s i g n  f ilter-next = (ps2c, f ilter-reg [7: 11 1 ;  
a s s i g n  f-ps2c-next = (f ilter-reg==8'bllll1111) ? l'bl : 

(filter~reg==8'b00000000) ? l'bO : 

f-ps2c-reg; 
43 a s s i g n  f all-edge = f -ps2c_reg & "f -ps2c_next ; 

................................................... 

/ /  FSMD 
................................................... 

ru / /  FSMD s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset ) 

i f  (reset) 
b e g i n  

state-reg <= idle; 
n-reg <= 0; 
b-reg <= 0; 

end 
e l s e  

b e g i n  
state-reg <= state-next ; 
n-reg <= n-next; 
b-reg <= b-next; 

end 
/ /  FSMD n e x t - s t a t e  l o g i c  

63 a l w a y s  Q *  
b e g i n  

state-next = state-reg; 
rx-done-tick = l'bO; 
n-next = n-reg; 
b-next = b-reg; 
c a s e  (state-reg) 

idle : 
i f  (fall-edge & rx-en) 

b e g i n  
// s h i f t  in s t a r t  b i t  
b-next = (ps2d, b-reg [lo: 11 1 ;  
n-next = 4'b1001; 
state-next = dps; 

end 
dps: / /  8 d a t u  + I p a r i t y  + I s t o p  

i f  (f all-edge) 



begin  
b - n e x t  = { p s 2 d ,  b - r e g  [ I 0  : 11 1 ; 
i f  (n - r eg==O)  

s t a t e - n e x t  = l o a d ;  
else  

n - n e x t  = n - r e g  - 1 ;  
end 

l o a d :  // I e x t r a  c l o c k  t o  c o m p l e t e  t h e  l a s t  s h i f t  
90 begin  

s t a t e - n e x t  = i d l e ;  
r x - d o n e - t i c k  = l ' b l ;  

end 
endcase 

95 end 
// o u t p u t  
assign d o u t  = b _ r e g [ 8 : l l ;  / /  d a t a  b i t s  

endmodule 

There is no error detection circuit in the description. A more robust design should check 
the correctness of the start, parity, and stop bits and include a watchdog timer to prevent the 
keyboard from being locked in an incorrect state. This is left as an experiment at the end 
of the chapter. 

9.3 PS2 KEYBOARD SCAN CODE 

9.3.1 Overview of the scan code 

A keyboard consists of a matrix of keys and an embedded microcontroller that monitors 
(i.e., scans) the activities of the keys and sends scan code accordingly. Three types of key 
activities are observed: 

a When a key is pressed, the make code of the key is transmitted. 
a When a key is held down continuously, a condition known as typematic, the make 

code is transmitted repeatedly at a specific rate. By default, a PS2 keyboard transmits 
the make code about every 100 ms after a key has been held down for 0.5 second. 
When a key is released, the break code of the key is transmitted. 

The make code of the main part of a PS2 keyboard is shown in Figure 9.3. It is normally 
1 byte wide and represented by two hexadecimal numbers. For example, the make code 
of the A key is IC. This code can be conveyed by one packet when transmitted. The make 
codes of a handful of special-purpose keys, which are known as the extended keys, can have 
2 to 4 bytes. A few of these keys are shown in Figure 9.3. For example, the make code of 
the upper arrow on the right is EO 75. Multiple packets are needed for the transmission. 
The break codes of the regular keys consist of FO followed by the make code of the key. 
For example, the break code of the A key is FO IC. 

The PS2 keyboard transmits a sequence of codes according to the key activities. For 
example, when we press and release the A key, the keyboard first transmits its make code 
and then the break code: 



[ J ~ ] ~ ] ~ ] ~ ] E ] ~ ] 8 ~ ] E ] ~ I ~ I ~ I [ - ]  
[ T 1 ~ ] ~ ] ~ ] ~ l ~ l ~ ] ~ ~ ] ~ / ~ I ~ ] ~ I ~ ]  
[ - ] ~ ] ~ ] E ] ~ ] E ] ~ ] ~ ] ~ I E ] ~ ] ~ ] ~ ]  
[F] [ZlE] E] [TI [TI [TIIT] IT] [a] 
[TI [TI[ Space 

2 9 ] [TI 
Figure 9.3 Scan code of the PS2 keyboard. (Courtesy of Xilinx, Inc. O Xilinx, Inc. 19942007. 
All rights reserved.) 

If we hold the key down for awhile before releasing it, the make code will be transmitted 
multiple times: 

Multiple keys can be pressed at the same time. For example, we can first press the s h i f t  
key (whose make code is 12) and then the A key, and release the A key and then release the 
s h i f t  key. The transmitted code sequence follows the make and break codes of the two 
keys: 

The preceding sequence is how we normally obtain an uppercase A. Note that there is no 
special code to distinguish the lower- and uppercase keys. It is the responsibility of the 
host device to keep track of whether the shift key is pressed and to determine the case 
accordingly. 

9.3.2 Scan code monitor circuit 

The scan code monitor circuit monitors the arrival of the received packets and displays the 
scan codes on a PC's HyperTerrninal window. The basic design approach is to first split the 
received scan code into two 4-bit parts and treat them as two hexadecimal digits, and then 
convert the two digits to ASCII code words and send the words to a PC via the UART. The 
received scan codes should be displayed similar to the previous example sequences. The 
program is shown in Listing 9.2. 

Listing 9.2 PS2 keyboard scan code monitor circuit 

module kb-monitor 

( 
i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  ps2d, ps2c, 

5 o u t p u t  w i r e  t x  

1; 

// c o n s t a n t  d e c l a r a t i o n  
l o c a l p a r a m  SP=8'h20; // s p a c e  in A S C I I  



/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  C1: 01 

i d l e  = 2 ' b 0 0 ,  
s e n d 1  = 2 ' b 0 1 ,  
s end0  = 2 ' b 1 0 ,  
s e n d b  = 2 ' b l l ;  

/ /  s i g n a l  d e c l a r a t i o n  
reg  [ I  : 01 s t a t e - r e g  , s t a t e - n e x t  ; 
reg  [7 :0 ]  w - d a t a ,  a s c i i - c o d e  ; 
wire  [7 :0 ]  s c a n - d a t a ;  
r e g  w r - u a r t ;  
wire  s c a n - d o n e - t i c k ;  
wire  [3 :01  h e x - i n ;  

/ /  i n s t a n t i a t i o n  
...................................................... 

/ /  i n s t a n t i a l e  ps2 r e c e i v e r  
p s 2 - r x  p s 2 - r x - u n i t  

( . c i k  ( c i k )  , . r e s e t  ( r e s e t  1,  . r x - e n  ( 1  ' b l ) ,  
. ps2d ( p s 2 d ) ,  . p s 2 c  ( p s 2 c ) ,  
.rx-done-tick(scan-done-tick), . d o u t ( s c a n - d a t a ) ) ;  

/ /  i n s t a n t i a t e  UART 
u a r t  u a r t - u n i t  

( .  c l k ( c i k ) ,  . r e s e t  ( r e s e t ) ,  . r d - u a r t  ( 1  ' b o ) ,  
. w r - u a r t  ( w r - u a r t )  , . r x  ( 1  ' b l )  , . w - d a t a ( w - d a t a )  
. t x - f u i i  ( )  , . rx-empty  0, . r - d a t a O ,  . t x ( t x ) )  ; 

...................................................... 

/ / FSM t o  s end  3 ASCII c h a r a c t e r s  
...................................................... 

// s t a t e  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  c l k  , p o s e d g e  r e s e t  ) 

i f  ( r e s e t )  
s t a t e - r e g  <= i d l e ;  

e l s e  
s t a t e - r e g  <= s t a t e - n e x t  ; 

/ /  n e x t - s t a t e  l o g i c  
a l w a y s  Q* 
b e g i n  

w r - u a r t  = l ' b O ;  
w-data  = S P ;  
s t a t e - n e x t  = s t a t e - r e g ;  
c a s e  ( s t a t e - r e g )  

i d l e  : 
i f  ( s c a n - d o n e - t i c k )  // a  scan code  r e c e i v e d  

s t a t e - n e x t  = s e n d l ;  
s e n d l :  // send h i g h e r  hex char  



b e g i n  
w-data = ascii-code ; 
wr-uart = 1 'bl; 
state-next = send0; 

end 
send0: / /  s e n d  lo lver  h e x  c h a r  

b e g i n  
w-data = ascii-code ; 
wr-uart = l'bl; 
state-next = sendb; 

end 
sendb: / /  s e n d  b l a n k  c h a r  

b e g i n  
w-data = SP; 
wr-uart = l'bl; 
state-next = idle; 

end 
80 e n d c a s e  

end 

...................................................... 

// s c a n  c o d e  t o  ASCII  d i s p l a y  
* ........................................................ 

/ /  s p l i t  t h e  s c a n  c o d e  i n t o  t w o  4 - b i t  h e x  
a s s i g n  hex-in = (state-reg==sendl)? scan-data [7:4] : 

scan-data [3: 01 ; 
/ /  hex  d i g i t  t o  ASClI  c o d e  

90 a l w a y s  @ *  
c a s e  (hex-in) 

4'hO: ascii-code = 8'h30; 
4'hl: ascii-code = 8'h31; 
4'h2: ascii-code = 8'h32; 

91 4'h3: ascii-code = 8'h33; 
4'h4: ascii-code = 8'h34; 
4'h5: ascii-code = 8'h35; 
4'h6: ascii-code = 8jh36; 
4'h7: ascii-code = 8'h37; 
4'h8: ascii-code = 8'h38; 
4'h9: ascii-code = 8'h39; 
4'ha: ascii-code = 8'h41; 
4'hb: ascii-code = 8'h42; 
4'hc: ascii-code = 8'h43; 
4'hd: ascii-code = 8'h44; 
4'he: ascii-code = 8'h45; 
d e f a u l t  : ascii-code = 8'h46; 

e n d c a s e  

I IO endmodule  

An FSM is used to control the overall operation. The UART operation is initiated when 
a new scan code is received (as indicated by the assertion of scan-done-tick). The FSM 
circulates through the sendl, send0, and sendb states, in which the ASCII codes of the 
upper hexadecimal digit, lower hexadecimal digit, and blank space are written to the UART. 



Figure 9.4 Block diagram of a last-released key circuit. 

Recall that the UART has a FIFO of four words, and thus no overflow will occur. Note that 
the UART receiver is not used and the corresponding ports are mapped to constants or left 
blank. 

9.4 PS2 KEYBOARD INTERFACE CIRCUIT 

As discussed in Section 9.3.1, a sequence ofpackets is transmitted even for simple keyboard 
activities. It will be quite involved if we want to cover all possible combinations. In this 
section, we assume that only one regular key is pressed and released at a time and design a 
circuit that returns the make code of this key. This design provides a simple way to send a 
character or digit to the prototyping board and should be satisfactory for our purposes. 

9.4.1 Basic design and HDL code 

The keyboard circuit, as a UART, is a peripheral circuit of a large system and needs a 
mechanism to communicate with the main system. The flagging and buffering schemes 
discussed in Section 8.2.4 can be applied for the keyboard circuit as well. We use a four- 
word FIFO buffer as the interface in this design. 

The top-level conceptual diagram is shown in Figure 9.4. It consists of the PS2 receiver, 
a FIFO buffer, and a control FSM. The basic idea is to use the FSM to keep track of the FO 
packet of the break code. After it is received, the next packet should be the make code of 
this key and is written into the FIFO buffer. Note that this scheme cannot be applied to the 
extended keys since their make codes involve multiple packets. The corresponding HDL 
code is shown in Listing 9.3. 

Listing 9.3 PS2 keyboard last-released key circuit 

module kb-code 
# ( p a r a m e t e r  W-SIZE = 2) // 2-W-SIZE words  in FIFO 
( 

i n p u t  w i r e  c l k  , r e s e t ,  
5 i n p u t  w i r e  ps2d ,  p s 2 c ,  rd-key-code , 

o u t p u t  w i r e  [7:0]  key-code , 
o u t p u t  w i r e  kb-buf-empty 

1; 

lo // c o n s t a n t  d e c l a r a t i o n  
l o c a l p a r a m  BRK = 8 ' h f O ;  // break  code  



/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  

wait-brk = l'bO, 
get-code = l'bl; 

/ /  s i g n a l  d e c l a r a t i o n  
r e g  state-reg , state-next; 
w i r e  [ 7 :  01 scan-out ; 
r e g  got-code-tick; 
w i r e  scan-done-tick; 

/ /  bodv 
...................................................... 

/ /  i n s t a n t i a t i o n  
........................................................ 

/ /  i n s t a n t i a t e  ps2 r e c e i v e r  
ps2-rx ps2-rx-unit 

( .  clk(clk1, .reset (reset), . rx-en(l 'bl), 
.ps2d(ps2d), .ps2c(ps2c), 
.rx-done-tick(scan-done-tick), .dout(scan-out)); 

// i n s t a n t i a t e  f i f o  b u f f e r  
fifo #(.B(8), .W(W-SIZE)) fife-key-unit 

(.clk(clk), .reset(reset), .rd(rd-key-code), 
. wr (got-code-tick) , . w-data(scan-out), 
. empty (kb-buf -empty), . full , 
.r-data(key-code)); 

......................................................... 

/ /  FSM t o  g e t  t h e  s can  code  a f t e r  FO r e c e i v e d  
......................................................... 

/ /  s t a t e  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk, p o s e d g e  reset) 

i f  (reset) 
state-reg <= wait-brk ; 

e l s e  
state-reg <= state-next ; 

/ /  n e x t - s t a t e  l o g i c  
a l w a y s  Q* 
b e g i n  

got-code-tick = l'bO; 
state-next = state-reg; 
c a s e  (state-reg) 

wait-brk: / /  wai t  f o r  FO of  break  code  
i f  (scan-done-tick==l 'b1 && scan-out==BRK) 

state-next = get-code ; 
get-code: // g e t  t h e  f o l l o w i n g  s can  code  

i f  (scan-done-tick) 
b e g i n  

got-code-tick =l'bl; 
state-next = wait-brk ; 



Figure 9.5 Block diagram of a keyboard verification circuit. 

65 end 
e n d c a s e  

end 

endmodule 

The main part of the code is the FSM, which screens for the break code and coordi- 
nates the operation of two other modules. It checks the received packets in the wait-brk 
state continuously. When the FO packet is detected, it moves to the get-code state and 
waits for the next packet, which is the make code of the key. The FSM then asserts the 
code-done-tick signal for one clock cycle and returns to the wait-brk state. 

9.4.2 Verification circuit 

We design a simple serial interface and decoding circuit to verify operation of the PS2 
keyboard interface. The top-level block diagram is shown in Figure 9.5. The circuit 
converts a key's make code to the corresponding ASCII code and then sends the ASCII code 
to the UART. The corresponding character or digits can be displayed in the HyperTerminal 
window. The HDL code for the conversion circuit is shown in Listing 9.4. 

Listing 9.4 Keyboard make code to ASCII code 

module key2ascii 
( 

i n p u t  w i r e  [7:0] key-code , 
o u t p u t  r e g  [7:0] ascii-code 

5 1; 

a l w a y s  O* 
c a s e  (key-c 

8'h45: 
8'h16: 
8' hle : 
8'h26: 
8' h25 : 
8'h2e: 
8'h36: 
8'h3d: 
8'h3e: 

:ode) 
ascii-code = 8'h30; 
ascii-code = 8'h31; 
ascii-code = 8'h32; 
ascii-code = 8'h33; 
ascii-code = 8'h34; 
ascii-code = 8'h35; 
ascii-code = 8'h36; 
ascii-code = 8'h37; 
ascii-code = 8'h38; 



8'h46: ascii-code = 8'h39; / /  9 

ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 
ascii-code 

ascii-code = 8'h60; // ' 

ascii-code = 8'h2d; // - 
ascii-code = 8'h3d; / /  = 

ascii-code = 8'h5b; // [ 
ascii-code = 8'h5d; / /  ] 
ascii-code = 8'h5c; / /  \ 
ascii-code = 8'h3b; / /  ; 

ascii-code = 8'h27; / /  ' 

ascii-code = 8'h2c; / /  , 

ascii-code = 8'h2e; / /  . 
ascii-code = 8'h2f; / /  / 

8'h29: ascii-code = 8'h20; / /  ( s p a c e )  
8'h5a: ascii-code = 8'hOd; // ( e n t e r ,  c r )  
8'h66: ascii-code = 8'h08; // ( b a c k s p a c e )  
d e f a u l t :  ascii-code = 8'h2a; // * 

e n d c a s e  

The complete code for the verification circuit follows the block diagram and is shown 
in Listing 9.5. 



Listing 9.5 Keyboard verification circuit 

module kb-test 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  ps2d, ps2c, 
o u t p u t  w i r e  tx 

1; 

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  C7:OI key-code , ascii-code; 

l o  wire  kb-not-empty , kb-buf -empty; 

// bod)] 
/ /  i n s t a n t i a t e  k e y b o a r d  scan code  c i r c u i t  
kb-code kb-code-unit 

15 ( .  clk(c1k) , .reset (reset), . ~ s 2 d ( p s 2 d ) ,  . ~ s 2 c  (ps2c), 
.rd-key-code(kb-not-empty), .key-code(key-code), 
.kb-buf-empty(kb-buf-empty)); 

// i n s t a n t i a t e  UART 
0 uart uart-unit 

(.clk(clk), .reset(reset), .rd-uart(l'bO), 
.wr-uart(kb-not-empty), .rx(13bl), .w-data(ascii-code), 
. tx-full 0, . rx-empty 0, . r - d a t a o  , .tx(tx)) ; 

zr / /  i n s t a n t i a t e  k e y - t o - a s c i i  code  c o n v e r s i o n  c i r c u i t  
key2ascii k2a-unit 

(.key-code(key-code), . a s c i i ~ c o d e ( a s c i i ~ c o d e ) ) ;  

a s s i g n  kb-not-empty = -kb-buf -empty; 
7U 

endmodule 

9.5 BIBLIOGRAPHIC NOTES 

Three articles, "PSI2 MouseIKeyboard Protocol," "PSI2 Keyboard Interface," and "PSI2 
Mouse Interface," by Adam Chapweske, provide detailed information on the PS2 keyboard 
and mouse interface. They can be found at the http://www.computer-engineering.org site. 
Rapid Prototyping of Digital Systems: Quartus@ II Edition by James 0. Hamblen et al. 
also contains a chapter on the PS2 port and the keyboard and mouse protocols. 

9.6 SUGGESTED EXPERIMENTS 

9.6.1 Alternative keyboard interface I 

The interface circuit in Section 9.4 returns the make code of the last released key and 
thus ignores the typematic condition. An alternative approach is to consider the typematic 
condition. The keyboard interface circuit should return a key's make code repeatedly when 
it is held down and ignore the final break code. For simplicity, we assume that the extended 



keys are not used. Design the new interface circuit, resynthesize the verification circuit, 
and verify operation of the new interface circuit. 

9.6.2 Alternative keyboard interface II 

We can expand the interface circuit to distinguish whether the shift key is pressed so that 
both lower- and uppercase characters can be entered. The expanded circuit can be modified 
as follows: 

The keycode output should be extended from 8 bits to 9 bits. The extra bit indicates 
whether the shift key is held down. 
The FSM should add a special branch to process the make and break codes of the 
shift key and set the value of the corresponding bit accordingly. 
The width of the FIFO buffer should be extended to 9 bits. 

Design the expanded interface circuit, modify the k e y 2 a s c i i  circuit to handle both lower- 
and uppercase characters, resynthesize the verification circuit, and verify operation of the 
expanded interface circuit. 

9.6.3 PS2 receiving subsystem with watchdog timer 

There is no error-handling capability in the PS2 receiving subsystem in Section 9.2. The 
potential noise and glitches in the ps2c signal may cause the FSMD to be stuck in an 
incorrect state. One way to deal with this problem is to add a watchdog timer. The timer 
is initiated every time the f a l l - e d g e - t i c k  signal is asserted in the g e t - b i t  state. The 
time-out signal is asserted if no subsequently falling edge arrives in the next 20 ,us, and 
the FSMD returns to the i d l e  state. Design the modified receiving subsystem, derive a 
testbench, and use simulation to verify its operation. 

9.6.4 Keyboard-controlled stopwatch 

Consider the enhanced stopwatch in Experiment 4.7.6. Operation of the stopwatch is 
controlled by three switches on the prototyping board. We can use the keyboard to send 
commands to the stopwatch: 

When the C (for "clear") key is pressed, the stopwatch aborts the current counting, is 
cleared to zero, and sets the counting direction to "up." 
When the G (for "go") key is pressed, the stopwatch starts to count. 
When the P (for "pause") key is pressed, the counting pauses. 
When the U (for "up-down") key is pressed, the stopwatch reverses the direction of 
counting. 
All other keys will be ignored. 

Design the new stopwatch, synthesize the circuit, and verify its operation. 

9.6.5 Keyboard-controlled rotating LED banner 

Consider the rotating LED banner circuit in Experiment 4.7.5. We can use a keyboard to 
control its operation and dynamically modify the digits in the banner: 

When the G (for "go") key is pressed, the LED banner rotates. 
When the P (for "pause") key is pressed, the LED banner pauses. 



When the D (for "direction") key is pressed, the LED banner reverses the direction 
of rotation. 
When a decimal digit (i.e., 0, 1, . . . , 9) key is pressed, the banner will be modified. 
The banner can be treated as a 10-word FIFO buffer. The new digit will be inserted at 
the beginning (i.e., the leftmost position) of the banner, and the rightmost digit will 
be shifted out and discarded. 
All other keys will be ignored. 

Design the new rotating LED banner, synthesize the circuit, and verify its operation. 



CHAPTER 10 

PS2 MOUSE 

10.1 INTRODUCTION 

A computer mouse is designed mainly to detect two-dimensional motion on a surface. Its 
internal circuit measures the relative distance of movement and checks the status of the 
buttons. For a mouse with a PS2 interface, this information is packed in three packets and 
sent to the host through the PS2 port. In the stream mode, a PS2 mouse sends the packets 
continuously in a predesignated sampling rate. 

Communication of the PS2 port is bidirectional and the host can send a command to 
the keyboard or mouse to set certain parameters. For our purposes, this hnctionality is 
hardly required for a keyboard, and thus the keyboard interface in Chapter 9 is limited to 
one direction, from the keyboard to the FPGA host. However, unlike the keyboard, a mouse 
is set to be in the nonstreaming mode after power-up and does not send any data. The host 
must first send a command to the mouse to initialize the mouse and enable the stream mode. 
Thus, bidirectional communication of the PS2 port is needed for the PS2 mouse interface, 
and we must design a transmitting subsystem (i.e., from FPGA board to mouse) for the PS2 
interface. 

In this chapter, we provide a short overview of the PS2 mouse protocol, design a bidi- 
rectional PS interface, and derive a simple mouse interface. 

FPGA ProtoQping bj. Vcrilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 



Table 10.1 Mouse data packet format 

10.2 PS2 MOUSE PROTOCOL 

10.2.1 Basic operation 

A standard PS2 mouse reports the x-axis (righdleft) and y-axis (upldown) movement and 
the status of the left button, middle button, and right button. The amount of each movement 
is recorded in a mouse's internal counter. When the data is transmitted to the host, the 
counter is cleared to zero and restarts the counting. The content of the counter represents a 
9-bit signed integer in which a positive number indicates the right or up movement, and a 
negative number indicates the left or down movement. 

The relationship between the physical distances is defined by the mouse's resolution 
parameter. The default value of resolution is four counts per millimeter. When a mouse 
moves continuously, the data is transmitted at a regular rate. The rate is defined by the 
mouse's sampling rate parameter. The default value of the sampling rate is 100 samples per 
second. If a mouse moves too fast, the amount of the movement during the sampling period 
may exceed the maximal range ofthe counter. The counter is set to the maximum magnitude 
in the appropriate direction. Two overflow bits are used to indicate the conditions. 

The mouse reports the movement and button activities in 3 bytes, which are embedded 
in three PS2 packets. The detailed format of the 3-byte data is shown in Table 10.1. It 
contains the following information: 

28, . . . , 20: x-axis movement in 2's-complement format 
x, : x-axis movement overflow 
ys, . . . , yo: y-axis movement in 2's-complement format 
y,: y-axis movement overflow 
1 :  left button status, which is 1 when the left button is pressed 
r: right button status, which is 1 when the right button is pressed 
m: optional middle button status, which is 1 when the middle button is pressed 

During transmission, the byte 1 packet is sent first and the byte 3 packet is sent last. 

10.2.2 Basic initialization procedure 

The operation of a mouse is more complex than that of a keyboard. It has different operation 
modes. The most commonly used one is the stream mode, in which a mouse sends the 
movement data when it detects movement or button activity. Ifthe movement is continuous, 
the data is generated at the designated sample rate. 

During the operation, a host can send commands to a mouse to modify the default values 
of various parameters and set the operation mode, and a mouse may generate the status and 
send an acknowledgment. For our purposes, the default values are adequate, and the only 
task is to set the mouse to the stream mode. 

The basic interaction sequence between a PS2 mouse and the FPGA host consists of the 
following: 



PS2 TRANSMllTlNG SUBSYSTEM 253 

,- idle parity bit 

ps2d 
(host) 

ps2d 
(mouse) 

ps2c 
(host) 

ps2c 
(mouse) 

/ /- start bit I 
/ ack bit 

- - - - ? - - - -  

8 8 , 8 
8 8 

I '  
, # ,  

I , , , ,  

I I 
8 8 8 ,  8 8 ,  ' I  -----;-----c-----c----.I---.-;----.:-----,-----t----<-.---*-----;-------- 
8 ,  
8 ,  

8 8 
8 8 

8 ,  8 8 I , , :  

Figure 10.1 Host-to-device timing diagram of a PS2 port. 

I .  At power-on, a mouse performs a power-on test internally. The mouse sends 1-byte 
data AA, which indicates that the test is passed, and then 1 -byte data 00, which is the 
id of a standard PS2 mouse. 

2. The FPGA host sends the command, F4, to enable the stream mode. The mouse will 
respond with FE to acknowledge acceptance of the command. 

3. The mouse now enters the stream mode and sends normal data packets. 
If a mouse is plugged into the FPGA prototyping board in advance, it performs the power- 

on test when the power of the board is turned on and sends the AA 00 data immediately. 
The FPGA chip is not configured at this point and will not receive this data. Thus, we can 
usually ignore the power-on message in step 1. A minimal mouse interface circuit only 
needs to send the F4 command, check the FE acknowledge, and enter the normal operation 
mode to process the mouse's regular data packet. 

We can force the mouse to return to the initial state by sending the reset command: 
1 .  The FPGA host sends the command, FF, to reset the mouse. The mouse will respond 

with FE to acknowledge acceptance of the command. 
2. The mouse performs a power-on test internally and then sends AA 00. The stream 

mode will be disabled during the process. 
Newer mouses add more functionality, such as a scrolling wheel and additional buttons, 

and thus send more information. Additional bytes are appended to the original 3-byte data 
to accommodate these new features. 

10.3 PS2 TRANSMITTING SUBSYSTEM 

10.3.1 Host-to-PS2-device communication protocol 

Host-to-PS2-device communication protocol involves bidirectional data exchange. The 
mouse's data and clock lines actually are open-collector circuits. For our design purposes, 
we treat them as tri-state lines. The basic timing diagram of transmitting a packet from a 
host to a PS2 device is shown in Figure 10.1, in which the data and clock signals are labeled 
ps2d and ps2c. For clarity, the diagram is split into two parts to show which activities are 
generated by the host (i.e., the FPGA chip) and which activities are generated by the device 
(i.e., mouse). The basic operation sequence is as follows: 



Figure 10.2 Tri-state buffers of the PS2 transmission subsystem. 

1. The host forces the ps2c line to be 0 for at least 100 ps  to inhibit any mouse activity. 
It can be considered that the host requests to send a packet. 

2. The host forces the ps2d line to be 0 and disables the ps2c line (i.e., makes it high 
impedance). This step can be interpreted as the host sending a start bit. 

3. The PS2 device now takes over the ps2c line and is responsible for future PS2 clock 
signal generation. After sensing the starting bit, the PS2 device generates a 1-to-0 
transition. 

4. Once detecting the transition, the host shifts out the least significant data bit over the 
ps2d line. It holds this value until the PS2 device generates a 1-to-0 transition in the 
ps2c line, which essentially acknowledges retrieval of the data bit. 

5.  Repeat step 4 for the remaining 7 data bits and 1 parity bit. 
6. After sending the parity bit, the host disables the ps2d line (i.e., makes it high im- 

pedance). The PS2 device now takes over the ps2d line and acknowledges completion 
of the transmission by asserting the ps2d line to 0. If desired, the host can check this 
value at the last 1-to-0 transition in the ps2c line to verify that the packet has been 
transmitted successfully. 

P S ~  
transmitting 

circuit 

> 

+ 

10.3.2 Design and code 

t, 

Unlike the receiving subsystem, the ps2c and ps2d signals communicate in both directions. 
A tri-state buffer is needed for each signal. The tri-state interface is shown in Figure 10.2. 
The t r i - c  and t r i - d  signals are enable signals that control the tri-state buffers. When 
they are asserted, the corresponding ps2c-out and ps2d-out signals will be routed to the 
output ports. 

To design the transmitting subsystem, we can follow the sequence of the preceding 
protocol to create an ASMD chart, as shown in Figure 10.3. The FSMD is initially in the 
i d l e  state. To start the transmission, the host asserts the wr-ps2 signal and places the data 
on the d in  bus. The FSMD loads din, along with the parity bit, par,  to the s h i f t r e g  
register, loads the " 1. . . I"  to c r e g ,  and moves to the rts (for "request to send") state. In 
this state, the ps2c-out is set to 0 and the corresponding t r i - c  is asserted to enable the 
corresponding tri-state buffer. The c r e g  is used as a 13-bit counter to generate a 164-ps 
delay. The FSMD then moves to the s t a r t  state, in which the PS2 clock line is disabled 
and the data line is set to 1. The PS2 device (i.e., mouse) now takes over and generates a 

+ 
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t, 
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tri-d 
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default: ps2c-out = I 
ps2d-out = I 
tri-c = 0 
tri-d = 0 

, ....................................... I ! data 1 

-- 

Figure 10.3 ASMD chart of the PS2 transmitting subsystem. 



clock signal over the ps2c line. After detecting the falling edge of the ps2c signal through 
the f all-edge signal, the FSMD goes to the da t a  state and shifts 8 data bits and 1 parity 
bit. The n register is used to keep track of the number of bits shifted. The FSMD then 
moves to the s top  state, in which the data line is disabled. It returns to the i d l e  state after 
sensing the last falling edge. 

The FSMD also includes a tx - id le  signal to indicate whether a transmission is in 
progress. This signal can be used to coordinate operation between the receiving and trans- 
mitting subsystems. The code follows the ASMD chart and is shown in Listing 10.1. A 
filtering circuit similar to that of Section 9.2 is used to generate the f all-edge signal. 

Listing 10.1 PS2 port transmitter 

module ps2-tx 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  wr-ps2, 

i i n p u t  w i r e  [7:01 din, 

i n o u t  w i r e  ps2d, ps2c, 
o u t p u t  r e g  tx-idle, tx-done-tick 

1; 

10  / /  s.vrnbolic s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  C2 : 01 

idle = 3'b000, 
rts = 3'b001, 
start = 3'b010, 
data = 3'b011, 
stop = 3'blOO; 

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [2 : 01 state-reg , state-next ; 

zo reg  [7:01 f ilter-reg; 
w i r e  [7 : 01 f ilter-next ; 
r e g  f -ps2c_reg ; 
wire  f -ps2c_next ; 
r e g  [3:01 n-reg, n-next ; 

r j  r e g  [8:01 b-reg , b-next ; 
r e g  [12:01 c-reg, c-next; 
w i r e  par, f all-edge ; 
reg  ps2c_out, ps2d-out ; 
r e g  tri-c , tri-d; 

.;o 

/ /  body 
................................................... 

// f i l t e r  and f a l l i n g  -edge t i c k  g e n e r a t i o n  f o r  ps2c 
................................................... 

a a l w a y s  @ ( ~ ~ s e d g e  clk, p o s e d g e  reset) 
i f  (reset) 

b e g i n  
filter-reg <= 0; 
f-ps2c-reg <= 0; 

40 end 
e l s e  



b e g i n  
f  i l t e r - r e g  <= f  i l t e r - n e x t  ; 
f  - p s 2 c _ r e g  <= f  - p s 2 c _ n e x t  ; 

end 

a s s i g n  f  i l t e r - n e x t  = Cps2c,  f  i l t e r - r e g  [ 7 :  11 1 ;  
a s s i g n  f  _ p s 2 c _ n e x t  = ( f  i l t e r ~ r e g = = 8 ' b l l l l 1 1 1 1 )  ? l ' b l  : 

(filter~reg==8'b00000000) ? l 'bO : 
SO f - p s 2 c - r e g ;  

a s s i g n  f a l l - e d g e  = f - p s 2 c - r e g  & " f - p s 2 c - n e x t ;  

................................................... 

/ / FSMD 
................................................... 

// FSMD s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  c l k  , p o s e d g e  r e s e t  1 

i f  ( r e s e t )  
b e g i n  

s t a t e - r e g  <= i d l e ;  
c - reg  <= 0 ;  
n - reg  <= 0 ;  
b - reg  <= 0 ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t  ; 
c- reg  <= c - n e x t ;  
n-reg <= n - n e x t ;  
b-reg <= b - n e x t ;  

end 

// odd p a r i t y  b i t  
a s s i g n  p a r  = - ( - d i n ) ;  

75 

/ /  FSMD n e x t - s t a t e  logic 
a l w a y s  Q* 
b e g i n  

s t a t e - n e x t  = s t a t e - r e g ;  
c-next  = c - r e g ;  
n-next  = n - r e g ;  
b-next  = b - r e g ;  
t x - d o n e - t i c k  = l ' b O ;  
ps2c-out  = l ' b l ;  
ps2d-out  = l ' b l ;  
t r i - c  = 1 'bO;  
t r i - d  = l ' b O ;  
t x - i d l e  = l ' b O ;  
c a s e  ( s t a t e - r e g )  

i d l e  : 
b e g i n  

t x - i d l e  = l ' b l ;  
i f  (wr -ps2)  

b e g i n  



end 

b - n e x t  = { p a r ,  d i n } ;  
c - n e x t  = 1 3 ' h l f f f ;  // 2-13-1  
s t a t e - n e x t  = r t s ;  

end 

end 

r t s :  / /  r e q u e s t  t o  s e n d  
b e g i n  

p s 2 c - o u t  = 1 ' bO ; 
t r i - c  = l ' b l ;  
c - n e x t  = c - r e g  - 1; 
i f  ( c - r e g = = O )  

s t a t e - n e x t  = s t a r t ;  
end 

s t a r t :  / /  a s s e r t  s t a r t  b i t  
b e g i n  

p s 2 d - o u t  = l ' b O ;  
t r i - d  = l ' b l ;  
i f  ( f  a l l - e d g e )  

b e g i n  
n - n e x t  = 4'h8; 
s t a t e - n e x t  = d a t a ;  

end 
end 

d a t a :  // 8 d a t a  + I p a r i t y  
b e g i n  

p s 2 d - o u t  = b - r e g  [ O l  ; 
t r i - d  = l ' b l ;  
i f  ( f  a l l - e d g e )  

b e g i n  
b - n e x t  = {l ' bO , b - r e g  [8 : 11 1 ; 
i f  ( n - r e g  == 0 )  

s t a t e - n e x t  = s t o p ;  
e l s e  

n - n e x t  = n - r e g  - 1 ;  
end 

end 
s t o p :  / /  assume f l o a t i n g  h igh  f o r  p s 2 d  

i f  ( f a l l - e d g e )  
b e g i n  

S t a t e - n e x t  = i d l e ;  
t x - d o n e - t i c k  = l ' b l ;  

end 
e n d c a s e  

140 // f r i - s t a t e  b u f f e r s  
a s s i g n  p s 2 c  = ( t r i - c )  ? p s 2 c - o u t  : l ' b z ;  
a s s i g n  ps2d  = ( t r i - d )  ? p s 2 d - o u t  : l ' b z ;  

endmodule 
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Figure 10.4 Top-level block diagram of a bidirectional PS2 interface. 

There is no error detection circuit in this code. A more robust design should check the 
correctness of the parity and acknowledgment bits and include a watchdog timer to prevent 
the mouse from being locked in an incorrect state. 

10.4 BIDIRECTIONAL PS2 INTERFACE 

10.4.1 Basic design and code 

We can combine the receiving and transmitting subsystems to form a bidirectional PS2 
interface. The top-level diagram is shown in Figure 10.4. We use the tx-idle and rx-en 
signals to coordinate the transmitting and receiving operations. Priority is given to the 
transmitting operation. When the transmitting subsystem is in operation, the tx-idle signal 
is deasserted, which, in turn, disables the receiving subsystem. The receiving subsystem 
can process input only when the transmitting subsystem is idle. The corresponding HDL 
code is shown in Listing 10.2. 

Listing 10.2 Bidirectional PS2 interface 

module ps2-rxtx 
( 

i n p u t  w i r e  clk , reset , 
i n p u t  w i r e  wr-ps2, 

5 i n o u t  w i r e  ps2d, ps2c, 
i n p u t  w i r e  [7:01 din, 
o u t p u t  w i r e  rx-done-tick , tx-done-tick , 
o u t p u t  w i r e  [7 :0]  dout 

1;  
10 

// s i g n a l  d e c l a r a t i o n  
w i r e  tx-idle ; 



Figure 10.5 Block diagram of a mouse monitor circuit. 

/ /  body 
, c  // i n s t a n t i a t e  ps2 r e c e i v e r  

ps2-rx ps2-rx-unit 
(.clk(clk), .reset(reset), .rx-en(tx-idle), 

. ps2d (ps2d) , . ps2c (ps2c) , 

.rx-done-tick(rx-done-tick), .dout(dout)); 
?o // i n s t a n t i a t e  ps2 t r a n s m i t t e r  

ps2-tx ps2-tx-unit 
(.clk(clk), .reset(reset), .wr-ps2(wr-p~2), 
. din(din) , . ps2d(ps2d), .ps2c (ps2c), 
.tx-idle(tx-idle), .tx-done-tick(tx-done-tick)); 

25 

endmodule 

10.4.2 Verification circuit 

We create a testing circuit to verify and monitor operation of the bidirectional interface. 
The block diagram is shown in Figure 10.5. A command is transmitted manually. We use 
the 8-bit switch to specify the data (i.e., the command from the host) and use a pushbutton 
to generate a one-clock-cycle tick to transmit the packet. The received packet data is first 
passed to the byte-to-ascii circuit, which converts the data into two ASCII characters 
plus a blank space. The characters are then transmitted via the UART and displayed in 
Windows HyperTerminal. The HDL code is shown in Listing 10.3. 

Listing 10.3 Bidirectional PS2 interface monitor circuit 

module ps2-monitor 
( 

i n p u t  wi re  clk, reset, 
i n p u t  wire  [7:01 sw, 
i n p u t  wire  [2:01 btn, 
i n o u t  wi re  ps2d, ps2c, 
o u t p u t  wi re  tx 

1; 

l o  / /  c o r ~ s t a n t  d e c l a r a t i o n  
l o c a l p a r a m  SP=8'h20; // s p a c e  i n  A S C I I  

/ /  s yn ibo l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [ I :  01 



i d l e  = 2 ' b 0 0 ,  
send1  = 2 ' b 0 1 ,  
send0 = 2 ' b 1 0 ,  
sendb = 2 ' b l l ;  

20 // s i g n a l  d e c l a r a t i o n  
r e g  [ I :  01 s t a t e - r e g  , s t a t e - n e x t  ; 
w i r e  [7:01 r x - d a t a ;  
r e g  [7:0]  w-data ,  a s c i i - c o d e ;  
w i r e  p s r x - d o n e - t i c k  , wr-ps2 ; 

25 r e g  w r - u a r t ;  
w i r e  [3:0]  h e x - i n ;  

// body 
...................................................... 

30 / /  i n s t a n t i a t i o n  
...................................................... 

/ /  i n s t a n t i a t e  ps2 t r a n s m i t t e r / r e c e i v e r  
p s 2 - r x t x  p s 2 - r x t x - u n i t  

( .  c i k ( c i k ) ,  . r e s e t  ( r e s e t ) ,  . w r - p s 2 ( w r - p ~ 2 ) ,  
. d i n ( s w ) ,  . dou t  ( r x - d a t a )  , . p s 2 d ( p s 2 d )  . P S ~ C ( P ~ ~ C )  9 

. r x - d o n e - t i c k  ( p s r x - d o n e - t i c k )  , . t x - d o n e - t i c k  0 )  ; 

/ /  i n s t a n t i a t e  UART ( o n l y  use the  UART t r a n s m i t t e r )  
u a r t  u a r t - u n i t  

( .  c l k ( c i k ) ,  . r e s e t  ( r e s e t ) ,  . r d - u a r t  ( 1  ' b o )  
. wr-uar t  ( w r - u a r t )  , . r x  ( 1  ' b l )  , . w-da ta (w-da ta )  9 

. t x - f ~ i l ( ) ,  . rx-empty 0 ,  . r - d a t a O ,  . t x ( t x ) ) ;  

/ /  i n s t a n t i a t e  debounce  c i r c u i t  
a debounce b t n - d b - u n i t  

( .  c l k ( c l k ) ,  . r e s e t  ( r e s e t ) ,  . s w ( b t n  [O]) ,  
. d b - l e v e l ( )  , . d b - t i c k  ( w r - p s 2 ) )  ; 

...................................................... 

SO // FSM t o  s end  3 ASCII c h a r a c t e r s  
...................................................... 

// s t a t e  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  c l k  , p o s e d g e  r e s e t  

i f  ( r e s e t )  
s t a t e - r e g  <= i d l e ;  

e l s e  
s t a t e - r e g  <= s t a t e - n e x t  ; 

// n e x t - s t a t e  l o g i c  
60 a l w a y s  Q *  

b e g i n  
wr-uar t  = l ' b O ;  
w-data = S P ;  
s t a t e - n e x t  = s t a t e - r e g ;  
c a s e  ( s t a t e - r e g )  

i d l e  : 
i f  ( p s r x - d o n e - t i c k )  / /  a s can  code  r e c e i v e d  



state-next = sendl; 
sendl: / /  s e n d  h i g h e r  h e x  c h a r  

b e g i n  
w-data = ascii-code ; 
wr-uart = l'bl; 
state-next = send0; 

end 
send0: / /  s e n d  l o w e r  h e x  c h a r  

b e g i n  
w-data = ascii-code ; 
wr-uart = l'bl; 
state-next = sendb; 

end 
sendb: / /  s e n d  b l a n k  c h a r  

b e g i n  
w-data = SP; 
wr-uart = l'bl; 
state-next = idle; 

end 
e n d c a s e  

end 

...................................................... 

/ /  s c a n  c o d e  t o  ASCII  d i s p l a y  
..................................................... 

// s p l i t  t h e  s c a n  c o d e  i n t o  two  4 - b i t  hex  
a s s i g n  hex-in = (state-reg==sendl)? rx-data [7:4] : 

v s  rx-data [3: 01 ; 
// h e x  d i g i t  t o  ASCII  c o d e  
a l w a y s  a *  

c a s e  (hex-in) 
4'hO: ascii-code = 8'h30; 
4'hl: ascii-code = 8'h31; 
4'h2: ascii-code = 8'h32; 
4'h3: ascii-code = 8'h33; 
4'h4: ascii-code = 8'h34; 
4'h5: ascii-code = 8'h35; 
4'h6: ascii-code = 8'h36; 
4'h7: ascii-code = 8'h37; 
4'h8: ascii-code = 8'h38; 
4'h9: ascii-code = 8'h39; 
4'ha: ascii-code = 8'h41; 
4'hb: ascii-code = 8'h42; 
4'hc: ascii-code = 8'h43; 
4'hd: ascii-code = 8'h44; 
4'he: ascii-code = 8'h45; 
d e f a u l t  : ascii-code = 8'h46; 

e n d c a s e  

endmodule 



If a mouse is connected to the PS2 circuit, we can first issue the FF command to reset the 
mouse and then issue the F4 command to enable the stream mode. Windows HyperTerminal 
will show the mouse's acknowledge packets and subsequent mouse movement packets. 

10.5 PS2 MOUSE INTERFACE 

10.5.1 Basic design 

The basic PS2 mouse interface creates another layer over the bidirectional PS2 circuit. Its 
two basic hnctions are to enable the stream mode and to reassemble the 3 data bytes. The 
output of the circuit consists of xm and ym, which are two 9-bit x- and y-axis movement 
signals; btm, which is the 3-bit button status signal; and m-done-tick, which is a one- 
clock-cycle status signal and is asserted when the assembled data is available. 

The HDL code is shown in Listing 10.4. It is implemented by an FSMD with seven 
states. The i n i t  I, i n i t 2 ,  and i n i t 3  states are executed once after the r e s e t  signal is 
asserted. In these states, the FSMD issues the F4 command, waits for completion of the 
transmission, and then waits for the acknowledgment packet. The mouse is in the stream 
mode now. The FSMD then obtains and assembles the next three packets in the packl, 
pack2, and pack3 states, and activates the m-done-tick signal in the done state. The 
FSMD circulates these four states afterward. 

Listing 10.4 Basic mouse interface circuit 

module mouse 
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n o u t  w i r e  p s 2 d ,  p s 2 c ,  

5 o u t p u t  w i r e  [8 :0 ]  xm, ym, 
o u t p u t  w i r e  [2 :01  b tnm,  
o u t p u t  r e g  m-done - t i ck  

1; 

10 // c o n s t a n t  d e c l a r a t i o n  
l o c a l p a r a m  STRM=8'hf4; / /  s t r e a m  command F4 

/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [2 :  01 

15 i n i t l  = 3 ' b 0 0 0 ,  
i n i t 2  = 3 '  b 0 0 1 ,  
i n i t 3  = 3 ' b 0 1 0 ,  
p a c k l  = 3 '  b011 .  
pack2  = 3 ' b 1 0 0 ,  

20 pack3  = 3 ' b 1 0 1 ,  
done = 3 ' b 1 1 0 ;  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [ 2 :  01 s t a t e - r e g  , s t a t e - n e x t  ; 

25 w i r e  [7 :01  r x - d a t a ;  
r e g  wr-ps2 ;  
w i r e  r x - d o n e - t i c k  , t x - d o n e - t i c k  ; 
r e g  [8 :0 ]  x - r e g ,  y - r e g ,  x - n e x t ,  y - n e x t ;  
r e g  [ 2 :  01 b t n - r e g  , b t n - n e x t  ; 



/ /  body  
/ /  i n s t a n t i a t i o n  
p s 2 - r x t x  p s 2 - u n i t  

5 ( . c l k ( c l k ) ,  . r e s e t ( r e s e t ) ,  . w r - p s 2 ( w r - ~ s 2 ) ,  
. d i n  (STRM) , . d o u t  ( r x - d a t a )  , . p s 2 d ( p s 2 d ) ,  . ~ s 2 c  ( p s 2 ~ )  9 

.rx-done-tick(rx-done-tick), 

.tx-done-tick(tx-done-tick)); 

40 / /  body  
/ /  FSMD s t a t e  and d a t a  r e g i s t e r s  
a l w a y s  @ ( p o s e d g e  c l k  , p o s e d g e  r e s e t  ) 

i f  ( r e s e t )  
b e g i n  

s t a t e - r e g  <= i n i t l ;  
x - r e g  <= 0 ;  
y - r e g  <= 0 ;  
b t n - r e g  <= 0 ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t ;  
x - r e g  <= x - n e x t ;  
y - r e g  <= y - n e x t ;  
b t n - r e g  <= b t n - n e x t  ; 

end 

// FSMD n e x t - s t a t e  l o g i c  
a l w a y s  Q* 

60 b e g i n  
s t a t e - n e x t  = s t a t e - r e g ;  
wr-ps2 = l ' b O ;  
m-done - t i ck  = l ' b O ;  
x -nex t  = x - r e g ;  
y -nex t  = y - r e g  ; 
b t n - n e x t  = b t n - r e g ;  
c a s e  ( s t a t e - r e g )  

i n i t  1  : 
b e g i n  

wr-ps2 = 1 ' b l ;  
s t a t e - n e x t  = i n i t 2 ;  

end 
i n i t 2 :  // w a i t  f o r  s e n d  t o  c o m p l e t e  

i f  ( t x - d o n e - t i c k )  
s t a t e - n e x t  = i n i t 3 ;  

i n i t 3 :  // w a i t  f o r  a c k n o w l e d g e  p a c k e t  
i f  ( r x - d o n e - t i c k )  

s t a t e - n e x t  = p a c k l ;  
p a c k l :  / /  w a i t  f o r  1 s t  d a t a  p a c k e t  

i f  ( r x - d o n e - t i c k )  
b e g i n  

s t a t e - n e x t  = p a c k 2 ;  



y-nex t  [81 = r x - d a t a  C51 ; 
x-nex t  [8] = r x - d a t a  [41 ; 
b t n - n e x t  = r x - d a t a  [2 : 01 ; 

end 
p a c k 2 :  // w a i t  f o r  2nd d a t a  p a c k e t  

i f  ( r x - d o n e - t i c k )  
b e g i n  

s t a t e - n e x t  = p a c k 3 ;  
x -nex t  17:  01 = r x - d a t a ;  

end 
p a c k s :  / /  w a i t  f o r  3 r d  d a t a  p a c k e t  

i f  ( r x - d o n e - t i c k )  
b e g i n  

s t a t e - n e x t  = d o n e ;  
y -nex t  [ 7 :  01 = r x - d a t a  ; 

end 
done : 

b e g i n  
m-done - t i ck  = l ' b l ;  
s t a t e - n e x t  = p a c k l ;  

end 
e n d c a s e  

105 end 
/ /  o u t p u t  
a s s i g n  xm = x - r e g ;  
a s s i g n  ym = y - r e g ;  
a s s i g n  btnm = b t n - r e g ;  

110 

endmodule 

This design provides only minimal functionalities. A more sophisticated circuit should 
have a robust method to initiate the stream mode and add an additional buffer, similar to 
that in Section 8.2.4, to interact better with the external system. 

10.5.2 Testing circuit 

We use a simple testing circuit to demonstrate use of the PS2 interface. The circuit uses a 
mouse to control the eight discrete LEDs of the prototyping board. Only one of the eight 
LEDs is lit and the position ofthat LED follows the x-axis movement of the mouse. Pressing 
the left or right button places the lit LED to the leftmost or rightmost position. 

The HDL code is shown in Listing 10.5. It uses a 10-bit counter to keep track of the 
current x-axis position. The counter is updated when a new data item is available (i.e., when 
the m-done-t i ck  signal is asserted). The counter is set to 0 or maximum when the left or 
right mouse button is pressed. Otherwise, it adds the amount of the signed-extended x-axis 
movement. A decoding circuit uses the three MSBs of the counter to activate one of the 
LEDs. 

Listing 10.5 Mouse-controlled LED circuit 

module mouse- led  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n o u t  w i r e  p s 2 d ,  p s 2 c ,  



5 o u t p u t  r e g  [7:0] led 

) ;  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [9:01 p-reg; 

l o  wire  C9:01 p-next ; 
w i r e  [8: 01 xm; 
w i r e  [2:0] btnm; 
w i r e  m-done-tick; 

1 5  // body 
// i n s t a n t i a t i o n  
mouse mouse-unit 

( .  clk(clk), . reset (reset), . ps2d(ps2d), . P S ~ C ( P ~ ~ C )  
. xm(xm), . y m 0 ,  . btnmcbtnm), 
.m-done-tick(m-done-tick)); 

// c o u n t e r  
a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  reset ) 

i f  (reset) 
p-reg <= 0; 

e l s e  
p-reg <= p-next; 

a s s i g n  p-next = ("m-done-tick) ? p-reg : // no a c t i v i t y  
30 (btnm C01) ? 10'bO : // l e f t  b u t t o n  

(btnm [I]) ? lO'h3ff : // r i g h t  b u t t o n  
p-reg + Cxm C81 , xml; // x movement 

a l w a y s  Q* 
c a s e  (p-reg C9: 71 

3'bOOO: led = 8'b10000000; 
3'bOOl: led = 8'b01000000; 
3'bOlO: led = 8'b00100000; 
3'b011: led = 8'b00010000; 
3'blOO: led = 8'b00001000; 
3'b101: led = 8'b00000100; 
3'b110: led = 8'b00000010; 
d e f a u l t  : led = 8 'b00000001; 

e n d c a s e  
45 

endmodule  

10.6 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapter 9. 

10.7 SUGGESTED EXPERIMENTS 

The mouse is used mainly with a graphic video interface, which is discussed in Chapters 13 
and 14. Many additional mouse-related experiments can be found in these chapters. 
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10.7.1 Keyboard control circuit 

A host can issue a command to set certain parameters for a PS2 keyboard as well. For 
example, we can control the three LEDs of the keyboard by sending ED OX. The X is a 
hexadecimal number with a format of "Osnc", where s, n, and c are I-bit values that control 
the Scroll, Num, and Caps Lock LEDs, respectively. We can incorporate this feature into 
the keyboard interface circuit of Section 9.4.1 and use a 3-bit switch to control the three 
keyboard LEDs. Design the expanded interface circuit, resynthesize the circuit, and verify 
its operation. 

10.7.2 Enhanced mouse interface 

For the mouse interface discussed in Section 10.5, we can alter the design to manually 
enable or disable the steam mode. This can be done by using two pushbuttons of the FPGA 
prototyping board. One button issues the reset command, FF, which disables the stream 
mode during operation, and the other button issues the F4 command to enable the steam 
mode. Modify the original interface to incorporate this feature, and resynthesize the LED 
testing circuit to verify its operation. 

10.7.3 Mouse-controlled seven-segment LED display 

We can use the mouse to enter four decimal digits on the four-digit seven-segment LED 
display. The circuit functions as follows: 

Only one of the four decimal points of the LED display is lit. The lit decimal point 
indicates the location of the selected digit. 
The location of the selected digit follows the x-axis movement of the mouse. 
The content of the select seven-segment LED display is a decimal digit (i.e., 0, . . . ,9) 
and changes with the y-axis movement of the mouse. 

Design and synthesize this circuit and verify its operation. 
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CHAPTER 11 

EXTERNAL SRAM 

11.1 INTRODUCTION 

Random access memory (RAM) is used for massive storage in a digital system since a RAM 
cell is much simpler than an FF cell. A commonly used type of RAM is the asynchronous 
static RAM (SRAM). Unlike a register, in which the data is sampled and stored at an edge 
of a clock signal, accessing data from an asynchronous SRAM is more complicated. A 
read or write operation requires that the data, address, and control signals be asserted in 
a specific order, and these signals must be stable for a certain amount of time during the 
operation. 

It is difficult for a synchronous system to access an SRAM directly. We usually use 
a memory controller as the interface, which takes commands from the main system syn- 
chronously and then generates properly timed signals to access the SRAM. The controller 
shields the main system from the detailed timing and makes the memory access appear 
like a synchronous operation. The performance of a memory controller is measured by the 
number of memory accesses that can be completed in a given period. While designing a 
simple memory controller is straightforward, achieving optimal performance involves many 
timing issues and is quite difficult. 

The S3 board has two 256K-by-16 asynchronous SRAM devices, which total 1M bytes. 
In this chapter, we demonstrate the construction of a memory controller for these devices. 
Since the timing characteristics of each RAM device are different, the controller is applicable 
only to this particular device. However, the same design principle can be used for similar 

FPGA Protoyping b>~ Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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SRAM devices. The Xilinx Spartan-3 device also contains smaller embedded memory 
blocks. Use of this memory is discussed in Chapter 12. 

11.2 SPECIFICATION OF THE IS61 LV25616AL SRAM 

11.2.1 Block diagram and 110 signals 

The S3 board has two IS61LV25616AL devices, which are 256K-by-16 SRAM manufac- 
tured by Integrated Silicon Solution, Inc. (ISSI). A simplified block diagram is shown in 
Figure 1 l.l(a). This device has an 18-bit address bus, ad, a bidirectional 16-bit data bus, 
dio, and five control signals. The data bus is divided into upper and lower bytes, which 
can be accessed individually. The five control signals are: 

c e n  (chip enable): disables or enables the chip 
wen (write enable): disables or enables the write operation 
o e n  (output enable): disables or enables the output 
l b n  (lower byte enable): disables or enables the lower byte of the data bus 
u b n  (upper byte enable): disables or enables the upper byte of the data bus 

All these signals are active low and the n suffix is used to emphasize this property. The 
functional table is shown in Figure 1 l.l(b). The c e n  signal can be used to accommodate 
memory expansion, and the wen and o e n  signals are used for write and read operations. 
The l b n  and u b n  signals are used to facilitate the byte-oriented configuration. 

In the remainder of the chapter, we illustrate the design and timing issues of a memory 
controller. For clarity, we use one SRAM device and access the SRAM in 16-bit word 
format. This means that the c e n ,  l b n ,  and u b n  signals should always be activated (i.e., 
tied to 0). The simplified functional table is shown in Figure 1 1.1 (c). 

11.2.2 Timing parameters 

The timing characteristics of an asynchronous SRAM are quite complex and involve more 
than two dozen parameters. We concentrate on only a few key parameters that are relevant 
to our design. 

The simplified timing diagrams for two types of read operations are shown in Fig- 
ure 1 1.2(a) and (b). The relevant timing parameters are: 

tRG: read cycle time, the minimal elapsed time between two read operations. It is 
about the same as tAA for SRAM. 
tAA: address access time, the time required to obtain stable output data after an 
address change. 
t o H ~ :  output hold time, the time that the output data remains valid after the address 
changes. This should not be confused with the hold time of an edge-triggered FF, 
which is a constraint for the d  input. 
tDOE: output enable access time, the time required to obtain valid data after o e n  is 
activated. 
tHZOE: output enable to high-Z time, the time for the tri-state buffer to enter the 
high-impedance state after o e n  is deactivated. 
tLZOE: output enable to low-Z time, the time for the tri-state buffer to leave the 
high-impedance state after o e n  is activated. Note that even when the output is no 
longer in the high-impedance state, the data is still invalid. 

Values of these parameters for the IS6 1LV256 16AL device are shown in Figure 1 1.2(c). 
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(a) Block diagram 

Operation c e n  w e n  o e n  l b n  u b n  d i o  (lower) d i o  (upper) 
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decoder1 
multiplexer 

disabled 1 Z Z 
0 1 1 z z 
0 1 1 z z 

read 0 1 0 0 1 data out Z 
0 1 0 1 0 Z data out 
0 1 0 0 0 data out data out 

b 

write 0 0 0 1 data in Z 
0 0 1 0 Z data in 

256K-by-16 
cell array 

0 0 0 0 data in data in 

A 

(b) Functional table 

Operation w e n  o e n  d i o  (16 bits) 

output disabled 1 1 Z 
read 16-bit word 1 0 data out 
write 16-bit word 0 data in 

(c) Simplified functional table 

Figure 11.1 Block diagram and functional table of the ISSI 256K-by-16 SRAM. 
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parameter min max 

~ R C  read cycle time 10 - 

t A A address access time - 10 
~ O H A  output hold time 2 - 
  DOE output enable access time - 4 
~ H Z O E  output enable to high-Z time - 4 
~ L Z O E  output enable to low-Z time 0 - 

- -- - 

(c) Timlng parameters (In ns) 

Figure 11.2 Timing diagrams and parameters of a read operation. 
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din -+-I- 

(a) Timing diagram of a write cycle 

parameter min max 

t w c  write cycle time 10 - 

~ S A  address setup time 0 - 

 HA address hold time 0 - 

~ P W E I  w e n  pulse width 8 - 

~ S D  data setup time 6 - 

~ H D  data hold time 0 - 

(b) Timing parameter (in ns) 

Figure 11.3 Timing diagram and parameters of a write operation. 

The simplified timing diagram for a wen-controlled write operation is shown in Fig- 
ure 1 1.3(a). The relevant timing parameters are: 

twc: write cycle time, the minimal elapsed time between two write operations. 
tSA: address setup time, the minimal time that the address must be stable before w e n  
is activated. 
tHA: address hold time, the minimal time that the address must be stable after w e n  
is deactivated. 
tPWE1: w e n  pulse width, the minimal time that w e n  must be asserted. 
tso: data setup time, the minimal time that data must be stable before the latching 
edge (the edge in which w e n  moves from 0 to 1). 
tHD: data hold time, the minimal time that data must be stable after the latching 
edge. 

The values of these parameters for the IS6 1 LV256 16AL device are shown in Figure 1 1.3(b). 
The complete timing information can be found in the data sheet of the IS61LV25616AL 
device. 
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Figure 11.4 Role of an SRAM memory controller. 

11.3 BASIC MEMORY CONTROLLER 

11.3.1 Block diagram 

The role of a memory controller and its 110 signals are shown in Figure 1 1.4. The signals 
to the SRAM side are discussed in Section 1 1.2.1. The signals to the main system side are: 

mem: is asserted to 1 to initiate a memory operation. 
rw: specifies whether the operation is a read (1) or write (0) operation. 
addr: is the 18-bit address. 
data-f 2s: is the 16-bit data to be written to the SRAM (the -f 2s suffix stands for 
FPGA to SRAM). 
data-s2f 1: is the 16-bit registered data retrieved from the SRAM (the -s2f suffix 
stands for SRAM to FPGA). 
data-s2f -ur: is the 16-bit unregistered data retrieved from SRAM. 
ready: is a status signal indicating whether the controller is ready to accept a new 
command. This signal is needed since a memory operation may take more than one 
clock cycle. 

The memory controller basically provides a "synchronous wrap" around the SRAM. 
When the main system wants to access the memory, it places the address and data (for a 
write operation) on the bus and activates the command (i.e., the mem and r w  signals). At the 
rising edge of the clock, all signals are sampled by the memory controller and the desired 
operation is performed accordingly. For a read operation, the data becomes available after 
one or two clock cycles. 

The block diagram of a memory controller is shown in Figure 1 1.5. Its data path contains 
one address register, which stores the address, and two data registers, which store the data 
from each direction. Since the data bus, dio, is a bidirectional signal, a tri-state buffer is 
needed. The control path is an FSM, which follows the timing diagrams and specifications 
in Figures 1 1.2 and 1 1.3 to generate a proper control sequence. 
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Although the timing diagrams appear to be complicated at first glance, the control sequences 
are fairly simple. Let us first consider a read cycle. The w e n  should be deactivated during 
the entire operation. Its basic operation sequence is: 

1. Place the address on the ad bus and activate the o e n  signal. These two signals must 
be stable for the entire operation. 

2. Wait for at least t A A .  The data from the SRAM becomes available after this interval. 
3. Retrieve the data from d i o  and deactivate the o e n  signal. 

We use the wen-controlled write cycle in our design, as shown in Figure 11.3(a). The 
basic operation sequence is: 

1. Place the address on the ad bus and data on the d i o  bus and activate the w e n  signal. 
These signals must be stable for the entire operation. 

2. Wait for at least tPWE1.  
3. Deactivate the w e n  signal. The data is latched to the SRAM at the 0-to-1 transition 

edge. 
4. Remove the data from the d i o  bus. 
Note that t H D  (data hold time after write ends) is 0 ns for this SRAM, which implies that 

it is theoretically possible to remove the data and deactivate w e n  simultaneously. However, 
because of the variations in propagation delays, this condition cannot be guaranteed in a 
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real circuit. To achieve proper latching, we need to ensure that the wen signal is always 
deactivated first. 

11.3.3 Register file versus SRAM 

We discuss the design of a register file in Section 4.2.3. Its basic storage elements are D FFs 
and thus it is completely synchronous. Although a memory controller wraps the SRAM in 
a synchronous interface, there are several differences: 

A register file usually has one write port and multiple read ports. 
The read and write ports of a register file can be accessed at the same time (i.e., the 
read and write operations can be done at the same time). 
Writing to a register takes only one clock cycle. 
Data from a register's read ports is always available and the read operation involves 
no clock or additional control signals. 

In summary, a register file is faster and more flexible. However, due to the circuit size of 
an FF, a register file is feasible only for small storage. 

11.4 A SAFE DESIGN 

With the block diagram of Figure 1 1.5, the remaining task is to derive the controller. Our 
first scheme uses a "safe" design, which means that the design provides large timing margins 
and does not impose any stringent timing constraints. The control signals are generated 
directly from the FSM. The controller uses two clock cycles (i.e., 40 ns) to complete memory 
access and requires three clock cycles (i.e., 60 ns) for back-to-back operations. 

11.4.1 ASMD chart 

The ASMD chart for this controller is shown in Figure 11.6. The FSM has five states and is 
initially in the i d l e  state. It starts the memory operation when the mem signal is activated. 
The r w  signal determines whether it is a read or write operation. 

For a read operation, the FSM moves to the r d l  state. The memory address, addr, is 
sampled and stored in the a d d r r e g  register at the transition. The o e n  signal is activated 
in the r d l  and rd2 states. At the end of the read cycle, the FSM returns to the i d l e  state. 
The retrieved data is stored in the data-s2f r e g  register at the transition, and the o e n  
signal is deactivated afterward. Note that the block diagram of Figure 1 1.5 has two read 
ports. The data-s2f -r signal is a registered output and becomes available ajer the FSM 
exits the r 2  state. The data remains unchanged until the end of the next read cycle. The 
data-s2f -ur signal is connected directly to the SRAM's d io  bus. Its data should become 
valid at the end of the rd2 state but will be removed after the FSM enters the i d l e  state. 
In some applications, the main system samples and stores the memory readout in its own 
register, and the unregistered output allows this action to be completed one clock cycle 
earlier. 

For a write operation, the FSM moves to the w r l  state. The memory address, addr, and 
data, data-f 2s, are sampled and stored in the a d d r r e g  and data-f 2s-reg registers at 
the transition. The wen and t r in signals are both activated in the w r l  state. The latter 
enables the tri-state buffer to put the data over the SRAM's d io  bus. When the FSM moves 
to the wr2 state, wen is deactivated but trin remains asserted. This ensures that the data 
is properly latched to the SRAM when wen changes from 0 to 1. At the end of the write 



Default: oe-n = 1 ; we-n = 1 ; tri-n = 1 ; ready = 0 

Figure 11.6 ASMD chart of a safe SRAM controller. 
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cycle, the FSM returns to the i d l e  state and t r in is deactivated to remove data from the 
d io  bus. 

......................... 

11.4.2 Timing analysis 

To ensure correct operation of a memory controller, we must verify that the design meets 
various timing requirements. Recall that the FSM is controlled by a 50-MHz clock signal 
and thus stays in each state for 20 ns. 

During the read cycle, o e n  is asserted for two states, totaling 40 ns, which provides 
a 30-ns margin over the 10-ns ~ A A .  Although it appears that o e n  can be deasserted in 
the rd2 state, this imposes a more stringent timing constraint. This issue is explained in 
Section 11 S.3. The data is stored in the data-s2f register when the FSM moves from the 
rd2 state to the i d l e  state. Although o e n  is deasserted at the transition, the data remains 
valid for a small interval because of the FPGA's pad delay and the tHZoE delay of the 
SRAM chip. It can be sampled properly by the clock edge. 

During the write cycle, wen is asserted in the w r l  state, and the 20-ns interval exceeds 
the 8-ns tPWEI  requirement. The t r in signal remains asserted in the wr2 state and thus 
ensures that the data is still stable during the 0-to-1 transition edge of the wen  signal. 

, 
w l  T 

1 we-n = 0 
/ tri-n = 0 

I oe-n = 0 / tri-n = 0 / rs2f t dio 

................................................................ 

......................... 
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In terms of performance, both read and write operations take two clock cycles to com- 
plete. During the read operation, the unregistered data (i.e., data-s2f -ur) is available 
at the end of the second clock cycle (i.e., just before the rising edge of the second clock 
cycle) and the registered data (i.e., data-s2f -r) is available right after the rising edge of 
the second clock cycle. Although a memory operation can be done in two clocks, the main 
system cannot access memory at this rate. Both read and write operations must return to the 
i d l e  state after completion. The main system must wait for another clock cycle to issue a 
new memory operation, and thus the back-to-back memory access takes three clock cycles. 

11.4.3 HDL implementation 

The HDL code can be derived by following the block diagram in Figure 11.5 and the 
ASMD chart in Figure 1 1.6. The memory controller must generate fast, glitch-free control 
signals. One method is to modify the output logic to include look-ahead output buffers for 
the Moore output signals. This scheme adds a buffer (i.e., D FF) for each output signal to 
remove glitches and reduce clock-to-output delay. To compensate the one clock cycle delay 
introduced by the buffer, we "look ahead" at the state's future value (i.e., the s t a t e n e x t  
signal) and use it to replace the state's current value (i.e., the s t a t e r e g  signal) in the 
FSM's output logic. 

The complete HDL code is shown in Listing 1 1 . l .  To facilitate future expansion, we 
label the S3 board's two SRAM chips as a and b and add an -a suffix to the SRAM's 110 
signals in port declaration. Note that tri-state buffers are required for the bidirectional data 
signal dio-a. 

Listing 11.1 SRAM controller with three-cycle back-to-back operation 

module s r a m - c t r l  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
// t o / f r o m  main s y s t e m  

i i n p u t  w i r e  mem, rw ,  
i n p u t  w i r e  [17:0]  a d d r ,  
i n p u t  w i r e  [15 :0 ]  d a t a - f 2 s ,  
o u t p u t  r e g  r e a d y ,  
o u t p u t  w i r e  [15 :0 ]  d a t a - s 2 f  -r , d a t a - s 2 f  - u r  , 

10 // t o / f r o m  sram c h i p  
o u t p u t  w i r e  [17 :0 ]  a d ,  
o u t p u t  w i r e  we-n, o e - n ,  
// sram c h i p  a  
i n o u t  w i r e  [15 :0 ]  d i o - a ,  

I S  o u t p u t  w i r e  c e - a - n ,  ub -a -n ,  l b - a - n  

1;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  [2 :01  

20 i d l e  = 3 ' b 0 0 0 ,  
r d l  = 3 ' b 0 0 1 ,  
r d 2  = 3 ' b 0 1 0 ,  
w r l  = 3 ' b 0 1 1 ,  
wr2 = 3 'b lOO;  

25 

// s i g n a l  d e c l a r a t i o n  



r e g  [2:01 s t a t e - r e g  , s t a t e - n e x t  ; 
r e g  C15: 01 d a t a - f  2 s _ r e g ,  d a t a - f  2s -nex t  ; 
r e g  [15: 01 d a t a - s 2 f  - r e g ,  d a t a - s 2 f  - n e x t  ; 

30 r e g  [ I 7  : 01 addr - reg  , addr -nex t  ; 
r e g  we-buf , oe-buf , t r i - b u f  ; 
r e g  we-reg , oe-reg , t r i - r e g ;  

// body 
ss / /  FSMD s t a t e  & d a t a  r e g i s t e r s  

a l w a y s  Q ( p o s e d g e  c l k  , p o s e d g e  r e s e t  
i f  ( r e s e t )  

b e g i n  
s t a t e - r e g  <= i d l e ;  
a d d r - r e g  <= 0 ;  
d a t a - f 2 s - r e g  <= 0 ;  
d a t a - s 2 f - r e g  <= 0 ;  
t r i - r e g  <= l ' b l ;  
we-reg <= l ' b l ;  
o e - r e g  <= 1  ' b l ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t  ; 
a d d r - r e g  <= addr -nex t  ; 
d a t a - f  2 s - r e g  <= d a t a - f  2s -nex t  ; 
d a t a - s 2 f  - r e g  <= d a t a - s 2 f  - n e x t  ; 
t r i - r e g  <= t r i - b u f ;  
we-reg <= we-buf;  
oe - reg  <= oe-buf ;  

end 

// FSMD n e x t - s t a t e  l o g i c  
a l w a y s  Q *  

60 b e g i n  
addr -nex t  = a d d r - r e g  ; 
d a t a - f  2 s - n e x t  = d a t a - f  2 s - r e g ;  
d a t a - s 2 f  - n e x t  = d a t a - s 2 f  - r e g ;  
r eady  = l ' b O ;  
c a s e  ( s t a t e - r e g )  

i d l e  : 
b e g i n  

i f  (-men) 
s t a t e - n e x t  = i d l e ;  

e l s e  
b e g i n  

a d d r - n e x t  = a d d r ;  
i f  ( - rw)  / /  w r i t e  

b e g i n  
s t a t e - n e x t  = w r l ;  
d a t a - f  2s -nex t  = d a t a - f  2 s  ; 

end 
e l s e  // r ead  

s t a t e - n e x t  = r d l ;  



80 end 
ready = l'bl; 

end 
wrl : 

state-next = wr2; 
wr2 : 

state-next = idle; 
rdl : 

state-next = rd2; 
rd2 : 

b e g i n  
data-s2f -next = dio-a; 
state-next = idle; 

end 
d e f a u l t  : 

state-next = idle; 
e n d  c  a  s  e  

end 

// l o o k - a h e a d  o u t p u t  l o g i c  
100 a l w a y s  Q* 

begin  
tri-buf = 1 'bl; // s i g n a l s  a r e  a c t i v e  l o w  
we-buf = l'bl; 
oe-buf = 1 'bl; 
c a s e  (state-next 

idle : 
oe-buf = l'bl; 

wrl : 
b e g i n  

tri-buf = l'bO; 
we-buf = l'bO; 

end 
wr2 : 

tri-buf = 1' bO; 
rdl : 

oe-buf = l'bO; 
rd2 : 

oe-buf = l'bO; 
e n d c a s e  

120 end 

// t o  main s y s t e m  
a s s i g n  data-s2f -r = data-s2f -reg; 
a s s i g n  data-s2f-ur = dio-a; 

125 // t o  s ram 
a s s i g n  we-n = we-reg; 
a s s i g n  oe-n = oe-reg; 
a s s i g n  ad = addr-reg; 
// i / o  f o r  s ram c h i p  a  

I30  a s s i g n  ce-a-n = l'bO; 
a s s i g n  ub-a-n = l'bO; 
a s s i g n  lb-a-n = llbO; 



a s s i g n  d i o - a  = ( - t r i - r e g )  7 d a t a - f 2 s - r e g  : 1 6 ' b z ;  

155 endmodule  

To minimize the off-chip pad delay (discussed in Section 11.5.1), the corresponding 
FPGA's 110 pins should be configured properly. This can be done by adding additional 
information in the constraint file. A typical line is 

NET " a d < 1 7 > "  LOC = "L3" I IOSTANDARD = LVCMOS33 I SLEW=FAST ; 

11.4.4 Basic testing circuit 

We use two circuits to verify operation of the SRAM controller. The first one is a basic 
testing circuit that allows us manually to perform a single read or write operation. In 
addition to the SRAM chip 110 signals, the circuit has the following signals: 

sw. It is 8 bits wide and used as data or address input. 
led. It is 8 bits wide and used to display the retrieved data. 
btn [01 . When it is asserted, the current value of sw is loaded to a data register. The 
output of the register is used as the data input for the write operation. 

a btn 111. When it is asserted, the controller uses the value of sw as a memory address 
and performs a write operation. 

a btn C21. When it is asserted, the controller uses the value of sw as a memory address 
and performs a read operation. The readout is routed to the l ed  signal. 

During a write operation, we first specify the data value and load it to the internal register 
and then specify the address and initiate the write operation. During a read operation, we 
specify the address and initiate the read operation. The retrieved data is displayed in eight 
discrete LEDs. The complete HDL code is shown in Listing 1 1.2. 

Listing 11.2 Basic SRAM testing circuit 

module  r a m - c t r l - t e s t  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  [7 :01  sw, 

5 i n p u t  w i r e  [2 :0 ]  b t n ,  
o u t p u t  w i r e  [7 :0 ]  l e d ,  
o u t p u t  w i r e  [17 :0 ]  a d ,  
o u t p u t  w i r e  we-n, o e - n ,  
i n o u t  w i r e  [ 1 5 : 0 ]  d i o - a ,  

10 o u t p u t  w i r e  c e - a - n ,  ub -a -n ,  l b -a -n  

) ;  

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  [17 :0 ]  a d d r ;  

15  w i r e  [15:01 d a t a - s 2 f ;  
r e g  [15 :  01 d a t a - f  2 s  ; 
r e g  mem, rw;  
r e g  [7 :01 d a t a - r e g ;  
w i r e  [2 :01 d b - b t n ;  

20 

// body  
/ /  i n s t a n t i a t i o n  



sram-ctrl ctrl-unit 
( .  clk(clk), . reset (reset), . mem(mem), . rw(rw) 9 

25 .addr(addr), .data-f2s(data-f2s), .ready() 2 

. data-s2f -r (data-s2f 1, . data-s2f -ur .ad(ad) 9 

.we-n(we-n), . oe-n(oe-n), .dio-a(dio-a) 3 

. ce-a-n (ce-a-n) , . ub-a-n (ub-a-n) , . lb-a-n(lb-a-n)) ; 

30 debounce deb-unit0 
( .  clk(clk), .reset (reset), . sw(btn [Ol), 
. db-level0 , . db-tick (db-btn LO])) ; 

debounce deb-unit1 
35 ( .  clk(clk), .reset (reset), . sw(btn [11), 

. db-level0 , . db-tick(db-btn [l])) ; 

debounce deb-unit2 
( .  cik(cik), .reset (reset), . sw(btn [2]) 9 

. db-level() , . db-tick(db-btn [21)) ; 

// d a t a  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  elk) 

i f  (db-btn [Ol ) 
JS data-reg <= sw; 

/ /  a d d r e s s  
a s s i g n  addr = ClO'b0, sw); 

so // 
a l w a y s  Q *  
b e g i n  
data-f2s = 0; 
i f  (db-btn[11) / /  w r i t e  

i s  b e g i n  
mem = l'bl; 
rw = l'bO; 
data-f 2s = {8' b0, data-reg); 

end 
e l s e  i f  (db-btn 121) // r e a d  

b e g i n  
mem = l'bl; 
rw = l'bl; 

end 
e l s e  

b e g i n  
mem = l'bO; 
rw = l'bl; 

end 
70 end 

/ /  o u t p t ~ r  
a s s i g n  led = data-s2f C7:OI ; 

endmodule 



11.4.5 Comprehensive SRAM testing circuit 

The second circuit performs comprehensive testing. It verifies operation of the SRAM con- 
troller and checks the integrity of the SRAM chip as well. This circuit has three functions: 

Write testing data patterns to the entire SRAM at the maximal rate. 
Read the entire SRAM at the maximal rate, check the retrieved data against the 
original patterns, and record the number of erroneous readouts. 
Inject erroneous data. 

These functions can be initiated by three debounced pushbuttons. 
The ASMD chart is shown in Figure 11.7. It contains three branches, corresponding to 

three functions. The middle branch writes the test patterns to the SRAM. The wr-clkl, 
wr-clk2, and wr-clk3 states correspond to the i d l e ,  wrl, and wr2 states of the SRAM 
controller. The FSMD uses the 18-bit c register as a counter to loop through this branch 
218 times. The content of the c register is used as an address and the reversed 16 LSBs 
are used as data during a write operation. The FSMD writes all memory locations while 
looping through this branch. The left branch reads data from the SRAM. The three states 
correspond to the i d l e ,  r d l ,  and rd2 states of the SRAM controller. The FSMD again 
loops through the branch 218 times. The retrieved data is compared with the original test 
patterns, and the e r r  register is used to keep track of the number of mismatches. The right 
branch performs a single write operation. It uses the 8-bit switch to form a memory address 
and writes an erroneous pattern to that address. The i n j  counter is used to keep track of 
the number of injected errors. The complete HDL code is shown in Listing 1 1.3. 

Listing 11.3 Comprehensive SRAM testing circuit 

module sram-test 

( 
i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [7:01 sw, 

: i n p u t  w i r e  [2:0] btn, 

o u t p u t  w i r e  [3:01 an, 
o u t p u t  w i r e  [7:01 led, sseg, 
o u t p u t  w i r e  [17:0] ad, 
o u t p u t  w i r e  we-n, oe-n, 

10 i n o u t  w i r e  [15:01 dio-a, 
o u t p u t  w i r e  ce-a-n, ub-a-n, lb-a-n 

1;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
1 5  l o c a l p a r a m  [2:01 

test-init = 3 'b000, 
rd-clkl = 3'b001, 
rd-clk2 = 3'b010, 
rd-clk3 = 3'b011, 

20 wr-err = 3'b100, 
wr-clkl = 3'b101, 
wr-clk2 = 3'b110, 
wr-clk3 = 3'blll; 

25 // s i g n a l  d e c l a r a t i o n  
r e g  [2:0] state-reg , state-next ; 
r e g  [17:01 addr; 



Figure 11.7 ASMD chart o f  a comprehensive SRAM testing circuit. 
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w i r e  [15:01 data-s2f ; 
r e g  [15:0] data-f2s; 

M r e g  mem, rw; 
w i r e  [2:0] db-btn; 
r e g  [17:0] c-next , c-reg; 
r e g  [7: 01 inj-next , inj-reg; 
r e g  [15:01 err-next , err-reg; 

35 

/ /  body 
................................................. 

// component i n s t a n t i a t i o n  
................................................. 

40 // i n s t a n t i a t i o n  
sram-ctrl ctrl-unit 

( .  elk (elk), . reset (reset , . mem (men) , . rw(rw) 
. addr (addr) , . data-f 2s (data-f 2s) 9 . ready 2 

.data-s2f-r(), .data-s2f-ur(data-s2f) 9 .ad(ad) 3 

.we-n(we-n), .oe-n(oe-n), .dio-a(dio-a), 

.ce-a-n(ce-a-n), .ub-a-n(ub-a-n), 

.lb-a-n(lb-a-n)); 

debounce deb-unit0 
50 ( .  clk(clk), .reset (reset), . swcbtn [Ol) , 

. db-level 0 ,  . db-tick (db-btn [O] 1) ; 

debounce deb-unit1 
( .  clk(c1k) , .reset (reset), . sw(btn [l]) , 

5s . db-level ( )  , . db-tick (db-btn [l] ) )  ; 

debounce deb-unit2 
( .  clk(c1k) , .reset (reset), . sw(btn [21), 

. db-level0 , . db-tick(db-btn [21)) ; 

60 

disp-hex-mux disp-unit 
( .  clk(c1k) , .reset (l'b0) , . dp_in(4'bllll), 
. hex3 (err-reg [l5 : 121 ) , . hex2 (err-reg Ell :81) , 
. hex1 (err-reg [ 7 :  41 , . hex0 (err-reg [3: 01 ) , 
. an(an1, . sseg(sseg)) ; 

................................................. 

// FSMD 
................................................. 

70 // FSMD s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  @ ( p o s e d g e  clk , p o s e d g e  reset ) 

i f  (reset) 
b e g i n  

state-reg <= test-init; 
c-reg <= 0; 
inj-reg <= 0; 
err-reg <= 0; 

end 
e l s e  

b e g i n  



s t a t e - r e g  <= s t a t e - n e x t  ; 
c - r e g  <= c - n e x t ;  
i n j - r e g  <= i n j - n e x t  ; 
e r r - r e g  <= e r r - n e x t  ; 

85 end 
// FSMD n e x t - s t a t e  l o g i c  
a l w a y s  @ *  
b e g i n  

c -nex t  = c - r e g ;  
i n j - n e x t  = i n j - r e g ;  
e r r - n e x t  = e r r - r e g ;  
addr  = 0 ;  
r w  = l ' b l ;  
mem = I ' bO;  
d a t a - f 2 s  = 0 ;  
c a s e  ( s t a t e - r e g )  

t e s t - i n i t  : 
i f  (db-b tn  [OI ) 

b e g i n  
s t a t e - n e x t  = r d - c l k l  ; 
c -nex t  = 0 ;  
e r r - n e x t  = 0 ;  

end 
e l s e  i f  ( d b - b t n [ I ] )  

b e g i n  
s t a t e - n e x t  = w r - c l k l ;  
c -nex t  = 0 ;  
i n j - n e x t  = 0 ;  

end 
e l s e  i f  ( d b - b t n  [21) 

b e g i n  
s t a t e - n e x t  = w r - e r r  ; 
i n j - n e x t  = i n j - r e g  + 1 ;  

end 
e  1 s  e  

s t a t e - n e x t  = t e s t - i n i t ;  
w r - e r r :  // w r i t e  I e r r o r ;  done in nex t  2 c l o c k s  

b e g i n  
s t a t e - n e x t  = t e s t - i n i t ;  
mem = l ' b l ;  
r w  = l ' b O ;  
addr  = CIO'b0, sw); 
d a t a - f 2 s  = 1 6 ' h f f f f ;  

end 
w r - c l k l :  // in i d l e  s t a t e  o f  s r a r n - c t r l  

b e g i n  
s t a t e - n e x t  = wr-c lk2 ;  
mem = l ' b l ;  
r w  = I ' b O ;  
addr  = c - r e g ;  
d a t a - f  2 s  = - c - r e g  [ I S :  01 ; 

end 
wr-c lk2 :  // in wr l  s t a t e  o f  s r a r n - c t r l  



state-next = wr-clk3 ; 
wr-clk3: / /  in wr2 s t a t e  o f  s r a m - c t r l  

b e g i n  
c-next = c-reg + 1; 
i f  (c-next ==O) 

state-next = test-init; 
e l s e  

state-next = wr-clkl ; 
end 

rd-clkl: // in  i d l e  s t a t e  o f  s r a m - c t r l  
b e g i n  

state-next = rd-clk2 ; 
mem = l'bl; 
rw = l'bl; 
addr = c-reg; 

end 
rd-clk2: / /  in r d l  s t a t e  o f  s r a m - c t r l  

state-next = rd-clk3; 
rd-clk3: / /  in r d 2  s t a t e  o f  s r a m - c t r l  

b e g i n  
// compare  r e a d o u t ;  must u s e  u n r e g i s t e r e d  o u t p u t  
i f  (-c-reg [l5:01 !=  data-s2f 

err-next = err-reg + 1; 
c-next = c-reg + 1; 
if (c-next ==O) 

state-next = test-init; 
e l s e  

state-next = rd-clkl; 
end 

e n d c a s e  
end 

16' / /  Output  
a s s i g n  led = inj-reg; 

endmodule  

Note that the number of write-read mismatches is connected to the seven-segment LED 
display and shown as a four-digit hexadecimal number, and the number of injected errors 
is connected to the eight discrete LEDs. 

We can use this circuit as follows: 
Perform the read function. Since the SRAM is not written yet, it is in the initial 
"power-on" state. The seven-segment LED display should show a large number of 
mismatches. 
Perform the write function. 
Perform the read function. The number of mismatches should be zero if both the 
SRAM controller and the SRAM device work properly. 
Inject error data a few times (to different memory locations). 
Perform the read function again. The number of mismatches should be the same as 
the number of injected errors. 



11.5 MORE AGGRESSIVE DESIGN 

Although the previous memory controller functions properly, it does not have optimal 
performance. While both the read and write cycles are 10 ns of the SRAM device, the 
back-to-back memory access of this controller takes 60 ns (i.e., three clock cycles). In 
this section, we study the timing issue in more detail, examine several more aggressive 
designs and their potential problems, and discuss some FPGA features that help to remedy 
the problems. 

11.5.1 Timing issues 

Timing issues on asynchronous SRAM There are two subtle timing issues in de- 
signing a high-performance asynchronous SRAM controller. The first issue is deactivation 
of the w e n  signal. The 0-to-1 transition of w e n  functions somewhat like a clock edge 
of an FF, in which the data is latched and stored to the internal memory element. Note 
that the data hold time ( t H D )  is zero for this SRAM. Although it appears that it is fine to 
deactivate w e n  and remove data at the same time, this approach is not reliable because of 
the variations in propagation delays. We must ensure that w e n  is deactivated before data 
is removed from the bus. 

The second issue is the potential conflict on the data bus, d io .  Recall that the data bus 
is a bidirectional bus. The controller places data on the bus during a write operation, and 
the SRAM places data on the bus during a read operation. A condition known asfighting 
occurs if the controller and SRAM place data on the bus at the same time. This condition 
should be avoided to ensure reliable operation. 

Estimation of propagation delay Designing a good memory controller requires hav- 
ing a good understanding about the propagation delays of various signals. However, it is a 
difficult task. First, during synthesis, an RT-level description is optimized and mapped to 
logic cells and wire interconnects. The final implementation may not resemble the block 
diagram depicted by the initial description, and thus it is difficult to estimate the propagation 
delay from the initial description. 

Second, a memory operation involves of-chip data access. Additional propagation delay 
is introduced when a signal propagates through the FPGA's I10 pads. The delay, sometimes 
known aspaddelay, is usually much larger than the internal wiring delay and its exact value 
depends on a variety of factors, including the type of FPGA device, the location ofthe output 
register (in LE or IOB), the 110 standards, the slew rate, the driver strength, and external 
loading. 

It requires intimate knowledge ofthe FPGA device and the synthesis software to perform 
a good timing analysis and to estimate the propagation delays of various signals. 

11.5.2 Alternative design I 

The first alternative design is targeted to reduce the back-to-back operation overhead. In- 
stead of always returning to the i d l e  state, the memory controller can check the mem signal 
at the end of current memory operation (i.e., in the rd2  or wr2 state) and determine what 
to do next. It initiates a new memory operation immediately if there is a pending request. 

The revised ASMD chart for this controller is shown in Figure 1 1.8. In the r d 2  and wr2 
states, the mem and r w  signals are examined and the FSMD may move directly to the r d l  
or w r l  state if another memory operation is required. 
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Figure 11.8 ASMD chart of SRAM controller design I. 



Timing analysis Most of the original timing analysis in Section 1 1.4.2 can still be ap- 
plied to this design. However, skipping the i d l e  state introduces subtle new complications 
when different types of back-to-back memory operations are performed. The issue is the 
potential fighting on the data bus. 

Let us consider a write operation performed immediately after a read operation. During 
the read operation, the signal flows from the SRAM to the FPGA. To facilitate this operation, 
the tri-state buffer of the SRAM should be "turned on7' (i.e., passing signal) and the tri- 
state buffer of the FPGA should be "turned off '  (i.e., high impedance). During the write 
operation, the signal flows from the FPGA to the SRAM, and the roles of the two tri-state 
buffers are reversed. Note that a small delay is required to turn on or off a tri-state buffer. 
In the SRAM chip, these delays are specified by tHZoE ( o e n  to high-impedance time) 
and tLZOE ( o e n  to low-impedance time) in Figure 1 1.2. 

In the original SRAM controller, both tri-state buffers are turned off in the i d l e  state. 
The state provides enough time for the data bus to settle to the high-impedance condition. 
The new design requires the two tristate buffers to reverse directions simultaneously during 
back-to-back operations. For example, when moving from the rd2  state to the w r l  state, the 
FSMD generates signals to turn off the SRAM's tri-state buffer and to turn on the FPGA's 
tri-state buffer. A problem may occur in this transition if the SRAM's tri-state buffer is 
turned off too slowly or the FPGA's tri-state buffer is turned on too quickly. In a small 
interval, both buffers may allow data to be placed on the bus and fighting occurs. Similarly, 
fighting may occur when a read operation is performed immediately after a write operation. 

Since the interval tends to be very small, the fighting should not cause severe damage to 
the devices but may introduce a large transient current which makes the design less reliable. 
We must do a detailed timing analysis to examine whether fighting occurs and may even 
need to fine-tune the timing to fix the problem. As discussed in Section 11.5.1, it is a 
difficult task. 

11.5.3 Alternative design II 

Timing analysis in Section 1 1.4.2 shows that the initial design provides a large safety margin. 
In this controller, a memory operation takes two clock cycles, which amount to 40 ns. Since 
the read and write cycles of the SRAM are each 10 ns, we naturally wonder whether it is 
possible to reduce the operation time to a single 20-11s clock cycle. This can be done by 
eliminating the rd2 and wr2 states in the ASMD chart. The second alternative design uses 
this approach. The revised ASMD chart is shown in Figure 11.9. It takes one clock cycle 
to complete the memory access and requires two clock cycles to complete the back-to-back 
operations. 

Timing analysis Reducing a state from the original controller imposes much tighter 
timing constraints for both read and write operations. Let us first consider the read operation. 
During operation, the address signal first propagates through the FPGA's I10 pads to the 
SRAM's address bus, and the retrieved data then propagates back through the I10 pads 
to FPGA's internal logic. All of this must be completed within a 20-11s clock cycle. In 
addition to the 10-ns SRAM address access time (i.e., tAA), the cycle must accommodate 
two pad delays. The pad delay of a Spartan-3 device can range from 4 ns to more than 
10 ns. Therefore, we need to "fine-tune" the synthesis to achieve this margin. 

Unlike the read operation, a write operation is "one-way" and only needs to propagate 
the address, data, and control signals to the SRAM chip. If we assume that the signals 
experience similar pad delays, the absolute value of the delay is a lesser issue. Instead, the 
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key is the order of signals being activated and deactivated. As discussed in Section 1 1.5.1, 
w e n  must be deactivated before data to latch the data properly to the SRAM. In the original 
design, this is achieved by including the second state in the write operation, w r 2 ,  in which 
w e n  is deactivated but the data is still available (i.e., t r in is still active). In the revised 
controller, the w e n  and t r in signals are deactivated simultaneously at the end of the w r l  
state. Due to the variations in the internal logic and pad delays, normal synthesis cannot 
guarantee that w e n  is deactivated before the data is removed from the external data bus. 
Again, for a reliable design, we need to fine-tune the synthesis to satisfy this goal. 

11.5.4 Alternative design Ill 

j r l  7 1 w l  v 
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,............ 

We can combine the features from the two preceding revisions to derive the third alternative 
design. This new controller eliminates the second clock cycle in the read and write oper- 
ations and allows back-to-back operation without first returning to the i d l e  state. This is 
the most aggressive design. The revised ASMD chart is shown in Figure 11.10. It com- 
bines the modification~ from the previous two ASMD charts. The revised design takes one 
clock cycle to complete the memory access and one clock cycle to complete back-to-back 
operations. 

Note that the w e n  signal must be asserted for a fraction of the clock period and cannot 
be shown in the ASMD chart. We use the w e - t m p  in the w r l  state and later derive w e n  
from this signal. 

8 

............ 

Timing analysis Since the new design combines the features of the two previous de- 
signs, all the timing issues discussed in the two preceding subsections must be considered 
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for this design as well. One additional issue is generation of the w e n  signal. During back- 
to-back write operations, the ASMD stays on the w r l  state. In the original design, the w e n  
signal is a Moore output. It will be asserted to 0 continuously in this case. The controller 
does not hnction properly since the data is latched to the SRAM at the 0-to- 1 transition of 
the w e n  signal. To solve the problem, the w e n  signal must be asserted in only a fraction 
of the clock period. 

One possible way to solve the problem is to assert the signal only at the first half of the 
clock, which is 10 ns and can satisfy the twPE1 requirement in theory. Intuitively, we are 
tempted to do this by gating the w e - t m p  signal with the clock signal, clk: 

a s s i g n  we-n = we-tmp I -elk; 

However, this is not a reliable solution because of the potential glitches and delay variation. 
A better alternative is discussed in the next subsection. 

11.5.5 Advanced FPGA featuresXiLinx ' p e c i f  ic 

The memory controller examples in this section illustrate the limitations of the FSM-based 
controller and synchronous design methodology. Basically, an FSM cannot generate a 
control sequence that is "finer" than the period of its clock signal. The operation of these 
alternative designs relies on factors that cannot be specified by an RT-level HDL description. 
Due to the variations in propagation delays, the synthesized circuits are not reliable and 
may or may not work. 

There are some ad hoc features to obtain better control. These features are usually 
device and software dependent. For example, the digital clock manager (DCM) circuit and 
input/output block (IOB) of the Spartan-3 device can help to remedy some of the previously 
discussed problems. Detailed discussion of DCM and IOB is beyond the scope ofthis book. 
In this subsection, we sketch a few ideas and illustrate how to apply these features to obtain 
a more reliable controller. 

DCM A Spartan-3 FPGA device contains up to eight digital clock managers (DCMs). 
As its name indicates, a DCM is a circuit that manipulates the system clock signal. It can 
multiply or divide the frequency or shift the phase of the incoming clock signal to generate 
new clock signals. 

One way to obtain a "finer" control sequence is to use a faster clock. Since implemen- 
tation of a memory controller is fairly simple, the circuit itself can operate at a faster clock 
rate. For example, we can isolate the memory controller and drive it with a DCM-generated 
200-MHz clock signal, whose period is only 5 ns. Consider the write operation of the 
ASMD chart in Figure 11.6. In the new controller, each state lasts only 5 ns. To satisfy the 
10-ns w e n  requirement, we need to expand the w r l  state to two states and assert the w e n  
signal in these states. The complete write operation now requires four states. However, 
because of the faster clock rate, the four clock cycles amount to only 20 ns, which is much 
better than the original 60-11s design. 

A simple application of clock phase shift is discussed in the next subsection. 

IOB An input/output block (IOB) of a Spartan-3 FPGA device provides a programmable 
interface between an 110 pin and the device's internal logic. It contains several storage 
registers and tri-state buffers as well as analog driver circuits that can be configured to 
provide different slew rates and driver strength and to support a variety of 110 standards. 

To minimize the off-chip pad delay discussed in Section 11 S.3, we can put the output 
registers of the memory controller to the FFs inside the IOBs and configure the driver with 
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Figure 11.1 1 Generating a half-cycle signal with DDR. 

the proper slew rate and strength. This can be done by specifying the desired condition and 
configuration in the constraint file. 

An IOB also contains a double data rate (DDR) register, which has two clocks and two 
inputs. Conceptually, we can think that the two inputs are sampled independently by the two 
clocks and the sampled values are stored in the same register. The DDR register and DCM 
can be combined to generate a control signal whose width is a fraction of a clock signal, as 
the w e n  signal discussed in Section 1 1 S.4. The block diagram is shown in Figure 1 1.1 I(a). 
The regular output register is replaced with a DDR register. The top portion of the DDR 
consists of the we-tmp signal and the original clock signals, c l k .  The bottom input of the 
DDR is tied to 1 and the clock is connected to the out-of-phase clock signal, clk180, which 
is generated by a DCM. The 1 is always loaded at the rising edge of the clk180 signal, 
which corresponds to the falling edge ofthe c l k  signal. It essentially deactivates the second 
half of the w e n  signal. The timing diagram is shown in Figure 1 1.1 I (b). This approach 
generates a clean half-cycle signal and is far more reliable than the clock gating scheme 
discussed in Section 1 1 S.4. 

11.6 BIBLIOGRAPHIC NOTES 

The data sheet published by ISSI provides detailed information for the IS61 LV25616AL 
SRAM device. The Xilinx application note, XAPP462 Using Digital Clock Managers 
(DCMs) in Spartan-3 FPGAs, discusses the use of DCM, and the data sheet, DS099 Spartan- 
3 FPGA Family: Complete Data Sheet, explains the architecture and configuration of the 
IOB and the DDR register. 

11.7 SUGGESTED EXPERIMENTS 

11.7.1 Memory with a 512K-by-16 configuration 

There are two 256K-by-16 SRAM chips, and their 110 connections are shown in the manual 
of the S3 board. We can expand them to form a 512K-by-16 SRAM. 

1. Derive a scheme to combine the two chips. 
2. Follow the procedure in Section 11.4 to design a memory controller for the 512K- 

by-16 SRAM. Derive the HDL description. 



3. Modify the testing circuit in Section 1 1.4.5 for the new controller and derive the HDL 
description. 

4. Synthesize the testing circuit and verify operation of the controller and SRAM chips. 

11.7.2 Memory with a 1 M-by-8 configuration 

Repeat Experiment 1 1.7.1 but configure the two chips as a 1M-by-8 SRAM. The l b n  and 
u b n  signals can be used for this purpose. 

11.7.3 Memory with an 8M-by-1 configuration 

A single bit ofthe 256K-by-16 SRAM can be written as follows: 
Read a 16-bit word. 
Modify the designated bit in the word. 
Write the 16-bit word back. 

Repeat Experiment 1 1.7.1 but configure the two chips as an 8M-by-1 SRAM. 

11.7.4 Expanded memory testing circuit 

The memory testing circuit in Section 11.4.5 conducts exhaustive back-to-back read and 
back-to-back write tests. We can expand the circuit to include an exhaustive "read-after- 
write" test, in which the testing circuit issues write and read operations alternately for the 
entire memory space. To make the test more effective, the writing and reading addresses 
should be different. For example, we can make the read operation retrieve the data written 
16 positions earlier (i.e., if the current writing address is c, the reading address will be 
c-16). Create a modified ASMD chart, derive an HDL description, synthesize the circuit, 
and verify its operation. 

11.7.5 Memory controller and testing circuit for alternative design I 

Derive the HDL code for alternative design I in Section 11.5.2 and create an expanded 
testing circuit similar to the one in Experiment 11.7.4. Synthesize the testing circuit and 
examine whether any error occurs during operation. 

11.7.6 Memory controller and testing circuit for alternative design II 

Repeat the process in Experiment 1 1.7.5 for alternative design I1 discussed in Section 1 1.5.3. 

11.7.7 Memory controller and testing circuit for alternative design Ill 

Repeat the process in Experiment 1 1.7.5 for alternative design 111 discussed in Section 1 1.5.4. 

11.7.8 Memory controller with DCM 

Study the application note on DCM and follow the discussion in Section 11.5.5 to drive 
the safe memory controller discussed in Section 1 1.4 with a higher clock rate (1 50 MHz or 
even 200 MHz). Derive an ASMD chart and HDL code, and create a new testing circuit. 
Synthesize the circuit and verify operation of the memory controller and the SRAM. 



11.7.9 High-performance memory controller 

Study the documentation of the DCM and the IOB and apply these features to reconstruct 
alternative design 111 discussed in Section 11 S.4. Create a new testing circuit. Synthesize 
the circuit and verify operation of the memory controller and the SRAM. 



CHAPTER 12 

XlLlNX SPARTAN-3 SPECIFIC MEMORY 

12.1 INTRODUCTION 

A digital system frequently requires memory for storage. To facilitate this need, most FPGA 
devices contain dedicated embedded memory modules. While these modules cannot replace 
the massive external memory devices, they are useful for applications that require small or 
intermediate-sized memory. 

Although the basic internal structure ofmemory modules is similar, there are many subtle 
differences in their 110 interfaces. It is usually difficult for synthesis software to extract the 
desired features from the code and to infer a matching memory module from the underlying 
device library. In Xilinx ISE, we can use HDL instantiation, the Core Generator program, 
or the behavioral HDL inference template to incorporate an embedded memory module into 
a design. The third one is semi-device independent and we use this method in this book. In 
this chapter, we briefly examine Spartan-3 memory modules and the first two methods and 
provide detailed descriptions of several key behavioral HDL templates. 

12.2 EMBEDDED MEMORY OF SPARTAN-3 DEVICE 

12.2.1 Overview 

There are two types of embedded memory in a Spartan-3 device: distributed RAM and 
block RAM. A distributed RAM is constructed from the logic cell's look-up table (LUT). 
The LUT can be configured as a 16-by-1 synchronous RAM, and multiple LUTs can be 
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cascaded to form a wider and deeper memory module. The Spartan-3 XC3S200 device of 
the S3 board can provide up to 30K bits of distributed memory, which is small compared 
to a block RAM or external memory. Furthermore, since the distributed RAM uses the 
logic cells, it competes for resources with the normal logic. Thus, it is feasible only for 
applications that require relatively small storage. 

A block RAM is a special memory module embedded in an FPGA device and is separated 
from the regular logic cells. It can be thought of as a fast SRAM wrapped by a synchronous, 
configurable interface. Each block RAM consists of 16K (214) data bits plus optional 
2K parity bits. It can be organized in different widths, from 16K by 1 (i.e., 214 by 2') to 
512 by 32 (i.e., 2' by 25) .  The Spartan-3 XC3S200 device has 12 block RAMs, totaling 
172K data bits. These block RAMs can be used for intermediate-sized applications, such 
as a FIFO, a large look-up table, or an intermediate-sized local memory. In comparison, 
the external SRAM chips of the S3 board have a capacity of 8M bits. 

Both the distributed RAM and block RAM are already "wrapped" with a synchronous 
interface, and thus no additional memory controller circuit is needed. They are very flexible 
and can be configured to perform single- and dual-port access and to support various types of 
buffering and clocking schemes. Detailed discussion is beyond the scope of this book. We 
only examine several commonly used configurations, including a synchronous single-port 
RAM, a synchronous dual-port RAM, and a ROM in Section 12.4. 

12.2.2 Comparison 

The Spartan-3 device and the S3 board provide several options for storage elements. It is a 
good idea to keep in mind the relative capacities of these options: 

XC3S200's FFs (for registers): about 4.5K bits, embedded in logic cells and 110 
buffers 
XC3S200's distributed RAM: 30K bits, constructed from the logic cells 
XC3S2OO's block RAM: 172K bits, configured as twelve 16K-bit modules 
External SRAM: 8M bits, configured as two 256K-by-16 SRAM chips 

This helps us to decide which option is most suitable for an application at hand. 

12.3 METHOD TO INCORPORATE MEMORY MODULES 

Although memory modules have similar internal structure, there are many subtle differences 
in their interfaces, such as the numbers of read and write ports, clocking scheme, data and 
address buffering, enable and reset signals, and initial values. Although it is possible to 
describe the desired module behaviors in HDL code, the synthesis software may or may not 
recognize the designer's intention. Therefore, the HDL code cannot always infer the proper 
memory module and is normally not portable. In Xilinx ISE, there are three methods to 
incorporate an embedded memory module into a design: 

HDL instantiation 
The Core Generator program 
The behavioral HDL inference template 

The first two are specific for Xilinx devices and the third is a semi-device-independent 
behavioral description. Because of the clarity of the behavioral description, we use the 
third method in this book. We provide a brief overview of the three methods in this section. 



12.3.1 Memory module via HDL component instantiation 

We have used HDL component instantiation in many earlier design examples to include 
predesigned modules or to create a hierarchy. Instantiating a Xilinx memory module is 
similar except that there is no HDL description for the architecture body. We must check 
the manual to find the exact module name and the associated parameters and 110 port 
definitions. This is a tedious process and is particularly error-prone for memory modules 
because of the large number of configurations and options. 

The instantiation code for many Xilinx components can be obtained directly from ISE by 
selecting Edit + Language Templates. The following are segments of a 16K-by- 1 dual-port 
RAM: 

/ /  RAMBI6-SI -SI  : V i r t e x  -11 / [ [ - P r o ,  
/ /  S p a r t a n  -3/3E 16k x  I Dual -Por t  RAM 
// Xi1in.x HDL Language  T e m p l a t e  v e r s i o n  8 . 1  i  

RAMB16-S1-S1 # (  

. INIT-A (1 'bO) , 

. INIT-B(l'bO), 

. SRVAL-A (1 ' bO) , 

. SRVAL-B (1 'bO) , 

. W R I T E - M O D E - A ( ~ W R I T E - F I R S T ~ ~ ) ,  

. WRITE-MODE-B ("WRITE-FIRST") , 

.SIM-COLLISION-CHECK("ALL"), 

. INIT-00 (256 ' h0 . . . 0) , 

. INIT-3F (256 ' h0 . . . 0) 
) RAMB16-S1-Sl-inst ( 

. DOA (DOA) , / /  Por t  A  I - b i t  Data O u t p u t  

. DOB (DOB) , / /  Por t  B  I - b i t  Data O u t p u t  

. ADDRA (ADDRA) , / /  Por t  A  14- b i t  A d d r e s s  l n p u t  

. ADDRB (ADDRB) , / /  P o r t  B  14- b i t  A d d r e s s  I n p u t  

. CLKA (CLKA) , // Por t  A  C lock  

. CLKB (CLKB) , //  Por t  B  C lock  

. DIA (DIA) , / /  P o r t  A  I- b i t  Data I n p u t  

. DIB (DIB) , / /  Por t  B  I - b i t  Data I n p u t  

. ENA (ENA) , / /  Por t  A RAM Enab le  I n p u t  

. ENB (ENB) , / /  PortB RAM Enab le  I n p u t  

. SSRA (SSRA) , // Por t  A  S y n c h r o n o u s  S e t / R e s e t  I n p u t  

. SSRB (SSRB ) , // Por t  B  S y n c h r o n o u s  S e t / R e s e t  I n p u t  

. WEA ( WEA) , // Por t  A  W r i t e  Enab l e  I n p u t  

. WEB (WEB) // Por t  B  W r i t e  E n a b l e  I n p u t  
1;  

Although the code is readily available, we must study the manual carefully to find the right 
component and proper configuration parameters. 

12.3.2 Memory module via Core Generator 

To simplify the instantiation process, Xilinx provides a utility program, known as Core 
Generator (Coregen), to generate Xilinx-specific components. This utility can be invoked 
from the ISE environment by selecting Project + New Source. After the New Source 
Wizard dialog appears, we select IP (Coregen & Architecture Wizard) to invoke the Coregen 
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program. The program guides the users through a series of questions and then generates 
several files. The file with the .xco extension is a text file that contains the information 
necessary to construct the desired memory component. The file with the .v extension 
contains the "wrapper" code for simulation purpose. This file cannot be used to instantiate 
the desired component and is ignored during the synthesis process. 

Although using the Coregen program is more convenient than direct HDL instantiation, 
it is not within the HDL framework and can lead to a compatibility problem when a design 
is not done in the Xilinx ISE environment. 

12.3.3 Memory module via HDL inference 

Although it is not possible to develop a device-independent HDL description, the synthe- 
sis program of ISE, known as XST, provides a collection of behavioral HDL templates to 
infer memory modules from Xilinx FPGA devices. These templates are done by behav- 
ioral descriptions and contain no device-specific component instantiation. They are easy to 
understand and can be simulated without an additional HDL library. However, while the de- 
scription does not explicitly refer to any Xilinx component, the code may not be recognized 
by other third-party synthesis software, and the desired memory module cannot always be 
inferred. Thus, these templates can best be described as "semi-portable" and "semi-device- 
independent" behavioral descriptions. Templates for commonly used memory modules are 
discussed in Section 12.4. 

On the downside, the template approach is based on the ability of the XST software to 
recognize the template and infer the proper memory module accordingly. The software 
may change during upgrade or misinterpret some code. It is a good idea to check the XST 
synthesis report to ensure that the desired memory module is inferred correctly. 

12.4 HDL TEMPLATES FOR MEMORY INFERENCE 

To use behavioral HDL description to infer the Xilinx memory module, the XST's templates 
should be followed closely. To avoid misinterpretation, we should refrain from creating our 
own "innovative" code. The codes in the following subsections are all based on templates of 
the XST v8. l i  Manual. They are the same as the original templates except that the Verilog- 
2001 style of port declaration is used and parameters are added for the width of address 
bits and the width of data bits. It is a good practice to confine the memory description 
in a separate HDL module so that the module can easily be identified and replaced when 
needed. In this section, we discuss the behavioral HDL templates for six configurations, 
including two for single-port RAMs, two for dual-port RAMs, and two for ROMs. 

12.4.1 Single-port RAM 

The embedded memory of a Spartan-3 device is already wrapped with a synchronous 
interface similar to that in Section 11.3. Its write operation is always synchronous. At 
the rising edge of the clock, the address, input data, and relevant control signals, such as w e  
(i.e., write enable), are sampled. If we is asserted, a write operation is performed (i.e., the 
input data is stored into the memory location designated by the address signal). 

The read operation can be asynchronous or synchronous. For asynchronous read, the 
address signal is used directly to access the RAM array. After the address signal changes, 
the data becomes available after a short delay. For synchronous read, the address signal is 



sampled at the rising edge ofthe clock and stored in a register. The registered address is then 
used to access the RAM array. Because of the register, the availability of data is delayed 
and is synchronized by the clock signal. Due to the internal structure, an asynchronous read 
operation can be realized only by the distributed RAM. 

Single-port RAM with asynchronous read The template for the single-port RAM 
with asynchronous read is shown in Listing 12.1. It is modified after the rams-04 module 
of the XST Manual. 

Listing 12.1 Template for a single-port RAM with asynchronous read 

// S i n g l e - p o r t  RAM w i t h  a synchronous  r e a d  
/ /  Modi f i ed  from XST 8 . 1  i  v - r a m s - 0 4  

module xilinx-one-port-ram-async 
5 # (  

p a r a m e t e r  ADDR-WIDTH = 8 ,  
DATA-WIDTH = 1 

) 

( 
10 i n p u t  w i r e  clk, 

i n p u t  w i r e  we, 
i n p u t  w i r e  [ADDR-WIDTH -1 : 01 addr , 
i n p u t  w i r e  [DATA-WIDTH - 1  : 01 din, 
o u t p u t  w i r e  [DATA-WIDTH -1 : 01 dout 

IS ) ;  

// s i g n a l  d e c l a r a t i o n  
r e g  [DATA-WIDTH -1 : O] ram [2**ADDR-WIDTH -1 : 01 ; 

20 / /  body 
a l w a y s  Q ( p o s e d g e  clk) 

i f  (we) // w r i t e  o p e r a t i o n  
ram [addrl <= din; 

// r e a d  o p e r a t i o n  
25 a s s i g n  dout = ram[addrl ; 

endmodule  

The code is very similar to the register file discussed in Section 4.2.3 except that the read 
and write operations use the same address. It contains a two-dimensional array data type 
for storage and uses dynamic indexing to access the element in the array. The code shows 
that the write operation is controlled by the clock signal and the read operation depends 
only on the address. Since an asynchronous read can be realized only by the distributed 
RAM, this configuration is recommended only for applications that require small storage. 

Single-port RAM with synchronous read The template for the single-port RAM 
with synchronous read is shown in Listing 12.2. It is modified after the rams-07 module 
of the XST Manual. 

Listing 12.2 Template for a single-port RAM with synchronous read 

// S i n g l e - p o r t  RAM w i t h  s ynchronous  r e a d  
// Modi f i ed  from XST 8 . 1  i v - r a m s - 0 7  
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module x i l i n x ~ o n e ~ p o r t ~ r a m ~ s y n c  
5 # (  

p a r a m e t e r  ADDR-WIDTH = 12, 
DATA-WIDTH = 8 

1 
( 

1 0  i n p u t  w i r e  clk , 
i n p u t  w i r e  we, 
i n p u t  w i r e  [ADDR-WIDTH -1:Ol addr , 
i n p u t  w i r e  [DATA-WIDTH -1:OI din, 
o u t p u t  w i r e  [DATA-WIDTH-1: 01 dout 

1 5  ) ;  

/ / s i g n a l  d e c l a r a t i o n  
r e g  [DATA-WIDTH -1: O] ram [2**ADDR_WIDTH -1 : 01 ; 
r e g  [ADDR-WIDTH -1: 01 addr-reg ; 

20 

/ /  body 
a l w a y s  @ ( p o s e d g e  clk) 
b e g i n  

i f  (we) // w r i t e  o p e r a t i o n  
5 ram [addr] <= din; 

addr-reg <= addr; 
end 
// r e a d  o p e r a t i o n  
a s s i g n  dout = ram [addr-reg1 ; 

11 

endmodule 

Note that the addr signal is now sampled and stored to the a d d r r e g  register at the rising 
edge ofthe clock, and the memory array (the ram signal) is accessed via the a d d r r e g  signal. 
The data is available only after the a d d r r e g  is updated and thus implicitly synchronized 
to the c lk  signal. 

Synthesis report During synthesis, a proper RAM module should be inferred from the 
code template. We can check the synthesis report to confirm the inference of the RAM 
module. For example, consider the instantiation of a 4K-by-8 RAM (212-by-23) with 
synchronous read: 

The inference of RAM should be indicated in the HDL Synthesis  section of the synthesis 
report: 

........................................................... ........................................................... 
* HDL Synthesis * 
........................................................... ........................................................... 
. . .  
Found 4096x8-bit s ingle-port  block RAM f o r  s igna l  <ram>. 



1 mode 
I aspect ratio 
I clock 
I write enable 
I address 
I data in 
I data out 
I ram-style 
--------------- 

write-first 
4096-word x 8-bit 
connected to signal 
connected to signal 
connected to signal 
connected to signal 
connected to signal 
Auto 

I 
I 

rise I 
high I 

I 
I 
I 
I 

- - - - - - - - 
Summary : 
inferred 1 RAM(s) 

The number of block RAMS used should be reported in the Final Report section of the 
synthesis report: 

Device utilization summary: 
Selected Device : 3s200ft256-5 

Number of BRAMs: 2 out of 12 16% 
. . . 

As we expected, a 4K-by-8 single-port block RAM is inferred and two block RAMS are 
used to realize the circuit. 

12.4.2 Dual-port RAM 

A dual-port RAM includes a second port for memory access. Ideally, the second port 
should be able to conduct read or write operation independently and have its own set of 
address, data input and output, and control signals. To be compatible with older versions 
of XST, we consider a configuration with the second port that can conduct a read operation 
only. In this book, the main application of the dual-port configuration is for video memory, 
which requires one write port and one read port. Thus, this configuration does not impose 
a serious limitation for our purposes. As in a single-port RAM, the read operation of a 
dual-port RAM can be asynchronous or synchronous. 

Dual-port RAM with asynchronous read The template for the dual-port RAM with 
asynchronous read is shown in Listing 12.3. It is modified after the rams-09 module of the 
XST Manual. 

Listing 12.3 Template for a dual-port RAM with asynchronous read 

// D u a l - p o r t  RAM w i t h  a s y n c h r o n o u s  r e a d  
// M o d i f i e d  f r o m  XST 8 . 1  i  v - r a m s - 0 9  

module x i l i n x ~ d u a l ~ p o r t ~ r a m ~ a s y n c  
5 # (  

p a r a m e t e r  ADDR-WIDTH = 6 ,  
DATA-WIDTH = 8 

) 

( 
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1 0  i n p u t  w i r e  c l k ,  
i n p u t  w i r e  w e ,  
i n p u t  w i r e  [ADDR-WIDTH -1: 01 addr-a , addr-b , 
i n p u t  w i r e  [DATA-WIDTH -1: 01 din-a , 
o u t p u t  w i r e  [DATA-WIDTH -1 : 01 dout-a , dout-b 

I5 ) ; 

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [DATA-WIDTH -1: 01 ram [2**ADDR_WIDTH -1 : 01 ; 

zu / /  b o d y  
a l w a y s  @ ( p o s e d g e  c l k )  

i f  ( w e )  // w r i t e  o p e r a t i o n  
ram [addr-a] <= din-a; 

// two  r e a d  o p e r a t i o n s  
15 a s s i g n  dout-a = ram [addr-a] ; 

a s s i g n  dout-b = ram [addr-b] ; 

endmodule 

The write operation is similar to that of the single-port RAM, but the code includes a 
second output port, dout-b, which retrieves data from the second address, addr-b. As in 
a single-port RAM with asynchronous read, the dual-port version can be realized only by 
distributed RAM, and thus its size is limited. Note that if we ignore the dout-a port, it is 
the same as the single-read-port register file of Listing 4.6. 

Dual-port RAM with synchronous read The template for the dual-port RAM with 
synchronous read is shown in Listing 12.4. It is modified after the rams-11 module of the 
XST Manual. 

Listing 12.4 Template for a dual-port RAM with synchronous read 

// D u a l - p o r t  RAM w i t h  s y n c h r o n o u s  r e a d  
/ /  M o d i f i e d  f r o m  XST 8 . 1  i  v - r a m s - 1 1  

module xilinx-dual-port-ram-sync 
5 # (  

p a r a m e t e r  ADDR-WIDTH = 6 ,  
DATA-WIDTH = 8 

1 
( 

10 i n p u t  w i r e  c l k ,  
i n p u t  w i r e  we, 
i n p u t  w i r e  [ADDR-WIDTH-1 :O] addr-a, addr-b , 
i n p u t  w i r e  [DATA-WIDTH -1 : 01 din-a , 
o u t p u t  w i r e  [DATA-WIDTH -1 : 01 dout-a , dout-b 

I5 ) ; 

// s i g n a l  d e c l a r a t i o n  
r e g  [DATA-WIDTH - 1  : 01 ram [2**ADDR_WIDTH -1 : O] ; 
r e g  [ADDR-WIDTH-1:OI addr-a-reg, addr-b-reg; 

20 

/ /  b o d y  
a l w a y s  @ ( p o s e d g e  c l k )  



b e g i n  
i f  (we) / /  n , r i l e  o p e r a t i o n  

25 ram [addr-a] <= din-a; 
addr-a-reg <= addr-a ; 
addr-b-reg <= addr-b ; 

end 
// two r e a d  o p e r a t i o n s  

30 a s s i g n  dout-a = ram [addr-a-reg] ; 
a s s i g n  dout-b = ram [addr-b-reg] ; 

endmodule  

The code is similar to Listing 12.3 except that the two addresses are first stored in two 
registers and the registered outputs are used to access memory. 

12.4.3 ROM 

Despite its name, a ROM (read-only memory) is a combinational circuit and has no internal 
state. Its output depends only on its input (i.e., address). There is no real embedded ROM 
in a Spartan-3 device, but it can be emulated by a combinational circuit or a single-port 
RAM with the write operation disabled. The content of the ROM can be expressed as a 
case statement in the HDL code and the values are loaded to the RAM when the device is 
programmed. Since the ROM is based in a RAM, the read operation can be asynchronous 
or synchronous. 

ROM with asynchronous read A real ROM is a combinational circuit and thus should 
not have a buffer or a clock signal. To be consistent with the terms used in this section, we 
call it a ROM with asynchronoz~s read. This type of ROM can be described by a single case 
statement and the template is shown by an example in Listing 12.5. The code simply renames 
the input and output ports of the hex-to-seven-segment LED decoder in Listing 3.14. The 
address of the ROM functions as the selection expression of the case statement and the 
corresponding content is assigned to the data signal. 

Listing 12.5 Template for a ROM with asynchronous read 

module rom-template 
( 

i n p u t  w i r e  [3:01 addr, 
o u t p u t  r e g  [7:0] data 

5 ) ;  

/ /  bodv  
a l w a y s  Q* 

c a s e  (addr) 
4'hO: data = 7'b0000001; 
4'hl: data = 7'b1001111; 
4'h2: data = 7'b0010010; 
4'h3: data = 7'b0000110; 
4'h4: data = 7'b1001100; 
4'h5: data = 7'b0100100; 
4'h6: data = 7'b0100000; 
4'h7: data = 7'b0001111; 
4'h8: data = 7'b0000000; 



4'h9: data = 7'b0000100; 
20 4'ha: data = 7'b0001000; 

4'hb: data = 7'b1100000; 
4'hc: data = 7'b0110001; 
4'hd: data = 7'b1000010; 
4'he: data = 7'b0110000; 

25 4'hf: data = 7'b0111000; 
e n d c a s e  

endmodule 

Since there is no address or data buffer in this circuit, the ROM cannot be realized by 
a block RAM. It is actually synthesized as a combinational circuit with the logic cells and 
thus this type of ROM is feasible only for a small table. 

ROM with synchronous read For a large table, it is better to utilize a block RAM to 
realize the ROM. Since the read operation of a block RAM is controlled and synchronized 
by a clock signal, the ROM requires a clock signal as well. The template for the ROM with 
synchronous read is shown in Listing 12.6. It is modified after the rams-2lc module of the 
XST Manual, and the hex-to-seven-segment LED decoder is used for demonstration. 

Listing 12.6 Template for a ROM with synchronous read 

module xilinx-rom-sync-template 
( 

i n p u t  w i r e  clk, 
i n p u t  w i r e  [3:01 addr, 

i o u t p u t  r e g  C7:OI data 
) ;  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [3:0] addr-reg; 

10 

/ /  bod,v 
a l w a y s  Q ( p o s e d g e  clk) 

addr-reg <= addr; 

I ?  a l w a y s  Q* 
c a s e  (addr-reg) 

4'hO: data = 7'b0000001; 
4'hl: data = 7'b1001111; 
4'h2: data = 7'b0010010; 
4'h3: data = 7'b0000110; 
4'h4: data = 7'b1001100; 
4'h5: data = 7'b0100100; 
4'h6: data = 7'b0100000; 
4'h7: data = 7'b0001111; 
4'h8: data = 7'b0000000; 
4'h9: data = 7'bOOOOlOO; 
4'ha: data = 7'bOOOlOOO; 
4'hb: data = 7'b1100000; 
4'hc: data = 7'b0110001; 
4'hd: data = 7'b1000010; 
4'he: data = 7'b0110000; 



4'hf: data = 7'b0111000; 
endcase  

The code is similar to that of the single-port RAM with synchronous read but with an 
additional case statement. Note that operation of this ROM depends on the clock signal, 
and its timing is different from that of a normal ROM. Artificial inclusion of the clock 
signal is necessary to infer a block RAM for the ROM implementation. During synthesis, 
the software automatically determines whether to use regular logic cells or block RAMS to 
realize this circuit. 

12.5 BIBLIOGRAPHIC NOTES 

Two Xilinx application notes, XAPP464 Using Look-Up Tables as Distributed RAM in 
Spartan-3 Generation FPGAs and XAPP463 Using Block RAM in Spartan3 Generation 
FPGAs, provide detailed information on the distributed RAM and block RAM. Chapter 2 of 
the XST User Guide v8.l i, titled HDL Coding Techniques, includes about two dozen HDL 
code templates to infer various memory configurations. 

The comprehensive ISE tutorial, ISE In-Depth Tutorial, includes a section on the Core 
Generator program. Although the program is simple, we need to know the module's basic 
fbnctionalities and its relevant parameters to create a proper instance. 

12.6 SUGGESTED EXPERIMENTS 

12.6.1 Block-RAM-based FIFO 

In Section 4.5.3, we design a FIFO buffer that uses a register file for storage. To increase its 
capacity, we can replace the register file with a block RAM-based dual-port RAM module. 
Derive the HDL code for the new design. Synthesize the verification circuit discussed 
in Section 4.5.3 with the new FIFO buffer and verify its operation. Note that due to the 
synchronous read, the behavior of the new FIFO is not completely identical to that of the 
original FIFO. 

12.6.2 Block-RAM-based stack 

We discuss the hnction of a stack in Experiment 4.7.7. To increase its capacity, we can 
replace the register file with a block RAM-based dual-port RAM module. Repeat the 
experiment. 

12.6.3 ROM-based sign-magnitude adder 

We can implement any n-input, m-output hnction with a 2n-by-m ROM. Consider the 
sign-magnitude adder discussed in Section 3.9.2 and assume that a and b are 4-bit input 
signals. Design this circuit as follows: 

1. Write a program in a conventional programming language, such as C or Java, to 
generate a case statement that incorporates the 28-by-4 truth table of this circuit. 

2. Follow the ROM template in Listing 12.5 to derive the HDL code. 
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3. Synthesize the circuit and verify its operation. 
4. Check the synthesis report and compare the sizes (in terms of the number of logic 

cells) of the original implementation and the ROM-based implementation. 
5. Expand a and b to 8-bit input signals and repeat steps 1 to 4. 

12.6.4 ROM-based s in(x)  function 

One way to implement a sinusoidal function, sin(x), is to use a look-up table. Assume 
that the desired implementation requires 10-bit input resolution [i.e., there are 1024 (2") 
points between the input range of 0 and 2.1 and 8-bit output resolution [i.e., there are 256 
(28) points between the output range of -1 and +I]. Let the input and output be the 10-bit 
.c signal and the 8-bit y signal. The relationship between x and y is 

- = sin (2 .5 )  
27 

Because of the symmetry of the sin function, we only need to construct a 28-by-7 table 
for the first quadrant (i.e., between 0 and $) and use simple pre- and postprocessing circuits 
to obtain the values in other quadrants. Design this circuit as follows: 

1. Write a program in a conventional programming language to generate a case statement 
that incorporates the 28-by-7 look-up table for the first quadrant. 

2. Follow the ROM template in Listing 12.6 to derive the HDL code for the look-up 
table. 

3. Derive a testbench to generate the sinusoidal output for three complete periods. This 
can be done by using a 10-bit counter to generate the 10-bit ROM address for 3 * 2'' 
clock cycles. In ModelSim, we can display the y signal in Analog format to emulate 
the effect of a digital-to-analog converter. 

12.6.5 ROM-based s in(x)  and cos (x )  functions 

In many communication modulation schemes, the sin(x) and cos(x) functions are needed 
at the same time. Assume that the format of the input and output is similar to that in 
Experiment 12.6.4. The new circuit has two outputs, y, and y,: 

" = sin (2.s) 
27 

$ = COS ( 2 . 5 )  

Although we can follow the previous procedure and create a new ROM for the cos(x) 
function, a better alternative is to share the same ROM for both sin(x) and cos(x) functions. 
This is based on the observations that cos(x) is only a phase shift of sin(x) and that the 
FPGA's block RAM can provide dual-port access. 

Note that this circuit requires essentially a "dual-port ROM." No HDL behaviorial tem- 
plate is given for this type of memory. We need to experiment with HDL codes and to check 
the synthesis report to ensure that only one block RAM is inferred. It may be necessary 
to use the Core Generator program or direct HDL component instantiation to achieve this 
goal. 

Construct this special ROM and derive the HDL code for the pre- and postprocessing 
circuits. Use a testbench similar to that in Experiment 12.6.4 to verify the circuit's operation. 



CHAPTER 13 

VGA CONTROLLER I: GRAPHIC 

13.1 INTRODUCTION 

VGA (video graphics array) is a video display standard introduced in the late 1980s in 
IBM PCs and is widely supported by PC graphics hardware and monitors. We discuss the 
design of a basic eight-color 640-by-480 resolution interface for CRT (cathode ray tube) 
monitors in this book. CRT synchronization and basic graphic processing are examined in 
this chapter, and text generation is discussed in Chapter 14. 

13.1.1 Basic operation of a CRT 

The conceptual sketch of a monochrome CRT monitor is shown in Figure 13.1. The 
electron gun (cathode) generates a focused electron beam, which traverses a vacuum tube 
and eventually hits the phosphorescent screen. Light is emitted at the instant that electrons 
hit a phosphor dot on the screen. The intensity of the electron beam and the brightness of 
the dot are determined by the voltage level of the external video input signal, labeled mono 
in Figure 13.1. The mono signal is an analog signal whose voltage level is between 0 and 
0.7 V. 

A vertical deflection coil and a horizontal deflection coil outside the tube produce mag- 
netic fields to control how the electron beam travels and to determine where on the screen 
the electrons hit. In today's monitors, the electron beam traverses (i.e., scans) the screen 
systematically in a fixed pattern, from left to right and from top to bottom, as shown in 
Figure 13.2. 
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Figure 13.1 Conceptual diagram of a CRT monitor. 
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Figure 13.2 CRT scanning pattern. 



Table 13.1 Three-bit VGA color combinations 

Red (R) Green (G) Blue (B) Resulting color 

black 
blue 

green 
cyan 
red 

magenta 
yellow 
white 

The monitor's internal oscillators and amplifiers generate sawtooth waveforms to control 
the two deflection coils. For example, the electron beam moves from the left edge to the 
right edge as the voltage applied to the horizontal deflection coil gradually increases. After 
reaching the right edge, the beam returns rapidly to the left edge (i.e., retraces) when the 
voltage changes to 0. The relationship between the sawtooth waveform and the scan is 
shown in Figure 13.4. Two external synchronization signals, hsync and vsync, control 
generation of the sawtooth waveforms. These signals are digital signals. The relationship 
between the hsync signal and the horizontal sawtooth is also shown in Figure 13.4. Note 
that the " 1 " and "0" periods of the hsync signal correspond to the rising and falling ramps 
of the sawtooth waveform. 

The basic operation of a color CRT is similar except that it has three electron beams, 
which are projected to the red, green, and blue phosphor dots on the screen. The three dots 
are combined to form a pixel. We can adjust the voltage levels of the three video input 
signals to obtain the desired pixel color. 

13.1.2 VGA port of the S3 board 

The VGA port has five active signals, including the horizontal and vertical synchronization 
signals, hsync and vsync, and three video signals for the red, green, and blue beams. It 
is physically connected to a 15-pin D-subminiature connector. A video signal is an analog 
signal and the video controller uses a digital-to-analog converter to convert the digital output 
to the desired analog level. If a video signal is represented by an N-bit word, it can be 
converted to 2 N  analog levels. The three video signals can generate 23N different colors. 
This is also known as 3N-bit color since a color is defined by 3 N  bits. In the S3 board, a 
I -bit word is used for each video signal. and this leads to only eight (i.e., 23) possible colors. 
The possible color combinations are shown in Table 13.1. If we use the same 1 -bit signal 
to drive the video signals, they become either "000" or " 1 1 1" and the monitor functions as 
a black-and-white monochrome monitor. 

13.1.3 Video controller 

A video controller generates the synchronization signals and outputs data pixels serially. 
A simplified block diagram of a VGA controller is shown in Figure 13.3. It contains a 
synchronization circuit, labeled vga-sync, and a pixel generation circuit. 



VGA controller 

Figure 13.3 Simplified block diagram of a VGA controller. 

external j 
datalcontrol i 

The vga-sync circuit generates timing and synchronization signals. The hsync and 
vsync signals are connected to the VGA port to control the horizontal and vertical scans 
of the monitor. The two signals are decoded from the internal counters, whose outputs 
are the p i x e l x  and pixel-y signals. The p i x e l x  and pixel-y signals indicate the 
relative positions of the scans and essentially specify the location of the current pixel. The 
vga-sync circuit also generates the video-on signal to indicate whetherto enable or disable 
the display. The design of this circuit is discussed in Section 13.2. 

The pixel generation circuit generates the three video signals, which are collectively 
referred to as the rgb signal. A color value is obtained according to the current coordinates of 
the pixel (the pixel-x and pixel-y signals) and the external control and data signals. This 
circuit is more involved and is discussed in the second half of this chapter and Chapter 14. 

r g b 7  

pixel generation 
circuit 

> 

13.2 VGA SYNCHRONIZATION 

; 

, 

- - 

1 

c l k - ;  

pixel-x 

The video synchronization circuit generates the hsync signal, which specifies the required 
time to traverse (scan) a row, and the vsync signal, which specifies the required time to 
traverse (scan) the entire screen. Subsequent discussions are based on a 640-by-480 VGA 
screen with a 25-MHzpixel rate, which means that 25M pixels are processed in a second. 
Note that this resolution is also know as the VGA mode. 

The screen of a CRT monitor usually includes a small black border, as shown at the top 
of Figure 13.4. The middle rectangle is the visible portion. Note that the coordinate of the 
vertical axis increases downward. The coordinates of the top-left and bottom-right comers 
are (0,O) and (639,479), respectively. 

- 

13.2.1 Horizontal synchronization 

pixel-y 
video-on 

hsync 
vsync 

vga-sync 

> 

A detailed timing diagram of one horizontal scan is shown in Figure 13.4. A period of the 
hsync signal contains 800 pixels and can be divided into four regions: 

- 
- I VG A 

monitor ' 



Figure 13.4 Timing diagram of a horizontal scan. 
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Figure 13.5 Timing diagram of a vertical scan. 

Display: region where the pixels are actually displayed on the screen. The length of 
this region is 640 pixels. 
Retrace: region in which the electron beams return to the left edge. The video signal 
should be disabled (i.e., black), and the length of this region is 96 pixels. 
Right border: region that forms the right border of the display region. It is also know 
as the front porch (i.e., porch before retrace). The video signal should be disabled, 
and the length of this region is 16 pixels. 
Left border: region that forms the left border of the display region. It is also know 
as the backporch (i.e., porch after retrace). The video signal should be disabled, and 
the length of this region is 48 pixels. 

Note that the lengths of the right and left borders may vary for different brands of monitors. 
The hsync signal can be obtained by a special mod-800 counter and a decoding circuit. 

The counts are marked on the top of the hsync signal in Figure 13.4. We intentionally start 
the counting from the beginning of the display region. This allows us to use the counter 
output as the horizontal (x-axis) coordinate. This output constitutes the p i x e l x  signal. 
The hsync signal goes low when the counter's output is between 656 and 75 1. 

Note that the CRT monitor should be black in the right and left borders and during retrace. 
We use the h-video-on signal to indicate whether the current horizontal coordinate is in 
the displayable region. It is asserted only when the pixel count is smaller than 640. 

13.2.2 Vertical synchronization 

During the vertical scan, the electron beams move gradually from top to bottom and then 
return to the top. This corresponds to the time required to refresh the entire screen. The 
format of the vsync signal is similar to that of the hsync signal, as shown in Figure 13.5. 
The time unit of the movement is represented in terms of horizontal scan lines. A period 
of the vsync signal is 525 lines and can be divided into four regions: 

Display: region where the horizontal lines are actually displayed on the screen. The 
length of this region is 480 lines. 



Retrace: region that the electron beams return to the top of the screen. The video 
signal should be disabled, and the length of this region is 2 lines. 
Bottom border: region that forms the bottom border of the display region. It is 
also know as the frontporch (i.e., porch before retrace). The video signal should be 
disabled, and the length of this region is 10 lines. 
Top border: region that forms the top border of the display region. It is also know 
as the backporch (i.e., porch afier retrace). The video signal should be disabled, and 
the length of this region is 33 lines. 

As in the horizontal scan, the lengths of the top and bottom borders may vary for different 
brands of monitors. 

The vsync signal can be obtained by a special mod-525 counter and a decoding circuit. 
Again, we intentionally start counting from the beginning ofthe display region. This allows 
us to use the counter output as the vertical (y-axis) coordinate. This output constitutes the 
pixel-y signal. The vsync signal goes low when the line count is 490 or 491. 

As in the horizontal scan, we use the v-video-on signal to indicate whether the current 
vertical coordinate is in the displayable region. It is asserted only when the line count is 
smaller than 480. 

13.2.3 Timing calculation of VGA synchronization signals 

As mentioned earlier, we assume that the pixel rate is 25 MHz. It is determined by three 
parameters: 

p: the number of pixels in a horizontal scan line. For 640-by-480 resolution, it is 

1: the number of lines in a screen (i.e., a vertical scan). For 640-by-480 resolution, it 
is 

l ines 
1 = 525 - 

screen 
s:  the number of screens per second. For flickering-free operation, we can set it to 

screens 
~ = 6 0 -  

second 

The s parameter specifies how fast the screen should be refreshed. For a human eye, 
the refresh rate must be at least 30 screens per second to make the motion appear to be 
continuous. To reduce flickering, the monitor usually has a much higher rate, such as the 
60 screens per second specification above. The pixel rate can be calculated by the three 
Darameters: 

pixels 
pixel rate = p * 1 * s = 2 5 M  -- 

second 
The pixel rate for other resolutions and refresh rates can be calculated in a similar fashion. 
Clearly, the rate increases as the resolution and refresh rate grow. 

13.2.4 HDL implementation 

The function of the vga-sync circuit is discussed in Section 13.1.3. If the frequency of 
the system clock is 25 MHz, the circuit can be implemented by two special counters: a 



mod-800 counter to keep track of the horizontal scan and a mod-525 counter to keep track 
of the vertical scan. 

Since our designs generally use the 50-MHz oscillator of the prototyping board, the 
system clock rate is twice the pixel rate. Instead of creating a separate 25-MHz clock 
domain and violating the synchronous design methodology, we can generate a 25-MHz 
enable tick to enable or pause the counting. The tick is also routed to the p-t ick port as 
an output signal to coordinate operation of the pixel generation circuit. 

The HDL code is shown in Listing 13.1. It consists of a mod-2 counter to generate the 
25-MHz enable tick and two counters for the horizontal and vertical scans. We use two 
status signals, h-end and v-end, to indicate completion of the horizontal and vertical scans. 
The values of various regions of the horizontal and vertical scans are defined as constants. 
They can easily be modified if a different resolution or refresh rate is used. To remove 
potential glitches, output buffers are inserted for the hsync and vsync signals. This leads 
to a one-clock-cycle delay. We should add a similar buffer for the rgb signal in the pixel 
generation circuit to compensate for the delay. 

Listing 13.1 VGA synchronization circuit 

module vga-sync 
( 

i n p u t  w i r e  clk, reset, 
o u t p u t  w i r e  hsync , vsync , video-on, p-tick, 
o u t p u t  w i r e  [9:0] pixel-x, pixel-y 

) ;  

// c o n s t a n t  d e c l a r a t i o n  
// VGA 640-by-480  s ync  p a r a m e t e r s  

lo  l o c a l p a r a m  HD = 640; // h o r i z o n t a l  d i s p l a y  a r e a  
l o c a l p a r a m  HF = 48 ; // h .  f r o n t  ( l e f t )  b o r d e r  
l o c a l p a r a m  H B  = 16 ; // h .  back  ( r i g h t )  b o r d e r  
l o c a l p a r a m  HR = 96 ; // h .  r e t r a c e  
l o c a l p a r a m  VD = 480; // v e r t i c a l  d i s p l a y  a r e a  

15 l o c a l p a r a m  VF = 10; // v .  f r o n t  ( t o p )  b o r d e r  
l o c a l p a r a m  VB = 33; / /  v .  back  ( b o t t o m )  b o r d e r  
l o c a l p a r a m  V R  = 2; // v .  r e t r a c e  

// mod-2 c o u n t e r  
m r e g  mod2-reg; 

w i r e  mod2-next ; 
/ /  sync  c o u n t e r s  
r e g  [9:01 h-count-reg, h-count-next; 
r e g  [9: 01 v-count-reg , v-count-next ; 

25 // outpzi t  b u f f e r  
r e g  v-sync-reg , h-sync-reg ; 
w i r e  v-sync-next , h-sync-next ; 
// s t a t u s  s i g n a l  
w i r e  h-end , v-end , pixel-t ick; 

30 

/ /  body 
// r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset) 

i f  (reset) 
35 b e g i n  



mod2-reg <= l'bO; 
v-count-reg <= 0 ;  
h-count-reg <= 0 ;  
v-sync-reg <= l'bO; 
h-sync-reg <= l'bO; 

end 
e l s e  

b e g i n  
mod2-reg <= mod2-next ; 
v-count-reg <= v-count-next; 
h-count-reg <= h-count-next; 
v-sync-reg <= v-sync-next ; 
h-sync-reg <= h-sync-next ; 

end 

// mod-2 c i r c u i t  t o  g e n e r a t e  25 MHz e n a b l e  t i c k  
a s s i g n  mod2-next = "mod2-reg; 
a s s i g n  pixel-tick = mod2-reg; 

5 5  // s t a t u s  s i g n a l s  
/ /  end  o f  h o r i z o n t a l  c o u n t e r  ( 7 9 9 )  
a s s i g n  h-end = (h-count-reg==(HD+HF+HB+HR-1)) ; 
// end  o f  v e r t i c a l  c o u n t e r  ( 5 2 4 )  
a s s i g n  v-end = (v-count-reg==(VD+VF+VB+VR-1)) ; 

hU 

/ /  n e x t - s t a t e  l o g i c  o f  mod-800 h o r i z o n t a l  s y n c  c o u n t e r  
a l w a y s  Q* 

i f  (pixel-tick) // 25 MHz p u l s e  
i f  (h-end) 

h-count-next = 0 ;  
e l s e  

h-count-next = h-count-reg + 1; 
e l s e  

h-count-next = h-count-reg; 
70 

// n e x t - s t a t e  l o g i c  o f  mod-525 v e r t i c a l  s y n c  c o u n t e r  
a l w a y s  Q* 

i f  (pixel-tick t h-end) 
i f  (v-end) 

v-count-next = 0 ;  
e l s e  

v-count-next = v-count-reg + 1; 
e l s e  

v-count-next = v-count-reg; 
no 

// h o r i z o n t a l  and v e r t i c a l  s y n c ,  b u f f e r e d  t o  a v o i d  g l i t c h  
/ /  h - s v n c - n e x t  a s s e r t e d  b e t w e e n  656 and 751 
a s s i g n  h-sync-next = (h-count-reg>=(HD+HB) && 

h-count-reg<=(HD+HB+HR-1)); 
85 // v h - s y n c - n e x t  a s s e r t e d  b e t w e e n  490 and 491 

a s s i g n  v-sync-next = (v-count-reg>=(VD+VB) && 
v-count-reg<=(VD+VB+VR-1)); 



// v i d e o  o n / o f f  
90 a s s i g n  video-on = (h-count-reg<HD) && (v-count-reg<VD); 

// o u t p u t  
a s s i g n  hsync = h-sync-reg; 
a s s i g n  vsync = v-sync-reg; 

95 a s s i g n  pixel-x = h-count-reg; 
a s s i g n  pixel-y = v-count-reg; 
a s s i g n  p-tick = pixel-tick; 

endmodule 

13.2.5 Testing circuit 

To verify operation of the synchronization circuit, we can connect the rgb signal to three 
switches. The entire visible region should be turned on with a single color. We can go 
through the eight possible combinations and check the colors defined in Table 13.1. The 
HDL code is shown in Listing 13.2. As mentioned in Section 13.2.4, an output buffer is 
added for the rgb signal. 

Listing 13.2 VGA synchronization testing circuit 

module vga-test 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [2:01 sw, 

5 o u t p u t  w i r e  hsync , vsync , 
o u t p u t  w i r e  [2:0] rgb 

1;  

/ / s i g n a l  d e c l a r a t i o n  
reg  [2:0] rgb-reg; 
wire  video-on; 

// i n s t a n t i a t e  vga s ync  c i r c u i t  
vga-sync vsync-unit 

IS ( .  clk(c1k) , .reset (reset), . hsync (hs~nc), . vsync(vsync), 
. video-on(video-on), . p-tick(), .~ixel-x(), .~ixel-y 0 )  ; 

// rgb  b u f f e r  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset 

i f  (reset) 
rgb-reg <= 0; 

e l s e  
rgb-reg <= sw; 

// o u t p u t  
a s s i g n  rgb = (video-on) ? rgb-reg : 3'bO; 

2s 

endmodule 



13.3 OVERVIEW OF THE PIXEL GENERATION CIRCUIT 

The pixel generation circuit generates the 3-bit rgb signal for the VGA port. The external 
control and data signals specify the content of the screen, and the p i x e l x  and pixel-y 
signals from the vga-sync circuit provide the current coordinates of the pixel. For our 
discussion purposes, we divided this circuit into three broad categories: 

a Bit-mapped scheme 
a Tile-mapped scheme 
a Object-mapped scheme 
In a bit-mappedscheme, a video memory is used to store the data to be displayed on the 

screen. Each pixel of the screen is mapped directly to a memory word, and the p i x e l x  
and pixel-y signals form the address. A graphics processing circuit continuously updates 
the screen and writes relevant data to the video memory. A retrieval circuit continuously 
reads the video memory and routes the data to the rgb signal. This is the scheme used in 
today's high-performance video controller. For 640-by-480 resolution, there are about 3 10k 
(i.e., 640*480) pixels on a screen. This translates to 3 10k memory bits for a monochrome 
display and 930k memory bits (i.e., 3 bits per pixel) for a 3-bit color display. A bit-mapped 
example is discussed in Section 13.5. 

To reduce the memory requirement, one alternative is to use a tile-mapped scheme. In 
this scheme, we group a collection of bits to form a tile and treat each tile as a display 
unit. For example, we can define an 8-by-8 square of pixels (i.e., 64 pixels) as a tile. 
The 640-by-480 pixel-oriented screen becomes an 80-by-60 tile-oriented screen. Only 
4800 (i.e., 80*60) words are needed for the tile memory. The number of bits in a word 
depends on the number of tile patterns. For example, if there are 32 tile patterns, each word 
should contain 5 bits, and the size of the tile memory is about 24k bits (i.e., 5*4800). The 
tile-mapped scheme usually requires a ROM to store the tile patterns. We call it pattern 
memory. Assume that monochrome patterns are used in the previous example. Each 8-by- 
8 tile pattern requires 64 bits, and the entire 32 patterns need 2K (i.e., 8*8*32) bits. The 
overall memory requirement is about 26k bits, which is much smaller than the 3 10k bits of 
the bit-mapped scheme. The text display discussed in Chapter 14 is based on this scheme. 

For some applications, the video display can be very simple and contains only a few 
objects. Instead of wasting memory to store a mostly blank screen, we can generate these 
objects using simple object generation circuits. We call this approach an object-mapped 
scheme. An object-mapped example is discussed in Section 13.4. 

The three schemes can be mixed together to generate a full screen. For example, we can 
use a bit-mapped scheme to generate the background and use an object-mapped scheme to 
produce the main objects. We can also use a bit-mapped scheme for one portion of a screen 
and tile-mapped text for another part of the screen. 

13.4 GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 

The conceptual diagram of an object-mapped pixel generation circuit that contains three 
objects is shown in Figure 13.6. The diagram consists of three object generation circuits 
and a special selecting and routing circuit, labeled rgb mux. An object generation circuit 
performs the following tasks: 

a It keeps the coordinates of the current object and compares them with the current 
scan location provided by the pixel-x and pixel-y signals. 
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Figure 13.6 Conceptual diagram of object-mapped pixel generation. 

If the current scan location falls within the region, it asserts the ob j -i-on signal to 
indicate that the current scan location is within the region of the ith object and the 
object should be "turned on." 
It specifies the desired color in the obj - i r g b  signal. 

The rgb mux circuit performs multiplexing according to an internal prioritizing scheme. 
It examines various obj-i-on signals and determines which obj-i-rgb signal is to be 
routed to the rgb output. The prioritizing scheme prioritizes the order of the displays when 
multiple obj-i-on signals are asserted at the same time. It corresponds to selecting an 
object for the foreground. 

We use a simplified ping-pong-like game to illustrate the various graphic generation 
schemes. The design is constructed as follows: 

1. Create a simple still screen with rectangular objects. 
2. Add a round object. 
3. Introduce animation. 
4. Add text for scores and information. 
5. Create a top-level control circuit. 

The first three steps are discussed in this section, and the last two steps are discussed in 
Chapter 14. 

13.4.1 Rectangular objects 

A rectangular object can be described by its boundary coordinates on the screen. The still 
screen of the game is shown in Figure 13.7. It has three objects: a wall, which is shown as 
a narrow stripe on the left; a paddle, which is shown as a short vertical bar on the right; and 
a square ball. The coordinates of the displayable area of the screen are also shown. Note 
that the y-axis increases downward. 

Let us first examine generation of the wall stripe. For clarity, we define constants for the 
relevant boundaries and sizes in code. The code segment for the wall is 



Figure 13.7 Still screen of the pong game. 

// w a l l  l e f t  , r i g h t  boundary  
l o c a l p a r a m  WALL-X-L = 32; 
l o c a l p a r a m  WALL-X-R = 35; 

// p i x e l  w i t h i n  w a l l  
a s s i g n  wall-on = (WALL-X-L <=pixex) && (pix-x <=WALL-X-R) ; 
// w a l l  r g b  o u t p u t  
a s s i g n  wall-rgb = 3'bOOl; // b l u e  

The wall is a four-pixel-wide vertical stripe between columns 32 and 35, which as 
defined as WALLXI, and WALLXR, representing the left and right x-coordinates of the 
wall, respectively. The object has two output signals, wall-on and wall-rgb. The wall-on 
signal, which indicates that the wall object should be turned on, is asserted when the current 
horizontal scan is within its region. Since the stripe covers the entire vertical column, there 
is no need for the y-axis boundaries. The wall-rgb signal indicates that the color of the 
wall is "001 " (blue). 

The code segment for the bar (paddle) is 

/ /  bar  l e f t  , r i g h t  boundary  
l o c a l p a r a m  BAR-X-L = 600; 
l o c a l p a r a m  BAR-X-R = 603; 
// bar  t o p ,  b o t t o m  boundary  
l o c a l p a r a m  BAR-Y-SIZE = 72; 
l o c a l p a r a m  BAR-Y-T = MAX-Y/2-BAR-Y_SIZE/2; / / 2 0 4  
l o c a l p a r a m  BAR-Y-B = BAR-Y-T+BAR-Y-SIZE -1; 

/ /  p i x e l  w i t h i n  bar  
a s s i g n  bar-on = (BAR-X-L<=pix-x) && (pix-x<=BAR-X-R) && 

(BAR-Y-T<=pix-y) && (pix-y<=BAR-Y-B); 
// bar  r g b  o u t p u t  
a s s i g n  bar-rgb = 3'bOlO; / /  g r e e n  



The code is similar to that ofthe wall segment except that it includes the y-axis boundaries. 
The desired vertical length of the bar is 72 pixels, which is defined by BAR-Y-SIZE. Since 
we wish to place the bar in the middle, the top boundary of the bar, which is BAR-Y-T, is 
one half of the maximal y-value (i.e., 48012) minus one half of the bar length. The bottom 
boundary of the bar is the top boundary plus the bar length. Generation of the bar-on signal 
is similar to that of the wall-on signal except that the vertical scan must be within the bar's 
y-axis boundaries as well. 

The code for the ball can be constructed in a similar fashion. The final code segment is 
the selection and multiplexing circuit, which examines the on signals of three objects and 
routes the corresponding rgb signal to output. The code is 

a l w a y s  Q* 
i f  (-video-on) 

graph-rgb = 3'bOOO; // b lank  
e l s e  

i f  (wall-on) 
graph-rgb = wall-rgb ; 

e l s e  i f  (bar-on) 
graph-rgb = bar-rgb ; 

e l s e  i f  (sq-ball-on) 
graph-rgb = ball-rgb; 

e l s e  
graph-rgb = 3'bllO; // y e l l o w  background 

The circuit first checks whether the video-on is asserted, and ifthis is the case, examines 
the three on signals in turn. When an on signal is asserted, it indicates that the scan is within 
its region, and the corresponding rgb  signal is passed to the output. If no signal is asserted, 
the scan is in the "background" and the output is assigned to be " 1 10" (yellow). 

The complete HDL code is shown in Listing 13.3. 

Listing 13.3 Pixel-generation circuit for the pong game screen 

module pong-graph-st 
( 

i n p u t  w i r e  video-on, 
i n p u t  w i r e  [9:01 pix-x, pix-y, 

5 o u t p u t  r e g  [2:0] graph-rgb 
1 ; 

// c o n s t a n t  and s i g n a l  d e c l a r a t i o n  
/ /  x ,  y c o o r d i n a t e s  ( 0 . 0 )  t o  ( 6 3 9 , 4 7 9 )  

1 0  l o c a l p a r a m  MAX-X = 640; 
l o c a l p a r a m  MAX-Y = 480; 

// v e r t i c a l  s t r i p e  as  a  w a l l  
// 

15 // w a l l  l e f t  , r i g h t  boundary  
l o c a l p a r a m  WALL-X-L = 32; 
l o c a l p a r a m  WALL-X-R = 35;  
// 
// r i g h t  v e r t i c a l  bar  

20 // 
// bar l e f t  , r i g h t  boundary  
l o c a l p a r a m  BAR-X-L = 600; 



l o c a l p a r a m  BAR-X-R = 603; 
// bar  t o p ,  b o t t o m  b o u n d a r y  
l o c a l p a r a m  BAR-Y-SIZE = 72; 
l o c a l p a r a m  BAR-Y-T = MAX-Y/2-BAR-Y_SIZE/2; / / 2 0 4  
l o c a l p a r a m  BAR-Y-B = BAR-Y-T+BAR-Y-SIZE -1 ; 

/ /  s q u a r e  b a l l  
/ / 
l o c a l p a r a m  BALL-SIZE = 8; 
/ /  b a l l  l e f t  , r i g h t  b o u n d a r y  
l o c a l p a r a m  BALL-X-L = 580; 
l o c a l p a r a m  BALL-X-R = BALL-X-L+BALL-SIZE-1; 
// b a l l  t o p ,  b o t t o m  b o u n d a r y  
l o c a l p a r a m  BALL-Y-T = 238; 
l o c a l p a r a m  BALL-Y-B = BALL-Y-T+BALL-SIZE -1 ; 
, , 
/ /  o b j e c t  o u t p u t  s i g n a l s  

w i r e  wall-on , bar-on , sq-ball-on ; 
w i r e  [2: 01 wall-rgb , bar-rgb , ball-rgb ; 

/ /  b o d y  
/ / 
/ /  ( w a l l )  l e f t  v e r t i c a l  s t r i p  

// p i x e l  w i t h i n  w a l l  
a s s i g n  wall-on = (WALL-X-L<=pix-x) && (pix-x<=WALL-X-R); 
/ /  w a l l  r g b  o u t p u t  
a s s i g n  wall-rgb = 3'bOOl; / /  b l u e  
/ / 
/ /  r i g h t  v e r t i c a l  b a r  
, , 

/ /  p i x e l  w i t h i n  bar  
a s s i g n  bar-on = (BAR-X-L<=pix-x) && (pix-x<=BAR-X-R) && 

(BAR-Y-T<=pix-y) && (pix-y<=BAR-Y-B); 
// bar  r g b  o u t p u t  
a s s i g n  bar-rgb = 3'bOlO; // g r e e n  
// 
// s q u a r e  b a l l  
, , 

// p i x e l  w i t h i n  s q u a r e d  b a l l  
a s s i g n  sq-ball-on = 

(BALL-X-L <=pix-x) && (pix-x <=BALL-X-R) && 

(BALL-Y-T <=pix-y) && (pix-y <=BALL-Y-B) ; 
a s s i g n  ball-rgb = 3'blOO; // r e d  

/ /  rgb  m u l t i p l e x i n g  c i r c u i t  

a l w a y s  O *  
i f  (-video-on) 

graph-rgb = 3'bOOO; // b l a n k  
e l s e  

i f  (wall-on) 



graph-rgb = wall-rgb ; 
e l s e  i f  (bar-on) 

graph-rgb = bar-rgb ; 
e l s e  i f  (sq-ball-on) 

graph-rgb = ball-rgb; 
e l s e  

graph-rgb = 3'bllO; // y e l l o w  background 

endmodule 

After deriving the pixel generation circuit, we can combine it with the VGA synchro- 
nization circuit to construct the complete video interface. The top-level HDL code is shown 
in Listing 13.4. Note that the graphxgb signal is routed to output through an output buffer. 
It is loaded when the pixel-t i ck  signal is asserted. This synchronizes the rgb output with 
the buffered hsync and vsync signals. 

Listing 13.4 Complete circuit for a still pong game screen 

module pong-t op-st 
( 

i n p u t  w i r e  clk, reset, 
o u t p u t  w i r e  hsync, vsync, 

5 o u t p u t  w i r e  [2:0] rgb 

1;  

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  [9 : 01 pixel-x , pixel-y ; 

I O  w i r e  video-on , pixel-tick; 
r e g  [2:0] rgb-reg; 
w i r e  [2 : 01 rgb-next ; 

// body 
1 5  // i n s t a n t i a t e  vga  s y n c  c i r c u i t  

vga-sync vsync-unit 
( .  clk(clk), .reset (reset), . hsync(hsync), . vsync(vs~nc), 
.video-on(video-on), .p-tick(pixe1-tick), 
.pixel-x(pixe1-x), .pixel-y(pixe1-y)); 

20 / /  i n s t a n t i a t e  g r a p h i c  g e n e r a t o r  
pong-graph-st pong-grf-unit 

(.video-on(video-on), .pix-x(pixe1-x), .pix-Y(pixel-~), 
. graph-rgb (rgb-next 1) ; 

/ /  r g b  b u f f e r  
5 a l w a y s  @ ( p o s e d g e  clk) 

i f  (pixel-tick) 
rgb-reg <= rgb-next ; 

// o u t p u t  
a s s i g n  rgb = rgb-reg; 

30 

endmodule 



Figure 13.8 Bit map of a circle. 

13.4.2 Non-rectangular object 

Direct checking ofthe boundaries of a non-rectangular object is very difficult. An alternative 
is to specify the object pattern in a bit map and generate the rgb and on signals according 
to the map. This can best be explained by an example. Assume that we want to have a 
round ball in the pong game screen. The bit map of a circle within an 8-by-8 pixel square 
is shown in Figure 13.8. The circle object can be generated as follows: 

Check whether the scan coordinates are within the 8-by-8 pixel square. 
If this is the case, obtain the corresponding pixel from the bit map. 
Use the retrieved bit to generate the rgb and on signals for the circle object. 

To implement this scheme, we need to include a pattern ROM to store the bit map and an 
address mapping circuit to convert the scan coordinates to the ROM's row and column. 

To accommodate the change, the ball portion from Listing 13.3 must be modified. First, 
we define a pattern ROM for the circle using a case statement, as in the ROM template of 
Listing 12.5: 

w i r e  [ 2 :  01 r o m - a d d r  ; 
r e g  [7:0] r o m - d a t a ;  
. . . 
/ /  round b a l l  image 
a l w a y s  Q* 
c a s e  ( r o m - a d d r )  

3'hO: r o m - d a t a  = 

3 'hl: r o m - d a t a  = 

3'h2: r o m - d a t a  = 

3'h3: r o m - d a t a  = 

3' h4: r o m - d a t a  = 

3'h5: r o m - d a t a  = 

3'h6: r o m - d a t a  = 

3'h7: r o m - d a t a  = 

e n d c a s e  

ROM 

Second, we expand the ball generation segment to include the mapping of the circle bit 
map. To facilitate future animation, we also use signals to replace constants for the square 
ball boundaries. The revised code becomes 

/ /  p i x e l  w i t h i n  b a l l  
a s s i g n  s q - b a l l - o n  = 

( b a l l - x - 1  < = p i x - x )  && ( p i x - x  < = b a l l - x - r )  && 
( b a l l - y - t  < = p i x - y )  && ( p i x - y  < = b a l l - y - b )  ; 

/ /  map c u r r e n t  p i x e l  l o c a t i o n  t o  ROM a d d r / c o l  
a s s i g n  r o m - a d d r  = p i x - y  [2:01 - b a l l - y - t  C2:Ol ; 



a s s i g n  rom-col = pix-x [ 2 :  01 - ball-x-1 [ 2 :  01 ; 
a s s i g n  rom-bit = rom-data [rom-col] ; 
// p i x e l  w i t h i n  b a l l  
a s s i g n  rd-ball-on = sq-ball-on & rom-bit ; 
/ /  b a l l  r g h  o u t p u t  
a s s i g n  ball-rgb = 3'biOO; // r e d  

The first statement checks whether the current scan coordinates are within the square ball 
region and asserts the sq-ball-on signal accordingly. This part is the same as Listing 13.3 
except that signals are used for boundaries. The second part obtains the corresponding ROM 
bit according to the current scan coordinates. If the scan coordinates are within the square 
ball region, subtracting the three LSBs from the top boundary (i.e., bal l -y- t )  provides 
the corresponding ROM row (i.e., rom-addr), and subtracting the three LSBs from the left 
boundary (i.e., ball-x-1) provides the corresponding ROM column (i.e., rom-col). The 
final bit is retrieved by an indexing operation. It is then combined with the sq-ball-on 
signal to generate the rd-ball-on signal. This design just assigns a monochrome color 
(i.e., 100, red) for the round ball region. We can duplicate the pattern ROM three times to 
store the rgb value for each pixel and generate a multiple-color ball. 

Finally, we need to make a minor modification in the multiplexing circuit to substitute 
the sq-ball-on signal with the rd-ball-on signal: 

e l s e  i f  (rd-ball-on) 
graph-rgb = ball-rgb ; 

These modifications are incorporated into the animated graph in the next subsection. 

13.4.3 Animated object 

When an object changes its location gradually in each scan, it creates the illusion of motion 
and becomes animated. To achieve this, we can use registers to store the boundaries of an 
object and update its value in each scan. In the pong game, the paddle is controlled by two 
pushbuttons and can move up and down, and the ball can move and bounce in all directions. 
We illustrate how to create animation for these two objects in this subsection. 

While the VGA controller is driven by a 25-MHz pixel rate, the screen of the VGA 
monitor is refreshed only 60 times per second. The boundary registers only need to be 
updated at this rate. We create a 60-Hz enable tick, r e f  r - t i c k ,  which is asserted one clock 
cycle every & second. 

Let us first examine the design of the paddle. To accommodate the changing y-axis 
coordinates, we replace the constants with two signals, bar-y-t and bar-y-b, to represent 
the top and bottom boundaries, and create a register, ba r -yreg ,  to store the current y- 
axis location of the top boundary. If one of the pushbuttons is pressed, bar-y-reg either 
increases or decreases a fixed amount when the r e f  r - t i c k  signal is asserted. The amount 
is defined by a constant, BAR-V, which stands for the bar velocity. We assume that assertion 
of the b t n  [I1 and b t n  101 signals causes the paddle to move up and down, respectively, 
and that the paddle stops moving when it reaches the top or the bottom of the screen. The 
code segment for updating bar-y-reg is 

// new bar  y - p o s i t i o n  
a l w a y s  Q* 
b e g i n  



b a r - y - n e x t  = b a r - y - r e g ;  / /  no move 
i f  ( r e f r - t i c k )  

i f  ( b t n  [ l l  & ( b a r - y - b  < (MAX-Y-1-BAR-V))) 
b a r - y - n e x t  = b a r - y - r e g  + BAR-V; / /  move down 

e l s e  i f  ( b t n [ O l  & ( b a r - y - t  > BAR-V)) 
b a r - y - n e x t  = b a r - y - r e g  - BAR-V; // move up 

end 

The design of the ball is more involved. We have to replace the four boundary constants 
with four signals and create two registers, b a l l x x e g  and ball-y-reg, to store the current 
x- and y-axis coordinates ofthe left and top boundaries. The ball usually moves at a constant 
velocity (i.e., at a constant speed and in the same direction). It may change direction when 
hitting the wall, the paddle, or the bottom or top of the screen. We decompose the velocity 
into an x-component and a y-component, whose values can be either a positive constant 
value, BALL-VP, or a negative constant value, BALL-VLN. The current values of the two 
components are stored in the x-delta-reg and y-delta-reg registers. The code segment 
for updating b a l l x r e g  and ball-y-reg is 

// new b a l l  p o s i t i o n  
a s s i g n  b a l l - x - n e x t  = ( r e f r - t i c k )  ? b a l l - x - r e g + x - d e l t a - r e g  : 

b a l l - x - r e g  ; 
a s s i g n  b a l l - y - n e x t  = ( r e f r - t i c k )  ? b a l l - y - r e g + y - d e l t a - r e g  : 

b a l l - y - r e g  ; 

and the code segment for updating x-delta-reg and y-delta-reg is 

// new b a l l  v e l o c i t y  
a l w a y s  Q* 
b e g i n  

x - d e l t a - n e x t  = x - d e l t a - r e g ;  
y - d e l t a - n e x t  = y - d e l t a - r e g ;  
i f  ( b a l l - y - t  < 1 )  / /  r e a c h  t o p  

y - d e l t a - n e x t  = BALL-V-P ; 
e l s e  i f  ( b a l l - y - b  > (MAX-Y-1)) // r e a c h  b o t t o m  

y - d e l t a - n e x t  = BALL-V-N; 
e l s e  i f  ( b a l l - x - 1  <= WALL-X-R) // r e a c h  w a l l  

x - d e l t a - n e x t  = BALL-V-P ; // bounce  back  
e l s e  i f  ((BAR-X-L < = b a l l - x - r )  && ( b a l l - x - r  <=BAR-X-R) && 

( b a r - y - t  < = b a l l - y - b )  && ( b a l l - y - t  < = b a r - y - b ) )  
// r e a c h  x o f  r i g h t  bar  and h i t ,  b a l l  bounce  back  
x - d e l t a - n e x t  = BALL-V-N; 

end 

Note that if the paddle bar misses the ball, the ball continues moving to the right and 
eventually wraps around. 

The complete code is shown in Listing 13.5. 

Listing 13.5 Pixel-generation circuit for the animated pong game 

module p o n g - g r a p h - a n i m a t e  
( 

i n p u t  w i r e  c l k ,  r e s e t ,  
i n p u t  w i r e  v ideo -on  , 

I i n p u t  w i r e  [ l :O]  b t n ,  
i n p u t  w i r e  [9 :01  p i x - x  , p i x - y  , 
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o u t p u t  r e g  [ 2 : 0 ]  g r a p h - r g b  
> ;  

/ /  c o n s t a n t  and s i g n a l  d e c l a r a t i o n  
/ /  x ,  y  c o o r d i n a t e s  (0,O) t o  ( 6 3 9 , 4 7 9 )  
l o c a l p a r a m  MAX-X = 640 ;  
l o c a l p a r a m  M A X - Y  = 480 ;  
w i r e  r e f r - t i c k ;  
, , 

/ /  v e r t i c a l  s t r i p e  a s  a  w a l l  
, , 
/ /  w a l l  l e f t  , r i g h t  boundary  
l o c a l p a r a m  WALL-X-L = 3 2 ;  
l o c a l p a r a m  WALL-X-R = 3 5 ;  

// r i g h t  v e r t i c a l  bar  
// 
// bar  l e f t  , r i g h t  boundary  
l o c a l p a r a m  BAR-X-L = 600 ;  
l o c a l p a r a m  BAR-X-R = 603 ;  
/ /  bar  t o p ,  b o t t o m  boundary  
wire  [9 :0 ]  b a r - y - t  , b a r - y - b ;  
l o c a l p a r a m  BAR-Y-SIZE = 7 2 ;  
// r e g i s t e r  t o  t r a c k  t o p  boundary  ( x  p o s i t i o n  i s  f i x e d )  
r e g  [9 :0 ]  b a r - y - r e g ,  b a r - y - n e x t ;  
// bar  moving  v e l o c i t y  when a  b u t t o n  i s  p r e s s e d  
l o c a l p a r a m  BAR-V = 4 ;  
// 
// s q u a r e  b a l l  
, , 

l o c a l p a r a m  BALL-SIZE = 8 ;  
/ /  b a l l  l e f t  , r i g h t  boundary  
wire  [9 :  01 b a l l - x - 1  , b a l l - x - r  ; 
// b a l l  t o p ,  b o t t o m  boundary  
wire  [9 :  01 b a l l - y - t  , b a l l - y - b ;  
/ /  reg  t o  t r a c k  l e f t  , t o p  p o s i t i o n  
r e g  [ 9 :  01 b a l l - x - r e g  , b a l l - y - r e g  ; 
w i r e  [9 : 01 b a l l - x - n e x t  , b a l l - y - n e x t  ; 
/ /  reg  t o  t r a c k  b a l l  s p e e d  
r e g  [9 : 01 x - d e l t a - r e g  , x - d e l t a - n e x t  ; 
r e g  [9 :01  y - d e l t a - r e g ,  y - d e l t a - n e x t ;  
/ /  b a l l  v e l o c i t y  can  be pos or  n e g )  
l o c a l p a r a m  BALL-V-P = 2 ;  
l o c a l p a r a m  BALL-V-N = - 2 ;  

// round b a l l  
, , 

w i r e  [2 :  01 rom-addr , rom-co l  ; 
reg  [7 :01  r o m - d a t a ;  
w i r e  r o m - b i t  ; 

// o b j e c t  o u t p u t  s i g n a l s  



w i r e  w a l l - o n  , ba r -on  , s q - b a l l - o n  , r d - b a l l - o n ;  
w i r e  [2 : 01 w a l l - r g b  , b a r - r g b  , b a l l - r g b  ; 

, , 

// round b a l l  image ROM 

a l w a y s  Q* 
c a s e  ( r o m - a d d r )  

3 ' hO:  rom-da ta  = 8 ' b 0 0 1 1 1 1 0 0 ;  / /  * * * *  
3 ' h l :  r om-da ta  = 8 ' b 0 1 1 1 1 1 1 0 ;  / /  * * * * * *  
3 ' h 2 :  rom-da ta  = 8 ' b l l l l l l l l ;  // * * * * * * * *  
3 ' h 3 :  rom-da ta  = 8 ' b l l l l l l l l ;  // * * * * * * * *  
3 ' h 4 :  rom-da ta  = 8 ' b l l l l l l l l ;  // * * * * * * * *  
3 ' h 5 :  rom-da ta  = 8 ' b l l l l l l l l ;  / /  * * * * * * * *  
3 ' h 6 :  rom-da ta  = 8 ' b 0 1 1 1 1 1 1 0 ;  / /  * * * * * *  
3 ' h 7 :  rom-da ta  = 8 ' b 0 0 1 1 1 1 0 0 ;  // * * * *  

e n d c a s e  

/ /  r e g i s t e r s  
a l w a y s  Q( p o s e d g e  c l k  , p o s e d g e  r e s e t  

i f  ( r e s e t )  
b e g i n  

b a r - y - r e g  <= 0 ;  
b a l l - x - r e g  <= 0 ;  
b a l l - y - r e g  <= 0 ;  
x - d e l t a - r e g  <= l O ' h 0 0 4 ;  
y - d e l t a - r e g  <= l O ' h 0 0 4 ;  

end 
e l s e  

b e g i n  
b a r - y - r e g  <= b a r - y - n e x t  ; 
b a l l - x - r e g  <= b a l l - x - n e x t  ; 
b a l l - y - r e g  <= b a l l - y - n e x t  ; 
x - d e l t a - r e g  <= x - d e l t a - n e x t  ; 
y - d e l t a - r e g  <= y - d e l t a - n e x t  ; 

end 

// r e f r - t i c k :  I - c l o c k  t i c k  a s s e r t e d  a t  s t a r t  o f  v - s y n c  
/ / i . e . .  when t h e  s c r e e n  i s  r e f r e s h e d  ( 6 0  H z )  
a s s i g n  r e f r - t i c k  = ( p i x - y = = 4 8 1 )  && ( p i x - x = = O ) ;  

1 ,  

// ( w a l l )  l e f t  v e r t i c a l  s t r i p  

// p i x e l  w i t h i n  w a l l  
a s s i g n  w a l l - o n  = (WALL-X-L < = p i x - x )  && ( p i x - x  <=WALL-X-R) ; 
/ /  w a l l  r g b  o u t p u t  
a s s i g n  w a l l - r g b  = 3 'bOOl ;  / /  b l u e  
, , 

// r i g h t  v e r t i c a l  b a r  
/ / 
// boundary  
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a s s i g n  b a r - y - t  = b a r - y - r e g ;  
a s s i g n  ba r -y -b  = b a r - y - t  + BAR-Y-SIZE - 1 ;  
// p i x e l  w i t h i n  bar  
a s s i g n  ba r -on  = (BAR-X-L<=pix-x) && (pix-x<=BAR-X-R) && 

( b a r - y - t  < = p i x - y )  && ( p i x - y  < = b a r - y - b )  ; 
// bar  r g b  o u t p u t  
a s s i g n  b a r - r g b  = 3 'bOlO;  // g r e e n  
// new bar  y - p o s i t i o n  
a l w a y s  O *  
b e g i n  

b a r - y - n e x t  = b a r - y - r e g ;  // no move 
i f  ( r e f r - t i c k )  

i f  ( b t n  El1 & ( b a r - y - b  < (MAX-Y-1-BAR-V))) 
b a r - y - n e x t  = b a r - y - r e g  + BAR-V; // move down 

e l s e  i f  (b tn [O]  & ( b a r - y - t  > BAR-V)) 
b a r - y - n e x t  = b a r - y - r e g  - BAR-V; // move up 

end 

// s q u a r e  b a l l  

// boundary  
a s s i g n  b a l l - x - 1  = b a l l - x - r e g ;  
a s s i g n  b a l l - y - t  = b a l l - y - r e g ;  
a s s i g n  b a l l - x - r  = b a l l - x - 1  + BALL-SIZE - 1 ;  
a s s i g n  b a l l - y - b  = b a l l - y - t  + BALL-SIZE - 1 ;  
// p i x e l  w i t h i n  b a l l  
a s s i g n  s q - b a l l - o n  = 

( b a l l - x - 1  < = p i x - x )  && ( p i x - x  < = b a l l - x - r )  && 
( b a l l - y - t  < = p i x - y )  && ( p i x - y  < = b a l l - y - b )  ; 

/ /  map c u r r e n t  p i x e l  l o c a t i o n  t o  ROM a d d r / c o l  
a s s i g n  rom-addr = p i x - y  [2 :01  - b a l l - y - t  [ 2 :0 ]  ; 
a s s i g n  rom-col  = p i x - x  [2 :0 ]  - b a l l - x - 1  [2 :0]  ; 
a s s i g n  r o m - b i t  = rom-da ta  [ rom-co l ]  ; 
/ /  p i x e l  w i t h i n  b a l l  
a s s i g n  r d - b a l l - o n  = s q - b a l l - o n  & r o m - b i t ;  
// b a l l  r g b  o u t p u t  
a s s i g n  b a l l - r g b  = 3 'b lOO;  / /  r e d  
/ /  new b a l l  p o s i t i o n  
a s s i g n  b a l l - x - n e x t  = ( r e f r - t i c k )  ? b a l l - x - r e g + x - d e l t a - r e g  : 

b a l l - x - r e g  ; 
a s s i g n  b a l l - y - n e x t  = ( r e f r - t i c k )  ? b a l l - y - r e g + y - d e l t a - r e g  : 

b a l l - y - r e g  ; 
// new b a l l  v e l o c i t y  
a l w a y s  O *  
b e g i n  

y - d e l t a - n e x t  = y - d e l t a - r e g ;  
i f  ( b a l l - y - t  < 1 )  // r e a c h  t o p  

y - d e l t a - n e x t  = BALL-V-P; 
e l s e  i f  ( b a l l - y - b  > (MAX-Y-1)) // r e a c h  b o t t o m  

y - d e l t a - n e x t  = BALL-V-N; 
e l s e  i f  ( b a l l - x - 1  <= WALL-X-R) // r e a c h  w a l l  



x-delta-next = BALL-V-P; / /  bounce back  
e l s e  i f  ( (BAR-X-L <=ball-x-r ) && (ball-x-r <=BAR-X-R) && 

(bar-y-t <=ball-y-b) && (ball-y-t <=bar-y-b)) 
// r e a c h  x o f  r i g h t  b a r  and h i t ,  b a l l  bounce back  
x-delta-next = BALL-V-N; 

end 
// 
// r g b  m u l t i p l e x i n g  c i r c u i t  
, , 

175 a l w a y s  O *  
i f  ("video-on) 

graph-rgb = 3'bOOO; // b l a n k  
e l s e  

i f  (wall-on) 
graph-rgb = wall-rgb ; 

e l s e  i f  (bar-on) 
graph-rgb = bar-rgb ; 

e l s e  i f  (rd-ball-on) 
graph-rgb = ball-rgb ; 

185 e l s e  
graph-rgb = 3'b110; // y e l l o w  b a c k g r o u n d  

endmodule  

As in the still screen, we can combine the synchronization circuit and create the top-level 
description. The HDL code is shown in Listing 13.6. 

Listing 13.6 Complete circuit for the animated pong game screen 

module pong-top-an 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [1:01 btn, 

i o u t p u t  w i r e  hsync , vsync, 
o u t p u t  w i r e  [2:01 rgb 

1;  

// s i g n a l  d e c l a r a t i o n  
III w i r e  [9:01 pixel-x, pixel-y; 

w i r e  video-on , pixel-tick; 
r e g  [2:0] rgb-reg; 
w i r e  [2 : 01 rgb-next ; 

I 5  / /  body  
/ /  i n s t a n t i a t e  vga s v n c  c i r c u i t  
vga-sync vsync-unit 

( .  clk(clk), .reset (reset), . hsync (hsync), .vs~nc(vs~nc) 9 

.video-on(video-on), .p-tick(pixel-tick), 

20 .pixel-x(pixe1-x), .pixel_y(pixel-y)); 

/ /  i n s t a n t i a t e  g r a p h i c  g e n e r a t o r  
pong-graph-animate pong-graph-an-unit 

( . clk (clk) , .reset (reset 1, . btn (btn) , 
25 .video-on(video-on), .pix-x(pixe1-x), 



/ /  r g b  b u f f e r  
a l w a y s  Q ( p o s e d g e  clk) 

30 i f  (pixel-tick) 
rgb-reg <= rgb-next ; 

/ /  o u t p u t  
a s s i g n  rgb = rgb-reg; 

25 endmodule 

Note that there is no other control mechanism is this code. The ball simply moves and 
bounces continuously. A top-level control circuit is discussed in Chapter 14. 

13.5 GRAPHIC GENERATION WITH A BIT-MAPPED SCHEME 

The bit-mapped scheme maps each pixel to a word in video memory. There are about 
3 10k pixels in a 640-by-480 screen. This translates to 3 10k and 930k bits for monochrome 
and color displays, respectively. The actual size of the video memory can be much larger 
since the memory address must be properly aligned for fast access. For example, to map 
the pixel's current coordinates to a memory location, we can concatenate the pixel's x- 
coordinate, which is 10 bits (i.e., [log,(640)1), and the pixel's y-coordinate, which is 9 bits 
(i.e., [log,(480)1). This approach requires no additional circuit to translate the pixel's 
coordinates to a memory address but introduces some unused "holes" in memory. The 
memory size is increased from 3 10k words to 5 12K (i.e., 21°+ ') words. 

For the S3 board, memory is available from the external SRAM chips and FPGA's 
embedded block RAMs, as discussed in Chapters 11 and 12. Recall that the total capacity 
of the Spartan 3S200 device's block RAM is only about 192K bits. It is not large enough 
for a full-screen bit-mapped display. We must use the external SRAM, which is 8M bits, 
for this purpose. 

In this section, we use a small 128-by-128 (27-by-27) area of the screen to illustrate the 
design of the bit-mapped scheme. The screen has 16K (214) pixels in this area and requires 
a 16K-by-3 video memory for color display. This can be implemented by three embedded 
block RAMs. The small area is at the top-left comer of the screen and displays the trace 
of a bouncing one-pixel dot, as shown in Figure 13.9. The circuit uses a 3-bit switch to 
specify the color of the trace and a pushbutton switch to randomly select the origin of the 
trace. When the pushbutton switch is pressed, the dot starts to move, like the bouncing ball 
in Section 13.4.3. The trace forms a rectangle after the dot hits the four sides of the small 
area. A new trace is generated each time the pushbutton switch is pressed. 

13.5.1 Dual-port RAM implementation 

A conceptual block diagram of this circuit is shown in Figure 13.10. The video memory is a 
synchronous 16K-by-3 (i.e., 214-by-3) dual-port RAM. The dual-port module discussed in 
Listing 12.4 can be used for this purpose. The seven LSBs of the pixel's y-coordinate form 
the seven MSBs of the memory address, and the seven LSBs of the pixel's x-coordinate 
form the seven LSBs of the memory address. The dotxy circuit keeps track of the current 
location of the dot and generates its current y- and x-coordinates, which are concatenated as 
the write address. The 3-bit external switch input, sw, is the rgb value, which is connected 
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Figure 13.9 Dot trace shown in a 128-by-128 bit map. 

pixel-y 

pixel-x 

btn 

GRAPHIC GENERATION WITH A BIT-MAPPED SCHEME 333 

127 

x-axis 

Figure 13.10 Conceptual block diagram of a dot trace circuit. 
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to the memory's din-a port. The seven LSBs of pixel-y and the seven LSBs of p i x e l x  
form the read address. The data is retrieved continuously and the corresponding readout is 
routed to the rgb multiplexing circuit. 

The complete code of the dot trace pixel generation circuit is shown in Listing 13.7. 
We use two registers, d o t x x e g  and dot-yreg,  to keep track of the dot's current x- and 
y-coordinates and use two registers, v x r e g  and v-yreg,  to keep track of the current 
horizontal and vertical velocities. Computation of the dot's coordinates and velocities is 
similar to that of the bouncing ball in Section 13.4.3. In addition to regular updates, the 
d o t x m e x t  and dot-ynext  signals obtain the values of the seven LSBs of p i x x  and 
pix-y when the pushbutton switch is pressed. Since these signals change much faster than 
a human's perception, the new origin appears to be random. 

Listing 13.7 Pixel-generation circuit for a 128-by-128 bit map 

module bitmap-gen 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  video-on, 

5 i n p u t  [1:0] btn, 
i n p u t  [2:01 sw, 
i n p u t  w i r e  C9:Ol pix-x, pix-y , 
o u t p u t  r e g  [2:01 bit-rgb 

1;  
10 

// c o n s t a n t  and s i g n a l  d e c l a r a t i o n  
wire  ref r-tick , load-tick ; 
, , 

// v i d e o  sram 
IS // 

w i r e  we; 
w i r e  C13: 01 addr-r , addr-w; 
w i r e  [2:0] din, dout ; 
//- 

20 // do t  l o c a t i o n  and v e l o c i t y  

l o c a l p a r a m  MAX-X = 128; 
l o c a l p a r a m  MAX-Y = 128; 
// d o t  v e l o c i t y  can be pos o r  neg 

25 l o c a l p a r a m  DOT-V-P = 1; 
l o c a l p a r a m  DOT-V-N = -1; 
// r eg  t o  k eep  t r a c k  o f  d o t  I o c a t i o n  
r e g  [6:0] dot-x-reg , dot-y-reg; 
w i r e  C6: 01 dot-x-next , dot-y-next ; 

30 // r eg  t o  k e e p  t r a c k  o f  d o t  v e l o c i t y  
r e g  C6: 01 v-x-reg , v-y-reg ; 
w i r e  [6: 01 v-x-next , v-y-next ; 
, r 

// o b j e c t  o u t p u t  s i g n a l s  
3s // 

wire  bitmap-on ; 
wire  [2 : 01 bitmap-rgb ; 
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40 / /  i n s t a n t i a t e  d e b o u n c e  c i r c u i t  f o r  a  b u t t o n  
debounce deb-unit 

( .  clk(c1k) , .reset (reset), . sw(btn LO]) , 
. db-level0 , . db-tick(1oad-tick)) ; 

/ /  i n s t a n t i a t e  d u a l - p o r t  v i d e o  RAM ( 2 - 1 2 -  by-7)  
5 xilinx-dual-port-ram-sync 

# ( .  ADDR-WIDTH (14) , . DATA-WIDTH ( 3 ) )  video-ram 
( .  clk(clk), . we(we) , . addr-a(addr-w), . addr-b(addr-r), 

. din-a (din) , . dout-a , . dout-b (dout)) ; 
// v i d e o  ram i n t e r f a c e  

ill a s s i g n  addr-w = {dot-y-reg , dot-x-reg); 
a s s i g n  addr-r = {pix-y [6:O] , pix-x [6:011; 
a s s i g n  we = l'bl; 
a s s i g n  din = sw; 
a s s i g n  bitmap-rgb = dout ; 

5 // r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset) 

if (reset) 
b e g i n  

dot-x-reg <= 0; 
dot-y-reg <= 0; 
v-x-reg <= DOT-V-P; 
v-y-reg <= DOT-V-P; 

end 
e l s e  

b e g i n  
dot-X-reg <= dot-x-next ; 
dot-y-reg <= dot-y-next; 
V-x-reg <= v-x-next ; 
v-y-reg <= v-y-next; 

end 

// r e f r - t i c k :  I - c l o c k  t i c k  a s s e r t e d  a t  s t a r t  o f  v - sync  
a s s i g n  refr-tick = (pix-y==481) && (pix-x==O); 

75 / /  p i x e l  w i t h i n  b i t  map a r e a  
a s s i g n  bitmap-on =(pix-x <=127) & (pix-y <=I271 ; 
/ /  d o t  p o s i t i o n  
/ /  " r a n d o m l y "  l o a d  d o t  l o c a t i o n  when b t n [ O ]  p r e s s e d  
a s s i g n  dot-x-next = (load-tick) ? pix-x[6:01 : 

(refr-tick) ? dot-x-reg + v-x-reg : 

dot-x-reg ; 

a s s i g n  dot-y-next = (load-tick) ? pix-y [6:01 : 
(refr-tick) ? dot-y-reg + v-y-reg : 

dot-y-reg ; 
85 // do t  x v e l o c i t y  

a s s i g n  v-x-next = 
(dot-x-reg==l) ? DOT-V-P : / /  r e a c h  l e f t  
(dot-x-reg==(MAX-X -2)) ? DOT-V-N : / /  r e a c h  r i g h t  

v-x-reg ; 
90 / /  d o t  y v e l o c i t v  

a s s i g n  v-y-next = 

(dot-y-reg==l) ? DOT-V-P : / /  r e a c h  t o p  



(dot-y-reg==(MAX-Y -2 ) )  ? DOT-V-N : // r e a c h  b o t t o m  
v-y-reg; 

95 / /  
/ /  r g b  m u l t i p l e x i n g  c i r c u i t  
, , 

a l w a y s  Q *  
i f  (-video-on) 

bit-rgb = 3'bOOO; // b l a n k  
e l s e  

i f  (bitmap-on) 
bit-rgb = bitmap-rgb; 

e l s e  
10s bit-rgb = 3'bllO; // y e l l o w  b a c k g r o u n d  

endmodule 

The HDL code for the top-level system is shown in Listing 13.8. 

Listing 13.8 Complete circuit for a bit-mapped screen 

module dot-top 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [1:01 btn, 

5 i n p u t  w i r e  [2:01 sw, 
o u t p u t  w i r e  hsync, vsync, 
o u t p u t  w i r e  [2:0] rgb 

1;  

10 // s i g n a l  d e c l a r a t i o n  
w i r e  [ 9 :  01 pixel-x , pixel-y ; 
w i r e  video-on , pixel-tick; 
r e g  [2:01 rgb-reg; 
w i r e  [2 : 01 rgb-next ; 

I5 

// body 
/ /  i n s t a n t i a t e  VGA s y n c  c i r c u i t  
vga-sync vsync-unit 

( .  clk(clk1, .reset (reset), .hsync(hsync), .vsync(vs~nc), 
.video-on(video-on), .p-tick(pixe1-tick), 
.pixel-x(pixe1-x), .pixel-y(pixe1-y)); 

// i n s t a n t i a t e  g r a p h i c  g e n e r a t o r  
bitmap-gen bitmap-unit 

zs ( .  clk(clk), . reset (reset), . btn(btn), . sw(sw) 
.video-on(video-on), .pix-x(pixel-x), 
.pix-y(pixe1-y), .bit-rgb(rgb-next)); 

// rgb  b u f f e r  
M a l w a y s  @ ( p o s e d g e  clk) 

i f  (pixel-tick) 
rgb-reg <= rgb-next ; 

// o u t p u t  
a s s i g n  rgb = rgb-reg; 
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i s  

endmodule  

13.5.2 Single-port RAM implementation 

Although a dual-port memory is ideal, it is not always available. Using regular single-port 
memory, such as the S3 board's external SRAM, for the video memory requires careful 
coordination between the write and read operations to avoid interruption in data retrieval. 
For demonstration purposes, we configure the embedded block RAM as a single-port syn- 
chronous SRAM and redesign the previous dot trace circuit. 

In the dot trace circuit, the dot's coordinates are updated once every screen scan. Thus, 
the video memory can be written at this rate as well. We can do this during the vertical 
retrace since the video is off in this period and writing video memory does not interfere with 
screen data retrieval. Note that the ref  r - t ick  signal is asserted when pixel-y is 481. The 
video is off in this location, and writing video memory will not interfere with the screen 
data retrieval. We use this signal as the write enable signal, we, for the single-port RAM. 
The single-port RAM module discussed in Listing 12.2 can be used for this purpose. The 
memory portion of Listing 13.7 now becomes 

/ /  i n s t a n t i a t e  d u a l - p o r t  v i d e o  RAM ( 2 - 1 2 -  b y - 7 )  
xilinx-one-port-ram-sync 

# ( .  ADDR-WIDTH (14) , . DATA-WIDTH ( 3 ) )  video-ram 
(.clk(clk), .we(we), .addr(addr), 
. din (din) , . dout (dout ) ) ; 

/ /  v i d e o  ram i n t e r f a c e  
a s s i g n  addr-w = (dot-y-reg , dot-x-reg); 
a s s i g n  addr-r = (pix-y C6:Ol , pix-x [6:01); 
a s s i g n  addr = (refr-tick) ? addr-w : addr-r; 
a s s i g n  we = refr-tick; 
a s s i g n  din = sw; 
a s s i g n  bitmap-rgb = dout; 

The dot trace circuit updates one pixel in a screen scan. The required memory bandwidth 
for writing is 60*3 bits per second, which is rather low. Thus, the previous design is fairly 
straightforward. The design of memory interface becomes much more difficult when a 
large memory bandwidth is required (i.e., when a large portion of the screen is updated at 
a rapid rate). 

13.6 BIBLIOGRAPHIC NOTES 

Rapid PrototL;oing of Digital Svstems by James 0. Hamblen et al. contains timing informa- 
tion for monitors with different resolutions and refresh rates. 

13.7 SUGGESTED EXPERIMENTS 

13.7.1 VGA test pattern generator 

A VGA test pattern generator produces two simple patterns to verify operation of a VGA 
monitor. The first pattern divides the screen evenly into eight vertical stripes, each displaying 



a unique color. The second pattern is similar but the screen is divided into eight horizontal 
stripes. A 1-bit switch is used to select the pattern. 

Design a pixel-generating circuit for this pattern generator and then combine it with the 
synchronization circuit in a top-level module. Synthesize and verify operation ofthe circuit. 

13.7.2 SVGA mode synchronization circuit 

The specification for the super VGA (SVGA) mode with 72-Hz refresh rate is 
resolution: 800-by-600 pixels 
pixel rate: 50 MHz 
horizontal display region: 800 pixels 
horizontal right border: 64 pixels 
horizontal left border: 56 pixels 
horizontal retrace: 120 pixels 
vertical display region: 600 lines 
vertical bottom border: 23 lines 
vertical top border: 37 lines 
vertical retrace: 6 lines 

We wish to create a dual-mode synchronization circuit that can support both VGA and 
SVGA modes. The mode can be selected by a switch. Construct the circuit as follows: 

1. Modify the horizontal and vertical synchronization counters of Listing 13.1 to ac- 
commodate both modes. 

2. Design a pixel-generating circuit that draws a 100-pixel grid on the screen (i.e., draw 
a vertical line every 100 pixels and draw a horizontal line every 100 pixels). 

3. Derive a top-level module. Synthesize and verify operation of the two modes. 

13.7.3 Visible screen adjustment circuit 

Due to the internal timing error of a monitor, the visible portion of the screen may not 
always be centered. We can adjust the location of the visible portion by slightly modifying 
the widths surrounding black border areas. In a horizontal scan line, there are 64 pixels 
for the right and left border regions. To move the visible portion horizontally, we can add 
a certain number of pixels to one border region and subtract the same number from the 
opposite border region. We can adjust the visible portion vertically in a similar fashion. 
Design a screen adjustment circuit as follows: 

1. Expand the VGA synchronization circuit to include this feature. Use a switch to 
select the vertical or horizontal mode, and use two pushbuttons to move the visible 
screen to IeftJup and rightldown. 

2. Modify the testing circuit in Section 13.2.5 to incorporate the new synchronization 
circuit. 

3. Synthesize and verify operation of the circuit. 

13.7.4 Ball-in-a-box circuit 

The ball-in-a-box circuit displays a bouncing ball inside a square box. The square box 
is centered on the screen and its size is 256-by-256 pixels. The ball is an 8-by-8 round 
ball. When the ball hits the wall, the ball bounces back and the wall flashes (i.e., changes 
color briefly). The ball can travel at four different speeds, which are selected by two slide 
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Figure 13.11 Screen of the breakout game. 

switches, and its direction changes randomly when a pushbutton switch is pressed. Derive 
the HDL code and then synthesize and verify operation of the circuit. 

13.7.5 Two-balls-in-a-box circuit 

We can expand the circuit in Experiment 13.7.4 to include two balls inside the box. When 
two balls collide, the new directions of the two balls should follow the laws of physics. 
Derive the HDL code and then synthesize and verify operation of the circuit. 

13.7.6 Two-player pong game 

The two-player pong game replaces the left wall with another paddle, which is controlled by 
the second player. To better accommodate two players, we can use the keyboard interface 
of Section 9.4 as the input device. Four keys can be defined to control vertical movements 
of the two paddles. Derive the HDL code and then synthesize and verify operation of the 
circuit. 

13.7.7 Breakout game 

The breakout game is somewhat like the pong game. In this game, the left wall is replaced 
by several layers of "bricks." When the ball hits a brick, the ball bounces back and the brick 
disappears. The basic screen is shown in Figure 13.11. As in the code of Listing 13.5, we 
assume that the game runs continuously. Derive the HDL code and then synthesize and 
verify operation of the circuit. 

13.7.8 Full-screen dot trace 

We can implement the full-screen dot trace circuit of Section 13.5 using the external SRAM 
chip as follows: 

1. Modify the SRAM controller in Chapter 1 1 to configure the SRAM chip as a 2''-by-8 
memory. 



2. Follow the discussion in Section 13.5.2 to incorporate the new memory module in 
the circuit. Note that accessing the external memory requires two clock cycles. 

3. Synthesize and verify operation of the circuit. 

13.7.9 Mouse pointer circuit 

The mouse interface is discussed in Section 10.5. The mouse pointer circuit uses a mouse 
to control the movement of a small 16-by- 16 square on the screen. It functions as follows: 

The square moves according to the movement of the mouse. 
a The pointer wraps around when it reaches a border. 

The pointer changes color when the left button of the mouse is pressed. It circulates 
through the eight colors defined in Table 13.1. 

Synthesize and verify operation of the circuit. 

13.7.10 Small-screen mouse scribble circuit 

Mouse scribble circuit keeps track of the trace of the mouse movement in a 128-by-128 
screen, somewhat similar to the dot trace circuit discussed in Section 13.5. Its specification 
is as follows: 

a The 3-bit switch determines the color of the trace. 
a Clicking the left button of the mouse turns on and off the trace alternately. 

Clicking the right button of the mouse clears the screen. 
Synthesize and verify operation of the circuit. 

13.7.1 1 Full-screen mouse scribble circuit 

Repeat Experiment 13.7.10, but use the full screen. An external SRAM module similar to 
that in Experiment 13.7.8 is needed for this circuit. 



CHAPTER 14 

VGA CONTROLLER II: TEXT 

14.1 INTRODUCTION 

A tile-mapped pixel generation scheme is discussed in Section 13.3. A tile can be considered 
as a "super pixel." Whereas a pixel is defined by a 3-bit word in a bit-mapped scheme, a tile 
is mapped to a predesigned pattern. One method of constructing a text display is to treat the 
characters as tiles and design the pixel generation circuit with the tile-mapped scheme. We 
discuss this method in this chapter and apply it to add scores and rules to the pong game. 

14.2 TEXT GENERATION 

14.2.1 Character as a tile 

When applying a tile-mapped scheme, we treat each character as a tile. In a bit-mapped 
scheme, the value of a pixel represents a 3-bit color. On the other hand, the value of a tile 
represents the code of a specific pattern. For the text display, we use the 7-bit ASCII code 
for the character tiles. 

The patterns of the tiles constitute the font of the character set. A variety of fonts are 
available. We choose an 8-by-16 (i.e., 8-column-by-16-row) font similar to the one used in 
early IBM PCs. In this font, each character is represented as an 8-by-16 pixel pattern. The 
pattern for the letter "A" is shown in Figure 14.l(a). 

The character patterns are stored in a ROM and each pattern requires 24 * 8 bits. The 
pattern memory is known as font ROM. The original font set consists of 256 patterns, 

FPGA Prototyping by Verilog Examples. By Pong P. Chu 
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Figure 14.1 Font pattern for the letter A. 

including digits, upper- and lowercase letters, punctuation symbols, and many special- 
purpose graphic symbols. We implement only the first half [i.e., 128 (2')] of the patterns 
and exclude most graphic symbols. To accommodate this set, 2' * 24 * 8 ROM bits are 
needed. It is usually configured as a 211-by-8 ROM. 

When we use these 8-by-16 characters (i.e., tiles) in a 640-by-480 resolution screen, 80 
(i.e., 7 )  tiles can be fitted into a horizontal line and 30 (i.e., g )  tiles can be fitted into a 
vertical line. In other words, the screen can be treated as an 80-by-25 tile screen. We can 
put characters on the screen using these scaled coordinates. 

14.2.2 Font ROM 

Our font set implements the 128 characters of the ASCII code, listed in Table 8.1. The 128 
(2') character patterns can be accommodated by a 2"-by-8 font ROM. In this ROM, the 
seven MSBs of the 1 I -bit address are used to identify the character, and the four LSBs of 
the address are used to identify the row within a character pattern. The address and ROM 
content for the letter "A" are shown in Figure 14.l(b). 

In the ASCII table, the first column (ASCII codes OOls to IFls) consists of nonprintable 
control characters. The font ROM uses these codes to implement special graphic symbols. 
For example, the 0616 code will generate a spade pattern, 4, on the screen. Note that the 
0016 code is reserved for a blank tile. 

The 2''-by-8 font ROM can fit neatly into a single block RAM of the Spartan-3 device. 
We use the ROM template of Listing 12.6 to ensure that a block RAM will be inferred 
during synthesis. Part of the HDL code is shown in Listing 14.1. The complete code has 
2'' rows in constant definition and the file can be downloaded from the companion Web 
site. 
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Listing 14.1 Partial code of the font ROM 

module f ont-rom 
( 

i n p u t  wire  c l k ,  
i n p u t  w i r e  [10:0]  a d d r ,  

5 o u t p u t  r e g  [7 :0 ]  d a t a  

1; 

// s i g n a l  d e c l a r a t i o n  
reg  110: 01 a d d r - r e g  ; 

10 

// body 
a l w a y s  Q ( p o s e d g e  c l k )  

a d d r - r e g  <= a d d r ;  

1 5  a l w a y s  Q* 
c a s e  ( a d d r - r e g )  

/ / c o d e  xOO bIank 
11 ' h 0 0 0 :  d a t a  = 8 'b00000000 ;  // 
l l ' h 0 0 1 :  d a t a  = 8 ' b 0 0 0 0 0 0 0 0 ;  // 
l l ' h 0 0 2 :  d a t a  = 8 ~ b 0 0 0 0 0 0 0 0 ;  // 
1 1 '  h003:  d a t a  = 8 'b00000000 ;  // 
11 ' h 0 0 4 :  d a t a  = 8 ~ b 0 0 0 0 0 0 0 0 ;  // 
11 ' h 0 0 5 :  d a t a  = 8 ~ b 0 0 0 0 0 0 0 0 ;  // 
l l ' h 0 0 6 :  d a t a  = 8 ' b 0 0 0 0 0 0 0 0 ;  // 
11 ' h 0 0 7 :  d a t a  = 8 J b 0 0 0 0 0 0 0 0 ;  // 
11 ' h 0 0 8 :  d a t a  = 8 J b 0 0 0 0 0 0 0 0 ;  // 
11 ' h 0 0 9 :  d a t a  = 8 'b00000000 ;  // 
1 1 '  h00a :  d a t a  = 8 'b00000000 ;  // 
l l ' h 0 0 b :  d a t a  = 8 ~ b 0 0 0 0 0 0 0 0 ;  // 

30 l l ' h 0 0 c :  d a t a  = 8 'b00000000 ;  // 
11 ' h o o d :  d a t a  = 8  b00000000;  // 
l l ' h 0 0 e :  d a t a  = 8 'b00000000 ;  / /  
1 1 '  h00f : d a t a  = 8 ' b 0 0 0 0 0 0 0 0 ;  // 
/ / c o d e  x 0 1  s m i l e y  f a c e  

35 11 ' h 0 1 0 :  d a t a  = 8 ' b 0 0 0 0 0 0 0 0 ;  // 
i l ' h 0 1 1 :  d a t a  = 8 ' b 0 0 0 0 0 0 0 0 ;  // 
l l ' h 0 1 2 :  d a t a  = 8 ' b 0 1 1 1 1 1 1 0 ;  // * * * * * *  
l l ' h 0 1 3 :  d a t a  = 8 ' b 1 0 0 0 0 0 0 1 ;  // * * 
l l ' h 0 1 4 :  d a t a  = 8 ' b 1 0 1 0 0 1 0 1 ;  // * * * * 

40 l l ' h 0 1 5 :  d a t a  = 8 ' b 1 0 0 0 0 0 0 1 ;  // * * 
l l ' h 0 1 6 :  d a t a  = 8 J b 1 0 0 0 0 0 0 1 ;  // * * 
l l ' h 0 1 7 :  d a t a  = 8 ' b 1 0 1 1 1 1 0 1 ;  // * * * * *  * 
l l ' h 0 1 8 :  d a t a  = 8 'b10011001 ;  // * **  * 
l l ' h 0 1 9 :  d a t a  = 8 'b10000001 ;  // * * 
11 'hO1a: d a t a  = 8 'b10000001 ;  / /  * * 
I l ' h O l b :  d a t a  = 8 ' b 0 1 1 1 1 1 1 0 ;  // * * * * * *  
I 1  ' h O l c :  d a t a  = 8 ' b 0 0 0 0 0 0 0 0 ;  // 
I l ' h O l d :  d a t a  = 8 ~ b 0 0 0 0 0 0 0 0 ;  // 
I l ' h O l e :  d a t a  = 8 ' b 0 0 0 0 0 0 0 0 ;  // 
11 ' hOlf : d a t a  = 8 'b00000000  ; // 
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Figure 14.2 Two-stage text generation circuit. 

ll'h7f0: data = 8'b00000000; // 
ll'h7fl: data = 8'b00000000; // 
ll'h7f2: data = 8'b00000000; / /  
1 1  'h7f3: data = 8'b00000000; // 
11Jh7f4: data = 8'b00010000; // * 
llJh7f5: data = 8'b00111000; // * * *  
llJh7f6: data = 8'b01101100; // * *  * *  
ll'h7f7: data = 8'b11000110; // * *  * *  
ll'h7f8: data = 8'b11000110; // * *  * *  
ll'h7f9: data = 8'b11000110; // * *  * *  
ll'h7fa: data = 8'b11111110; / /  * * * * * * *  
Il'h7fb: data = 8'b00000000; / /  
Il'h7fc: data = 8'b00000000; // 
Il'h7fd: data = 8'b00000000; // 
ll'h7fe: data = 8'b00000000; // 
11 ' h7f f : data = 8'b00000000 ; // 

e n d c a s e  
711 

endmodule  

Note that the block RAM-based ROM implementation introduces a one-clock-cycle delay, 
as discussed in Section 12.4.3. 

14.2.3 Basic text generation circuit 

The pixel generation circuit generates pixel values according to the current pixel coordinates 
(provided by the pixel-x and pixel-y signals) and the external data and control signals. 
Pixel generation based on a tile-mapped scheme involves two stages. The first stage uses 
the upper bits of the p i x e l x  and pixel-y signals to generate a tile's code, and the second 
stage uses this code and lower bits to generate the pixel's value. 

The text generation circuit follows this method, and the basic diagram is shown in 
Figure 14.2. The screen is treated as a grid of 80-by-30 tiles, each containing an 8-by-16 
font pattern. In the first stage, the p i x e l x  [9 : 31 and pixel-y [8 : 41 signals provide the 
x- and y-coordinates of the current tile location. The character generation circuit uses these 
coordinates, combined with other external data, to generate the value of this tile (labeled 
char-addr), which corresponds to a character's ASCII code. In the second stage, the ASCII 
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code becomes the seven MSBs of the address of the font ROM and specifies the location of 
the current pattern. It is concatenated with the four LSBs of the screen's y-coordinate (i.e., 
pixel-y [3 : 01 , labeled row-addr) to form the complete address (labeled rom-addr) ofthe 
font ROM. The output of the font ROM (labeled f ont-word) corresponds to an 8-bit row 
in the pattern. The three LSBs of the screen's x-coordinate (i.e., p i x e l x  [2: 01, labeled 
bit-addr) specify the desired pixel location, and an 8-to-1 multiplexer routes the pixel to 
the output. 

14.2.4 Font display circuit 

We use a simple font display circuit to verify operation of the font ROM and display all 
font patterns on the screen. The 128 patterns are arranged in four rows, which correspond 
to the four columns of the ASCII table in Table 8.1. We can obtain each pattern by using 
the proper x- and y-coordinates to generate the desired ASCII code, which is labeled the 
char-addr signal. The code segment is 

a s s i g n  char-addr = (pixel-y [5:4] , pixel-x [7:31); 

The p i x e l x  [7 : 31 signal forms the five LSBs of the ASCII code, and thus 32 p5) con- 
secutive font patterns will be displayed in a row. The pixel-y [5 : 41 signal forms the two 
MSBs of the ASCII code, and thus four consecutive rows will be displayed. Since the 
upper bits of the p i x e l x  and pixel-y signals are left unspecified, the 32-by-4 region will 
be displayed repetitively on the screen. An additional code segment is included to turn 
on the display for the top-left portion of the screen only. The complete code is shown in 
Listing 14.2. 

Listing 14.2 Pixel generation of a font display circuit 

module f ont-test-gen 

( 
i n p u t  w i r e  clk, 
i n p u t  w i r e  video-on, 

5 i n p u t  w i r e  [9:01 pixel-x , pixel-y , 
o u t p u t  r e g  [2:0] rgb-text 

1;  

// s i g n a l  d e c l a r a t i o n  
l o  w i r e  [10:0] rom-addr; 

w i r e  [6: 01 char-addr ; 
w i r e  [3:01 row-addr; 
w i r e  [2:0] bit-addr; 
w i r e  [7: 01 f ont-word; 

15 w i r e  f ont-bit , text-bit-on; 

/ /  body 
/ /  i n s t a n t i a t e  f o n t  ROM 
font-rom font-unit 

20 (.clk(clk), .addr(rom-addr), .data(font-word)); 
/ /  f o n t  ROM i n t e r f a c e  
a s s i g n  char-addr = {pixel-y [5:4] , pixel-x [7:311; 
a s s i g n  row-addr = pixel-y [3:0] ; 
a s s i g n  rom-addr = (char-addr , row-addr); 

25 a s s i g n  bit-addr = pixel-x [2:0] ; 



a s s i g n  font-bit = font-word [-bit-addrl ; 
// " o n "  r e g i o n  l i m i t e d  t o  t o p - l e f t  c o r n e r  
a s s i g n  text-bit-on = (pixel-x [9:81==O && pixel-y [9: 61 ==0) ? 

font-bit : l'bO; 
3u // rgb  m u l t i p l e x i n g  c i r c u i t  

a l w a y s  @ *  
i f  (-video-on) 

rgb-text = 3 'b000; // b l a n k  
e l s e  

i f  (text-bit-on) 
rgb-text = 3'bOlO; // g r e e n  

e l s e  
rgb-text = 3'bOOO; // b l a c k  

40 endmodule  

The key part of the code is the font ROM interface. For clarity, we define the following 
signals for the font ROM, as shown in Figure 14.2: 

char-addr: 7 bits, the ASCII code of the character 
row-addr: 4 bits, the row number in a particular font pattern 
rom-addr: 11 bits, the address of the font ROM; the concatenation of char-addr 
and row-addr 
b i t - addr :  3 bits, the column number in a particular font pattern 
f ont-word: 8 bits, a row of pixels of the font pattern specified by rom-addr 
f on t -b i t :  1 bit, one pixel of f ont-word specified by b i t - addr  

The connection of these signals follows the diagram in Figure 14.2. The routing of the 
f o n t - b i t  signal is done by a multiplexer, coded as an array with a dynamic index: 

a s s i g n  font-bit = font-word [-bit-addr] ; 

Note that a row (i.e., a word) in the font ROM is defined in descending order (i.e., [7 : 01 ). 
Since the screen's x-coordinate is defined in ascending fashion, in which the number in- 
creases from left to right, the order of the retrieved bits must be reversed. This is achieved 
by the " operator in the expression. 

We need to combine the synchronization circuit and create the top-level description. The 
HDL code is shown in Listing 14.3. 

Listing 14.3 Top-level description of a font display circuit 

module f ont-test-top 
( 

i n p u t  w i r e  clk, reset, 
o u t p u t  w i r e  hsync, vsync , 

5 o u t p u t  w i r e  [2:0] rgb 

) ;  

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  [9: 01 pixel-x , pixel-y ; 

l o  w i r e  video-on , pixel-tick; 
r e g  [2:01 rgb-reg; 
w i r e  [ 2  : 01 rgb-next ; 

// body  
1s // i n s t a n t i a t e  vga s y n c  c i r c u i t  
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vga-sync vsync-unit 
( .  clk(clk), . reset (reset), . hsync (hsync) , . vsync (vsync), 
.video-on(video-on), .p-tick(pixe1-tick), 
.pixel-x(pixe1-x), .pixel-y(pixe1-y)); 

20 / /  f o n t  g e n e r a t i o n  c i r c u i t  
font-test-gen font-gen-unit 

(.clk(clk), .video-on(video-on), .pixel-x(pixe1-x), 
.pixel-y(pixe1-y), .rgb-text(rgb-next)); 

// r g b  b u f f e r  
15 always @(posedge clk) 

if (pixel-tick) 
rgb-reg <= rgb-next ; 

/ /  o u t p u t  
assign rgb = rgb-reg; 

10 

endmodule 

There is subtle timing issue in this circuit. Because of the block RAM implementation, 
the font ROM's output suffers a one-clock-cycle delay. However, since the p ixe l - t i ck  
signal is asserted every two clock cycles, the p i x e l x  signal remains unchanged within 
this interval and the corresponding bit (i.e., f ont-bi t )  can be retrieved properly. The rgb 
multiplexing circuit can use this data, and the desired value is stored to the r g b ~ e g  register 
in a timely manner. 

14.2.5 Font scaling 

In the tile-mapped scheme, we can scale a tile pattern to larger sizes by "enlarging" the 
screen pixels. For example, we can scale the 8-by-16 font to a 16-by-32 font by enlarging 
the original pixel four times (i.e., expanding one pixel to four pixels). To perform the 
scaling, we just need to shift pixel coordinates to the right 1 bit and discard the LSBs of the 
p i x e l x  and pixel-y signals. This can best be explained by an example. Let us repeat 
the previous font displaying circuit with enlarged 16-by-32 fonts. The screen can now be 
treated as a grid of 40-by-1 5 tiles. The new font addresses become 

assign row-addr = pixel-y [4: 11 ; 
assign bit-addr = pixel-x [3: 11 ; 
assign char-addr = {pixel-y [6:5] , pixel-x [8:41); 

The first two statements imply that the same fon t -b i t  value will be obtained when 
p i x e l 2  [Ol and pixel-y C01 are "OO", "01 ", " 1 O", and " 1 1 ", and this effectively enlarges 
the original pixel to four pixels. The text-bi t -on condition also needs to be modified to 
accommodate a larger region: 

assign text-bit-on = (pixel-x [91==O && pixel-y [9: 71 ==0 )  ? 
font-bit : l'bO; 

We can apply this scheme to scale up the font even further. Note that the enlarged fonts 
may appear jagged because they simply magnify the original pattern and introduce no new 
detail. 



Figure 14.3 Text generation circuit with tile memory. 

14.3 FULL-SCREEN TEXT DISPLAY 

A full-screen text display, as the name indicates, uses the entire screen to display text 
characters. The character generation circuit now contains a tile memory that stores the 
ASCII code of each tile. The design of the tile memory is similar to the video memory of 
the bit-mapped circuit in Section 13.5. For easy memory access, we can concatenate the x- 
and y-coordinates of a tile to form the address. This translates to 12 bits for the 80-by-30 
(i.e., 27-by-25) tile screen. Since each tile contains a 7-bit ASCII code, a 212-by-7 memory 
module is required. A synchronous dual-port RAM can be used for this purpose. A circuit 
with tile memory is shown in Figure 14.3. 

Because accessing tile memory requires another clock cycle, retrieving a font pattern 
is now increased to two clock cycles. This prolonged delay introduces a subtle timing 
problem. Because the p i x e l x  signal is updated every two clock cycles, its value has 
incremented when the f ont-word value becomes available. Thus, when the bit is retrieved 
by the statements 

a s s i g n  b i t - a d d r  = p i x - x 2 - r e g  [2:0] ; 
a s s i g n  f o n t - b i t  = f  on t -word  C - b i t - a d d r l  ; 

the incremented bit-addr is used and an incorrect font bit will be selected and routed to 
the output. One way to overcome the problem is to pass the p i x e l x  signal through two 
buffers and use this delayed signal in place of the p i x e l x  signal. 

We use a simple circuit to demonstrate the design of the full-screen tile-mapped scheme. 
The circuit reads an ASCII code from a 7-bit switch and places it in the marked location 
of the 80-by-30 tile screen. The conceptual diagram is shown in Figure 14.3. A cursor is 
included to mark the current location of entry, where the color is reversed. The c u r s o r  
block keeps track of the current location of the cursor. The circuit uses three pushbutton 
switches for control. Two buttons move the cursor right and down, respectively. The third 
button is for the write operation. When it is pressed, the current value of the 7-bit switch is 
written to the tile memory. The HDL code is shown in Listing 14.4. 
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Listing 14.4 Pixel generation of a full-screen text display 

module text-screen-gen 
( 

i n p u t  w i r e  clk , reset , 
i n p u t  w i r e  video-on, 

5 i n p u t  w i r e  [2:0] btn, 
i n p u t  w i r e  [6:01 sw, 
i n p u t  w i r e  [9 : 01 pixel-x , pixel-y , 
o u t p u t  r e g  [2: 01 text-rgb 

1; 
10 

/ /  s i g n a l  d e c l a r a t i o n  
// f o n t  ROM 
w i r e  [lo: 01 rom-addr ; 
w i r e  [6: 01 char-addr ; 

I5 w i r e  [3:0] row-addr; 
w i r e  [2: 01 bit-addr ; 
w i r e  [7:0] f ont-word; 
w i r e  f out-bit ; 
// t i l e  RAM 

20 w i r e  we; 
w i r e  [I1 : 01 addr-r , addr-w ; 
w i r e  [6:01 din, dout; 
/ /  80-by-30 t i l e  map 
l o c a l p a r a m  MAX-X = 80; 

25 l o c a l p a r a m  MAX-Y = 30; 
/ /  c u r s o r  
r e g  [6: 01 cur-x-reg ; 
w i r e  [6: 01 cur-x-next ; 
r e g  [4: 01 cur-y-reg ; 

30 w i r e  [4: 01 cur-y-next ; 
w i r e  move-x-tick , move-y-tick , cursor-on; 
// d e l a y e d  p i x e l  count  
r e g  19: 01 pix-xi-reg , pix-y 1-reg ; 
r e g  [9: 01 pix-x2_reg, pix-y2-reg; 

35 / /  o b j e c t  o u t p u t  s i g n a l s  
w i r e  [2 : 01 f out-rgb , f out-rev-rgb ; 

/ /  body 
/ /  i n s t a n t i a t e  debounce  c i r c u i t  f o r  two b u t t o n s  

40 debounce deb-unit0 
( .  clk(clk), .reset (reset), . sw(btn[Ol), 
.db-level(), .db-tick(move-x-tick)); 

debounce deb-unit1 
( .  cik(clk), .reset (reset), . sw(btn [I]), 

. db-level() , . db-tick (move-y-tick)) ; 
/ /  i n s t a n t i a t e  f o n t  ROM 
font-rom font-unit 

(.clk(clk), .addr(rom-addr), .data(font-word)); 
/ /  i n s t a n t i a t e  d u a l - p o r t  v i d e o  RAM ( 2 - 1 2 - b y - 7 )  

50 xilinx-dual-port-ram-sync 
# ( .  ADDR-WIDTH (12) , . DATA-WIDTH (7) ) video-ram 
( .  clk(clk), . we(we), . addr-a(addr-w), . addr-b(addr-r), 



15 / /  r e g i s t e r s  
a l w a y s  @ ( p o s e d g e  clk) 

b e g i n  
cur-x-reg <= cur-x-next ; 
cur-y-reg <= cur-y-next ; 
pix-xl-reg <= pixel-x ; 
pix-x2-reg <= pix-xl-reg; 
pix-yl-reg <= pixel-y; 
pix-y2-reg <= pix-yl-reg ; 

end 
65 / /  t i l e  R A M w r i t e  

a s s i g n  addr-w = {cur-y-reg , cur-x-reg); 
a s s i g n  we = btn C21 ; 
a s s i g n  din = sw; 
/ /  t i l e  RAM r e a d  

70 / /  use  n o n d e l a y e d  c o o r d i n a t e s  t o  form t i l e  RAM a d d r e s s  
a s s i g n  addr-r = {pixel-y [8:41 , ~ i x e l - x  C9:31); 
a s s i g n  char-addr = dout; 
// f o n t  ROM 
a s s i g n  row-addr = pixel-y [3:0] ; 

75 a s s i g n  rom-addr = {char-addr , row-addr); 
/ /  u s e  d e l a y e d  c o o r d i n a t e  t o  s e l e c t  a  b i t  
a s s i g n  bit-addr = pix-x2-reg C2: 01 ; 
a s s i g n  font-bit = f ont-word [-bit-addr] ; 
/ /  new c u r s o r  p o s i t i o n  

RO a s s i g n  cur-x-next = 

(move-x-tick && (cur-x-reg==MAX-X-1)) ? 0 : / /  wrap 
(move-x-tick) ? cur-x-reg + 1 : 

cur-x-reg; 
a s s i g n  cur-y-next = 

XI (move-y-tick && (cur-x-reg==MAX-Y-1)) ? 0 : / /  wrap 
(move-y-tick) ? cur-y-reg + 1 : 

cur-y-reg; 
// o b j e c t  s i g n a l s  
/ /  g r e e n  o v e r  b l a c k  and r e v e r s e d  v i d e o  f o r  c u r s o r  

so a s s i g n  font-rgb = (font-bit) ? 3'b010 : 3'bOOO; 
a s s i g n  font-rev-rgb = (font-bit) ? 3'bOOO : 3'bOlO; 
// use  d e l a y e d  c o o r d i n a t e s  f o r  c o m p a r i s o n  
a s s i g n  cursor-on = (pix-y2-reg [8 :4] ==cur-y-reg) && 

(pix-x2-reg C9 : 31 ==cur-x-reg) ; 
si / /  rgb  m u l t i p l e x i n g  c i r c u i t  

a l w a y s  Q *  
i f  ("video-on) 

text-rgb = 3'bOOO; // b l a n k  
e l s e  

i f  (cursor-on) 
text-rgb = font-rev-rgb; 

e l s e  
text-rgb = f ont-rgb ; 

endmodule  



The font ROM interface signals are similar to those in Listing 14.2 except that the 
char-addr is obtained from the read port of the tile memory. To facilitate the font ROM 
access delay, we create two delayed signals, pixx2-reg and pix-y21eg, from the current 
x- and y-coordinates, p i x e l x  and pixel-y. Note that the undelayed signals, p i x e l x  
and pixel-y, are used to form the address to access the font ROM, but the delayed signal, 
pixx2_reg,  is used to obtain the font bit. The instantiation and interface of the dual-port 
tile RAM are similar to those of the video RAM in Listing 13.7. 

The cursor-on signal is used to identify the current cursor location. The colors of the 
font pattern are reversed in this location. Because the font bits are delayed by two clocks, 
we use the delayed coordinates, pixx21eg and pix-y2reg,  for comparison. 

The delayed font bits also introduce one pixel delay for the final rgb signal. This implies 
that the overall visible portion of the VGA monitor is shifted to the right by one pixel. To 
correct the problem, we should revise the vga-sync circuit and use the delayed p i x x 2 r e g  
and pix-y2-reg signals to generate the hsync and vsync signals. Since the shift has little 
effect on the overall video quality, we do not make this modification. 

The top-level code combines the text pixel generation circuit and the synchronization 
circuit and is shown in Listing 14.5. 

Listing 14.5 Top-level system of a full-screen text display 

module text-screen-top 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [2:0] btn, 

5 i n p u t  w i r e  [6:01 sw, 
o u t p u t  w i r e  hsync, vsync, 
o u t p u t  w i r e  [2:0] rgb 

1; 

I , ,  / /  s i g n a l  d e c l a r a t i o n  
w i r e  [ 9 :  01 pixel-x , pixel-y ; 
w i r e  video-on , pixel-tick; 
r e g  [2:01 rgb-reg; 
w i r e  [2 : 01 rgb-next ; 

15 / /  body 
/ /  i n s t a n t i a t e  vga sjjnc c i r c u i t  
vga-sync vsync-unit 

( .  clk(clk), .reset (reset), .hsync (hsync) , .vsync(vsync), 
.video-on(video-on), .p-tick(pixe1-tick), 

20 .pixel-x(pixe1-x), .pixel-y(pixe1-y)); 
// f o n t  g e n e r a t i o n  c i r c u i t  
text-screen-gen text-gen-unit 

(.clk(clk), .reset(reset), .video-on(video-on), 
. btn(btn1, . sw(sw), . pixel-x(pixel-x), 

5 .pixel-y(pixe1-y), .text-rgb(rgb-next)); 
// rgb  b u f f e r  
a l w a y s  @ (  p o s e d g e  clk) 

i f  (pixel-tick) 
rgb-reg <= rgb-next ; 

70 / /  o u t p u t  
a s s i g n  rgb = rgb-reg; 

endmodule 
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Figure 14.4 Top-level b l o c k  d iagram o f  the complete p o n g  game 

14.4 THE COMPLETE PONG GAME 

We create a free-running graphic circuit for the pong game in Section 13.4.3. In this section, 
we add a text interface to display scores and messages, and design a top-level control FSM 
that integrates the graphic and text subsystems and coordinates the overall circuit operation. 
The rules and operations of the complete game are: 

- 

---. 

When the game starts, it displays the text of the rule. 
After a player presses a button, the game starts. 
The player scores a point each time hitting the ball with the paddle. 
When the player misses the ball, the game pauses and a new ball is provided. Three 
balls are provided in each session. 
The score and the number of remaining balls are displayed on the top of the screen. 
Afier three misses, the game is ended and displays the end-of-game message. 

In the following subsections, we first discuss the text subsystem, graphic subsystem, and 
auxiliary counters, and then derive a top-level FSM to coordinate and control the overall 
operation. The conceptual diagram is shown in Figure 14.4. 
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Figure 14.5 Text of the pong game. 

Display the score as "Scores : DD" and the number of remaining balls asMBal l  : D" 
in the 16-by-32 font on top of the screen. 
Display the rule message "Rules:  Use two b u t t o n s  t o  move paddle  up o r  
down. " in the regular font at the beginning of the game. 
Display the "PONG" logo in the 64-by-128 font on the background. 
Display the end-of-game message "Game Over" in the 32-by-64 font at the end of 
the game. 

A sketch of the first three messages is shown in Figure 14.5. The end-of-game message is 
overlapped with the rule message and not included. 

Since these messages use different font sizes and are displayed at different occasions, 
they cannot be treated as a single screen. We treat each text message as an individual object 
and generate the on status signal and the font ROM address. For example, the logo message 
segment is 

assign logo-on = (pix-y [ 9 :  71 ==2) && 
(3<=pix-x [ 9 :  61 ) && (pix-x 19: 61 <=6) ; 

assign row-addr-1 = pix-y [6:31 ; 
assign bit-addr-1 = pix-x [5:3] ; 
always Q* 

case (pix-x [8: 61 ) 
3'03: char-addr-1 = 7'h50; // P 
3'04: char-addr-1 = 7'h4f; / /  0 
3'05: char-addr-1 = 7'h4e; // N 
default: char-addr-1 = 7'h47; // G 

endcase 

The logo-on signal indicates that the current scan is in the logo region and the corresponding 
text should be "turned on." The other statements specify the message content and the font 
ROM connections to generate the scaled 32-by-64 characters. The other three segments are 
similar. A separate multiplexing circuit examines various on signals and routes one set of 
addresses to the font ROM. 

The text subsystem receives the score and the number of remaining balls via the b a l l ,  
dig0,  and d i g 1  ports. It outputs the r g b  information via the rgb- tex t  port and outputs 
the on status information via the 4-bit t ex t -on  port, which is the concatenation of four 
individual on signals. The complete code is shown in Listing 14.6. 
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Listing 14.6 Text subsystem for the pong game 

module pong-text 
( 

i n p u t  w i r e  clk, 
i n p u t  w i r e  [1:01 ball, 

5 i n p u t  w i r e  [3:0] dig0, digl, 
i n p u t  w i r e  [9:01 pix-x, pix-y, 
o u t p u t  w i r e  [3:01 text-on, 
o u t p u t  r e g  [2:01 text-rgb 

1;  
10 

/ /  s i g n a l  d e c l a r a t i o n  
w i r e  110: 01 rom-addr ; 
r e g  [6 : 01 char-addr , char-addr-s , char-addr-1 , 

char-addr-r, char-addr-o; 
I5 r e g  [3:0] row-addr; 

w i r e  C3: 01 row-addr-s , row-addr-1 , row-addr-r , row-addr-o ; 
r e g  [2:01 bit-addr; 
w i r e  [2:0] bit-addr-s, bit-addr-1,bit-addr-r, bit-addr-o; 
w i r e  [7:01 font-word; 

20 w i r e  font-bit , score-on, logo-on, rule-on, over-on; 
w i r e  C7: 01 rule-rom-addr ; 

/ /  i n s t a n t i a t e  f o n t  ROM 
font-rom font-unit 

(.clk(clk), .addr(rom-addr). .data(font-word)); 

// s c o r e  r e g i o n  
/ /  - d i s p l a y  t w o - d i g i t  s c o r e ,  b a l l  on t o p  l e f t  

30 / /  - s c a l e  t o  16-by-32 f o n t  
// - l i n e  1 ,  16 c h a r s :  " S c o r e : D D  Bal1:D" 
, , 

a s s i g n  score-on = (pix-y [ 9 :  51 ==0) && (pix-x [9: 41 <16) ; 
a s s i g n  row-addr-s = pix-y [4: 11 ; 

35 a s s i g n  bit-addr-s = pix-x [3: 11 ; 
a l w a y s  Q* 

c a s e  (pix-x [7:41) 
4'hO: char-addr-s = 7 'h53; // S  
4'hl: char-addr-s = 7'h63; // c 
4'h2: char-addr-s = 7'h6f; // o  
4'h3: char-addr-s = 7'h72; // r 
4'h4: char-addr-s = 7jh65; // e  
4'h5: char-addr-s = 7'h3a; // : 
4'h6: char-addr-s = {3'b011, digl); // d i g i t  10 
4'h7: char-addr-s = C3' b011, dig0); // d i g i t  1  
4'h8: char-addr-s = 7'hOO; // 
4'h9: char-addr-s = 7'hOO; // 
4'ha: char-addr-s = 7'h42; // B 
4'hb: char-addr-s = 7'h61; / /  a 
4 'hc: char-addr-s = 7'h6c; / /  1 
4'hd: char-addr-s = 7'h6c; // 1 
4'he: char-addr-s = 7'h3a; // : 
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4'hf : char-addr-s = {5'b01100, ball); 
e n d c a s e  

/ /  l ogo  r e g i o n :  
// - d i s p l a y  l ogo  "PONG" at  t o p  c e n t e r  
/ /  - used  as  background 
// - s c a l e  t o  64-by-128  f o n t  

a s s i g n  logo-on = (pix-y[9:71==2) && 
(3<=pix-x [9: 61 ) && (pix-x [9: 61 <=6) ; 

a s s i g n  row-addr-1 = pix-y [6:31 ; 
a s s i g n  bit-addr-1 = pix-x [5: 31 ; 

65 a l w a y s  Q* 
c a s e  (pix-x [8: 61 ) 

3'03: char-addr-1 = 7'h50; // P 
3'04: char-addr-1 = 7jh4f; // 0 
3'05: char-addr-1 = 7lh4e; / /  N 

70 d e f a u l t :  char-addr-1 = 7'h47; // G 
e n d c a s e  

// r u l e  r e g i o n  
/ /  - d i s p l a y  r u l e  ( 4 -by -16  t i 1 e s ) o n  c e n t e r  

75 / /  - r u l e  t e x t :  
// Rule : 
/ / Use two b u t t o n s  
// t o  move p a d d l e  
// up and down 

a s s i g n  rule-on = (pix-x [9: 71 ==2) && (pix-y [9: 61 ==2) ; 
a s s i g n  row-addr-r = pix-y [3: 01 ; 
a s s i g n  bit-addr-r = pix-x [2: 01 ; 
a s s i g n  rule-rom-addr = {pix-y [5:4] , pix-x [6:31); 

85 a l w a y s  Q* 
c a s e  (rule-rom-addr) 

// row 1 
6'hOO: char-addr-r = 7'h52; // R 
6'hOl: char-addr-r = 7'h55; // U  
6'h02: char-addr-r = 7'h4c; // L 
6'h03: char-addr-r = 7'h45; // E 
6'h04: char-addr-r = 7'h3a; // : 
6'h05: char-addr-r = 7'hOO; // 
6'h06: 
6'h07: 
6'h08: 
6'h09: 
6'hOa: 
6'hOb: 
6'hOc: 
6'hOd: 
6'hOe: 
6'hOf: 
// row 
6'hlO: 

char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; / /  
char-addr-r = 7'hOO; // 
char-addr-r = 7jh00; / /  
char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; // 
2 
char-addr-r = 7'h55; // U 



6'hll: 
6'h12: 
6'h13: 
6'h14: 
6'h15: 
6'h16: 
6'h17: 
6'h18: 
6'h19: 
6'hla: 
6'hlb: 
6'hlc: 
6'hld: 
6'hle: 
6'hlf: 
/ /  row 
6'h20: 
6'h21: 
6'h22: 
6'h23: 
6'h24: 
6'h25: 
6'h26: 
6'h27: 
6'h28: 
6'h29: 
6'h2a: 
6'h2b: 
6'h2c: 
6'h2d: 
6' h2e : 
6'h2f: 
// row 
6'h30: 
6'h31: 
6'h32: 
6'h33: 
6'h34: 
6'h35: 
6'h36: 
6'h37: 
6'h38: 
6'h39: 
6'h3a: 
6'h3b: 
6'h3c: 
6'h3d: 
6'h3e: 
6'h3f: 

e n d c a s e  

char-addr-r = 7'h73; // s  
char-addr-r = 7'h65; / /  e  
char-addr-r = 7'hOO; / /  
char-addr-r = 7'h74; / /  t  
char-addr-r = 7'h77; / /  w 
char-addr-r = 7'h6f ; / /  o  
char-addr-r = 7'hOO; / /  
char-addr-r = 7'h62; / /  b 
char-addr-r = 7'h75; / /  u 
char-addr-r = 7'h74; / /  t  
char-addr-r = 7'h74; / /  t  
char-addr-r = 7'h6f ; // o  
char-addr-r = 7'h6e; // n 
char-addr-r = 7'h73; / /  s  
char-addr-r = 7'hOO; // 
3 
char-addr-r = 7'h74; // t  
char-addr-r = 7'h6f; // o 
char-addr-r = 7'hOO; // 
char-addr-r = 7'h6d; // m 
char-addr-r = 7'h6f ; // o  
char-addr-r = 7'h76; // v  
char-addr-r = 7'h65; // e  
char-addr-r = 7'hOO; // 
char-addr-r = 7'h70; / /  p 
char-addr-r = 7'h61; // a  
char-addr-r = 7'h64; / /  d  
char-addr-r = 7'h64; / /  d  
char-addr-r = 7'h6c; / /  I 
char-addr-r = 7'h65; / /  e  
char-addr-r = 7'hOO; / /  
char-addr-r = 7'hOO; / /  
4 
char-addr-r = 7'h75; // u 
char-addr-r = 7'h70; / /  p 
char-addr-r = 7'hOO; / /  
char-addr-r = 7'h61; / /  a  
char-addr-r = 7'h6e; / /  n 
char-addr-r = 7'h64; // d  
char-addr-r = 7'hOO; / /  
char-addr-r = 7'h64; // d  
char-addr-r = 7'h6f ; // o  
char-addr-r = 7'h77; / /  w 
char-addr-r = 7jh6e; / /  n 
char-addr-r = 7'h2e; // . 
char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; // 
char-addr-r = 7'hOO; // 
char-addr-r = 7 'h00; / /  

, , 
/ /  game o v e r  r e g i o n  
// - d i s p l a v  "Game Over"  a t  c e n t e r  
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/ /  - s c a l e  t o  32-by-64 f o n t s  
160 / /  

a s s i g n  over-on = (pix-y [9: 6]==3) && 
(5<=pix-x [9: 51 ) && (pix-x [9: 51 <=I31 ; 

a s s i g n  row-addr-o = pix-y [5: 21 ; 
a s s i g n  bit-addr-o = pix-x [4:2] ; 

16s a l w a y s  Q* 
c a s e  (pix-x [a: 51 ) 

4'h5: char-addr-o = 7'h47; / /  G 
4'h6: char-addr-o = 7'h61; / /  a  
4'h7: char-addr-o = 7'h6d; / /  m 
4'h8: char-addr-o = 7'h65; // e  
4'h9: char-addr-o = 7'hOO; // 
4'ha: char-addr-o = 7'h4f; // 0 
4'hb: char-addr-o = 7'h76; // v 
4'hc: char-addr-o = 7'h65; // e  
d e f a u l t :  char-addr-o = 7'h72; / /  r  

e n d c a s e  
, , 

// mux f o r  f o n t  ROM a d d r e s s e s  and r g b  
// 

ISU a l w a y s  Q* 
b e g i n  

text-rgb = 3'b110; // b a c k g r o u n d ,  y e l l o w  
i f  (score-on) 

b e g i n  
char-addr = char-addr-s; 
row-addr = row-addr-s; 
bit-addr = bit-addr-s; 
i f  (font-bit) 

text-rgb = 3'bOOl; 
end 

e l s e  i f  (rule-on) 
b e g i n  

char-addr = char-addr-r; 
row-addr = row-addr-r; 
bit-addr = bit-addr-r ; 
i f  (font-bit) 

text-rgb = 3jb001; 
end 

e l s e  i f  (logo-on) 
b e g i n  

char-addr = char-addr-1; 
row-addr = row-addr-1; 
bit-addr = bit-addr-1; 
i f  (font-bit) 

text-rgb = 3'b011; 
end 

e l s e  / /  game o v e r  
b e g i n  

char-addr = char-addr-o ; 
row-addr = row-addr-o; 
bit-addr = bit-addr-o; 



i f  (font-bit) 
text-rgb = 3'bOOl; 

end 
2 1 5  end 

a s s i g n  text-on = (score-on, logo-on, rule-on, over-on}; 
// 
// f o n t  rom i n t e r f a c e  

a s s i g n  rom-addr = (char-addr, row-addr}; 
a s s i g n  f ont-bit = font-word [-bit-addr] ; 

endmodule  

The structure of each segment is similar. Because the messages are short, they are 
coded with the regular ROM template. Since no clock signal is used, a distributed RAM 
or combinational logic should be inferred. Generation of the two-digit score depends on 
the two 4-bit external signals, digO and d ig l .  Note that the ASCII codes for the digits 
0, 1, . . . , 9, are 3Ol6, 3 l I 6 ,  . . . , 3gI6. We can generate the char-addr signal simply by 
concatenating "011" in front of digO and d ig l .  

14.4.2 Modified graphic subsystem 

To accommodate the new top-level controller, the graphic circuit in Section 13.4.3 requires 
several modifications: 

Add a g r a - s t i l l  (for "still graphics") control signal. When it is asserted, the vertical 
bar is placed in the middle and the ball is placed at the center of the screen without 
movement. 
Add the h i t  and miss status signals. The h i t  signal is asserted for one clock cycle 
when the paddle hits the ball. The m i s s  signal is asserted when the paddle misses 
the ball and the ball reaches the right border. 
Add a graph-on signal to indicate the on status of the graph subsystem. 

The modified portion of the code is shown in Listing 14.7. 

Listing 14.7 Modified portion of a graph subsystem for the pong game 

// new b a l l  p o s i t i o n  
a s s i g n  ball-x-next = (gra-still) ? MAX-X/2 : 

(refr-tick) ? ball-x-reg+x-delta-reg : 
5 ball-x-reg ; 

a s s i g n  ball-y-next = (gra-still) ? MAX-Y/2 : 
(refr-tick) ? ball-y-reg+y-delta-reg : 

ball-y-reg ; 
// new b a l l  v e l o c i t y  

10 a l w a y s  Q* 
b e g i n  

hit = 1'bO; 
miss = l'bO; 
x-delta-next = x-delta-reg; 
y-delta-next = y-delta-reg; 
i f  (gra-still) // i n i t i a l  v e l o c i t y  
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b e g i n  
x-delta-next = BALL-V-N ; 
y-delta-next = BALL-V-P; 

20 end 
e l s e  i f  (ball-y-t < 1) // r e a c h  t o p  

y-delta-next = BALL-V-P; 
e l s e  i f  (ball-y-b > (MAX-Y-1)) // r e a c h  b o t t o m  

y-delta-next = BALL-V-N; 
3 e l s e  i f  (ball-x-1 <= WALL-X-R) // r e a c h  w a l l  

x-delta-next = BALL-V-P; // bounce back  
e l s e  i f  ((BAR-X-L <=ball-x-r) && (ball-x-r <=BAR-X-R) && 

(bar-y-t <=ball-y-b) && (ball-y-t <=bar-y-b)) 
b e g i n  

30 / /  r e a c h  x o f  r i g h t  b a r  and h i t  , b a l l  bounce back  
x-delta-next = BALL-V-N; 
hit = l'bl; 

end 
e l s e  i f  (ball-x-r>MAX-X) // r e a c h  r i g h t  b o r d e r  

is miss = lJbl; // a  m i s s  
end 

a s s i g n  graph-on = wall-on I bar-on I rd-ball-on; 
. . . 

14.4.3 Auxiliary counters 

The top-level design requires two small utility modules, m100-counter and timer, to 
facilitate the counting. The m100-counter module is a two-digit decade counter that 
counts from 00 to 99 and is used to keep track of the scores of the game. Two control 
signals, d-inc and d-clr, increment and clear the counter, respectively. The code is shown 
in Listing 14.8. 

Listing 14.8 Two-digit decade counter 

module m100-counter 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  d-inc, d-clr, 

5 o u t p u t  w i r e  [3:01 dig0, dig1 

1;  

// s i g n a l  d e c l a r a t i o n  
r e g  [3: 01 dig0-reg , digl-reg , dig0-next , digl-next ; 

10 

// r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk , p o s e d g e  reset ) 

i f  (reset) 
b e g i n  

I5 digl-reg <= 0; 
dig0-reg <= 0; 

end 
e l s e  

b e g i n  



digl-reg <= digl-next ; 
dig0-reg <= dig0-next ; 

end 

/ /  n e x t - s t a t e  l o g i c  
2: a l w a y s  Q *  

b e g i n  
dig0-next = dig0-reg ; 
digl-next = digl-reg; 
i f  (d-clr) 

b e g i n  
dig0-next = 0 ;  
digl-next = 0 ;  

end 
e l s e  i f  (d-inc) 

i f  (dig0-reg==9) 
b e g i n  

dig0-next = 0 ;  
i f  (digl-reg==9) 

digl-next = 0 ;  
e l s e  

digl-next = digl-reg + 1; 
end 

e l s e  / /  digO n o t  9 
dig0-next = dig0-reg + 1 ;  

45 end 
// o u t p u t  
a s s i g n  digO = dig0-reg; 
a s s i g n  dig1 = digl-reg; 

The timer module uses the 60-Hz tick, timer-tick, to generate a 2-second interval. 
Its purpose is to pause the video for a small interval between transitions of the screens. It 
starts counting when the timer-start signal is asserted and activates the timer-up signal 
when the 2-second interval is up. The code is shown in Listing 14.9. 

Listing 14.9 Two-second timer 

module timer 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  timer-start , timer-tick, 

I o u t p u t  w i r e  timer-up 

) ; 

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [6:0] timer-reg, timer-next; 

10 

// r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk, p o s e d g e  reset) 

i f  (reset) 
timer-reg <= 7'blllllll; 

e l s e  



timer-reg <= timer-next ; 

// n e x t - s t a t e  l o g i c  
a l w a y s  Q* 

20 i f  (timer-start) 
timer-next = 7'blllllll; 

e l s e  i f  ((timer-tick) && (timer-reg ! =  0)) 
timer-next = timer-reg - 1; 

e l s e  
25 timer-next = timer-reg; 

// o u t p u t  
a s s i g n  timer-up = (timer-reg==O); 

endmodule 

14.4.4 Top-level system 

The top-level system of the pong game consists of the previously designed modules, includ- 
ing a video synchronization circuit, graphic subsystem, text subsystem, and utility counters, 
as well as a control FSM and an rgb multiplexing circuit. The block diagram is shown in 
Figure 14.4. 

The control FSM monitors overall system operation and coordinates the activities of the 
text and graphic subsystems. Its ASMD chart is shown in Figure 14.6. The FSM has four 
states and operates as follows: 

Initially, the FSM is in the newgame state. The game starts when a button is pressed 
and the FSM moves to the play state. 
In the play state, the FSM checks the h i t  and m i s s  signals continuously. When the 
h i t  signal is activated, the d-inc signal is asserted for one clock cycle to increment 
the score counter. When the m i s s  signal is asserted, the FSM activates the 2-second 
timer, decrements the number of the balls by 1, and examines the number ofremaining 
balls. Ifit is zero, the game is ended and the FSM moves to the over state. Otherwise, 
the FSM moves to the newball state. 
The FSM waits in the newball state until the 2-second interval is up (i.e., when the 
timer-up signal is asserted) and a button is pressed. It then moves to the p lay  state 
to continue the game. 
The FSM stays in the over state until the 2-second interval is up. It then moves to 
the newgame state for a new game. 

The rgb multiplexing circuit routes the t e x t x g b  or g r a p h ~ g b  signals to output ac- 
cording to the text-on and graphic-on signals. The key segment is 

a l w a y s  Q* 
i f  (-video-on) 

rgb-next = "000"; // b lank  the  e d g e / r e t r a c e  
e l s e  

// d i s p l a y  s c o r e ,  r u l e ,  o r  game o v e r  
i f  ( text_on[3] I1 

((state-reg==newgame) && text-on [I] ) I I 
((state-reg==over) && text-onC01) ) 

rgb-next = text-rgb; 
e l s e  i f  (graph-on) // d i s p l a y  graph 



default : gra-still = I 

.................................. .................................. 

Figure 14.6 ASMD chart of the pong controller. 



rgb-next = graph-rgb ; 
e l s e  i f  (text-on[21) // d i s p l a y  l ogo  
rgb-next = text-rgb ; 

e l s e  
rgb-next = 3'b110; // y e l l o w  background 

/ /  o u t p u t  
a s s i g n  rgb = rgb-reg; 

The text-onC31 signal is for the scores, which is always displayed. The text-onC11 
signal is for the rule, which is displayed only when the FSM is in the newgame state. 
Similarly, the end-of-game message, whose status is indicated by the text-on [01 signal, 
is displayed only when the FSM is in the over state. The logo, whose status is indicated 
by the text-on [21 signal, is used as part of the background and is displayed only when no 
other on signal is asserted. 

The complete code is shown in Listing 14.10. 

Listing 14.10 Top-level system for the pong game 

module pong-top 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [1:01 btn, 

5 o u t p u t  w i r e  hsync , vsync , 
o u t p u t  w i r e  [2:0] rgb 

1;  

// s y m b o l i c  s t a t e  d e c l a r a t i o n  
la  l o c a l p a r a m  [1:01 

newgame = 2 ' b00, 
play = 2'b01, 
newball = 2'b10, 
over = 2'bll; 

I 5  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [1:0] state-reg, state-next; 
w i r e  [9 :0] pixel-x , pixel-y ; 
w i r e  video-on, pixel-tick, graph-on, hit, miss; 

20 w i r e  [3:0] text-on; 
w i r e  [2: 01 graph-rgb , text-rgb ; 
r e g  [2: 01 rgb-reg , rgb-next ; 
w i r e  [3:0] dig0, digl; 
r e g  gra-still , d-inc , d-clr , timer-start ; 

2s w i r e  timer-tick , timer-up; 
r e g  [I : 01 ball-reg , ball-next ; 

// i n s t a n t i a t i o n  
......................................................... 

// i n s t a n t i a t e  v i d e o  s y n c h r o n i z a t i o n  u n i t  
vga-sync vsync-unit 

( .  clk(clk), .reset (reset), . hsync(hsync), . vsync(vs~nc), 
.video-on(video-on), .p-tick(pixe1-tick), 

35 .pixel-x(pixe1-x), .pixel-y(pixe1-y)); 
// i n s t a n t i a t e  t e x t  module 



p o n g - t e x t  t e x t - u n i t  
( .  c l k ( c l k 1 ,  

. p i x - x ( p i x e 1 - x ) ,  . p i x - y ( p i x e 1 - y ) ,  

. d i g O ( d i g O ) ,  . d i g l ( d i g l ) ,  . b a l l ( b a l l - r e g ) ,  

. t e x t - o n ( t e x t - o n ) ,  . t e x t - r g b ( t e x t - r g b ) ) ;  
/ /  i n s t a n t i a t e  graph module 
pong-graph g r a p h - u n i t  

( . c l k ( c l k ) ,  . r e s e t ( r e s e t ) ,  . b t n ( b t n ) ,  
~r . p ix -x  ( p i x e l - x )  , . pix-y ( p i x e l - y )  , 

. g r a - s t i l l ( g r a - s t i l l ) ,  . h i t ( h i t ) ,  . m i s s ( m i s s ) ,  

. graph-on (g raph-on)  , . graph- rgb  ( g r a p h - r g b )  ) ; 
// i n s t a n t i a t e  2 s e c  t i m e r  
// 60  Hz t i c k  

to a s s i g n  t i m e r - t i c k  = ( p i x e l - x = = O )  && ( p i x e l - y = = 0 )  ; 
t i m e r  t i m e r - u n i t  

( . c l k ( c l k ) ,  . r e s e t ( r e s e t ) ,  .timer-tick(timer-tick), 
.timer-start(timer-start), . t i m e r - u p ( t i m e r - u p ) ) ;  

/ /  i n s t a n t i a t e  2 - d i g i t  decade  c o u n t e r  
5 m100-counter c o u n t e r - u n i t  

( .  c l k ( c 1 k )  , . r e s e t  ( r e s e t ) ,  . d - i n c  ( d - i n c )  , . d - c l r  ( d - c l r )  , 
. d i g 0  ( d i g 0 1  , . d i g 1  ( d i g l ) )  ; 

......................................................... 

// FSMD 
......................................................... 

/ / FSMD s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  c l k  , p o s e d g e  r e s e t )  

i f  ( r e s e t )  
b e g i n  

s t a t e - r e g  <= newgame ; 
b a l l - r e g  <= 0 ;  
r g b - r e g  <= 0 ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t  ; 
b a l l - r e g  <= b a l l - n e x t  ; 
i f  ( p i x e l - t i c k )  

r g b - r e g  <= rgb-nex t  ; 
7: end 

// FSMD n e x t - s t a t e  l o g i c  
a l w a y s  Q* 
b e g i n  

g r a - s t i l l  = l ' b l ;  
t i m e r - s t a r t  = l ' b O ;  
d - inc  = l ' b O ;  
d - c l r  = l ' b O ;  
s t a t e - n e x t  = s t a t e - r e g ;  
b a l l - n e x t  = b a l l - r e g  ; 
c a s e  ( s t a t e - r e g )  

newgame : 
b e g i n  

b a l l - n e x t  = 2 ' b l l ;  // t h r e e  b a l l s  
d - c l r  = l ' b l ;  // c l e a r  s c o r e  



i f  ( b t n  ! =  2'bOO) / /  b u t t o n  p r e s s e d  
b e g i n  

s t a t e - n e x t  = p l a y ;  
b a l l - n e x t  = b a l l - r e g  - 1 ;  

end 
end 

p l a y  : 
b e g i n  

g r a - s t i l l  = l ' b O ;  // a n i m a t e d  s c r e e n  
i f  ( h i t )  

d - i n c  = l ' b l ;  // i n c r e m e n t  s c o r e  
e l s e  i f  ( m i s s )  

b e g i n  
i f  ( b a l l - r e g = = O )  

s t a t e - n e x t  = o v e r ;  
e l s e  

s t a t e - n e x t  = n e w b a l l  ; 
t i m e r - s t a r t  = l ' b l ;  // 2 s e c  t i m e r  
b a l l - n e x t  = b a l l - r e g  - 1 ;  

end 
end 

n e w b a l l  : 
/ /  w a i t  f o r  2 s e c  and u n t i l  b u t t o n  p r e s s e d  
i f  ( t i m e r - u p  && ( b t n  ! =  2'bOO)) 

s t a t e - n e x t  = p l a y ;  
o v e r  : 

// w a i t  f o r  2 s e c  t o  d i s p l a y  game o v e r  
i f  ( t  imer -up )  

s t a t e - n e x t  = newgame ; 
e n d c a s e  

120 end 
......................................................... 

// r g b  m u l t i p l e x i n g  c i r c u i t  
......................................................... 

a l w a y s  Q* 
125 i f  ( - v i d e o - o n )  

r g b - n e x t  = " 0 0 0 " ;  // b l a n k  t h e  e d g e / r e t r a c e  
e  1 s  e  

// d i s p l a y  s c o r e ,  r u l e ,  o r  game o v e r  
i f  ( t e x t - o n C 3 1  I I 

( ( s t a t e - r e g = = n e w g a m e )  && t e x t - o n  Cll I I / /  r u l e  
( (  s t a t e - r e g = = o v e r )  && t e x t - o n  [ O ]  ) 

r g b - n e x t  = t e x t - r g b ;  
e l s e  i f  ( g r a p h - o n )  // d i s p l a y  graph 

r g b - n e x t  = g r a p h - r g b  ; 
e l s e  i f  ( t e x t - o n  [21)  / /  d i s p l a y  l o g o  

r g b - n e x t  = t e x t - r g b ;  
e l s e  

r g b - n e x t  = 3 ' b 1 1 0 ;  / /  y e l l o w  b a c k g r o u n d  
// o u t p u t  

I40 a s s i g n  r g b  = r g b - r e g ;  
endmodule 



14.5 BIBLIOGRAPHIC NOTES 

Several other character fonts are available. Rapid Prototyping of Digital Systems by James 
0. Hamblen et al. uses a compact 64-character 8-by-8 font set. The tile-mapped scheme 
is not limited to the text display. It is widely used in the early video game. The article 
"Computer Graphics During the 8-Bit Computer Game Era" by Steven Collins (ACMSIG- 
GRAPH, May 1998) provides a comprehensive review of the history and design techniques 
of the tile-based game. 

14.6 SUGGESTED EXPERIMENTS 

14.6.1 Rotating banner 

A rotating banner on the monitor screen moves a line from right to left and then wraps 
around. It is similar to the Window's Marquee screen saver. Let the text on the banner 
be "Hello, FPGA World." The banner should be displayed in four different font sizes and 
can travel at four different speeds. The font size and speed are controlled by four switches. 
Derive the HDL description and then synthesize and verify operation of the circuit. 

14.6.2 Underline for the cursor 

The full-screen text display circuit in Section 14.3 uses reversed color to indicate the current 
cursor location. Modify the design to use an underline to indicate the cursor location. Derive 
the HDL description and then synthesize and verify operation of the circuit. 

14.6.3 Dual-mode text display 

It is sometimes better for text to be displayed on a "vertical" screen. This can be done by 
turning the monitor 90 degrees and resting it on its side. Design this circuit as follows: 

1. Modify the full-screen text display circuit in Section 14.3 for a vertical screen. 
2. Merge the normal and vertical designs to create a "dual-mode" text display. Use a 

switch to select the desired mode. 
3. Derive the HDL description and then synthesize and verify operation of the circuit. 

14.6.4 Keyboard text entry 

Instead of switches and buttons, it is more natural to use a keyboard to enter text. We can 
use the four arrow keys to move the cursor and use the regular keys to enter the characters. 
Use the keyboard interface discussed in Section 9.4 to design the new circuit. Derive the 
HDL description and then synthesize and verify operation of the circuit. 

14.6.5 UART terminal 

The UART terminal receives input from the UART port and displays the received characters 
on a monitor. When connected to the PC's serial port, it should echo the text on Window's 
HypterTerminal. The detailed specifications are: 

A cursor is used to indicate the current location. 
The screen starts a new line when a "carriage return" code (Od16) is received. 
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Figure 14.7 Tile patterns and encoding of a square wave 

A line wraps around (i.e., starts a new line) after 80 characters. 
When the cursor reaches the bottom of the screen (i.e., the last line), the first line will 
be discarded and all other lines move up (i.e., scroll up) one position. 

Derive the HDL description and then synthesize and verify operation of the circuit. 

14.6.6 Square-wave display 

We can draw a square wave by using the four simple tile patterns shown in Figure 14.7(a). 
Follow the procedure of a full-screen text display in Section 14.3 to design a full-screen 
wave editor: 

1. Let the tile size be 8 columns by 64 rows. Create a pattern ROM for the four patterns. 
2. Calculate the number of tiles on a 640-by-480 resolution screen and derive the proper 

configuration for the tile memory. 
3. Use three pushbuttons for control and a 2-bit switch to enter the pattern. 
4. Derive the HDL description and then synthesize and verify operation of the circuit. 

14.6.7 Simple four-trace logic analyzer 

A logic analyzer displays the waveforms of a collection of digital signals. We want to 
design a simple logic analyzer that captures the waveforms of four input signals in "free- 
running" mode. Instead of using a trigger pattern, data capture is initiated with activation of 
a pushbutton switch. For simplicity, we assume that the frequencies of the input waveform 
are between 10 kHz and 100 kHz. The circuit can be designed as follows: 

1. Use a sampling tick to sample the four input signals. Make sure to select a proper rate 
so that the desired input frequency range can be displayed properly on the screen. 

2. For a point in the sampled signal, its value can be encoded as a tile pattern by including 
the value of the previous point. For example, if the sampled sequence of one signal is 
"00001 1 1 1000", the tile patterns become "00 00 00 01 1 l 11 1 l 10 00 OO", as shown 
in Figure 14.7(b). 

3. Follow the procedure of the preceding square-wave experiment to design the tile 
memory and video interface to display the four waveforms being stored . 

4. Derive the HDL description and then synthesize the circuit. 



To verify operation of the circuit, we can connect four external signals via headers around 
the prototyping board. Alternatively, we can create a top-level test module that includes a 
4-bit counter (say, a mod-10 counter around 50 kHz) and the logic analyzer, resynthesize 
the circuit, and verify its operation. 

14.6.8 Complete two-player pong game 

The free-running two-player pong game is described in Experiment 13.7.6. Follow the 
procedure of the pong game in Section 14.4 to derive the complete system. This should 
include the design of a new text display subsystem and the design of a top-level FSM 
controller. Derive the HDL description and then synthesize and verify operation of the 
circuit. 

14.6.9 Complete breakout game 

The free-running breakout game is described in Experiment 13.7.7. Follow the procedure 
of the pong game in Section 14.4 to derive the complete system. This should include the 
design of a new text display subsystem and the design of a top-level FSM controller. Derive 
the HDL description and then synthesize and verify operation of the circuit. 
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CHAPTER 15 

PICOBLAZE OVERVIEW 

15.1 INTRODUCTION 

The PicoBlaze processor is a compact 8-bit microcontroller core for Xilinx FPGA devices. 
It is provided as a cell-level HDL description (which is known as so3 core) and can be 
synthesized along with other logic. PicoBlaze is optimized for efficiency and occupies 
only about 200 logic cells, which amount to less than 5% of the resources of a 3S200 
device. While not intended as a high-performance processor, it is compact and flexible 
and can be used for simple data processing and control, particularly for non-time-critical 
"housekeeping" and 110 operations. The PicoBlaze processor can easily be integrated into 
a larger system and adds another dimension of flexibility in an FPGA-based design. 

Although the detailed coverage of assembly language programming and microcontrollers 
is beyond the scope ofthis book, this part provides a comprehensive overview of PicoBlaze's 
organization and instruction set, and illustrates the general assembly program development 
and 110 interface through a set of examples. We review PicoBlaze's organization and 
instruction set in this chapter, introduce assembly language programming in Chapter 16, 
and discuss the general I10 interface and interrupt interface in Chapters 17 and 18. 

FPGA Prototyping by Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons. Inc. 



15.2 CUSTOMIZED HARDWARE AND CUSTOMIZED SOFTWARE 

15.2.1 From special-purpose FSMD to general-purpose microcontroller 

The RT-level design and FSMD discussed in Chapter 6 provide a general methodology to 
convert a sequential algorithm to customized hardware. The rearranged block diagram is 
shown in Figure 15.l(a). In an FSMD, all components, including the number of registers, 
the routing of registers' input and output, the number and types of functional units, and 
the control FSM, are tailored to the target application. The data path may contain multiple 
function units and multiple routing paths, as shown in the diagram. 

An alternative is to keep the same hardware but use customizedsoftware for different ap- 
plications. The transformation can be done as follows. First, we can replace the customized 
data path with a fixed configuration, as shown at the top of Figure 15.1 (b). The data registers 
and customized routing networks are replaced by a register file, which has a fixed number 
of registers and contains only two read ports and one write port. The customized function 
units are replaced with an ALU (arithmetic and logic unit), which can only perform a set 
of predefined functions. The data path can now perform RT operations in the following 
format only: 

r d  t rl op r 2  

where ri, 1-2, and rd  are the addresses of two source registers and one destination register, 
and op is one of the available ALU functions. 

Second, we can replace the customized FSM with a programmable state machine, as 
shown at the bottom of Figure 15.l(b). Recall that operation of an FSM consists of three 
parts: 

The state register keeps track of the current state. 
The output logic activates certain output signals according to the current state. 
The next-state logic determines the new state. 

The programmable state machine modifies these operations as follows: 
It replaces the state register with the program counter. The content of the program 
counter represents the current state of the control path. 
In an FSM, each state activates certain output signals to control operation of the data 
path. The programmable state machine encodes these output patterns into instructions 
and stores them in a memory module, known as program memory or instruction 
memory. A memory address corresponds to a state (i.e., a value) of the program 
counter. During execution, the instruction pointed to by the program counter is 
retrieved from memory and decoded to generate the control signals. The instruction 
memory and decoding logic function as a sophisticated output logic circuit. 
In an FSM, there is no limitation on where to go next. From a given state, the FSM 
can check the input condition and move to one of many possible next states. In a 
programmable state machine, the next state is usually the value of the current state 
plus 1 (i.e., the program counter is incremented by l), which reflects the nature of the 
sequential execution. The sequential execution may be altered only by several special 
instructions, such as a jump instruction, in which the program counter is loaded with 
a different value. The incrementor and associated multiplexing logic function as a 
simple next-state logic circuit. 

After we replace the data path with a register file and an ALU and replace the dedicated 
FSM with a programmable state machine, customizing the system corresponds to devel- 
oping a new sequence of instructions (i.e., developing a software program) and loads the 
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instructions to the instruction memory. The organization of the FSMD is now the same 
for different applications and becomes ageneral-purpose hardware platform. The platform 
constitutes the basic skeleton of the PicoBlaze microcontroller. 

15.2.2 Application of microcontroller 

In a customized FSMD, the data path can be created to accommodate an individual applica- 
tion's needs. It may contain multiple customized functional units and parallel routing paths, 
and can complete complex computation in a single state (i.e., one clock cycle). On the other 
hand, the PicoBlaze microcontroller can perform only one predefined RT operation (i.e., 
an instruction) at a time. It may need many instructions to perform the same task and thus 
require much more time. 

Many tasks can be carried out using either a customized FSMD or a microcontroller. The 
trade-off is between the hardware complexity, performance, and ease of development. There 
is no exact rule on which one to choose. Because developing software is usually easier than 
creating customized hardware, the microcontroller option is generally preferable for non- 
time-critical applications. We can determine the feasibility of this option by examining the 
computation complexity. PicoBlaze requires two clock cycles to complete an instruction. 
If the system clock is 50 MHz, 25 million instructions can be performed in 1 second. For a 
task (or a collection of tasks), we can examine how frequently a request is issued and how 
fast the task must be completed, and then estimate the number of available instructions. 
For example, assume that a keyboard interface generates new input data every 1 ms and 
the data must be processed within this interval. Within the 1-ms period, PicoBlaze can 
complete 25,000 instructions. The PicoBlaze controller will be a viable option ifthe required 
processing can be carried out by using fewer than 25,000 instructions. In general, the 
microcontroller is suitable for many non-time-critical 110-interface or housekeeping tasks. 

15.3 OVERVIEW OF PICOBLAZE 

15.3.1 Basic organization 

PicoBlaze is a compact 8-bit microcontroller with the following characteristics: 
8-bit data width 
8-bit ALU with carry and zero flags 
16 8-bit general-purpose registers 
64-byte data memory 

a 18-bit instruction width 
10-bit instruction address, which supports a program up to 1024 instructions 
3 1 -word calllretum stack 
256 input ports and 256 output ports 
2 clock cycles per instruction 
5 clock cycles for interrupt handling 

PicoBlaze is based on the skeleton described in Figure 15.l(b) and adds several enhance- 
ments to make it more versatile. The expanded diagram is shown in Figure 15.2. To reduce 
clutter, only the main data flow is shown. The sizes of main storage components are listed 
in round brackets. The processor makes several enhancements over the original skeleton: 

Add a 64-word data memory. This is known as scratch RAM in the Xilinx literature, 
but we call it data RAM. The data RAM can be considered as a reservoir to store 
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Figure 15.3 Top-level diagram of PicoBlaze. 

additional data. Note that there is no direct path between the data RAM and the 
ALU. Data must be fetched to a register for processing and then stored back to the 
data RAM. 
Add an immediate constantfield in some instructions. This allows a constant, rather 
than the content of a register, to be used in ALU and other operations. The two-to-one 
multiplexer before the ALU's bottom input is used to select the register output or the 
constant field. 

a Add a 31-word stack to support a function call. We discuss the call and return 
procedure in more detail in Section 15.5.8. 

a Addpaths to input and output external data. An 8-bit port- id signal is used to 
identify a port and thus up to 256 input ports and 256 output ports can be supported. 
The I10 interface is discussed in detail in Chapter 17. 

a Add an interrupt-handling circuit (not shown in the diagram). The interrupt mecha- 
nism is discussed in detail in Chapter 18. 

15.3.2 Top-level HDL modules 

During synthesis, a PicoBlaze system is organized as two top-level HDL modules, as shown 
in Figure 15.3. The KCPSM3 module is the PicoBlaze processor. KCPSM3, which stands for 
constant (K) codedprogrammable state machine, reflects the original name of the PicoBlaze 
processor. It has the following input and output signals: 

a clk (input, 1 bit): system clock signal 
a r e s e t  (input, 1 bit): reset signal 
a address (output, 10 bits): address of the instruction memory, which specifies the 

location of the instruction to be retrieved 
a i n s t ruc t ion  (input, 18 bits): fetched instruction 
a port- id (output, 8 bits): address of the input or output port 
a in-port (input, 8 bits): input data from 110 peripherals 
a read-storbe (output, 1 bit): strobe associated with the input operation 

out-port (output, 8 bits): output data to I10 peripherals 
a write-storbe (output, 1 bit): strobe associated with the output operation 
a i n t e r rup t  (input, 1 bit): interrupt request from I10 peripherals 
a interrupt-ack (output, 1 bit): interrupt acknowledgment to 110 peripherals 

The second module is for the instruction memory. During the development, we usually 
store the compiled assembly code to memory in advance and configure it as a ROM in HDL 
code. It is thus known as an instruction ROM. 
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15.4 DEVELOPMENT FLOW 

While developing a system based on a conventional microcontroller, we examine the re- 
quired functionalities and select a processor with the proper computation capability and 
adequate I10 interface. Additional chips are frequently needed to perform special functions. 
One advantage of using a soft-core microcontroller is that we can have both a customized 
circuit and a microcontroller developed and implemented in the same FPGA device. A 
large application usually includes many different tasks. In an FPGA platform, we can im- 
plement the time-critical tasks in a customized circuit (i.e., "hardware") for performance 
and realize the remaining housekeeping and low-speed 110 functions in a microcontroller 
(i.e., "software"). 

The basic PicoBlaze-based development flow is shown in Figure 15.4. It consists of the 
following steps: 

1. Determine the software-hardware partition. 
2. Develop the assembly program for the software portion. 
3. Compile the assembly program to generate an instruction ROM. The ROM is an HDL 

file. 
4. Perform instruction-set-level simulation. 
5. Derive HDL code for the hardware portion. The hardware includes customized 

circuits to perform special 110 and time-critical functions and customized circuits to 
interface with PicoBlaze. 

6. Create top-level HDL code that combines the codes for the PicoBlaze core, the 
instruction ROM, and customized hardware. 

7.  Develop a testbench and perform HDL simulation for the entire system. 
8. Synthesize and implement the HDL code and program the FPGA chip on the proto- 

typing board. 
We explain these steps in detail in subsequent chapters. 

Step 9, shown in the dotted line, is not a part of the normal development flow. It reloads 
the instruction memory after the entire system is synthesized. This step is discussed in 
Section 16.5.3. 

15.5 INSTRUCTION SET 

PicoBlaze has 57 instructions. The instructions have five general formats. We organize the 
instructions according to the nature of their operations and divide them into the following 
categories: 

Logical instructions 
Arithmetic instructions 
Compare and test instructions 
Shift and rotate instructions 
Data movement instructions 
Program flow control instructions 
Interrupt related instructions 

In this section, we first examine the program model and instruction format and then list and 
explain each instruction. 
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Figure 15.5 PicoBlaze programming model. 

15.5.1 Programming model 

From an assembly programming point of view, PicoBlaze contains sixteen 8-bit registers, 
a 64-byte data RAM, three flags (for zero, cany, and interrupt), the program counter, and 
the top-of-stack pointer. The model, sometimes known as the instruction set architecture, 
is shown in Figure 15.5. After an instruction is executed, the contents of these components 
are modified explicitly or implicitly. The operations associated with each instruction are 
discussed in Section 15.5.3. 

We use the following notations for these memory components and some constant defin- 
itions: 

sX, sY: each representing one of the 16 general-purpose registers, where X and Y take 
on hexadecimal values from 0 to f 
pc: program counter 
t o s :  top-of-stack pointer of the calllreturn stack 
c, z, i: carry. zero, and interrupt flags 
KK: 8-bit constant value or port id, which is usually expressed as two hexadecimal 
digits 
SS: 6-bit constant data memory address, which is usually expressed as two hexadec- 
imal digits 
AAA: 10-bit constant instruction memory address, which is usually expressed as three 
hexadecimal digits 

15.5.2 Instruction format 

In an assembly program, we generally follow the conventions used in our HDL code, in 
which a keyword (an instruction mnemonic) is in boldface type and a constant is in capital 
letters. PicoBalze's instructions have five formats: 



op sX, sY: register-register format. The op term specifies the operation. The s X  
and s Y  terms are the two operands and s X  also serves as the destination register. It 
performs the s X  t s X  op  s Y  operation. 
op sX, KK: register-constant format. This format is similar to the register-register 
format except that the second operand is replaced by an immediate constant. It 
performs the s X  + s X  op  KK operation. 
op sX: single-register format. This format is used in shift and rotate instructions, 
which involve only one operand. It performs the s X  t op s X  operation. 
op AAA: single-address format. This format is used in jump and call instructions. 
The AAA term is an address of the instruction memory. If the specified condition is 
met, AAA is loaded into the program counter. 
op: zero-operand format. This format is used in some miscellaneous instructions 
that do not involve any operand. 

There are two assembler programs for PicoBlaze: KCPSM3 from Xilinx and PBlazeIDE 
from Mediatronix. The two programs use different mnemonics for several instructions. In 
the following subsections, the alternative mnemonics used in PBlazeIDE are shown in round 
brackets. 

15.5.3 Logical instructions 

There are six logical instructions, which support the and, or, and xor operations. An 
instruction performs bitwise logical operation between two registers or between one register 
and a constant. The carry flag, c, is always cleared. The zero flag, z, reflects the result ofthe 
operation. The mnemonics, brief descriptions, and pseudo operations of these instructions 
are: 

and sX, s Y  

- bitwise and operation 
- pseudo operation: 

sX + sX & sY; 
c + 0; 

and sX, KK 

- bitwise and operation 
- pseudo operation: 

sX + sX & KK; 
C + 0; 

or  sX, SY 

- bitwise or operation 
- pseudo operation: 

sX + sX I sY; 
c t 0; 

- bitwise or operation 
- pseudo operation: 

sX + sX I KK; 
c t 0; 



xor sX, sY 
- bitwise xor operation 
- pseudo operation: 

sX t sX - sY; 
C t 0; 

xor sX, KK 

- bitwise xor operation 
- pseudo operation: 

sX +- sX KK; 
C t 0; 

15.5.4 Arithmetic instructions 

There are eight arithmetic instructions, which support addition and subtraction with or 
without the carry flag. The carry flag, c, and the zero flag, z, reflect the result of operation. 
The mnemonics, brief descriptions, and pseudo operations of these instructions are: 

add sX, sY 
- add without the carry flag 
- pseudo operation: 

sX + sX + sY; 

add sX, KK 
- add without the carry flag 
- pseudo operation: 

sX +- sX + KK; 

addcy sX, sY (addc sX, sY) 
- add with the carry flag 
- pseudo operation: 

sX +- sX + sY + c; 

addcy sX, KK (addc sX, KK) 

- add with the carry flag 
- pseudo operation: 

sX + sX + KK + c; 

sub sX, sY 
- subtract without the carry flag 
- pseudo operation: 

sX + sX - sY; 

sub sX, KK 

- subtract without the carry flag 
- pseudo operation: 

sX +- sX - KK; 

subcy sX, sY (subc sX, sY) 
- subtract with the carry flag (flag functioning as a borrow bit) 
- pseudo operation: 

sX t sX - sY - c: 



subcy sX, KK (subc sX, KK) 
- subtract with the carry flag (flag functioning as a borrow bit) 
- pseudo operation: 

sX + s X  - K K  - c :  

15.5.5 Compare and test instructions 

The compare and test instructions examine two registers or one register and a constant, and 
set the carry and zero flags accordingly. The contents of the registers remain intact. These 
instructions are usually used in conjunction with a conditional jump or call instruction, 
whose operation is based on the values of the flags. 

A compare instruction performs subtraction operation. The result is used to set the cany 
and zero flags and not stored to any register. The mnemonics, brief descriptions, and pseudo 
operations of the two instructions are: 

compare sX, sY (comp sX, sY) 
- compare two registers and set the flags 
- pseudo operation: 

if sX==sY t h e n  z t 1 e l s e  z t 0 ;  
if s Y > s X  t h e n  c +- 1 e l s e  c +- 0 ;  

compare sX, KK (comp sX, KK) 
- compare a register and a constant and set the flags 
- pseudo operation: 

if s X = = K K  t h e n  z +- 1 e l s e  z +- 0; 
if K K > s X  t h e n  c t 1 e l s e  c t 0 ;  

A test instruction performs an and operation. The result is used to set the flags and is 
not stored in any register. If the result is 0, the zero flag is set to 1. The result is also fed to 
an eight-input xor circuit to obtain the odd parity. If there are an odd number of 1's in the 
result, the carry flag is set to 1. The mnemonics, brief descriptions, and pseudo operations 
of the two instructions are shown below. The t is the 8-bit temporary result and will be 
discarded. 

test sX, sY 
- test two registers and set the flags 
- pseudo operation: 

t t s X  & sY; 
if t = = O  t h e n  z + 1 e l s e  z +- 0 ;  
c + t [71 a t [61 . . .  a t [Ol; 

test sX, KK 
- test a register and a constant and set the flags 
- pseudo operation: 

t +- s X  & K K ;  
if t = = O  t h e n  z t 1 e l s e  z +- 0 ;  
c t t [ 7 ]  - t [ 6 l  - . . .  - t [ O I ;  
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Figure 15.6 Illustration of shift and rotate instructions. 
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15.5.6 Shift and rotate instructions 

srx 

There are four shift-left instructions, four shift-right instructions, and two rotate instructions. 
These instructions use the single-register format and have only one operand. The graphical 
representations of these instructions are shown in Figure 15.6. The mnemonics, brief 
descriptions, and pseudo operations of these instructions are: 

s10 sx 
- shift a register left 1 bit and shift 0 into the LSB 
- pseudo operation: 

sX + (sX [6:01 , 0); 
c t sX [71 ; . sll sX 

- shift a register left 1 bit and shift 1 into the LSB 
- pseudo operation: 

SX +- {sXCG:Ol, 1 ) ;  
c t sX [7] ; . SIX sx 

- shift a register left 1 bit and shift sX [01 into the LSB 
- pseudo operation: 

sX t {sX[G:OI, sX[O]); 
c t sx [7] ; 

sla sX 
- shift a register left 1 bit and shift c into the LSB 
- pseudo operation: 

sX t (sX[6:01, c); 
c + sX 171 ; 
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srO s X  

- shift a register right 1 bit and shift 0 into the MSB 
- pseudo operation: 

s X  t C O ,  s X  C7: 11 I ;  
c t s X  COI  ; 

s r l  s X  

- shift a register right 1 bit and shift 1 into the MSB 
- pseudo operation: 

s X  + C1, s X [ 7 : 1 l I ;  
c t sx  COI ; 

srx s X  

- shift a register right 1 bit and shift s X  [71 into the MSB 
- pseudo operation: 

s X  t C s X C 7 1 ,  s X C 7 : l I I ;  
c t s x  COI  ; 

sra s X  

- shift a register right 1 bit and shift c into the MSB 
- pseudo operation: 

sx  +-- { c ,  s X C 7 : l I I ;  
c t s X  101 ; 

- rotate a register left 1 bit 
- pseudo operation: 

s X  t C s X [ G : O I ,  s X C 7 1 1 ;  
c t s X  C71 ; 

- rotate a register right 1 bit 
- pseudo operation: 

s X  t { s X  CO1 , s X  C7: 11 I ;  
c t s X  COI  ; 

15.5.7 Data movement instructions 

In PicoBlaze, the computation is done via the registers and ALU. The data RAM supplies 
additional storage and the 110 ports provide paths to peripherals. There are several instruc- 
tions to move data between the registers, data RAM, and 110 ports. The instructions can be 
divided into three categories: 

Between registers: the load instruction 
Between a register and data RAM: the fetch and store instructions 
Between a register and an I/Oport: the input and output instructions 

The mnemonics, brief descriptions, and pseudo operations of the data movement instruc- 
tions are shown below. The RAM [ ] notation represents the content of the data RAM. Note 
that in some instructions, the indirect address notation, as in ( s Y ) ,  is used in the mnemonic 
to emphasize that the content of the s Y  register is used. 



load sX, sY 
- move data between two registers 
- pseudo operation: 

sx +- sY; 

load sX, KK 
- move a constant to a register 
- pseudo operation: 

sX +- KK; 

fetch sX, (sY) (fetch sX, sY) 
- move data from the data RAM to a register 
- pseudo operation: 

sX +- RAMC(sYI1; 

fetch sX, SS 

- move data from the data RAM to a register 
- pseudo operation: 

sX +- RAMCSS]; 

store sX, (sY) (store sX, sY) 
- move data from a register to the data RAM 
- pseudo operation: 

RAM[(sY)I t sX; 

store sX, SS 

- move data from a register to the data RAM 
- pseudo operation: 

RAM [SS] + sX; 

input sX, (sY) (in sX, sY) 
- move data from the input port to a register 
- pseudo operation: 

p o r t - i d  t sY; 
sX +- i n - p o r t :  

input sX, KK (in sX, KK) 
- move data from the input port to a register 
- pseudo operation: 

p o r t - i d  + KK; 
sX +- i n - p o r t ;  

output sx, (sY) (out sx, sY) 
- move data from a register to the output port 
- pseudo operation: 

p o r t - i d  t sY; 
o u t - p o r t  t sX; 

output sX, KK (out sX, KK) 
- move data from a register to the output port 
- pseudo operation: 

p o r t - i d  t KK; 
o u t - p o r t  t sX; 



There is no explicit instruction to move data to or from instruction memory. However, 
many instructions include a field for an immediate constant. Since the constant is part of 
the instruction and stored in the instruction memory, it can be considered as data that is 
moved implicitly from the instruction memory to a register. 

15.5.8 Program flow control instructions 

In PicoBlaze, the program counter indicates where to fetch the instruction. By default, the 
execution proceeds to the next address in the instruction memory and the program counter 
is incremented implicitly (i.e., pc t pc + 1). The jump, call, and return instructions 
can explicitly load a value to the program counter and modify the program flow. These 
instructions can be executed unconditionally or conditionally based on the values of the 
carry and zero flags. 

A jump instruction loads a new value to the program counter if the corresponding 
condition is met. The program execution changes the regular flow and branches to the 
new address. The program flow continues normally after this point. The mnemonics, brief 
descriptions, and pseudo operations of these instructions are shown below. Recall that AAA 
is for the 10-bit instruction memory address and pc is for the program counter. 

jump AAA 

- unconditionally jump 
- pseudo operation: 

pc + A A A ,  

jump c, AAA 

- jump if the carry flag is set 
- pseudo operation: 

i f  c = = l  then pc t AA A  else pc + pc  + 1; 

jump nc, AAA 

- jump if the cany flag is not set 
- pseudo operation: 

i f  c==O then pc t AAA  else pc  t pc + 1,  

jumpz, AAA 

- jump if the zero flag is set 
- pseudo operation: 

if z==1 then pc t AAA  else pc t pc  + 1; 

jump nz, AAA 

- jump if the zero flag is not set 
- pseudo operation: 

if z==0 then pc + A A A  else pc t pc  + 1,  

The call and return instructions are used to implement a software function. When 
a function is called, the processor suspends the current execution and branches to the 
corresponding routine. When the routine computation is completed, the processor returns to 
the suspended point and continues the execution. Like a jump instruction, a call instruction 
loads a new value to the program counter if the corresponding condition is met. In addition, 
it also saves the current value of the program counter in a special buffer, known as the stack. 
The new address represents the starting point of a routine. The routine should include a 
return instruction in the end. The return instruction obtains the saved value from the 
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Figure 15.7 Representative flow of a subroutine call. 

stack, increments the value by 1, and loads it to the program counter. This allows the 
execution to return to the instruction that immediately follows the original call instruction. 
A representative program flow is shown in Figure 15.7. 

PicoBlaze allows nested function calls, which means that a function can be called within 
another function. To support this feature, a stack, which is a last-in-first-out buffer, is used 
to store the program counter's values. In this buffer, the address of the newest call is pushed 
to the top of the stack (i.e., the "last-in"). Assume that this routine does not contain other 
function call inside. It will be completed first and the saved returned address is on the top 
of the stack. I t  should be popped from the stack (i.e., "first-out") to resume the previous 
execution. PicoBlaze provides a 3 1 -word stack for the nested call and return operations. 

The mnemonics, brief descriptions, and pseudo operations of the call and return in- 
structions are shown below. Recall that t o s  is for the top-of-stack pointer. The STACK [ I 
notation represents the content of the stack. 

call AAA 

- unconditional call subroutine 
- pseudo operation: 

t o s  t t o s  + 1; 
S T A C K  [ t o s ]  + PC; 
pc + A A A ;  

call c, AAA 

- call subroutine if the carry flag is set 
- pseudo operation: 

i f  c = = l  t h e n  
t o s  t t o s  + 1; 
S T A C K C ~ O S I  + P C ,  
pc  t A A A ;  

e l s e  



call nc, AAA 
- call subroutine if the carry flag is not set 
- pseudo operation: 

if c==O t h e n  
t o s  + t o s  + 1; 
STACK [ t o s ]  + p c ;  
pc + A A A ;  

e l s e  
PC t PC + 1; 

call z, AAA 

- call subroutine if the zero flag is set 
- pseudo operation: 

if z = = 1  t h e n  
t o s  t t o s  + 1; 
S T A C K [ ~ O S I  + p c ;  
pc  t A A A ;  

e  1 s e  
pc  t pc  + 1; 

call nz, AAA 

- call subroutine if the zero flag is not set 
- pseudo operation: 

if z = = 0  t h e n  
t o s  + t o s  + 1; 
STACK [ t o s ]  t p c ;  
pc  + A A A ;  

e l s e  
pc + pc  + 1; 

return (ret) 
- unconditional return 
- pseudo operation: 

pc  + STACKCtos] + 1; 
t o s  + t o s  - 1; 

return c (ret c)  
- return if the carry flag is set 
- pseudo operation: 

if c = = l  t h e n  
pc  + STACK [ t o s l  + 1; 

t o s  + t o s  - 1; 
e l s e  

pc  + pc  + 1; 

return nc (ret nc) 
- return if the carry flag is not set 
- pseudo operation: 

if c==O t h e n  
pc  + STACK [ t o s ]  + 1; 
t o s  t t o s  - 1; 



else 
pc + pc + 1; 

return z (ret z) 
- return if the zero flag is set 
- pseudo operation: 

if z==1 then 
PC STACK [ ~ O S I  + 1; 
tos t tos - 1; 

else 
pc t pc + 1; 

return nz (ret nz) 
- return if the zero flag is not set 
- pseudo operation: 

if z==0 then 
pc t STACKEtos] + 1; 
tos t tos - 1; 

else 
pc t pc + 1; 

15.5.9 Interrupt related instructions 

Interrupt is another mechanism to alter program execution and its detail is discussed in 
Chapter 18. Unlike the jump and call instructions, it is initiated from an external request. 
When the interrupt flag is enabled and the interrupt request is asserted, PicoBlaze completes 
execution ofthe current instruction, saves the address ofthe next instruction in the call/return 
stack, preserves the cany and zero flags, disables the interrupt flag, and loads the program 
counter with 3FF, which is the starting address of the interrupt service routine. PicoBlaze 
has two return-from-interrupt instructions, which resume operation from the interrupted 
location. It also has two instructions that enable and disable the interrupt request by setting 
or clearing the interrupt flag, i. The mnemonics, brief descriptions, and pseudo operations 
of these instructions are: 

returni disable (reti disable) 
- return from interrupt service routine and keep the interrupt flag disabled 
- pseudo operation: 

pc + STACK[tos] ; 
tos t tos - 1; 
i t 0; 
c + preserved c; 
z + preserved z ;  

returni enable (reti enable) 
- return from interrupt service routine and keep the interrupt flag enabled 
- pseudo operation: 

pc t STACK [tos] ; 
tos + tos - 1; 
i t 1; 
c + preserved c; 
z + preserved z; 
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enable interrupt (eint) 
- enable interrupt request 
- pseudo operation: 

i t 1; 

disable interrupt (dint) 
- disable interrupt request 
- pseudo operation: 

i t 0; 

Note that the interrupt mechanism saves the address of the next instruction. When a returni 
instruction is executed, the address saved on the top of the stack (i.e., STACK [ t o s l )  is 
restored. This is different from a regular return instruction, in which the incremented 
address (i.e., STACK [ tos ]  +1) is restored. 

15.6 ASSEMBLER DIRECTIVES 

An assembler directive looks like an instruction in an assembly program. However, it is 
not part of the microcontroller's instruction set but is used to help program development. 
As its name suggests, a directive "directs" the assembler to perform a specific task, such 
as defining a constant or reserving data space. The KCPSM3 and PBlazeIDE assemblers 
have somewhat different directives and they are discussed in the following subsections. 

15.6.1 The KCPSM3 directives 

The mnemonics, descriptions, and examples of key directives used in the KCPSM3 assem- 
bler are: 

address 
- The directive specifies the subsequent code to be put to a specific address in the 

instruction ROM. 
- Example: 

address 3FF 

namereg 
- The directive gives a symbolic name for a register. It makes code more descrip- 

tive. 
- Example: 

namereg s 5 ,  index  

constant 
- The directive gives a symbolic name for a constant. It makes code more de- 

scriptive. 
- Example: 

constant max, FO 

15.6.2 The PBlazelDE directives 

The mnemonics, descriptions, and examples of key directives used in the PBlazeIDE as- 
sembler are shown below. Note that a $ sign is needed for a number in hexadecimal format. 



org 
- The directive specifies the subsequent code to be put to a specific address in the 

instruction ROM (i.e., "originate" from this address). 
- Example: 

org $3FF 

equ 
- The directive "equates" a symbol to a value or register. It gives a symbolic 

name for a constant or a register. 
- Example: 

max equ 128/8 
i ndex  equ s5 

dsin, dsout, dsio 
- These directives equate a symbolic name for an 110 port id. The corresponding 

port can be defined as input, output, or both input and output. The difference 
between these directives and equ is that PBlazeIDE generates "port indicators" 
for these directives on the simulation screen. The 110 activities can be displayed 
and simulated via these indicators. 

- Example: 
keyboard  d s i n  $OE 
s w i t c h  d s i n  $OF 
l e d  d s o u t  $15 

vhdl 
- This directive generates instruction ROM in VHDL format. The details are 

discussed in Chapter 16. 
- Example: 

v h d l  " t e m p l a t e .  vhd"  , " t a r g e t .  vhd" , "ROM" 

15.7 BIBLIOGRAPHIC NOTES 

The PicoBlaze manual from Xilinx, PicoBlaze 8-Bit EmbeddedMicrocontroller User Guide, 
provides detailed information about this microcontroller, including the hardware organiza- 
tion, instruction set, development process, and KCPSM3 and PBlazeIDE assemblers. Ken 
Chapman, the designer of PicoBlaze, describes the derivation of this microcontroller in 
the article "Creating Embedded Microcontrollers," which is available in the TechXclusives 
section of the Xilinx Web site. 

The KCPSM3 assembler, PicoBlaze HDL code, and instruction ROM HDL template 
can be downloaded from the Xilinx Web site. Searching with the keyword "PicoBlaze" 
will lead to the downloading page. The PBlazeIDE assembler can be downloaded from 
the Mediatronix Web site, http: //www .mediatronix. com. The site also provides more 
detailed information about the software. 
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CHAPTER 16 

PICOBLAZE ASSEMBLY CODE 
DEVELOPMENT 

16.1 INTRODUCTION 

Because of its simplicity, PicoBlaze cannot effectively support high-level programming 
languages and the code is generally developed in assembly language. In this chapter, we 
provide an overview of code development, which is illustrated in a bottom-up fashion. We 
first introduce the segments of frequently used data and control operations and then examine 
the use of a subroutine and finally outline the derivation of overall program structure. 

16.2 USEFUL CODE SEGMENTS 

The PicoBlaze microcontroller contains instructions for byte-oriented data manipulation 
and simple conditional branch. In this section, we illustrate how to construct code to 
perform bit and multiple-byte operations and to realize frequently used high-level language 
control constructs. 

16.2.1 KCPSM3 conventions 

The KCPSM3 assembler uses the following conventions in an assembly program: 
Use a " :" sign after a symbolic address in code, as in "done : ". 
Use a " ; " sign before a comment. 
Use HH for a constant, in which H is a hexadecimal digit. 

FPGA Proroyping b.v Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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An example of a code segment follows: 

; t h i s  i s  a  demo segmen t  
t e s t  SO, 8 2  ; compare  S O  w i t h  1000 -0010  
jump z ,  clr-sl ; i f  MSB o f  S O  i s  0 ,  go t o  c l r - s f  
l o a d  sl, FF ; n o ,  l o a d  1111 -1111  t o  s f  

clr-sl : 
l o a d  sl, 01 ; l o a d  0000 -0001  t o  s l  

16.2.2 Bit manipulation 

PicoBlaze's instruction set is primarily for byte-oriented operations. Bit-oriented operations 
are frequently needed to control low-level 110 activities, such as testing, setting, and clearing 
a I-bit flag signal. 

To manipulate a single bit, we first define a mask to isolate and preserve (i.e., mask) the 
unrelated bits and then apply the designated operation on the desired bits (i.e., unmasked 
bits). We can set, clear, and toggle (i.e., invert) some bits of a data byte by performing or, 
and, and xor instructions with a proper mask. The following code segment shows how to 
set, clear, and toggle the second LSB of the SO register: 

c o n s t a n t  SET-MASK , 02 ; mask=0000_0010  
c o n s t a n t  CLR-MASK , FD ; m a s k = l l l l - 1 1 0 1  
c o n s t a n t  TOG-MASK , 02 ; mask=0000-0010 

or  SO, SET-MASK ; s e t  2nd  LSB t o  1  
and SO, CLR-MASK ; c l e a r  2nd LSB t o  0  
xor  SO, TOG-MASK ; t o g g l e  2nd LSB 

The toggle operation is based on the observation that for any Boolean variable x, x @ 0 = x 
and x 69 1 = x'. The same principle can be applied to multiple bits. For example, we can 
clear the upper nibble (i.e., four MSBs) by using 

and SO, OF ; rnask=0000-1111 

We can also apply the concept of the and mask to the test instruction to check a single 
bit. For example, the following code segment tests the MSB of the SO register and branches 
to a proper routine accordingly: 

t e s t  S O ,  8 0  ; mask=1000_0000 
jump n z ,  msb-set ;MSB i s  1 ,  b ranch  t o  m s b - s e t  
; c o d e  f o r  MSB n o t  s e t  
jump done 

msb-set : 
; c o d e  f o r  MSB s e t  
. . . 

done : 

A single bit can be extracted by applying the previous code. For example, the following 
code segment extracts the MSB of the SO register and stores it in the sl register: 

l o a d  sl, 00 
t e s t  SO, 80 ; m a s k = 1 0 0 0 - 0 0 0 0 ,  e x t r a c t  MSB 
jump z ,  done ; y e s  , MSB i s  0  
l o a d  sl, 01 : n o ,  l o a d  I t o  s l  
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done : 

16.2.3 Multiple-byte manipulation 

A microcontroller sometimes needs to handle wide, multiple-byte data, such as a large 
counter. Since the data width of PicoBlaze is 8 bits, processing this type of data requires a 
mechanism to propagate information between two successive instructions. PicoBlaze uses 
the carry flag for this purpose. For the arithmetic instructions, there are two versions for 
addition and subtraction, one with carry and one without carry, as in the add and addcy 
instructions. For the shift and rotate instructions, carry can be shifted into the MSB or LSB 
of a register, and vice versa. 

Assume that x and y are 24-bit data and that each occupies three registers. The following 
code segment illustrates the use of carry in multiple-byte addition: 

namereg SO, xO ; l e a s t  s i g n i f i c a n t  b y t e  o f  x  
namereg sl, xl ; m i d d l e  b y t e  o f  x  
namereg s2, x2 ; m o s t  s i g n i f i c a n t  b y t e  o f  x  
namereg s3, yo ; l e a s t  s i g n i f i c a n t  b y t e  o f  y  
namereg s4, yl ; m i d d l e  b y t e  o f  y 
namereg s5, y2 ; m o s t  s i g n i f i c a n t  b y t e  o f  y  

; a d d :  ( x 2 ,  x l  , x 0 )  + ( y 2 ,  y l  , y o )  
add xO, yo ; a d d  l e a s t  s i g n i f i c a n t  b y t e s  
addcy xl, yl ; a d d  m i d d l e  b y t e s  w i t h  c a r r y  
addcy x2, y2 ; a d d  most  s i g n i f i c a n t  b y t e s  w i t h  c a r r y  

The first instruction performs normal addition of the least significant bytes and stores the 
carry-out bit into the carry flag. The second instruction then includes the carry flag when 
adding the middle bytes. Similarly, the third instruction uses the carry flag from the previous 
addition to obtain the result for the most significant bytes. 

The incrementing and subtraction of multiple bytes can be achieved in a similar fashion: 

; i n c r e m e n t :  ( x 2 , x l  , x O )  + 1 
add xO , 01 ; i n c  [ e a s t  s i g n i f i c a n t  b y t e  
addcy  xl, 0 0  :add  c a r r y  t o  m i d d l e  b y t e  
addcy  x2, 0 0  ; a d d  c a r r v  t o  mos t  s i g n i f i c a n t  b y t e  

; s u b t r a c t :  ( x 2 , x l  , x O )  - ( y 2 , y l  , y o )  
s u b  xo, yo ; s u b  l e a s t  s i g n i f i c a n t  b y t e  
s u b c y  xl, yl ; s u b  m i d d l e  b y t e  w i t h  borrow 
s u b c y  x2, y2 ; s u b  mos t  s i g n i f i c a n t  b y t e  w i t h  borrow 

Multiple-byte data can be shifted by including the carry flag in the individual shift 
instruction. For example, the sla instruction shifts data left one position and shifts the carry 
flag into LSB. The code for shifting a 3-byte data left can be written as 

; s h i f t  ( x 2 ,  x l  , x 0 )  v i a  c a r r y  
s10 x0 ;O t o  LSB o f  xO,  MSB o f  xO t o  c a r r y  
s l a  xl ; c a r r y  t o  LSB o f  X I ,  MSB o f  X I  t o  carr j j  
s l a  x2 ; c a r r y  t o  LSB o f  x 2 ,  MSB o f  x2  t o  c a r r y  
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16.2.4 Control structure 

A high-level programming language usually contains various control constructs to alter 
the execution sequence. These include the if-then-else, case, and for-loop statements. On 
the other hand, PicoBlaze provides only simple conditional and unconditional jump in- 
structions. Despite its simplicity, we can use them with a test or compare instruction to 
implement the high-level control constructs. The following examples illustrate the con- 
struction of the if-then-else, case, and for-loop statements. 

Let us first consider the if-then-else statement: 

i f  ( s O = = s l )  1 
/ *  t h e n - b r a n c h  s t a t e m e n t s  * /  

1 
e l s e  C 

/ *  e l s e  - b r a n c h  s t a t e m e n t s  * /  
1 

The corresponding assembly code segment is 

compare S O ,  s l  
jump n z ,  e l s e - b r a n c h  
; c o d e  f o r  t h e n  b ranch  
. . .  

jump i f - d o n e  
e l s e - b r a n c h  : 

; c o d e  f o r  e l s e  b ranch  
. . . 

i f  -done  : 
; c o d e  f o l l o w i n g  i f  s t a t e m e n t  

The code uses the compare instruction to check the sO==sl condition and to set the zero 
flag. The following jump instruction examines the flag and jumps to the else branch if the 
flag is not set. 

The case statement can be considered as a multiway jump, in which execution is trans- 
ferred according to the value of the selection expression. The following statement uses the 
SO variable as the selection expression and jumps to the corresponding branch: 

s w i t c h  (SO) 1 
c a s e  v a l u e l :  

/ *  c a s e  v a l u e l  s t a t e m e n t s  * /  
b r e a k ;  

c a s e  v a l u e 2 :  
/ *  c a s e  v a l u e 2  s t a t e m e n t s  * /  
b r e a k ;  

c a s e  v a l u e 3 :  
/ *  c a s e  v a l u e 3  s t a t e m e n t s  * /  
b r e a k  ; 

d e f a u l t  : 
/ *  d e f a u l t  s t a t e m e n t s  * /  

1 

The multiway jump can be implemented by a hardware feature known as "index address 
mode" in some processors. However, since PicoBlaze does not support this feature, the case 
statement has to be constructed as a sequence of if-then-else statements. In other words, 
the previous case statement is treated as 
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i f  ( s O = = v a l u e l )  C 
/ *  c a s e  v a l u e l  s t a t e m e n t s  * /  

1 
e l s e  i f  ( s O = = v a l u e 2 )  { 

/ *  c a s e  v a l u e 2  s t a t e m e n t s  * /  
> 
e l s e  i f  ( s O = = v a l u e 3 )  C 

/ *  c a s e  v a l u e 3  s t a t e m e n t s  * /  
1 
e l s e (  

/ *  d e f a u l t  s t a t e m e n t s  * /  
1 

The corresponding assembly code segment becomes 

c o n s t a n t  v a l u e l  , . . . 
c o n s t a n t  v a l u e 2 ,  . . . 
c o n s t a n t  v a l u e 3 ,  . . . 

compare SO, v a l u e 1  ; t e s t  v a l u e 1  
jump n z ,  c a s e - 2  ; n o t  equa l  t o  va lue1  , jump 
; c o d e  f o r  c a s e  1 

jump c a s e - d o n e  
c a s e - 2  : 

compare S O ,  v a l u e 2  ; t e s t  v a l u e 2  
jump n z ,  c a s e - 3  ; n o t  equa l  t o  v a l u e 2 ,  jump 
; c o d e  f o r  c a s e  2 

jump c a s e - d o n e  
c a s e - 3  : 

compare SO, v a l u e 3  ; t e s t  v a l u e 3  
jump d e f a u l t  ; n o t  e q u a l  t o  va lue3  , jump 
; c o d e  f o r  c a s e  3 
. . .  
jump c a s e - d o n e  

d e f a u l t  : 
; c o d e  f o r  d e f a u l t  c a s e  
. . .  

c a s e - d o n e  : 
; c o d e  f o l l o w i n g  c a s e  s t a t e m e n t  

The for-loop statement executes a segment of the code repetitively. The loop statement 
can be implemented by using a counter to keep track of the iteration number. For example, 
consider the following: 

/ *  l o o p  body  s t a t e m e n t s  * /  
1 

The assembly code segment is 

namereg s o ,  i ; l o o p  index  
c o n s t a n t  M A X ,  . . . ; l o o p  boundary  



l o a d  i ,  MAX ; l o a d  l o o p  i n d e x  
loop-body: 

; c o d e  f o r  l o o p  b o d y  
. . .  
sub i ,  01 ; d e c  l o o p  i n d e x ?  
jump nz , loop-body ; d o n e ?  
: c o d e  f o l l o ~ ~ i n g  f o r  l o o p  

16.3 SUBROUTINE DEVELOPMENT 

A subroutine, such as a hnction in C, implements a section of a larger program. It is coded 
to perform a specific task and can be used repetitively. Using subroutines allows us to 
divide a program into small, manageable parts and thus greatly improve the reliability and 
readability of a program. It is the base of modern programming practice and is supported 
by all high-level programming languages. 

PicoBlaze uses the call and return instructions to implement the subroutine. The call 
instruction saves the current content ofthe program counter and transfers program execution 
to the starting address of a subroutine. A subroutine ends with a return instruction, which 
restores the saved program counter and resumes the previous execution. A representative 
flow is shown in Figure 15.7. Note that PicoBlaze only saves and restores the content of the 
program counter during a hnction call and return. We have to manage the register and data 
RAM use manually to ensure that the original system state is not altered after a subroutine 
call. 

The following multiplication example illustrates the development of subroutines. We 
assume that the inputs are two 8-bit numbers in unsigned integer format and the output is 
a 16-bit product. The algorithm is based on a simple shift-and-add method. This method 
iterates through 8 bits of multiplier. In each iteration, the multiplicand is shifted left one 
position. If the corresponding multiplier bit is 1, the shifted multiplicand is added to 
the partial product. The assembly code is shown in Listing 16.1. The multiplicand and 
multiplier are stored in the s3 and s4 registers. The individual bit of multiplier is obtained 
by repetitively shifting s4 to the right, which moves the LSB to the carry flag. Note that 
instead of actually shifting the multiplicand to the left, we shift the partial product, which 
consists of 2 bytes and is stored in s5 and s6, to the right. 

Listing 16.1 Software integer multiplication 

; r o u t i n e :  m u l t - s o f t  
; f u n c t i o n  : 8 - b i t  u n s i g n e d  m u l t i p l i e r  u s i n g  

s h i f t  -and-add a l g o r i t h m  
r ; i n p u t  r e g i s t e r :  

s 3 :  m z r l t i p l i c a n d  
s 4 :  m u l t i p l i e r  

; o u t p u t  r e g i s t e r :  
s 5 :  u p p e r  b y t e  o f  p r o d u c t  

I O  ; s 6 :  l o w e r  b y t e  o f  p r o d u c t  
; temp r e g i s t e r :  i 
......................................................... 

mult-sof t : 
l o a d  s 5 ,  00 
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15  load i, 0 8  
mult-loop : 

srO s4 
jump n c ,  shift-prod 
add s5, s3 

20 shif t-prod : 
s r a  s5 

s r a  s6 

25 sub i, 01 
jump n z ,  mult-loop 
r e t u r n  

; i n i t i a l i z e  l o o p  i n d e x  

; s h i f t  LSB t o  c a r r y  
;LSB i s  O 
:LSB i s  1 

: s h i f t  u p p e r  b y t e  r i g h t  , 
; c a r r y  t o  MSB, LSB t o  c a r r y  
; s h i f t  l o w e r  b y t e  r i g h t  , 
;LSB o f  s.5 t o  MSB o f  s 6  
; d e c  l o o p  i n d e x  
; r e p e a t  u n t i l  i = O  

Because of the primitive nature of the assembly language, thorough documentation is 
instrumental. A subroutine should include a descriptive header and detailed comments. A 
representative header is shown in Listing 16.1. It consists of a short function description 
and the use of registers. The latter shows how the registers are allocated and is crucial to 
preventing conflict in a large program. 

16.4 PROGRAM DEVELOPMENT 

Developing a complete assembly program consists of the following steps: 
1. Derive the pseudo code of the mainprogram. 
2. Identify tasks in the main program and define them as subroutines. Ifneeded, continue 

refining the complex subroutines and divide them into smaller routines. 
3. Determine the register and data RAM use. 
4. Derive assembly code for the subroutines. 

Steps 1, 2, and 4 basically follow a divide-and-conquer approach and are applicable for 
any software development. A microcontroller-based application is normally for a simple 
embedded system, in which the processor monitors the I10 activities continuously and 
responds accordingly. Its main program usually has the following structure: 

c a l l  initialization-routine 
forever : 

c a l l  taskl-routine 
c a l l  task2-routine 

c a l l  taskn-routine 
jump forever 

Step 3 is unique for assembly code development. Unlike a high-level language program, 
in which the compiler allocates storage to variables automatically, we must manage the 
data storage manually in assembly code. PicoBlaze has 16 registers and 64 bytes of data 
RAM to store data. The registers can be considered as fast storage, in which the data can 
be manipulated directly. The data RAM, on the other hand, is "auxiliary" storage. Its data 
needs to be transferred to a register for processing. For example, if we want to increment a 
data item located in the RAM, it must first be loaded into a register, incremented there, and 
then stored back to the RAM. 

Because of the limited space for data storage, its use has to be planned carefully in 
advance, particularly when the code is complex and involves nested subroutines. To assist 



unused - 
lower byte of a2 
upper byte of a2 - 
lower byte of b" 
upper byte of b2 
lower byte of a2 + b2 
upper byte of a2 + b" 
carry of a' + b2 

Figure 16.1 Data RAM memory allocation. 

coding, we can first identify the needed global storage or local storage. The former keeps 
data that is needed in the entire program. The latter provides space to store intermediate 
results, and the data will be discarded after the required computation is completed. 

16.4.1 Demonstration example 

The development process can best be explained by an example. Let us consider a program 
that uses the previous multiplication subroutine. It reads two inputs, a and b, from the 
switch, calculates a2 + b2, and displays the result on eight discrete LEDs. Since the 110 
interface is to be discussed in Chapter 17, we limit the 110 to a single input port, the 8-bit 
switch, and a single output port, the 8-bit LEDs. We assume that a and b are obtained 
from the upper nibble (i.e., the four MSBs) and the lower nibble (i.e., the four LSBs) of the 
switch. The main program is 

c a l l  clear-data-ram 
forever : 

c a l l  read-switch 
c a l l  square 
c a l l  write-led 
jump forever 

The subroutines are defined as follows: 
c l r - d a t a ~ e m :  clears data memory at system initialization 
read-switch:  obtains the two nibbles from the switch and stores their values to the 
data RAM 
square :  uses the multiplication subroutine to calculate a2 + b2 
wri t e - l ed :  writes the eight LSBs of the calculated result to the LED port 

For demonstration purposes, we create two smaller routines, g e t - u p p e r n i b b l e  and 
g e t - l o w e r n i b b l e ,  within the read-swi tch  routine to obtain the upper nibble and lower 
nibble from a register. 

The next step in development is to plan the register and data RAM use. For global storage, 
we introduce a global register, sw-in, to store the input value of switch and allocate 1 1 bytes 
of data RAM to store the inputs and result of the s q u a r e  routine. Allocation of the data 
RAM is shown in Figure 16.1. Note that the addresses 01 and 03 are not actually used. 
They are reserved to simplify the seven-segment LED display code, which is discussed 
in Chapter 17. All remaining registers are used as local storage. For program clarity, we 



define three symbolic names, data, addr, and i ,  as temporary registers for data, port and 
memory address, and loop index. 

The last step is to derive the assembly code for the subroutines. The complete code is 
shown in Listing 16.2. The clr-dataaem uses a loop to clear data memory. The i register 
is the loop index and is initialized with 64 (i.e., 4Ol6). The index is decremented in each 
loop and 0 is loaded to the corresponding data RAM address. The write-led routine 
fetches the eight LSBs of the calculated result from the data RAM and outputs them to the 
LED port. 

The read-switch routine includes two smaller routines. The get-uppernibble rou- 
tine shifts the data register right four times to move the upper nibble to the four LSBs. 
The get-lowenibble routine clears the four MSBs of the data register to 0's and thus 
removes the upper nibble. The "glue instructions" of read-switch input the switch values, 
set up the input for the two nibble routines, and store the result in the data RAM. 

The square routine fetches data from the data RAM, utilizes the mult-soft routine to 
calculate a2 and b2, performs addition, and stores the result back to the data RAM. 

Listing 16.2 Square program with simple nibble input 
......................................................... 

; s q u a r e  c i r c u i t  w i t h  s i m p l e  1 / 0  i n t e r f a c e  
......................................................... 

; p rogram o p e r a t i o n  : 
5 ; - r ead  s w i t c h  t o  a  ( 4  MSBs) and b  ( 4  L S B s )  
; - c a l c u l a t e  a*a  + b*b 
; - d i s p l a y  d a t a  on 8 l e d s  

......................................................... 

l o  ; d a t a  c o n s t a n t  
......................................................... 

c o n s t a n t  UP-NIBBLE-MASK , OF ; 00001111 

1s ; d a t a  ram a d d r e s s  a l i a s  
......................................................... 

c o n s t a n t  
c o n s t a n t  
c o n s t a n t  

20 c o n s t a n t  
c o n s t a n t  
c o n s t a n t  
c o n s t a n t  
c o n s t a n t  

25 c o n s t a n t  

a-lsb, 0 0  
b-lsb, 0 2  
aa-lsb, 0 4  
aa-msb, 0 5  
bb-lsb, 06 
bb-msb, 0 7  
aabb-lsb, 0 8  
aabb-msb, 09 
aabb-cout , OA 

; r e g i s t e r  a l i a s  
......................................................... 

30 ;commonly  u sed  l o c a l  v a r i a b l e s  
namereg SO, data ; r e g  f o r  t e m p o r a r y  d a t a  
namereg sl , addr ; r e g  f o r  t e m p o r a r y  mem & i  / o  p o r t  a d d r  
namereg s2, i ; g e n e r a l  - p u r p o s e  l o o p  i n d e x  
; g l o b a l  v a r i a b l e s  

35 namereg sf, sw-in 



; p o r t  a l i a s  
......................................................... 

40 ; i n p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  sw-port, 01 ; 8 - b i t  s w i t c h e s  

oz i tpu t  p o r t  d e f i n i t i o n s  
c o n s t a n t  led-port , 0 5  

a ;--------------------------------------------------------- ......................................................... 

; main  program 
......................................................... 

; c u l l i n g  h i e r a r c h y :  

i u  ; m a i n  
; - c l r - d a t a - m e m  
; - r e a d - s w i t c h  

- g e t ~ t r p p e r - n i b b l e  
- g e t - l o w e r - n i b b l e  

55 ; - s q u a r e  
- m u l t - s o f t  

; - w r i t e - l e d  

60 c a l l  clr-data-mem 
forever : 

c a l l  read-switch 
c a l l  square 
c a l l  write-led 

6 jump forever 

; r o u t i n e  : c l r - d a t a - m e m  
: f u n c t i o n :  c l e a r  d a t a  ram 

70 ; t emp r e g i s t e r :  d a t a ,  i  
......................................................... 

clr-data-mem : 
l o a d  i, 40 ; u n i t i z e  l o o p  i n d e x  t o  6 4  
l o a d  data, 00 

75 clr-mem-loop : 
s t o r e  data, (i) 
s u b  i, 01 ; d e c  l o o p  i n d e x  
jump n z ,  clr-mem-loop ; r e p e a t  u n t i l  i = O  
r e t u r n  

80 

......................................................... 

; r o u t i n e  : r e a d  s w i t c h  
; f u n c t i o n :  o b t a i n  t w o  n i b b l e s  f r o m  i n p u t  
; i n p u t  r e g i s t e r :  s w - i n  

8s ; t emp r e g i s t e r :  d a t a  
......................................................... 

read-switch : 
i n p u t  sw-in , sw-port ; r e a d  s w i t c h  i n p u t  



l oad  data, sw-in 
90 c a l l  get-lower-nibble 

s t o r e  data, a-lsb ; s t o r e  a  t o  d a t a  ram 
l oad  data, sw-in 
c a l l  get-upper-nibble 
s t o r e  data, b-lsb ; s t o r e  b  t o  d a t a  ram 

95 

......................................................... 

; r o u t i n e :  g e t - l o w e r - n i b b l e  
; f u n c t i o n :  g e t  l o w e r  4 b i t s  o f  d a t a  
; i n p u t  r e g i s t e r :  d a t a  

loo ; o u t p u t  r e g i s t e r :  d a t a  
......................................................... 

get-lower-nibble: 
and data, UP-NIBBLE-MASK ; c l e a r  upper  n i b b l e  
r e t u r n  

105 

......................................................... 

; r o u t i n e :  g e t - u p p e r - n i b b l e  
; f u n c t i o n :  g e t  upper  4 b i t s  o f  d a t a  
; i n p u t  r e g i s t e r :  d a t a  

I I O  ; o u t p u t  r e g i s t e r :  d a t a  
......................................................... 

get-upper-nibble: 
srO data ; r i g h t  s h i f t  4 t i m e s  
srO data 

115 srO data 
srO data 
re turn  

120 ; r o u t i n e :  w r i t e - l e d  
; f u n c t i o n :  o u t p u t  8 LSBs o f  r e s u l t  t o  8 l e d s  
; t emp r e g i s t e r :  d a t a  
......................................................... 

write-led: 
125 f e t c h  data, aabb-lsb 

output  data, led-port 
re turn  

I30 ; r o u t i n e :  s q u a r e  
; f u n c t i o n :  c a l c u l a t e  a*a  + b*b  

d a t a / r e s u l t  s t o r e d  i n  ram s t a r t e d  w /  S Q B A S E A D D R  
; t emp  r e g i s t e r :  s 3 ,  s 4 ,  s 5 ,  s 6 ,  d a t a  
......................................................... 

135 square : 
; c a l c u l a t e  a*a  
f e t c h  s3, a-lsb ; l o a d  a  
f e t c h  s4, a-lsb ; l o a d  a  
c a l l  mult-soft ; c a l c u l a t e  a*a  

140 s t o r e  s6, aa-lsb ; s t o r e  l o w e r  b y t e  o f  a*a 
s t o r e  s5, aa-msb ; s t o r e  upper  b y t e  o f  a*a 



; c a l c u l a t e  b*b  
f e t c h  s3, b-lsb 
f e t c h  s4, b-lsb 

In c a l l  mult-soft 
s t o r e  s6, bb-lsb 
s t o r e  s5, 07 
; c a l c u l a t e  a*a+b*b 
f e t c h  data, aa-lsb 

I50 add data, s6 
s t o r e  data, aabb-lsb 
f e t c h  data, aa-msb 
addcy data, s5 
s t o r e  data, aabb-msb 

155  l o a d  data, 00 
addcy data, 00 
s t o r e  data, aabb-cout 
r e t u r n  

; l o a d  b  
; l o a d  b  
; c a l c u l a t e  b*b  
; s t o r e  l o w e r  b y t e  o f  b * b  
; s t o r e  upper  b y t e  o f  b*b  

; g e t  l o w e r  b y t e  o f  a*a  
; a d d  l o w e r  b y t e  o f  a*a+b*b 
; s t o r e  l o w e r  b y t e  o f  a*a+b*b 
; g e t  upper  b y t e  o f  a*a  
; a d d  upper  b y t e  o f  a*a+b*b 
; s t o r e  upper  b y t e  o f  a*a+b*b 
; c l e a r  d a t a ,  b u t  k e e p  c a r r y  
; g e t  c a r r y - o u t  f rom  p r e v i o u s  + 
; s t o r e  c a r r y - o u t  o f  a*a+b*b 

,--------------------------------------------------------- 

; r o t r t i n e :  m u i t - s o f t  
; f u n c t i o n  : 8 - b i t  u n s i g n e d  m u l t i p l i e r  u s i n g  

s h i f t  -and-add a l g o r i t h m  
; i n p u t  r e g i s t e r :  

165 ; s 3 :  m u l t i p l i c a n d  
s 4 :  m u l t i p l i e r  

; o u t p u t  r e g i s t e r :  
s 5 :  upper  b y t e  o f  p r o d u c t  
s 6 :  l o w e r  b y t e  o f  p r o d u c t  

170 , temp r e g i s t e r :  i  
......................................................... 

mult-sof t : 
l o a d  s5, 00 ; c l e a r  s 5  
l o a d  i ,  08 ; i n i t i a l i z e  l o o p  i n d e x  

I75 mult-loop: 
srO s4 ; s h i f t  I sb  t o  c a r r y  
jump nc , shif t-prod ; I s b  i s  0 
add s5, s3 ; I s b  i s  1 

shift-prod: 
IRO s r a  s5 ; s h i f t  upper  b y t e  r i g h t  , 

; c a r r y  t o  MSB, LSB t o  c a r r y  
s r a  s6 ; s h i f t  l o w e r  b y t e  r i g h t  , 

; I s b  o f  s 5  t o  MSB o f  s6 
sub i, 01 ; d e c  l o o p  i n d e x  

la jump n z ,  mult-loop ; r e p e a t  u n t i l  i=O 
r e t u r n  

16.4.2 Program documentation 

Developing an assembly program is a tedious process. The use of symbolic names and good 
documentation can make the code clear and reduce many unnecessary errors. It also helps 
future revision and maintenance. For the KCPSM3 assembler, we can use the constant 



directive to assign a symbolic name (alias) to a data constant, a memory address, or a port 
id, and use the namereg directive to assign a symbolic name to a register. 

A representative main program header is shown in Listing 16.2. It contains the following 
segments: 

General program description: provides a general description for the purpose, oper- 
ation, and 110 of the program 
Data constants: declares symbolic names for constants 
Data RAM address alias: declares symbolic names for data RAM addresses 
Register alias: declares symbolic names for registers 
Port alias: declares symbolic names for I10 ports 
Program calling hierarchy: illustrates the calling structure and subroutines 

The aliases and directives have no effect on the final machine code. When the assembly 
code is processed, they are replaced with the actual constant values. However, using aliases 
can greatly enhance the readability of the assembly code and reduce unnecessary errors. 
The following code segment further illustrates the impact of the alias and documentation. 
The purpose of this segment is to obtain values for variables a, b, and c, and store them 
in proper data RAM locations. The location is specified by the UART input, which is the 
ASCII code of character a, b, or c. The segment with aliases and proper comments is 

; c o n s t a n t  a l i a s  
c o n s t a n t  ASCII-a, 61 
c o n s t a n t  ASCII-b, 6 2  
c o n s t a n t  ASCII-c, 63 

; d a t a  ram a d d r e s s  a l i a s  
c o n s t a n t  a-addr, 02 
c o n s t a n t  b-addr, 0 4  
c o n s t a n t  c-addr, 06 

; r e g i s t e r  a l i a s  
namereg SO, data 
namereg sl, addr 
namereg SF, sw-in 

; p o r t  a l i a s  
c o n s t a n t  sw-port, 01 
c o n s t a n t  uart-rx-port , 

; A S C I I  code  f o r  a  
; A S C I I  code  f o r  b 
; A S C I I  code  f o r  c  

; r e g  f o r  t e m p o r a r y  d a t a  
; r e g  f o r  t e m p o r a r y  addr  
; s w i t c h  i n p u t  

; s w i t c h  i n p u t  
0 2 ;UART i n p u t  

; a s s e m b l y  code  w i t h  a l i a s  
; g e t  i n p u t  
i n p u t  sw-in, sw-port 
i n p u t  data, uart-rx-port 
; c h e c k  r e c e i v e d  char  
compare data, ASCII-a 
jump n z ,  chk-ascii-b 
s t o r e  sw-in, a-addr 
jump done 

chk-ascii-b : 
compare data, ASCII-b 
jump n z ,  chk-ascii-c 
s t o r e  sw-in, b-addr 
jump done 

chk-ascii-c : 
compare data, ASCII-c 
jump n z ,  ascii-err 

; g e t  s w i t c h  
; g e t  char  

; c h e c k  ASCII a  
; n o ,  check  n e x t  
; y e s ,  s t o r e  a  t o  da ta  ram 

; c h e c k  ASCII b  
; n o ,  check  n e x t  
; y e s ,  s t o r e  b t o  d a t a  ram 

; c h e c k  ASCII c  
; n o ,  e r r o r  



s t o r e  s w - i n ,  c - addr  
jump done 

a s c i i - e r r :  

; y e s ,  s t o r e  b  t o  d a t a  ram 

. . .  
done : 

If we use hard literals and strip the comments, the code becomes 

; a s s e m b l y  c o d e  w i t h  no a l i a s  o r  comments  
i n p u t  s f ,  01  
i n p u t  SO, 02 
compare  SO, 61 
jump n z ,  a d d r l  
s t o r e  s f ,  02 
jump a d d r 4  

a d d r l  : 
compare  SO, 62 
jump nz , a d d r 2  
s t o r e  s f ,  04 
jump a d d r 4  

a d d r 2  : 
compare  SO, 63 
jump n z ,  a d d r 3  
s t o r e  s f ,  06 
jump a d d r 4  

a d d r 3  : 
. . .  

a d d r 4  : 

While the functionality of this code segment is the same, it is very difficult to comprehend, 
debug, or modify. 

16.5 PROCESSING OF THE ASSEMBLY CODE 

PicoBlaze-based development flow is reviewed in Section 15.4. After the assembly code is 
developed, it is then compiled (translated) to machine instructions in step 3. The instruction- 
set-level simulation can also be performed to verify the correctness of the code, as in step 4. 
The two steps and the direct downloading process (step 9) are discussed in detail in this 
section. 

Xilinx provides an assembler known as KCPSM3 for compiling in step 3 and download- 
ing utility programs in step 9. The programs, HDL codes for the PicoBlaze processor, and 
relevant template files can be downloaded from the Xilinx Web site. A program known as 
PBlazeIDE from Mediatronix can perform the instruction-set-level simulation in step 4. It 
can also be used as an assembler. PBlazeIDE can be downloaded from Mediatronix's Web 
site. 

16.5.1 Compiling with KCSPM3 

Assembler is the software that translates the instruction mnemonics to machine instructions, 
which are represented as 0's and l's, and substitutes the aliases and symbolic branch ad- 
dresses with actual values. The machine instructions are then downloaded to the instruction 



memory of a microcontroller. Since PicoBlaze is embedded inside FPGA, the instruction 
ROM becomes an HDL ROM module with the compiled assembly code. The ROM will be 
instantiated later in the top-level HDL code and synthesized along with PicoBlaze and the 
110 interface circuit. 

Xilinx provides the KCPSM3 assembler for this task. It is a command-line, DOS-based 
program. KCPSM3 basically takes an assembly program, along with the necessary template 
files, and generates the HDL code for the instruction ROM. The procedure of compiling an 
assembly program is as follows: 

1. Create a directory for the project and copy kcpsm3.exe, ROM-f o m v h d  ROM-f orm.v, 
and ROM-form.coe to the directory. The latter three are code templates used by 
KCPSM3. 

2. Create the assembly program and save it as plain text file with an extension of .psm. 
Any PC-based editor, such as Notepad, can be used for this purpose. 

3. Invoke a DOS window by selecting Start + Programs + Accessories + Command 
Prompt. In the DOS window, navigate to the project directory. 

4. Type kcpsm3 myf ile.psm to run the program. 
5. Correct syntax errors if necessary and recompile. 
6. After successfUl compiling, the file containing the instruction ROM, myf i l e .v ,  is 

generated. 
In addition to the HDL file, KCPSM3 also generates files that are suitable for block RAM 

initialization and other utilities. The file with the .hex extension can be used for JTAG 
downloading, which is discussed in Section 16.5.3, and the file with the .fmt extension is 
a reformatted .psm file for "pretty printing." 

16.5.2 Simulation by PBlazelDE 

As the name indicates, instruction-set-level simulation simulates the operation of a Pi- 
coBlaze system instruction by instruction. The PBlazeIDE program can be used for this 
purpose. PBlazeIDE is a Windows-based program with an integrated development envi- 
ronment, which includes a text editor, an assembler, and an instruction-set-level simulator. 

PBlazeIDE uses slightly different instruction mnemonics and directives, as discussed in 
Section 15.5. Thus, the code written for by KCPSM3 cannot be used directly by PBlazeIDE, 
and vice versa. The mnemonic differences are summarized in Table 16.1, and the directive 
examples are shown in Table 16.2. Note that the PBlazeIDE assembler uses both decimal 
and hexadecimal format for constants. A hexadecimal number is started with a $ sign, as 
in $1A. 

The procedure of using PBlazeIDE for KCPSM3 code is as follows: 
1. Compile the assembly code with KCPSM3. 
2. Launch PBlazeIDE. 
3. Select Settings + PicoBlaze 3. This specifies version 3 of PicoBlaze, which is used 

in the Spartan-3 device. 
4. Select File + Import and a dialog window appears. Select the corresponding .fmt 

file. The "import" function converts the KCPSM3 code to the PBlazeIDE code. The 
formatted program is easier for conversion. The converted file may sometimes need 
minor manual editing. 

5. Manually specify the dsin, dsout, and dsio directives for I10 ports. When one of 
these directives is used, a port indicator will be added to the simulation screen to 
show the activities of the port. 



Table 16.1 Mnemonic differences between KCPSM3 and PBlazeIDE 

KCPSM3 PBlazeIDE 

addcy 
subcy 
compare 
store s X ,  (sY) 
fetch s X ,  (sY) 
input s X ,  (sY) 
input s X ,  KK 
output sx, (sY) 
output s X ,  KK 
return 
returni 
enable interrupt 
disable interrupt 

addc 
subc 
comp 
store s X ,  s Y  
fetch s X ,  s Y  
in s X ,  sY 
in s X ,  $KK 
out sx, s Y  
out s X ,  $KK 
ret 
reti 
eint 
dint 

Table 16.2 Directive examples of KCPSM3 and PBlazeIDE 

Function KCPSM3 PBlazeIDE 

code location address 3FF org $3FF 
constant constant MAX, 3F MAX equ $3F 
register alias namereg addr, s 2  addr  equ s 2  

port alias constant in-port ,  00 in-port  dsin $00 
constant out-port ,  10 out-port  dsout $10 
constant bi-port ,  OF bi -por t  dsio $OF 

6. Enter the simulation mode by selecting Simulate + Simulate. Perform simulation. 
7. If the assembly code needs to be revised, it must be done outside PBlazeIDE. Simply 

close the current file, invoke an external editor to edit the original .psm file, save 
the file, and restart from step 1. If the file is edited within PBlazeIDE, it cannot be 
converted back to KCPSM3 code. 

A representative simulation screenshot is shown in Figure 16.2. The simulator displays 
the assembly code in the central window and highlights the next instruction to be executed. 
The instruction address, instruction code, and breakpoints are shown next to the code. The 
current state of PicoBlaze is shown at the left, including the status of the flags, the content 
of the registers, and the content of the data RAM. The values of the program counter and 
stack pointer as well as some execution statistics are shown in the bottom row. 

The emulated 110 ports created by the dsin, dsout, and dsio directives are shown at the 
right. There are an input port, switch, and an output port, l ed ,  on this particular screen. 
Since PBlazeIDE has no information about 110 behavior, the input port data must be entered 
and modified manually during simulation. 

During simulation, the assembly program can be executed continuously, by one step, by 
one instruction, or to pause at a specific breakpoint. The simulation action is controlled by 
the commands of the Simulate menu or the icons on the top: 



Figure 16.2 Screenshot of pBlazeIDE in simulation mode. 



Reset: clears the program counter and stack pointer 
Run: runs the program continuously until a breakpoint 
Single step: executes one instruction 
Step over: executes the entire subroutine for a call instruction and executes one 
instruction for other instructions 
Run to cursor: runs the program to the current cursor position 
Pause: pauses the simulation 
Toggle breakpoint: sets or clears a breakpoint at the current cursor position 
Remove all breakpoints: clears all breakpoints 

16.5.3 Reloading code via the JTAG port 

After the instruction ROM HDL is generated, we can continue steps 6 and 8 in Figure 15.4 
to synthesize the entire code and download the configuration file to the FPGA chips. Note 
that the synthesis flow must be repeated each time the assembly code is modified. 

Since synthesis is a complex process, it requires a significant amount of computation time. 
When the 110 configuration is fixed, resynthesizing the entire circuit after each assembly 
program modification is not really needed. It is possible to reload the machine code to the 
ROM, which is implemented by a block RAM, by using the FPGA's JTAG interface. This 
corresponds to the dotted line of step 9 in Figure 15.4. The basic procedure is as follows: 

1. Replace the original ROM template with one that contains the JTAG interface circuit. 
2. Use KCPSM3 to compile the assembly code as usual. 
3. Synthesize the top-level HDL code and program the FPGA chip. 
4. In subsequent assembly program modifications, compile the program as usual. Recall 

that a file in hex format (ended with the .hex extension) is generated. 
5. Use the Xilinx utility to embed the .hex file to a JTAG programming file and download 

the file to the FPGA's block RAM via the JTAG interface. 
The detailed procedure and the relevant programs and templates can be found in the 
JTAG-loader directory of the downloaded KCPSM file. 

16.5.4 Compiling by PBlazelDE 

As discussed earlier, PBlazeIDE is an integrated program that contains an assembler and 
editor. PBlazeIDE can generate an instruction ROM HDL file as well. However, the file is 
only in VHDL format. Since Xilinx IST supports mixed-language synthesis, this file can 
still be incorporated into the top-level Verilog module. The detailed procedure can be found 
in the IST manual. 

To obtain the instruction ROM file, we simply include the vhdl directive in the assembly 
code. Its syntax is 

vhdl "ROM-form.vhdU, "rom-target.vhdU, "rom-entity-name" 

The three parameters specify a VHDL template file, which is the same file as that discussed 
in Section 16.5.1, the name of the generated ROM VHDL file, and the desired entity name 
in the VHDL file. Note that since PBlazeIDE does not generate a .hex file, the reloading 
scheme discussed in Section 16.5.3 cannot be applied directly. 



Figure 16.3 PicoBlaze with a simple 110 interface. 

16.6 SYNTHESES WITH PICOBLAZE 

After generating the HDL file for the instruction ROM, we can combine it with PicoBlaze to 
synthesize the entire system in an FPGA chip. Unlike a normal microcontroller, PicoBlaze 
has no built-in 110 peripherals. The 110 interface is created and customized as needed. The 
circuit is described in HDL code. Since the focus in this chapter is on assembly program 
development, we use a simple 110 configuration, which contains only one switch input 
port and one led output port, for synthesis. The development of a more sophisticated I10 
interface is discussed in detail in Chapters 17 and 18. 

The top-level block diagram of this design is shown in Figure 16.3. It contains the 
PicoBlaze processor, which is labeled kcpsm3, the instruction ROM, and a register. The 
register functions as a buffer for the eight LEDs. When PicoBlaze executes the output 
instruction, it places the data on out-por t  and asserts the w r i t e - s t r o b e  signal, which 
enables the register and stores the data in the register. The s w  signal is connected to in -por t .  
When PicoBlaze executes the input instruction, it retrieves the value of the s w  signal and 
stores it in an internal register. The corresponding HDL code is shown in Listing 16.3. It 
consists of instantiations of the PicoBlaze processor and instruction ROM, and a segment 
for the output buffer. The kcpsm3 module is the name of the PicoBlaze processor, and its 
code is stored in an HDL file ofthe same name. The sio-rom module is from the previously 
generated instruction ROM file. 

Listing 16.3 PicoBlaze with a simple 110 configuration 

module pico-sio 

( 
i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [7 :01  sw, 

5 o u t p u t  w i r e  [7 :01  led 

1 ;  

// s i g n a l  d e c l a r a t i o n  
// KCPSM3/ROM s  i g n a l s  

l o  w i r e  [9 :01  address; 
w i r e  [ 17 :0 ]  instruction; 
w i r e  17: 01 port-id , in-port , out-port ; 
w i r e  write-strobe ; 
// r e g i s t e r  s i g n a l s  

IS  r e g  [7 :01  led-reg; 



/ / b o d y  
/ /  ..................................................... 

/ / KCPSM a n d  ROM i n s t a n t i a t i o n  
2o // ..................................................... 

kcpsm3 proc-unit 
(.clk(clk), .reset(reset), .address(address), 
.instruction(instruction), .port-id(), 
.write-strobe(write-strobe), .out-port(out-port), 

25 .read-strobe(), .in-port(in-port), .interrupt(l'bO), 
. interrupt-ack 0 ; 

sio-rom rom-unit 
( . clk(c1k) , . address (address), 
.instruction(instruction)); 

// ..................................................... 

/ / o u t p u t  i n t e r f a c e  
// ..................................................... 

always Q (posedge clk) 
if (write-strobe) 

led-reg <= out-port ; 
assign led = led-reg; 
// ..................................................... 

/ /  i n p u t  i n t e r f a c e  
// ..................................................... 

40 assign in-port = sw; 

endmodule 

16.7 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapter 15. The pro- 
cedure of reloading compiled code via JTAG port is explained in the article "PicoBlaze 
JTAG Loader Quick User Guide" by Kris Chaplin and Ken Chapman, which appears in the 
JTAG-loader directory of the downloaded KCPSM file. 

16.8 SUGGESTED EXPERIMENTS 

16.8.1 Signed multiplication 

The subroutine in Listing 16.1 assumes that the inputs are in unsigned integer format. 
Modify the subroutine to perform the signed multiplication, in which the two inputs and 
output are interpreted as signed integers, and use simulation to verify its operation. 

16.8.2 Multi-byte multiplication 

The subroutine in Listing 16.1 assumes that the inputs are 8 bits wide. Some application 
may need more precision and we want to extend the subroutine to take 16-bit unsigned 
inputs. An operand now requires two registers and the result needs four registers. Develop 
the subroutine and use simulation to verify its operation. 



16.8.3 Barrel shift function 

PicoBlaze can only shift or rotate a single bit. A "barrel" shifting function can perform 
the shift and rotate operation for multiple bits. This function has three input registers. The 
first register contains data to be shifted or rotated; the second register specifies the amount, 
which is between 0 and 7; and the third register indicates the types of operation, which can 
be shift left, shift right, rotate left, or rotate right. We assume that 0 will be shifted in for 
the two shift operations. Develop the subroutine and use simulation to verify its operation. 

16.8.4 Reverse function 

A reverse function reverses the bit order of an input. For example, ifthe input is "0 10 100 1 1 ", 
the output becomes " 1 100 10 10". We can use the 8-bit switch as input and the 8-bit discrete 
LEDs as output. Derive and simulate the assembly code, obtain the instruction ROM and 
create the top-level HDL code, synthesize the system, and verify its operation. 

16.8.5 Binary-to-BCD conversion 

Binary-to-BCD conversion is discussed in Section 6.3.3. This function can be implemented 
by using assembly code as well. Assume that the input is an 8-bit binary number and the 
output is a two-digit 8-bit BCD number. If the input exceeds 99, the output generates a 
special overflow pattern, " 1 1 11 11 11 ". We can use the 8-bit switch as input and the 8-bit 
discrete LEDs as output. Derive and simulate the assembly code, obtain the instruction 
ROM and create the top-level HDL code, synthesize the system, and verify its operation. 

16.8.6 BCD-to-binary conversion 

Repeat Experiment 16.8.5, but develop the assembly code and circuit for BCD-to-binary 
conversion. 

16.8.7 Heartbeat circuit 

A "heartbeat circuit" is discussed in Experiment 4.7.4. We can create a similar pattern 
using the eight discrete LEDs as well. Derive and simulate the assembly code, obtain the 
instruction ROM and create the top-level HDL code, synthesize the system, and verify its 
operation. 

16.8.8 Rotating LED circuit 

We want to design a circuit that rotates a simple LED pattern to the left or right at four differ- 
ent speeds. The four patterns are "00000001 ", "0000001 1 ", "00001 1 1 1 ", and "00001 101 ". 
The pattern, direction, and rotation speed can be selected from the 8-bit switch (only 5 bits 
are used). The speed should be chosen properly so that all four patterns are visually ob- 
servable. Derive and simulate the assembly code, obtain the instruction ROM and create 
the top-level HDL code, synthesize the system, and verify its operation. 

16.8.9 Discrete LED dimmer 

The concept of PWM and LED dimmer are discussed in Experiment 4.7.2. In this experi- 
ment, we want to use eight discrete LEDS to show the various degrees of brightness. This 



can be done by changing the "on" fraction of an LED. The "on" fraction of the eight LEDS 
will be E ,  $ , g ,  . . . , i. Derive and simulate the assembly code, obtain the instruction ROM 
and create the top-level HDL code, synthesize the system, and verify its operation. 



CHAPTER 17 

PICOBLAZE I10 INTERFACE 

17.1 INTRODUCTION 

To interact with the external environment, a regular microcontroller chip consists of a variety 
of built-in 110 peripherals, such as a UART, SPI (serial peripheral interface), timer, and so 
on. When starting a new development, we select a microcontroller chip according to the 110 
requirements of the application and may sometimes need to use additional chips to realize 
less commonly used fbnctions. 

Unlike a regular microcontroller, PicoBlaze has no built-in I10 peripherals. It just pro- 
vides a simple generic input and output structure for an 110 interface. I10 peripherals are 
constructed as needed and thus are customized to each application. PicoBlaze uses the 
input and output instructions to transfer data between its internal registers and 110 ports, 
and its interface consists of the following signals: 

por t - id :  an 8-bit signal that specifies the port id (i.e., port address) of an input or 
output instruction 
in-por t :  an 8-bit signal where PicoBlaze obtains input data during operation of an 
input instruction 
out-por t :  an 8-bit signal where PicoBlaze places output data during operation of 
an output instruction 
read-s t robe:  a 1-bit signal that is asserted in the second clock cycle of an input 
instruction 
wri te-s t robe:  a 1-bit signal that is asserted in the second clock cycle of an output 
instruction 
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Figure 17.1 Timing diagram of an output instruction. 

Although there are only two 8-bit ports to input and output data, the 8-bit port- id signal 
can be used to distinguish different peripherals, and thus it is said that PicoBlaze can support 
up to 256 (i.e., 28) input ports and 256 output ports. 

In the remaining chapter, we examine the detailed 110 timing of PicoBlaze and illustrate 
the 110 interface development by adding a series of peripherals for the square circuit of 
Chapter 16. 

17.2 OUTPUT PORT 

17.2.1 Output instruction and timing 

The output instruction writes data to the output port. It has two forms: 

output  sx, (sY) 
output  sX , port-name 

In the first form, the port id is stored in the s Y  register. In the second form, the port id is 
specified explicitly by port  name, which is a two-digit hexadecimal number or a previously 
defined symbolic constant. The output data is always stored in the s X  register. 

The timing diagram of an output instruction, 

output  so, 02 

is shown in the top five traces of Figure 17.1. Recall that each PicoBlaze instruction takes 
two clock cycles. When the instruction is executed, the content of SO is placed on out-port 
and 02 is placed on port-id for two clock cycles. The write-strobe signal is asserted 
in the second clock cycle. It can be used as an enable tick to store data in an output register 
or to initiate the designated peripheral operation. 



Figure 17.2 Output decoding of four output registers. 

Table 17.1 Truth table of a decoding circuit 

input output 
wri te - s t robe  p o r t - i d  [I] port-id101 en-d 

17.2.2 Output interface 

The output interface between PicoBlaze and an output peripheral usually consists of a 
decoding circuit and necessary output buffers, which are normally an array of registers. 
The decoding circuit decodes the port id and generates an enable tick accordingly. After 
the output instruction, the data will be stored in the designated buffer. 

To illustrate the construction, let us consider a PicoBlaze interface with four output 
buffers. We assign OOI6, Oils, 0216, and 0316 as their port ids. Note that the six MSBs of 
the port addresses are identical and only two LSBs are needed to distinguish a port. The 
block diagram is shown in Figure 17.2. The key is the decoding circuit, whose function 
table is shown in Table 17.1. It is a 2-t0-2~ decoder. In the second clock cycle of an 
output instruction, wr i t e - s t robe  is asserted and 1 bit of the Cbit en-d signal is asserted 
accordingly. The one-clock-cycle enable tick activates the corresponding output register to 
retrieve data from the out-port  signal. The decoding timing diagram of the instruction 

o u t p u t  s o ,  02 



is shown at the bottom of Figure 17.1. During the second clock cycle of the output 
instruction, the en-d [21 signal is asserted and the data value on out-port is stored in the 
corresponding buffer at the rising edge of the next clock. 

Once understanding the basic operation, we can derive the HDL code accordingly. The 
code segment is 

a l w a y s  Q* 
i f  (write-strobe) 

c a s e  (port-id El: 01 ) 
2'bOO: en-d = 4'bOOOl; 
2'bOl: en-d = 4'bOOlO; 
2'blO: en-d = 4'bOlOO; 
2'bll: en-d = 4'blOOO; 

e n d c a s e  
e l s e  

en-d = 4'bOOOO; 

This scheme is very general and can be applied to any number of output ports. 
The choice of the port address is somewhat arbitrary. We use the binary code in the 

previous example. If the number of the output port is smaller than eight, one-hot code can 
be used to simplify the decoding circuit. For example, we can define the four previous port 
ids as 0Il6 (i.e., 000000012), 0 2 ~ ~  (i.e., 00000010~), 0416 (i.e., 000001002), and 0816 (i.e., 
000010002). The decoding logic can be simplified to 

a l w a y s  Q* 
i f  (write-strobe) 

en-d = port-id [3: 01 ; 
e l s e  

en-d = 4'bOOOO; 

Note that no decoding logic is needed ifthere is only a single output port. The write-strobe 
signal can be connected to the register's enable signal, as shown in Figure 16.3. 

As discussed in Section 16.4.2, it is good practice to use symbolic aliases for 110 ports 
and declare their binary addresses in the header. For example, the initial output port address 
assignment can be declared as 

o u t p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  out-port-a , 0 0  
c o n s t a n t  out-port-b, 0 1  
c o n s t a n t  out-port-c , 0 2  
c o n s t a n t  out-port-d, 0 4  

Ifthe assignment is changed, we need to modify the header but keep the remaining assembly 
code intact. Using a clear header also allows us easily to identify the port ids when the 
companion HDL code is developed. 

17.3 INPUT PORT 

17.3.1 Input instruction and timing 

The input instruction reads data from the input port. Similar to the output instruction, it 
has two forms: 

i n p u t  sX, (sY) 
i n p u t  sX, port-name 



clk 
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Figure 17.3 Timing diagram of an input instruction. 

The s Y  register or por tname specifies the read port id. The retrieved data is stored in the 
s X  register. 

The timing diagram of an input instruction, 

i n p u t  SO, 02 

is shown in Figure 17.3. When the instruction is executed, 02 is placed on port - id .  After 
two clock cycles, in-port  will be sampled at the rising edge of the clock and its value is 
stored in the SO register. The external circuit must ensure that the input data is stable during 
the sampling edge to avoid a timing violation. 

As in the output instruction, the read-s t robe signal is asserted in the second clock 
cycle. The hnction of the read-s t robe signal is less obvious and is discussed in the next 
subsection. 

17.3.2 Input interface 

The input interface between PicoBlaze and input peripherals usually consists of a multi- 
plexing circuit, which uses p o r t - i d  as the selection signal to route the desired value to 
in-port .  Sometimes, a decoding circuit similar to the one in the output interface is also 
necessary to signal the completion of the data access. 

For the purpose of input interface design, an input port can be classified as a continuous- 
access or single-access port. For a continuous-access port, the data is presented continu- 
ously, such as the switch input of Section 16.4.1. On the other hand, the availability of data 
of a single-access port is triggered by a single discrete event, such as receiving a character 
in an UART buffer. The flag FF and buffers discussed in Section 8.2.4 are in this category. 
After the data is retrieved, we must remove it from the buffer to prevent the same data from 
being processed again. This is usually done by utilizing a one-clock-cycle tick to clear the 
flag FF or remove a word from a FIFO buffer. 

The interface for continuous-access ports involves only a multiplexing circuit. Consider 
an interface with four such ports. The block diagram is shown in Figure 17.4. 

The interface for single-access ports needs a mechanism to remove the retrieved data from 
the buffer in the end of an input instruction. This can be done by using a decoding circuit 
that decodes the por t - id  and read-s t robe signals. The circuit is identical to the decoding 
circuit of the output interface except that wr i t e - s t robe  is replaced by read-strobe. The 
decoded output can be considered as a "removal" signal, which is asserted for one clock 



Figure 17.5 Block diagram of four single-access ports. 

cycle and removes the previously retrieved data. Consider an interface with four FIFOs. 
The diagram of the complete decoding and multiplexing circuit is shown in Figure 17.5. 
The r v  signal is the decoded removal signal. In the end of an input instruction, 1 bit of this 
4-bit signal is asserted and the corresponding FIFO performs a read operation, in which the 
first word is removed from the buffer. Assume that 0Ol6, 0116, 0216, and 0316 are assigned 
as the port ids. The HDL code segment for the interface is 

// m u l t i p l e x i n g  c i r c u i t  
always Q* 

case  ( p o r t - i d  [l : 01 
2'bOO: d a t a  = i n - d a t a 0 ;  
2 ' b O l :  d a t a  = i n - d a t a l ;  
2 ' b l O :  d a t a  = i n - d a t a 2 ;  
2 ' b l l :  d a t a  = i n - d a t a 3 ;  

endcase  
// d e c o d i n g  c i r c u i t  



a l w a y s  Q* 
if ( r ead-strobe) 

c a s e  (port-id [I : 01 ) 
2'bOO: r v  = 4'bOOOl; 
2'bOl: r v  = 4'bOOlO; 
2'biO: r v  = 4'bOiOO; 
2'bll: r v  = 4'blOOO; 

e n d c a s e  
e l s e  

r v  = 4'bOOOO; 

In a real application, it is likely that the input interface contains both continuous- and 
single-access ports. A decoding circuit is only needed for single-access ports. 

17.4 SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED 
DISPLAY INTERFACE 

To demonstrate the construction of the PicoBlaze I10 interface, we add more versatile input 
and output peripherals to the square routine of Chapter 16. Recall that the square routine 
calculates a% b2, where a and b are 8-bit unsigned integers. 

We use the 8-bit switch and a pushbutton to enter the values of a and b. The pushbutton 
generates a one-clock-cycle tick when pressed. The tick indicates that the current value 
of the switch should be loaded. The values of a and b are loaded alternately; i.e., the first 
pressing loads a ,  the second pressing loads b, the third pushing loads a,  and so on. A second 
pushbutton is also included to clear the PicoBlaze's data RAM and relevant registers. 

We use four seven-segment LEDs to display the inputs and computed results. The LEDs 
are arranged as four hexadecimal numbers. Since the range of a2 + b2 is up to 17 bits, the 
decimal point of the leftmost LED is used for the MSB. The three lower bits of the switch 
select what to display, which can be a, b, a2 ,  b2, or a2 + b2. 

In summary, the interface consists of the following: 
Switch: provides the values of a and b and selects the content of the LED display 
Pushburron 0: loads the a and b alternately when pressed 
Pushburron 1: clears data RAM and relevant registers when pressed 
Seven-segment LED: displays the selected 17-bit value in four hexadecimal digits 

17.4.1 Output interface 

Recall that the four seven-segment LEDs on the prototyping board share the same input pins, 
and a time-multiplexing circuit is required. For a PicoBlaze-based design, the multiplexing 
can be done by either an external circuit or a software routine. We use the external-circuit 
approach, which is simpler for assembly code development, in this section and discuss 
the software approach in Chapter 18. The LED time-multiplexing circuit designed in 
Section 4.5.1 can be used for this purpose. This circuit shields the timing and appears as 
four independent seven-segment LEDs for an external system. The block diagram of the 
PicoBlaze output interface is shown in Figure 17.6. The interface consists of four 8-bit 
output ports, each port representing a seven-segment LED pattern. 

In the assembly code, the four LED patterns are stored in PicoBlaze's data RAM with 
symbolic addresses of ledO, ledl, led2, and led3. The corresponding code segment is 



Figure 17.6 Output interface of a square circuit. 

; d a t a  RAM a d d r e s s  a l i a s  
c o n s t a n t  ledO, 10 
c o n s t a n t  ledl, 11 
c o n s t a n t  led2, 12 
c o n s t a n t  led3, 13 

o u t p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  sseg0-port , 00 ; 7 - s eg  l e d  0 
c o n s t a n t  ssegl-port , 01 ; 7 - s eg  l e d  1 
c o n s t a n t  sseg2_port, 02 ; 7 - s eg  l e d  2 
c o n s t a n t  sseg3_port, 03 ; 7 - s e g  l e d  3 
. . . 
disp-led : 

f e t c h  data, ledO 
o u t p u t  data, sseg0-port 
f e t c h  data, ledl 
o u t p u t  data, ssegl-port 
f e t c h  data, led2 
o u t p u t  data, sseg2-port 
f e t c h  data, led3 
o u t p u t  data, sseg3-port 
r e t u r n  

17.4.2 Input interface 

The input interface consists of an 8-bit switch and two 1-bit pushbuttons. The former is a 
continuous-access port since the value is always present. The latter is a single-access port 
since pressing a button leads to only a single event (e.g., loading a to the register once rather 



Figure 17.7 Input interface of a square circuit. 

than continuously). Because of the mechanical glitches, a debouncing circuit is needed to 
generate a clean one-clock-cycle tick. Since PicoBlaze's port can take up 8-bit data, inputs 
from the two pushbuttons can be grouped together as a single input port. The block diagram 
of the input interface is shown in Figure 17.7. The interface consists of two debouncing 
circuits, a two-to-one multiplexer, a decoding circuit, and two flag FFs. The function of 
the two flag FFs is discussed in Section 8.2.4. They provide a mechanism to set and clear 
the "button-pressing event." When a button is pressed, the debouncing circuit's output sets 
the flag. It remains asserted until it is retrieved by the PicoBlaze's input instruction, which 
sets the selection signal of the multiplexer to route the desired value to PicoBlaze's input 
port, and activates the clear signal. For clarity, we name the pushbutton 1 as the s button 
(for setting the value) and pushbutton 0 as the c button (for clearing the data RAM). 

The pseudo code to process the input is 

; i n p u t  t h e  b u t t o n  f l a g s  
; i f  c=l  t h e n  
; c a l l  t h e  c l e a r i n g - r a m  r o u t i n e  
; i f  s=I t h e n  
; i n p u t  s w i t c h  v a l u e  
; s t o r e  i t  t o  d a t a  ram 
; t o g g l e  a / b  a d d r e s s  o f f s e t  

Since the s button inputs the values of a and b alternately, we use a global register, 
switch-a-b, to keep track of which one is being read currently. The register serves as 
the data RAM address offset, which can be 0 or 2, and its value toggles when the s button 
is pressed. The corresponding assembly code subroutine is 

; i n p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  r d - f  l a g - p o r t  , 00 ; 2  f l a g s  ( x x x x x x s c ) :  
c o n s t a n t  sw-por t  , 01  ; & b i t  s w i t c h  



proc-b tn  : 
i n p u t  s 3 ,  r d - f l a g - p o r t  ; g e t  f l a g  
; c h e c k  and p r o c e s s  c  b u t t o n  
t e s t  s 3 ,  0 1  ; c h e c k  c  b u t t o n  f l a g  
jump z ,  chk-btns  ; f l a g  not  s e t  
c a l l  i n i t  ; f l a g  s e t ,  c l e a r  
jump proc-btn-done 

chk-btns  : 
; c h e c k  and p r o c e s s  s  b u t t o n  
t e s t  s 3 ,  0 2  ; c h e c k  s  b u t t o n  f l a g  
jump z ,  proc-btn-done ; f l a g  not  s e t  
i n p u t  d a t a ,  sw-port ; g e t  s w i t c h  
load a d d r ,  a - l s b  ; g e t  a d d r  of  a  
add addr , switch-a-b ; add  o  f f s  e  t  
s t o r e  d a t a ,  ( a d d r )  ; w r i t e  d a t a  t o  ram 
; u p d a t e  c u r r e n t  d i s p  p o s i t i o n  
xor swi tch-a -b ,  0 2  ; t o g g l e  b e t w e e n  0 0 ,  02 

proc-btn-done : 
r e t u r n  

17.4.3 Assembly code development 

After designing the 110 interface, we can derive the assembly program. The development 
follows the divide-and-conquer approach discussed in Chapter 16 and partitions the main 
program into several subroutines. The main program is 

c a l l  i n i t  ; i n i t i a l i z a t i o n  
f o r e v e r  : 

;main  l o o p  body  
c a l l  proc-b tn  ; c h e c k  & p r o c e s s  b u t t o n s  
c a l l  s q u a r e  ; c a l c u l a t e  s q u a r e  
c a l l  l o a d - l e d - p t t n  ; s t o r e  l e d  p a t t e r n s  t o  ram 
c a l l  d i s p - l e d  ; o u t p u t  l e d  p a t t e r n  
jump f o r e v e r  

The complete code is shown in Listing 17.1. 
The square subroutine is from Chapter 16, and the proc-btn and disp- led sub- 

routines are discussed in the two preceding subsections. The i n i t  subroutine performs 
system initialization. It uses a loop to load 0's to data RAM (i.e., clear the RAM) and 
sets the switch-a-b register to 0 (i.e., read a). The load-led-pt tn  subroutine reads the 
switch input, retrieves the desired values from the data RAM, converts the values to seven- 
segment LED patterns, and stores them to the corresponding locations in the data RAM. 
These patterns are then written to the output ports in the subsequent disp- led routine. 
The load-led-pttn routine consists of the ge t -uppern ibb le  and g e t - l o w e r n i b b l e  
routines to extract the two hexadecimal digits and the hex-to-led routine to convert a 
hexadecimal digit to the corresponding seven-segment LED pattern. 

The program requires more storage. In addition to the data RAM and registers required 
for the square subroutine, this program utilizes a new global register switch-a-b to keep 
track of whether a orb is being read, and 4 bytes in data RAM, whose addresses are labeled 
ledO, l e d i ,  led2, and led3, to store four seven-segment LED patterns. 



Listing 17.1 Square program with a switch and seven-segment LED interface 

......................................................... 

; s q u a r e  c i r c l t i t  w i t h  7 -seg  LED i n t e r f a c e  
......................................................... 

; p r o g r a m  o p e r a t i o n  : 
c ; - r e a d  a  and b  jkom s w i t c h  
: - c a l c u l a t e  a * a  + b*b 
: - d i s p l a y  d a t a  on 7-seg  l e d  

......................................................... 

lo  : d a t a  RAM a d d r e s s  a l i a s  
......................................................... 

c o n s t a n t  a-lsb, 0 0  
c o n s t a n t  b-lsb, 0 2  
c o n s t a n t  aa-lsb, 0 4  

1% c o n s t a n t  aa-msb, 0 5  
c o n s t a n t  bb-lsb, 06 
c o n s t a n t  bb-msb, 0 7  
c o n s t a n t  aabb-lsb, 0 8  
c o n s t a n t  aabb-msb, 09 

zo c o n s t a n t  aabb-cout , OA 
c o n s t a n t  ledO, 10 
c o n s t a n t  ledl, 11 
c o n s t a n t  led2, 12 
c o n s t a n t  led3, 13 

5 

......................................................... 

; r e g i s t e r  a l i a s  
......................................................... 

; commonl~v  u s e d  l o c a l  v a r i a b l e s  
70  n a m e r e g  SO, data ; r e g  f o r  t e m p o r a r y  d a t a  

n a m e r e g  sl, addr ; r e g  f o r  t e m p o r a r y  mem & i / o  p o r t  a d d r  
n a m e r e g  s2, i ; g e n e r a l - p u r p o s e  l o o p  i n d e x  
; g l o b a l  v a r i a b l e s  
n a m e r e g  sf, switch-a-b ; r a m  o f f s e t  f o r  c u r r e n t  s w i t c h  i n p u t  

15 

......................................................... 

; p o r t  a l i a s  
......................................................... 

- i n p u t  p o r t  d e f i n i t i o n s  
40 c o n s t a n t  rd-f lag-port , 0 0  ; 2 f l a g s  ( x x x x x x s c  ): 

c o n s t a n t  sw-port, 01 ; 8 - b i t  s w i t c h  
o u t p u t  p o r t  d e f i n i t i o n s  

c o n s t a n t  sseg0-port, 0 0  ; 7 - s e g  l e d  0 
c o n s t a n t  ssegl-port , 01 :7 -seg  l e d  1 

45 c o n s t a n t  sseg2_port, 0 2  :7 -seg  l e d  2 
c o n s t a n t  sseg3_port, 0 3  : 7 - s e g  l e d  3 

: main progranz 
5" ;--------------------------------------------------------- ......................................................... 

; c a l l i n g  h i e r a r c h y :  



; main 
, - i n i t  

5 5 ,  - p r o c - b t n  
- i n i t  

; - s q u a r e  
- m u l t - s o f t  

; - l o a d - l e d - p t t n  
60 ; - g e t - l o w e r - n i b b l e  

- g e t - u p p e r - n i b b l e  
- h e x - t o - l e d  

; - d i s p - l e d  

c a l l  init ; i n i t i a l i z a t i o n  
forever : 

;ma in  l o o p  body  
70 c a l l  proc-btn ; c h e c k  & p r o c e s s  b u t t o n s  

c a l l  square ; c a l c u l a t e  s q u a r e  
c a l l  load-led-pttn ; s t o r e  l e d  p a t t e r n s  t o  ram 
c a l l  disp-led ; o u t p u t  l e d  p a t t e r n  
jump forever 

75 

......................................................... 

: r o u t i n e  : i n  i t  
; f u n c t i o n  : p e r f o r m  i n i t i a l i z a t i o n  , c l e a r  r e g i s t e r / r a m  
; o u t p u t  r e g i s t e r :  

80 ; s w i t c h - a - b :  c l e a r e d  t o  0  
; t emp r e g i s t e r :  d a t a ,  i 
......................................................... 

init : 
; c l e a r  memory 

0s load i, 4 0  
load data, 0 0  

clr-mem-loop: 
s t o r e  data, (i) 
sub i, 01 ; d e c  l o o p  i n d e x  

oo jump n z ,  clr-mem-loop ; r e p e a t  u n t i l  i=O 
; c l e a r  r e g i s t e r  
l oad  switch-a-b, 0 0  
re turn  

; u n i t i z e  l o o p  i n d e x  t o  64 

; r o u t i n e  : p r o c - b t n  
; f u n c t i o n :  check  two b u t t o n s  and p r o c e s s  t h e  d i s p l a y  
; i n p u t  r e g :  

s w i t c h - a - b :  ram o f f s e t  ( 0  f o r  a  and  2 f o r  b )  
IW ; o u t p u t  r e g i s t e r :  

s 3 :  s t o r e  i n p u t  p o r t  f l a g  
s w i t c h - a - b :  may be  t o g g l e d  

; temp r e g i s t e r  u s e d :  d a t a ,  addr  
.--------------------------------------------------------- ......................................................... 

10s proc-btn : 



i n p u t  s3, rd-flag-port ; g e t  f l a g  
; c h e c k  and p r o c e s s  c  b u t t o n  
t e s t  s3, 01 ; c h e c k  c  b u t t o n  f l a g  
jump z ,  chk-btns ; f l a g  no t  s e t  

110 c a l l  init ; f l a g  s e t ,  c l e a r  
jump proc-btn-done 

chk-btns : 

; c h e c k  and p r o c e s s  s  b u t t o n  
t e s t  s3, 02 ; c h e c k  s  b u t t o n  f l a g  

115 jump z ,  proc-btn-done ; f l a g  no t  s e t  
i n p u t  data, sw-port ; g e t  s w i t c h  
l o a d  addr, a-lsb ; g e t  addr  o f  a  
add addr , switch-a-b ; a d d  o f f s e t  
s t o r e  data, (addr) ; w r i t e  d a t a  t o  ram 

120 ; u p d a t e  c u r r e n t  d i s p  p o s i t i o n  
xor switch-a-b, 02 : t o g g l e  b e t w e e n  0 0 ,  02 

proc-btn-done : 
r e t u r n  

:--------------------------------------------------------- ......................................................... 

: r o u t i n e  : l o a d - l e d - p t t n  
: f u n c t i o n :  r ead  3 LSBs o f  s w i t c h  i n p u t  and c o n v e r t  t h e  

d e s i r e d  v a l u e s  t o  f o u r  l e d  p a t t e r n s  and 
l o a d  them t o  ram 

130 ; s w i t c h  : 0 0 0 : ~ ;  0 0 1 : b ;  0 1 0 : a " 2 ;  0 1 1 : b " 2 ;  
o t h e r s :  a - 2  + b " 2  

; t emp r e g i s t e r  u s e d :  d a t a ,  addr  
; s 6 :  d a t a  f rom  sw i n p u t  p o r t  

,,? ,--------------------------------------------------------- 

load-led-pttn : 
i n p u t  s6, sw-port ; g e t  s w i t c h  
s10 s6 ; * 2  t o  o b t a i n  addr  o f f s e t  
compare s6, 0 8  ;sw>100? 

I 4 0  jump c ,  sw-ok ; no 
l o a d  s6, 08 ; y e s ,  sw e r r o r ,  make d e f a u l t  

sw-ok: 
; p r o c e s s  b y t e  0, l o w e r  n i b b l e  
l o a d  addr, a-lsb 

I45  add addr, s6 ; g e t  l o w e r  addr  
f e t c h  data, (s6) ; g e t  l o w e r  b y t e  
c a l l  get-lower-nibble ; g e t  l o w e r  n i b b l e  
c a l l  hex-to-led ; c o n v e r t  t o  l e d  p a t t e r n  
s t o r e  data, led0 

I5IJ : p r o c e s s  b y t e  0 ,  u p p e r  n i b b l e  
f e t c h  data, (addr) 
c a l l  get-upper-nibble 
c a l l  hex-to-led 
s t o r e  data, led1 

1 5 5  ; p r o c e s s  b y t e  1 ,  l o w e r  n i b b l e  
add addr , 01 ; g e t  upper  addr  
f e t c h  data, (addr) 
c a l l  get-lower-nibble 



c a l l  hex-to-led 
160 s t o r e  data, led2 

; p r o c e s s  b y t e  I ,  upper  n i b b l e  
f e t c h  data, (addr) 
c a l l  get-upper-nibble 
c a l l  hex-to-led 

l b i  ; c h e c k  f o r  SMI=IOO t o  p r o c e s s  c a r r y  as  l e d  dp  
compare s6, 08 ; d i s p l a y  f i n a l  r e s u l t ?  
jump n z ,  led-done ; n o  
add addr , 01 ; g e t  c a r r y  a d d r  
f e t c h  s 6 ,  (addr) ; s 6  t o  s t o r e  c a r r y  

170 t e s t  s6, 01 ; c a r r y  = I ?  
jump z ,  led-done : n o  
and data, 7 F  ; y e s ,  a s s e r t  msb ( d p )  t o  0  

led-done : 
s t o r e  data, led3 

175 r e t u r n  

; r o u t i n e  : d i s p - l e d  
; f u n c t i o n :  o u t p u t  f o u r  l e d  p a t t e r n s  

1 x 0 ;  temp r e g i s t e r  u s e d :  d a t a  
......................................................... 

disp-led : 
f e t c h  data, led0 
o u t p u t  data, sseg0-port 

185 f e t c h  data, led1 
o u t p u t  data, ssegl-port 
f e t c h  data, led2 
o u t p u t  data, sseg2-port 
f e t c h  data, led3 

I90 o u t p u t  data, sseg3-port 
r e t u r n  

; r o u t i n e  : h e x - t o - l e d  
195 ; f u n c t i o n :  c o n v e r t  a  hex  d i g i t  t o  7-seg l e d  p a t t e r n  

; i n p u t  r e g i s t e r :  d a t a  
; o u t p u t  r e g i s t e r :  d a t a  
......................................................... 

hex-to-led: 
zoo compare data, 00 

jump n z ,  comp-hex-1 
l o a d  data, 81 ;7-seg  p a t t e r n  0  
jump hex-done 

comp-hex-1: 
203 compare data, 01 

jump n z ,  comp-hex-2 
l o a d  data, CF ;7-seg p a t t e r n  I 
jump hex-done 

comp-hex-2 : 
210 compare data, 02 

jump n z ,  comp-hex-3 



l o a d  data, 92 ;7-seg p a t t e r n  2 
jump hex-done 

comp-hex-3: 
2 1 5  compare data, 03 

jump n z ,  comp-hex-4 
l o a d  data, 86 ;7-seg  p a t t e r n  3 
jump hex-done 

comp-hex-4 : 
zzo compare data, 04 

jump n z ,  comp-hex-5 
l o a d  data, CC ;7-seg  p a t t e r n  4 
jump hex-done 

comp-hex-5: 
7 7 5  -- compare data, 05 

jump n z ,  comp-hex-6 
l o a d  data, A4 
jump hex-done 

comp-hex-6 : 
230 compare data, 06 

jump n z ,  comp-hex-7 
l o a d  data, A0 ;7-seg  p a t t e r n  6 
jump hex-done 

comp-hex-7: 
2 compare data, 07 

jump n z ,  comp-hex-8 
l o a d  data, 8F ;7-seg  p a t t e r n  7  
jump hex-done 

comp-hex-8 : 
240 compare data, 08 

jump n z ,  comp-hex-9 
l o a d  data, 80 
jump hex-done 

comp-hex-9: 
245 compare data, 09 

jump n z ,  comp-hex-a 
l o a d  data, 84 ;7-seg  p a t t e r n  9 
jump hex-done 

comp-hex-a: 
250 compare data, OA 

jump n z ,  comp-hex-b 
l o a d  data, 88 
jump hex-done 

comp-hex-b : 
2 5  compare data, OB 

jump n z ,  comp-hex-c 
l o a d  data, EO 
jump hex-done 

comp-hex-c: 
260 compare data, OC 

jump n z ,  comp-hex-d 
l o a d  data, B1 
jump hex-done 

comp-hex-d: 

;7-seg  p a t t e r n  5 

:7-seg  p a t t e r n  8 

;7-seg  p a t t e r n  a 

;7-seg  p a t t e r n  b 

;7-seg  p a t t e r n  C 



265 compare data, OD 
jump n z ,  comp-hex-e 
l o a d  data, C2 ;7-seg p a t t e r n  d  
jump hex-done 

comp-hex-e: 
270 compare data, OE 

jump n z ,  comp-hex-f 
l o a d  data, BO ;7-seg  p a t t e r n  E  
jump hex-done 

comp-hex-f : 
275 l o a d  data, B8 ;7-seg p a t t e r n  F 

hex-done : 
r e t u r n  

280 ; r o u t i n e :  g e t - l o w e r - n i b b l e  
; f u n c t i o n :  g e t  l o w e r  4  b i t s  o f  d a t a  
; i n p u t  r e g i s t e r :  d a t a  
; o u t p u t  r e g i s t e r :  d a t a  
......................................................... 

28s get-lower-nibble : 
and data, OF ; c l e a r  upper  n i b b l e  
r e t u r n  

290 ; r o u t i n e  : g e t - u p p e r - n i b b l e  
; f u n c t i o n :  g e t  upper  4  b i t s  o f  i n - d a t a  
; i n p u t  r e g i s t e r :  d a t a  
; o u t p u t  r e g i s t e r :  d a t a  
......................................................... 

295 get-upper-nibble : 
srO data ; r i g h t  s h i f t  4  t i m e s  
srO data 
srO data 
srO data 

loo r e t u r n  

......................................................... 

; r o u t i n e  : s q u a r e  
: f u n c t i o n :  c a l c u l a t e  a*a + b*b 

30s ; d a t a / r e s u l t  s t o r e d  i n  ram s t a r t e d  w /  S Q B A S E A D D R  
; temp r e g i s t e r :  s 3 ,  s 4 ,  s 5 ,  s 6 ,  d a t a  
......................................................... 

square : 
; c a l c u l a t e  a*a  

1 1 0  f e t c h  s3, a-lsb ; l o a d  a  
f e t c h  s4, a-lsb ; l o a d  a  
c a l l  mult-soft ; c a l c u l a t e  a*a  
s t o r e  s6, aa-lsb ; s t o r e  l o w e r  b y t e  o f  a*a  
s t o r e  s5, aa-msb ; s t o r e  upper  b y t e  o f  a*a  

315 ; c a l c u l a t e  b*b  
f e t c h  s3, b-lsb ; l o a d  b  
f e t c h  s4, b-lsb ; l o a d  b  



c a l l  mult-soft 
s t o r e  s6, bb-lsb 

:zo s t o r e  s5, bb-msb 
; c a l c ~ r l a t e  a*a+b*b 
f e t c h  data, aa-lsb 
add data, s6 
s t o r e  data, aabb-lsb 
f e t c h  data, aa-msb 
addcy data, s5 
s t o r e  data, aabb-msb 
l o a d  data, 00 
addcy data, 00 

o s t o r e  data, aabb-cout 
r e t u r n  

; c a l c u l a t e  b*b  
; s t o r e  l o w e r  b y t e  o f  b * b  
; s t o r e  zrpper b y t e  o f  b * b  

; g e t  l o w e r  b y t e  o f  a * u  
; a d d  l o w e r  b y t e  o f  a*a+b*b 
; s t o r e  l o w e r  b y t e  o f  a*a+b*b 
; g e t  upper  b y t e  o,f a*a  
; a d d  upper  b y t e  o f  a*a+b*b 
; s t o r e  zcpper b y t e  o f  a*a+b*b 
; c l e a r  d a t a ,  bu t  k e e p  c a r r y  
; g e t  c a r r y  f rom  p r e v i o u s  + 
: s t o r e  c a r r y  o f  a*a+b*b 

......................................................... 

: r o u t i n e  : m 1 r l t _ s o f t  
7 %  ; f u n c ~ i o n  : 8- b i t  u n s i g n e d  m u l t i p l i e r  u s i n g  

s h i f t  -and-add a l g o r i t h m  
: i n p u t  r e g i s t e r :  

.s3: n ~ z i l t i p l i c a n d  
s 4 :  m u l t i p l i e r  

34n : o u t p u t  r e g i s t e r :  
s 5 :  zipper b y t e  o f  p r o d u c t  
s 6 :  l o w e r  b y t e  o f  p r o d u c t  

; t emp  r e g i s t e r :  i 
......................................................... 

wt mult-sof t : 

l o a d  s5, 00 ; c l e a r  s5  
l o a d  i, 08 ; i n i t i a l i z e  l o o p  i n d e x  

mult-loop : 
srO s4 ; s h i f t  I sb  t o  c a r r y  

350 jump n c ,  shift-prod ; I s b  i s  O 
add s5, s3 ; l s b  i s  l 

shift-prod: 
s r a  s5 ; s h i f t  upper  b y t e  r i g h t ,  

; c a r r y  t o  MSB, LSB t o  c a r r y  
355 s r a s 6  : s h i f t  l o w e r  b y t e  r i g h t  , 

; I s b  o f  s5  t o  MSB o f  s6  
sub i, 01 ; d e c  l o o p  i n d e x  
jump n z ,  mult-loop ; r e p e a t  u n t i l  i=O 
r e t u r n  

17.4.4 HDL code development 

The complete HDL code simply combines the PicoBlaze processor, instruction ROM, the 
input interface and peripherals shown in Figure 17.7, and the output interface and peripherals 
shown in Figure 17.6. It is shown in Listing 17.2. 



Listing 17.2 PicoBlaze with a switch and seven-segment LED interface 

module pico-btn 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [7:01 sw, 
i n p u t  w i r e  [1:01 btn, 
o u t p u t  w i r e  [3:01 an, 
o u t p u t  w i r e  [7:01 sseg 

1; 

lo // s i g n a l  d e c l a r a t i o n  
// KCPSM3/ROM s i g n a l s  
w i r e  [9:0] address; 
wire  [17:0] instruction; 
w i r e  [7: 01 port-id , out-port ; 

15 r e g  C7:Ol in-port; 
w i r e  write-strobe , read-strobe ; 
// 1 / 0  p o r t  s i g n a l s  
// o u t p u t  e n a b l e  
r e g  [3:0] en-d; 

20 // f o u r - d i g i t  s even - segmen t  l e d  d i s p l a y  
r e g  [7:01 ds3_reg, ds2_reg, dsl-reg, ds0-reg; 
/ /  two p u s h b u t t o n s  
r e g  btnc-flag-reg, btns-flag-reg; 
w i r e  btnc-f lag-next , btns-f lag-next ; 

25 w i r e  set-btnc-f lag, set-btns-f lag, clr-btn-f lag; 

/ / b o d y  
// ----------------------------------=================== 

// 1 / 0  modules 
, // -----------------------------------================== 

disp-mux disp-unit 
(.clk(clk), .reset(reset), 
. in3 (ds3-reg), . in2 (ds2-reg), . in1 (dsl-reg), 
.inO(dsO-reg), .an(an), .sseg(sseg)); 

a debounce btnc-unit 
( .  clk(c1k) , . reset (reset) , . sw (btn [o] ) , 
. db-level() , . db-tick(set-btnc-f lag)) ; 

debounce btns-unit 
(.clk(clk), .reset(reset), .sw(btn[1]), 

40 .db-level(), .db-tick(set-btns-flag)); 
// ----------------------------------=================== 

// KCPSM and ROM i n s t a n t i a t i o n  
// ----------------------------------=================== 

kcpsm3 proc-unit 
45 (.clk(clk), .reset(l'bO), .address(address), 

.instruction(instruction), .port-id(port-id), 

.write-strobe(write-strobe), .out-port(out-port), 

.read-strobe(read-strobe), .in-port(in-port), 
.interrupt(l'bO), .interrupt-ack0); 

0 btn-rom rom-unit 
( .  clk(c1k) , . address(address) , 
.instruction(instruction)); 
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/ /  o u t p u t  i n t e r f a c e  

// o u t p o r t  p o r t  i d :  
// 0 x 0 0 :  d s 0  
/ / 0 x 0 1 :  d s l  
// 0 x 0 2 :  d.s.2 

60 / /  0 x 0 3 :  d s 3  

// r e g i s t e r s  
a l w a y s  Q ( p o s e d g e  clk) 

b e g i n  
63 i f  (en-d [Ol) 

ds0-reg <= out-port ; 
i f  (en-d [I] ) 

dsl-reg <= out-port ; 
i f  (en-d [2] ) 

ds2-reg <= out-port ; 
i f  (en-d [3] ) 

ds3-reg <= out-port ; 
end 

// d e c o d i n g  c i r c u i t  f o r  e n a b l e  s i g n a l s  
71 a l w a y s  Q *  

i f  (write-strobe) 
c a s e  (port-id [l: 01 ) 

2'bOO: en-d = 4'bOOOI; 
2'bOl: en-d = 4'bOOIO; 

xo 2'blO: en-d = 4'bOlOO; 
2'bll: en-d = 4'biOOO; 

e n d c a s e  
e l s e  

en-d = 4'bOOOO; 

/ /  i n p u t  i n t e r f a c e  

/ /  i n p u t  p o r t  i d  
90 / /  0 x 0 0 :  f l a g  

/ / 0 x 0 1 :  s w i t c h  

/ /  i n p u t  r e g i s t e r  ( f o r  f l a g s )  
a l w a y s  Q ( p o s e d g e  clk) 

95 b e g i n  
btnc-flag-reg <= btnc-flag-next; 
btns-flag-reg <= btns-flag-next; 

end 
a s s i g n  btnc-f lag-next = (set-btnc-f lag) ? l'bl : 

I no (clr-btn-flag) ? l'bO : 

btnc-flag-reg; 
a s s i g n  btns-flag-next = (set-btns-flag) ? l'bl : 

(clr-btn-flag) ? lJbO : 
btns-flag-reg; 

lor // d e c o d i n g  c i r c u i t  f o r  c l e a r  s i g n a l s  
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a s s i g n  clr-btn-f lag = read-strobe && (port-id [0]==1' b0) ; 
/ /  i n p u t  m u l t i p l e x i n g  
a l w a y s  Q* 

c a s e  (port-id LO1 
IID 1 bO : in-port = {6'b0, btns-f lag-reg , btnc-f lag-reg); 

1 'bl: in-port = sw; 
e n d c a s e  

endmodule 

17.5 SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND 
UART CONSOLE 

In this section, we add two more I10 peripherals to the previous design. One is a combi- 
national multiplier, which accelerates the multiplication, and the other is an UART, which 
provides a communication link to a PC. 

17.5.1 Multiplier interface 

Since PicoBlaze does not contain a hardware multiplier, the multiplication is done by a 
software routine, mul t -sof t .  It uses a shift-and-add algorithm to iterate through the 8-bit 
multiplier and requires about 60 instructions in the worst-case scenario. An alternative is 
to utilize the Spartan-3 device's built-in combinational multiplier. 

Since PicoBlaze provides no mechanism to use a coprocessor, the multiplier must be 
configured as an I10 peripheral. We can create an 8-bit combinational multiplier that 
takes two 8-bit operands and returns a 16-bit product. To facilitate this peripheral, the 
PicoBlaze's interface requires two additional output ports and buffers for the two operands 
and two additional input ports for the 16-bit product. The assembly routine now only needs 
to pass the operands to the output ports and then retrieve the results from the input ports. 
The code becomes 

; i n p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  mult-prodo-port , 03 ; m u l t i p l i c a t i o n  p r o d u c t  8 LSBs 
c o n s t a n t  mult-prodl-port, 04 ; m u l t i p l i c a t i o n  p r o d u c t  8 MSBs 
; o u t p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  mult-src0-port , 05 ; m u l t i p l i e r  o p e r a n d  0 
c o n s t a n t  mult-srcl-port , 06 ; m u l t i p l i e r  o p e r a n d  I 
. . .  
mult-hard: 

o u t p u t  s3, mult-src0-port 
o u t p u t  s4, mult-srcl-port 
i n p u t  s5, rnult-prodl-port 
i n p u t  s6, mult-prodo-port 
r e t u r n  

Note that the combinational multiplier can complete the computation with one instruction 
(i.e., two clock cycles), and thus no additional timing mechanism is needed in the code. 
This routine can be used in place of the previous mult-sof t routine. 
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Figure 17.8 Representative console screen. 

17.5.2 UART interface 

With the UART interface, information can be entered and displayed in Windows HyperTer- 
minal, which is more flexible and versatile than switches and LEDs. We use it as a simple 
control console for the square  routine. A representative screen is shown in Figure 17.8. 
The console generates an SQ> prompt and a user can respond with a lowercase a ,  b, c, or 
d character. The a and b characters are used to input values for a and b of the square  
routine. When the key is pressed, the value of the 8-bit switch is read and stored into the 
corresponding data RAM location. The c character is used to clear the data RAM and 
reinitialize the program. Its function is identical to that of the c button. The d character 
leads to a "data RAM dump," in which the 64 bytes of the data RAM are displayed on 
screen. This allows us to observe the various values of the square  routine and the four 
seven-segment LED patterns. An Er ror  message is returned for all other characters. 

The UART module designed in Section 8.4 can be used for this purpose. Since the 
transmission and receiving FIFO buffers provide a storage and flagging mechanism, no 
additional circuit is needed. We need only expand the decoding and multiplexing circuits 
to accommodate the additional 110 ports. The UART interface block diagram is sketched 
in Figure 17.9, in which the other 110 peripherals are omitted to reduce clutter. PicoBlaze's 
output port, out-port ,  is connected to a-data  of UART. The decoded enable signal is 
connected to wr-uart, and the data is written to UART transmitting FIFO when it is 
asserted. Similarly, r -da ta  of UART is routed to PicoBlaze's input multiplexing circuit, 



Figure 17.9 UART 110 interface. 

and the decoded clear signal is connected to rd-uar t .  When the UART receiving FIFO 
port is specified in an input instruction, the receiving FIFO's output is routed to PicoBlaze's 
input port, in-port ,  and the decoded remove signal is asserted one clock cycle to remove 
one word from the receiving FIFO. The UART interface also needs to route the two status 
signals, rx-empty and t x - f u l l ,  to PicoBlaze's input multiplexing circuit. The assembly 
program needs to check the status before reading or writing the UART's FIFOs. Since the 
signals are only 2 bits wide, they can be grouped with the previous s and c buttons in the 
same input port. 

17.5.3 Assembly code development 

Since the previous assembly code is developed in a modular fashion, we can expand the 
program by adding a routine, proc-uart ,  to process UART transactions. The main program 
becomes 

c a l l  i n i t  ; i n i t i a l i z a t i o n  
f o r e v e r  : 

; m a i n  l o o p  bod-v 
c a l l  p r o c - b t n  ; c h e c k  & p r o c e s s  b u t t o n s  
c a l l  p r o c - u a r t  ; c h e c k  & p r o c e s s  u a r t  rx 
c a l l  s q u a r e  ; c a l c u l a t e  s q u a r e  
c a l l  l o a d - l e d - p t t n  ; s t o r e  l e d  p a t t e r n s  t o  ram 
c a l l  d i s p - l e d  ; o u t p u t  l e d  p a t t e r n  
jump f o r e v e r  

Because of the complexity of the required console operation, the proc-uart  is quite 
involved. The pseudo code of this routine is 

; i f  ( n o  c h a r a c t e r  in UART r e c e i v i n g  FIFO) then  
r e t u r n  

; i n p u t  c h a r a c t e r s  from FIFO 
; i f  ( c h a r a c t e r s  i s  a )  then  

i n p u t  s w i t c h  v a l u e  
s t o r e  i t  t o  d a t a  ram 
d i s p l a y  prompt 
r e t u r n  

; i f  ( c h a r a c t e r s  i s  b )  t h e n  



SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 437 

i n p u t  s w i t c h  v a l u e  
s t o r e  i t  t o  d a t a  ram 
d i s p l a y  p romp t  
r e t u r n  

; i f  ( c h a r a c t e r s  i s  c )  t h e n  
p e r f o r m  i n i t i a l i z a t i o n  
r e t u r n  

; i f  ( c h a r a c t e r s  i s  d )  t h e n  
dump d a t a  ram 
r e t u r n  

; d i s p l a y  e r r o r  mes sage  
, r e t u r n  

We follow the modular development approach and further divide this routine into simpler 
routines. A key low-level routine is tx-one-byte, which transmits 1 byte via the UART 
port. Its code is 

; i n p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  rd-flag-port, 00 
; 4 f l a g s  ( x x x x t r s c ) :  
; I :  u a r t  t x  f u l l ,  r :  u a r t  r x  n o t  emp ty  
; s :  s  b u t t o n  f l a g ,  c :  c  b u t t o n  f l a g  
; o u t p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  uart-tx-port , 04 ; u a r t  r e c e i v e r  p o r t  
; r e g i s t e r  a l i a s  
namereg sd, tx-data ; d a t a  t o  be  t x  by  u a r t  
. . .  
tx-one-byte : 

i n p u t  s6, rd-f lag-port 
t e s t  s6, 08 ; c h e c k  u a r t - t x - f u l l  
jump n z ,  tx-one-byte ; y e s ,  k eep  on w a i t i n g  
o u t p u t  tx-data, uart-tx-port ; n o ,  w r i t e  t o  u a r t  t x  f i f o  
r e t u r n  

Since PicoBlaze's processing speed is much higher than the UART's transmission speed, we 
must prevent buffer overflow. The routine keeps on checking the status of the transmitting 
FIFO buffer, and writes data only when the buffer is not full. 

The task ofdumping data RAM requires the most work. It displays the data RAM address 
and contents as an 8-by-8 table, which lists the byte address first and then the 8 bytes of 
data in hexadecimal format, as in 

The routine consists of three major routines: d ispram-addr ,  which sends ASCII codes to 
display the 5-bit base address in binary format; disp-ram-data, which sends ASCII codes 
to display 8 bytes of data; and hex-to-ascii ,  which converts a hexadecimal digit to the 
corresponding ASCII code. 

The complete code is shown in Listing 17.3. It includes detailed comments to explain 
operation of the subroutines. The unmodified subroutines of Listing 17.1 are omitted. 



Listing 17.3 Square program with a UART console 
......................................................... 

; s q u a r e  c i r c u i t  w i t h  UART and m u l t i p l i e r  i n t e r f a c e  
......................................................... 

; p r o g r a m  o p e r a t i o n  : 
5 ;  - r e a d  a  and b  f r o m  s w i t c h  
; - c a l c u l a t e  a * a  + b * b  
; - d i s p l a y  d a t a  on H y p e r T e r m i n a l  and  7-seg l e d  

......................................................... 

10 ; d a t a  c o n s t a n t s  
......................................................... 

; s e l e c t e d  ASCII  c o d e s  
c o n s t a n t  ASCII-0, 30 
c o n s t a n t  ASCII-1, 31 

i t  c o n s t a n t  ASCII-2, 32 
c o n s t a n t  ASCII-3, 33 
c o n s t a n t  ASCII-a, 61 
c o n s t a n t  ASCII-b, 62 
c o n s t a n t  ASCII-c , 63 

20 c o n s t a n t  ASCII-d, 64 
c o n s t a n t  ASCII-o, 6F 
c o n s t a n t  ASCII-r, 72 
c o n s t a n t  ASCII-E, 45 
c o n s t a n t  ASCII-S, 53 

2 5  c o n s t a n t  ASCII-Q, 51 
c o n s t a n t  ASCII-D-U ,44 ; u p p e r c a s e  D 
c o n s t a n t  ASCII-GT, 3E ; > 
c o n s t a n t  ASCII-SP, 20 ; s p a c e  
c o n s t a n t  ASCII-CR, OD ; c a r r i a g e  r e t u r n  

3" c o n s t a n t  ASCII-LF, OA ; l i n e  f e e d  

......................................................... 

: d a t a  RAM a d d r e s s  a l i a s  
......................................................... 

;< c o n s t a n t  a-lsb, 00 
c o n s t a n t  b-lsb, 02 
c o n s t a n t  aa-lsb, 04 
c o n s t a n t  aa-msb, 05 
c o n s t a n t  bb-lsb, 06 

4u c o n s t a n t  bb-msb, 07 
c o n s t a n t  aabb-lsb, 08 
c o n s t a n t  aabb-msb, 09 
c o n s t a n t  aabb-cout , OA 
c o n s t a n t  ledO, 10 

45 c o n s t a n t  ledl, 11 
c o n s t a n t  led2, 12 
c o n s t a n t  led3, 13 

......................................................... 

so ; r e g i s t e r  a l i a s  
......................................................... 

; cotnmonl~v u s e d  l o c a l  v a r i a b l e s  
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namereg SO, data ; r e g  f o r  t e m p o r a r y  d a t a  
namereg sl , addr ; r e g  f o r  t e m p o r a r y  mem & i / o  p o r t  addr  

5s namereg s2, i ; g e n e r a l  - p u r p o s e  l o o p  i n d e x  
; g l o b a l  v a r i a b l e s  
namereg sc, switch-a-b ; ram o f f s e t  f o r  c u r r e n t  s w i t c h  i n p u t  
namereg sd , tx-data ; d a t a  t o  be  t x  by  u a r t  

; p o r t  a l i a s  
......................................................... 

i n p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  rd-flag-port, 0 0  

65 ; 4 f l a g s  ( x x x x t r s c ) :  
; t :  u a r t  t x  f u l l  
: r .  u a r t  r x  n o t  emp ty  
; s :  s  b u t t o n  f l a g  
; c :  c  b u t t o n  f l a g  

70 c o n s t a n t  sw-port , 01 ; 8 - b i t  s w i t c h e s  
c o n s t a n t  uart-rx-port , 02 ; u a r t  r e c e i v e r  p o r t  
c o n s t a n t  mult-prodo-port , 03 ; m u l t i p l i c a t i o n  p r o d u c t  8  LSBs 
c o n s t a n t  mult-prodl-port , 04 ; m u l t i p l i c a t i o n  p r o d u c t  8  MSBs 

o u t p u t  p o r t  d e f i n i t i o n s  
75 c o n s t a n t  sseg0-port , 0 0 ;7-seg  l e d  0 

c o n s t a n t  ssegl-port , 0 1 ;7-seg  l e d  1 
c o n s t a n t  sseg2_port, 02 ;7-seg  l e d  2 
c o n s t a n t  sseg3_port, 0 3 ;7-seg  l e d  3 
c o n s t a n t  uart-tx-port , 04 ; u a r t  r e c e i v e r  p o r t  

so c o n s t a n t  mult-src0-port , 05 ; m u l t i p l i e r  o p e r a n d  0 
c o n s t a n t  mult-srcl-port , 06 ; m u l t i p l i e r  o p e r a n d  I 

......................................................... 

; main  program 
*5  .......................................................... 

; c a l l i n g  h i e r a r c h y :  

; main 
, - i n i t  

9 4 ;  - t x - p r o m p t  
- t x - o n e - b y t e  

; - p r o c - b t n  
- i n i t  

; - p r o c - u a r t  
95 ; - t x - p r o m p t  

- i n i t  
- p r o c - u a r t - e r r  

- t x - o n e - b y t e  
- dump-mem 

loo ; - t x - p r o m p t  
- d i s p - r a m - a d d r  

- t x - o n e - b y t e  
- d i s p - r a m - d a t a  

- t x - o n e - b y t e  
I05 ; - g e t - u p p e r - n i b b l e  



- g e t - l o w e r - n i b b l e  
- h e x - t o - a s c i i  

. - s q u a r e  

- m u l t - h a r d  
I I O  ; - l o a d - l e d - p t t n  

- g e t - l o w e r - n i b b l e  
- g e t - u p p e r - n i b b l e  
- h e x - t o - l e d  

: - d i s p - l e d  
lli ; 

. ......................................................... ......................................................... 

c a l l  init ; i n i t i a l i z a t i o n  
forever : 

;ma in  l o o p  body 
120 c a l l  proc-btn ; check  & p r o c e s s  b u t t o n s  

c a l l  proc-uart ; c h e c k  & p r o c e s s  u a r t  r x  
c a l l  square ; c a l c u l a t e  s q u a r e  
c a l l  load-led-pttn ; s t o r e  l e d  p a t t e r n s  t o  ram 
c a l l  disp-led ; o u t p u t  l e d  p a t t e r n  

I?? jump forever 

; r o u t i n e :  i n i t  
; f u n c t i o n  : p e r f o r m  i n i t i a l i z a t i o n  , c l e a r  r e g i s t e r  / ram  

I30 , o u t p u t  r e g i s t e r :  
s w i t c h - a - b :  c l e a r e d  t o  0  

; temp r e g i s t e r :  d a t a ,  i  
......................................................... 

init : 
135 ; c l e a r  memory 

l o a d  i ,  40 ; u n i t i z e  l o o p  i n d e x  t o  64 
l o a d  data, 00 

clr-mem-loop : 
s t o r e  data, (i) 

140 s u b  i, 01 ; d e c  l o o p  i n d e x  
jump n z ,  clr-mem-loop ; r e p e a t  u n t i l  i=O 
; c l e a r  r e g i s t e r  
l o a d  switch-a-b, 00 
c a l l  tx-prompt 

145 r e t u r n  

......................................................... 

; r o u t i n e :  p r o c - ~ a r t  
; f u n c t i o n :  r ead  u a r t  i n p u t  c h a r :  

ISO ; a  or  b :  r ead  a  or  b  f rom s w i t c h ;  
c :  c l e a r ;  d :  d u m p / d i s p l a y  d a t a  ram o t h e r :  e r r o r  

; i n p u t  r e g :  s3  ( i n p u t  p o r t  f l a g )  
; t emp r e g i s t e r  u s e d :  d a t a  
; s 4 :  s t o r e  r e c e i v e d  u a r t  char  o r  00  ( n o  u a r t  i n p u t )  

155 .......................................................... 

proc-uart : 

t e s t  s3, 04 ; c h e c k  u a r t  r x  s t a t u s  
jump z , uart-rx-done ; g o  t o  done  i f  r x  emp ty  



; p r o c e s s  r e c e i v e d  c h a r  
I60 i n p u t  s4, uart-rx-port ; g e t  c h a r  

; c h e c k  i f  r e c e i v e d  c h a r  i s  a  
compare s4, ASCII-a ; c h e c k  ASCII  a  
jump n z ,  chk-ascii-b ; n o ,  c h e c k  n e x t  
i n p u t  data, sw-port ; g e t  s w i t c h  

I65 s t o r e  data, a-lsb ; w r i t e  a  t o  d a t a  ram 
c a l l  tx-prompt ; new  prompt  l i n e  
jump uart-rx-done 

chk-ascii-b : 
; c h e c k  i f  r e c e i v e d  c h a r  i s  b 

170 compare s4, ASCII-b ; c h e c k  ASCII  b 
jump n z ,  chk-ascii-c ; n o ,  c h e c k  n e x t  
i n p u t  data, sw-port ; g e t  s w i t c h  
s t o r e  data, b-lsb ; w r i t e  b t o  d a t a  ram 
c a l l  tx-prompt ;new prompt  l i n e  

I75 jump uart -rx-done 
chk-ascii-c : 

; c h e c k  i f  r e c e i v e d  c h a r  i s  c  
compare s4, ASCII-c ; c h e c k  ASCII  c  
jump n z ,  chk-ascii-d ; n o  c h e c k  n e x t  

I00 c a l l  init ; c l e a r  
jump uart-rx-done 

chk-ascii-d: 
; c h e c k  i f  r e c e i v e d  c h a r  i s  d  
compare s4, ASCII-d ; c h e c k  ASCII  d  

la jump nz , ascii-undef ined 
c a l l  dump-mem ; d u m p / d i s p l a y  ram 
jump uart-rx-done 

ascii-undefined: 
; u n d e f i n e d  c h a r  

190 c a l l  proc-uart-error 
uart-rx-done : 

r e t u r n  

......................................................... 

195 ; r o u t i n e :  p r o c - ~ a r t - e r r o r  
; f u n c t i o n :  d i s p l a y  " E r r o r "  f o r  unknown u a r t  c h a r  
......................................................... 

proc-uart-error: 
l o a d  tx-data, ASCII-LF 

200 c a l l  tx-one-byte : t r a n s m i t  LF 
l o a d  tx-data, ASCII-CR 
c a l l  tx-one-byte ; t r a n s m i t  CR 
l o a d  tx-data, ASCII-SP 
c a l l  tx-one-byte ; t r a n s m i t  SP 

zns c a l l  tx-one-byte ; t r a n s m i t  SP 
l o a d  tx-data, ASCII-E 
c a l l  tx-one-byte ; t r a n s m i t  E 
l o a d  tx-data, ASCII-r 
c a l l  tx-one-byte ; t r a n s m i t  r  

210 l o a d  tx-data, ASCII-r 
c a l l  tx-one-byte ; t r a n s m i t  r  



l o a d  tx-data , ASCII-o 
c a l l  tx-one-byte ; t r a n s m i t  o  
l o a d  tx-data, ASCII-r 

:IS c a l l  tx-one-byte ; t r a n s m i t  r  
c a l l  tx-prompt 
r e t u r n  

zzo ; r  o  u  t  i  ti e  : dump-men~ 
; f u n c t i o n :  when d  r e c e i v e d ,  dump 64  b y t e s  o f  ram as 

001000  XX xx XX X X X X x x  xx XX 
010000  xx xx XXXX XXXX X X x x  
. . .  

,,< ' -.. 111000 xx X X x x x x X X  XXXX xx 
; t emp r e g i s t e r  u s e d  
; s3: as o u t e r  l o o p  i n d e x  

s 4 :  ram b a s e  a d d r e s s  

:lo dump-mem : 
l o a d  s3, 00 ; a d d r  u s e d  a s  l o o p  i n d e x  

dump-loop : 
; l o o p  hod-v 
l o a d  s4, s3 ; g e t  ram b a s e  a d d r  ( x x x 0 0 0 )  

.;< s l O s 4  
s10 s4 
s10  s4 
c a l l  disp-ram-addr 
c a l l  disp-ram-data 

240 add s3, 0 1  ; i n c  l o o p  i n d e x  
compare  s3, 08 
jump n z ,  dump-loop ; l o o p  n o t  r e a c h  8 y e t  
c a l l  tx-prompt ; n e w  p r o m p t  
r e t u r n  

:a< 

; r o u t i n e  : t x - p r o m p t  
; f u n c t i o n :  g e n e r a t e  prompt  "SQ>" 
: t emp r e g i s t e r :  t x - d a t a  

2-5" ;--------------------------------------------------------- ......................................................... 

tx-prompt : 
l o a d  tx-data, ASCII-LF 
c a l l  tx-one-byte ; t r a n s m i t  LF 
l o a d  tx-data, ASCII-CR 

3 5  c a l l  tx-one-byte ; t r a n s m i t  CR 
l o a d  tx-data, ASCII-S 
c a l l  tx-one-byte ; t r a n s m i t  S 
l o a d  tx-data, ASCII-Q 
c a l l  tx-one-byte ; t r a n s m i t  Q 

260 l o a d  tx-data, ASCII-GT 
c a l l  tx-one-byte ; t r a n s m i t  > 
l o a d  tx-data, ASCII-SP 
c a l l  tx-one-byte ; t r a n s m i t  SP 
r e t u r n  
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; r o u t i n e  : d i s p - r a m - a d d r  
; f u n c t i o n :  d i s p l a y  6 - b i t  ram addr  

bbbO0O 
270 : i n p u t  r e g i s t e r :  

s4 : base  a d d r e s s  
: t emp r e g i s t e r :  

i ,  s 7 :  1 - b i t  mask 
......................................................... 

275 disp-ram-addr : 
; new  l i n e  
load tx-data, ASCII-LF 
c a l l  tx-one-byte ; t r a n s m i t  LF 
load  tx-data, ASCII-CR 

280 c a l l  tx-one-byte ; t r a n s m i t  CR 
load tx-data , ASCII-SP 
c a l l  tx-one-byte ; t r a n s m i t  SP 
c a l l  tx-one-byte ; t r a n s m i t  SP 
; i n i t i a l i z e  t h e  l o o p  i n d e x  and mask 

28s load i, 06 ; a d d r  u sed  a s  l o o p  i n d e x  
load s7, 20 ; s e t  mask t o  0 0 I 0 - 0 0 0 0  

tx-loop : 
; l o o p  bodv  
load tx-data, ASCII-1 ; l o a d  d e f a u l t  ASCII  1  

290 t e s t  s7, s4 ; c h e c k  t h e  b i t  
jump nz, tx-01 ; t h e  b i t  i s  1  
load tx-data, ASCII-0; ; t h e  b i t  is 0 ,  l o a d  ASCII  0  

tx-01: 
c a l l  tx-one-byte ; t r a n s m i t  t h e  ASCII  1 o r  0  

29s ; u p d a t e  l o o p  i n d e x  and mask 
srO s7 ; s h i f t  mask b i t  
s u b  i, 01 ; dec  l o o p  i n d e x  
jump nz , tx-loop ; l o o p  no t  r e a c h  0  y e t  
; d o n e  w i t h  l o o p ,  s e n d  ASCII  s p a c e  

i w  load tx-data, ASCII-SP ; l o a d  ASCII  SP 
c a l l  tx-one-byte ; t r a n s m i t  SP 
r e t u r n  

305 : r o u t i n e  : d i s p - r a m - d a t a  
; f u n c t i o n :  8 - b v t e  d a t a  i n  f o rm  o f  

00  I1 22 33 44 55  66 77 88  
; i n p u t  r e g i s t e r :  

s 4 :  ram base  a d d r e s s  ( x x x 0 0 O )  
I t emp  r e g i s t e r :  i ,  a d d r ,  d a t a  

disp-ram-data : 
; i n i t i a l i z e  t h e  l o o p  i n d e x  and mask 
load i, 0 8  ; addr  u sed  as  l o o p  i n d e x  

3 1 5  d-ram-loop : 
; l o o p  body  
l oad  addr, s4 
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c a l c u l a t e  addr  o f f s e t  
add addr, i 
s u b  addr , 01 

I : s e n d  upper  n i b b l e  
f e t c h  data, (addr) 
c a l l  get-upper-nibble 
c a l l  hex-to-ascii ; c o n v e r t  t o  a s c i i  
l o a d  tx-data, data 

l r i  c a l l  tx-one-byte 
; s e n d  l o w e r  n i b b l e  
f e t c h  data, (addr) 
c a l l  get-lower-nibble 
c a l l  hex-to-ascii ; c o n v e r t  t o  a s c i i  

110 l o a d  tx-data, data 
c a l l  tx-one-byte 
; s e n d  a  s p a c e  
l o a d  tx-data, A S C I I - S P ;  
c a l l  tx-one-byte ; t r a n s m i t  SP 

;.3r s u b  i, 01 ; d e c  l o o p  i n d e x  
jump n z ,  d-ram-loop ; l o o p  n o t  r e a c h  0  v e t  
r e t u r n  

~ . l o  ; r o u t i n e :  h e x - t o - a s c i i  
; f u n c t i o n :  c o n v e r t  a  hex  number t o  a s c i i  code  

add 30  f o r  0 - 9 ,  add 37 f o r  A-F 
: i t ~ p l r t  r e g i s t e r :  d a t a  
......................................................... 

. ~ i  hex-to-ascii : 
compare  data, Oa 
jump c ,  add-30 ; O  t o  9 ,  o f f s e t  30  
add data, 07 ; a  t o  f ,  e x t r a  o f f s e t  07 

add-30 : 
iiu add data, 30 

r e t u r n  

; r o u t i n e  : t x - o n e - b y t e  
i ~ r  ; f u n c t i o n :  ~ , a i t  u n t i l  u a r t  t x  f i f o  no t  f u l l ;  

t h e n  w r i t e  a  b y t e  t o  , f i f o  
; i n p u t  r e g i s t e r :  t x - d a t a  
; temp r e g i s t e r :  

s 6 :  r e a d  p o r t  f l a g  
:(,,I ,--------------------------------------------------------- 

tx-one-byte : 
i n p u t  s6, rd-f lag-port 
t e s t  s6, 0 8  ; c h e c k  u a r t _ t x _ f u l l  
jump n z ,  tx-one-byte ; y e s  , k e e p  on w a i t i n g  

3hS o u t p u t  tx-data, uart-tx-port ; n o ,  w r i t e  t o  u a r t  t.u f i f o  
r e t u r n  

; r o u t i n e  : s q u a r e  
370 : f u n c t i o n :  c a l c u l a t e  a*a  + b*b  
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d a t a / r e s u l t  s t o r e d  i n  ram s t a r t e d  w /  S Q B A S E A D D R  
; t emp r e g i s t e r :  s 3 ,  s 4 ,  s.5, s 6 ,  d a t a  
......................................................... 

square : 
375 ; c a l c u l a t e  a*a  

f e t c h  s3, a-lsb ; l o a d  a  
f e t c h  s4, a-lsb ; l o a d  a  
c a l l  mult-hard ; c a l c u l a t e  a*a  
s t o r e  s6, aa-lsb ; s t o r e  l o w e r  b y t e  o f  a*a  

380 s t o r e  s5, aa-msb ; s t o r e  upper  b y t e  o f  a*a  
; c a l c u l a t e  b*b 
f e t c h  s3, b-lsb ; l o a d  b  
f e t c h  s4, b-lsb : l o a d  b  
c a l l  mult-hard ; c a l c u l a t e  b*b  

38s s t o r e  s6, bb-lsb ; s t o r e  l o w e r  b y t e  o f  b*b 
s t o r e  s5, bb-msb ; s t o r e  upper  b y t e  o f  b*b 
; c a l c u l a t e  a*a+b*b 
f e t c h  data, aa-lsb ; g e t  l o w e r  b y t e  o f  a*a 
add data, s6 ; a d d  l o w e r  b y t e  o f  a*a+b*b 

390 s t o r e  data, aabb-lsb ; s t o r e  l o w e r  b y t e  o f  a*a+b*b 
f e t c h  data, aa-msb ; g e t  upper  b y t e  o f  a * a  
addcy data, s5 ; a d d  upper  b y t e  o f  a*a+b*b 
s t o r e  data, aabb-msb ; s t o r e  upper  b y t e  o f  a*a+b*b 
l oad  data, 00 ; c l e a r  d a t a ,  bu t  k eep  c a r r y  

395 addcy data, 00 ; g e t  c a r r y  f rom p r e v i o u s  + 
s t o r e  data, aabb-cout ; s t o r e  c a r r y  o f  a*a+b*b 
r e t u r n  

4m ; r o u t i n e :  m u l t - h a r d  
; f u n c t i o n  : 8 - b i t  u n s i g n e d  m u l t i p l i c a t i o n  u s i n g  

e x t e r n a l  c o m b i n a t i o n a l  m u l t i p l i e r ;  
; i n p u t  r e g i s t e r :  

s 3 :  m u l t i p l i c a n d  
405 ; s 4 :  m u l t i p l i e r  

, o u t p u t  r e g i s t e r :  
s 5 :  upper  b y t e  o f  p r o d u c t  
s 6 :  l o w e r  b y t e  o f  p r o d u c t  

; temp r e g i s t e r :  
4,0 ;--------------------------------------------------------- ......................................................... 

mult-hard: 
output  s3, mult-src0-port 
o u t p u t  s4, mult-srcl-port 
i n p u t  s5, mult-prodl-port 

415 i n p u t  s6, mult-prodo-port 
r e t u r n  

; T h e  f o l l o w i n g  a re  t h e  same as t h e  p r e v i o u s  l i s t i n g s  
420 ; p r o c - b t n  , l o a d - l e d - p t t n  , d i s p - l e d  
; h e x - t o - l e d ,  g e t - l o w e r - n i b b l e  , g e t - u p p e r - n i b b l e  
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17.5.4 HDL code development 

The new square circuit adds a UART and a combinational multiplier to an I10 interface. 
The former is the module discussed in Section 8.4, and the latter can be inferred from the 
HDL's * operator. The decoding and multiplexing parts of HDL code in Listing 17.2 can be 
expanded to accommodate the two new peripherals. The complete HDL code is shown in 
Listing 17.4. The detailed I10 port address assignment can be found in the header section 
of Listing 17.3. 

Listing 17.4 PicoBlaze with UART console and multiplier interface 

module  pico-uart 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [7:01 sw, 
i n p u t  w i r e  rx, 
i n p u t  w i r e  [1:01 btn, 
o u t p u t  w i r e  tx, 
o u t p u t  w i r e  [3:01 an, 
o u t p u t  w i r e  [7:01 sseg 

111 ) ;  

/ /  s i g n a l  d e c l a r a t i o n  
/ /  KCPSM3/ROM s i g n a l s  
w i r e  [9:01 address; 

Ir w i r e  [17:0] instruction; 
w i r e  [7:0] port-id, out-port ; 
r e g  [7:0] in-port; 
w i r e  write-strobe , read-strobe ; 
/ /  1 / 0  p o r t  s i g n a l s  

20 / /  oz t tpu t  e n a b l e  
r e g  [6:0] en-d; 
/ /  f o u r - d i g i t  s e v e n - s e g m e n t  l e d  d i s p l a y  
r e g  [ 7 :  01 ds3_reg, ds2_reg, dsl-reg , ds0-reg; 
/ /  two  pz t shbzr t tons  

2 r e g  btnc-f lag-reg , btns-f lag-reg ; 
w i r e  btnc-f lag-next , btns-f lag-next ; 
w i r e  set-btnc-flag, set-btns-flag, clr-btn-flag; 
// u a r t  
w i r e  [7:01 rx-char; 

20 w i r e  rd-uart , rx-not-empty , rx-empty; 
w i r e  wr-uart , tx-f ull ; 
/ /  m u l t i p l i e r  
r e g  [7 :01 m-srco-reg , m-srcl-reg ; 
w i r e  [15:01 prod; 

?( 

/ /  b o d v  
// ..................................................... 

// 1 / 0  modtrles 
" / / ..................................................... 

disp-mux disp-unit 
( .  clk(clk1, . reset (reset 1,  

. in3(ds3_reg), . in2 (ds2_reg), . in1 (dsl-reg) 
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. in0 (dsO-reg) , . an(an), . sSeg(sseg)) ; 
debounce btnc-unit 

( .  clk(cik), .reset (reset), . sw(btn LO]) , 
.db-ievei(), .db-tick(set-btnc-flag)); 

debounce btns-unit 
( .  cik(clk), .reset (reset), . sw(btn[1]), 
.db-ievei(), .db-tick(set-btns-flag)); 

uart uart-unit 
( .  elk (elk) , . reset (reset), . rd-uart (rd-uart), 

. wr-uart (wr-uart) , . rx (rx) , 

. w-data (out-port) , . tx-full (tx-f ull), 

. rx-empty (rx-empty) , . r-data(rx-char), .tx(tx)) ; 

/ /  c o m b i n a t i o n a l  m u l t i p l i e r  
assign prod = m-src0-reg * m-srcl-reg; 

/ /  KCPSM and ROM i n s t a n t i a t i o n  
/ /  ..................................................... 

kcpsm3 proc-unit 
( .  clk(cik), .reset (l'bO), . address(address), 

uart-rom rom-unit 
( .  clk(c1k) , . address (address), 

/ /  o u t p u t  i n t e r f a c e  

p o r t  i d :  
ds  0 
ds  1  
ds  2 
ds  3 
u a r t - t x - f i f o  
rn-src0 
m - s r c l  

/ /  r e g i s t e r s  
always CI (posedge clk) 

begin 
if (en-d[0]) 

ds0-reg <= out-port ; 
if (en-d [I]) 

dsl-reg <= out-port ; 
if (en-d [2] 

ds2-reg <= out-port ; 
if (en-d [3] 

ds3-reg <= out-port ; 
if (en-d [5]) 

m-src0-reg <= out-port ; 
if (en-d C61) 

m-srcl-reg <= out-port ; 
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end 

// d e c o d i n g  c i r c u i t  f o r  e n a b l e  s i g n a l s  
100 always Q* 

if (write-strobe) 
case (port-id [2: 01 ) 

3'bOOO: en-d = 7'b0000001; 
3'bOOl: en-d = 7'b0000010; 
3'bOlO: en-d = 7'b0000100; 
3'b011: en-d = 7'b0001000; 
3'blOO: en-d = 7'b0010000; 
3'b101: en-d = 7'b0100000; 
default: en-d = 7'b1000000; 

IIU endcase 
else 

en-d = 7'b0000000; 

assign wr-uart = en-d [41 ; 
// ..................................................... 

/ /  i n p u t  i n t e r f a c e  
/ /  ..................................................... 

/ /  i n p u t  p o r t  i d  
/ / 0 x 0 0 :  f l a g  

I Z U  // 0 x 0 1 :  s w i t c h  
/ / 0 x 0 2 :  u a r t - r x - f i f o  
/ / 0x03  : prod l o w e r  b y t e  
/ / 0 x 0 4 :  prod  upper  b y t e  
/ /  ..................................................... 

125 / /  i n p u t  r e g i s t e r  ( f o r  f l a g s )  
always Q (posedge clk) 

begin 
btnc-flag-reg <= btnc-flag-next; 
btns-flag-reg <= btns-flag-next; 

130 end 
assign btnc-f lag-next = (set-btnc-f lag) ? l'bl : 

(clr-btn-flag) ? lJbO : 
btnc-flag-reg; 

assign btns-f lag-next = (set-btns-f lag) ? l'bl : 

135 (clr-btn-flag) ? 1'bO : 
btns-flag-reg; 

/ /  d e c o d i n g  c i r c u i t  f o r  c l e a r  s i g n a l s  
assign clr-btn-f lag = read-strobe && (port-id [2:0] ==3 ' b000) ; 

I 4 0  assign rd-uart = read-strobe && (port-id [2:0]==3 ' b010) ; 
/ /  i n p u t  m z r l t i p l e x i n g  
assign rx-not-empty = -rx-empty; 
always Q* 

case (port-id C2:OI) 
3'bOOO: in-port = {4'b0, tx-full, rx-not-empty, 

btns-f lag-reg , btnc-f lag-reg); 
3'bOOl: in-port = sw; 
3'bOlO: in-port = rx-char; 
3'b011: in-port = prod [7: 01 ; 
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I50 d e f a u l t  : i n - p o r t  = prod [15 :81 ; 
e n d c a s e  

endmodule 

17.6 BIBLIOGRAPHIC NOTES 

The basic bibliographic information for this chapter is similar to that for Chapter 15. The 
downloaded kcpsm file contains a comprehensive UART and timer design example. The 
Xilinx Web site has pages for "PicoBlaze Forum" and "PicoBlaze User Resources," where 
additional PicoBlaze examples are available. 

17.7 SUGGESTED EXPERIMENTS 

17.7.1 Low-frequency counter I 

An accurate low-frequency counter is discussed in Section 6.3.5. We can treat the period 
counter, division circuit, and binary-to-BCD conversion circuit as three I10 modules, and 
replace the top-level FSM with PicoBlaze. Design the 110 interface, derive the assembly 
and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.2 Low-frequency counter II 

We can reduce the hardware of the frequency counter of Experiment 17.7.1 by replacing the 
division circuit and binary-to-BCD conversion circuit with software subroutines. Redesign 
the 110 interface, derive the assembly and HDL codes, compile and synthesize the circuit, 
and verify its operation. 

17.7.3 Auto-scaled low-frequency counter 

An auto-scaled low-frequency counter is discussed in Experiment 6.5.5. We can use Pi- 
coBlaze to perform all non-time-critical functions. Redesign the circuit with PicoBlaze and 
minimal external hardware. Derive the assembly and HDL codes, compile and synthesize 
the circuit, and verify its operation. 

17.7.4 Basic reaction timer with a software timer 

The reaction timer is discussed in Experiment 6.5.6. We can redesign the circuit using 
PicoBlaze. One task of the design is to keep track of the elapsed time interval. This can be 
done by a software counting routine. Recall that a 50-MHz clock is used on the prototyping 
board and each instruction takes two clock cycles. We can create a counting loop to record 
the number of instructions executed and derive the time interval accordingly. Since the 
interval is at least in the millisecond range, multiple registers are needed for this purpose. 
Design the I10 interface, derive the assembly and HDL codes, compile and synthesize the 
circuit, and verify its operation. 



17.7.5 Basic reaction timer with a hardware timer 

We can repeat Experiment 17.7.4 with a customized hardware timer. The timer should be 
treated as an 110 peripheral. PicoBlaze can output a command to clear, start, or pause the 
timer, and can input the counter's content. Design the 110 interface, derive the assembly 
and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.6 Enhanced reaction timer 

An enhanced reaction timer keeps track of the last four response times and the fastest 
response time, and displays the data on Windows HyperTerminal. We can design a console 
similar to that of Section 17.5. There should be three commands: 

c: clears all data 
f :  displays the fastest response 
r: displays the time of the last four responses 
All other characters: display "error" 

Expand the design in Experiment 17.7.4 or 17.7.5 to include this feature. Derive the 
assembly and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.7 Small-screen mouse scribble circuit 

A small-screen mouse scribble circuit is discussed in Experiment 13.7.10. We can use 
PicoBlaze to monitor the activities of the mouse and update the video memory accordingly. 
Design the 110 interface, derive the assembly and HDL codes, compile and synthesize the 
circuit, and verify its operation. 

17.7.8 Full-screen mouse scribble circuit 

A full-screen mouse scribble circuit is discussed in Experiment 13.7.1 1. We can use Pi- 
coBlaze to monitor the activities of the mouse and update the video memory accordingly. 
Design the I10 interface, derive the assembly and HDL codes, compile and synthesize the 
circuit, and verify its operation. 

17.7.9 Enhanced rotating banner 

A VGA rotating banner circuit is discussed in Experiment 14.6.1. Instead ofafixed message, 
we can enhance this circuit by using a keyboard to enter the message dynamically. Assume 
that the message buffer is 20 characters long and its characters are updated in a first-in- 
first-out fashion. Redesign the circuit with PicoBlaze. Design the 110 interface, derive the 
assembly and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.10 Pong game 

The complete pong game is discussed in Section 14.4. Some functions of the design can 
be implemented by PicoBlaze: 

Top-level control FSM 
Top-level two-second timer and two-digit decade counter 
The circuit that updates the paddle position, ball position, and ball velocities in 
Listing 13.5 



Modify the original circuit, design the I10 interface, derive the assembly and HDL codes, 
compile and synthesize the circuit, and verify its operation. 

17.7.1 1 Text editor 

A UART terminal is discussed in Experiment 14.6.5. We can use PicoBlaze to obtain data 
and commands from the UART and update the tile memory accordingly. Design the 110 
interface, derive the assembly and HDL codes, compile and synthesize the circuit, and 
verify its operation. 
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CHAPTER 18 

PICOBLAZE INTERRUPT INTERFACE 

18.1 INTRODUCTION 

During normal program execution, a microcontroller polls the 110 peripherals (i.e., checks 
the status signals) and determines the course of action accordingly. An I10 peripheral 
is passive and waits for its turn. The interrupt is a mechanism that allows an external 
I10 peripheral to initiate the operation. It, as the name shows, interrupts normal program 
execution and starts a service routine for the 110 peripheral. For a microcontroller, the 
interrupt is usually reserved for a time-critical peripheral operation, which must be processed 
immediately. The PicoBlaze microcontroller provides support for simple interrupt-handling 
capability. In this chapter, we examine the PicoBlaze's interrupt mechanism and use an 
example to illustrate software and interface development. 

18.2 INTERRUPT HANDLING IN PICOBLAZE 

Interrupt handling is a coordinated effort between hardware and software. When an external 
peripheral needs service through interrupt, it asserts the interrupt signal of PicoBlaze. If 
the interrupt service is enabled, PicoBlaze completes execution of the current instruction, 
activates the interrupt -ack signal to acknowledge the acceptance ofthe interrupt request, 
and then implicitly executes the call 3FF instruction. When the instruction is executed, the 
current content of the program counter is saved in a stack and the 3FF address is loaded to 
the programmer counter. Note that the 3FF address is the last location in the instruction 

FPGA Prototyping by Verilog Examples. B y  Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 
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. - -- --- ------ main loop ====== 

forever: 

enable interrupt 

-1- add SO, s3 
sub s5,01 
. . . 
call criticaltiming 
. . . 
jump forever 

.--- ,---time critical segment === 

critical-timing: 
disable interrupt 
. . .  

return 
enable interrupt 

2 

,---interrupt service routine== 
isr: 

4 

L returni enable 
3 

. ---interrupt vector === 

address 3FF \-- jump isr 

Figure 18.1 Interrupted flow. 

memory and serves as the starting point of the interrupt service routine. It usually contains 
a jump instruction, which leads to the body of the service routine. The service should be 
ended with a returni instruction to return to the interrupted point and resume the previous 
execution. 

18.2.1 Software processing 

Four instructions are associated with interrupt, as discussed in Section 15.5.9. The en- 
able interrupt and disable interrupt instructions enable and disable the interrupt request, 
and the two return-from-interrupt instructions, returni enable and returni disable, return 
execution to the interrupted point. 

A typical program segment with interrupt service routine is shown in Figure 18.1. It 
generally consists of the following segments: 

An initial enable interrupt instruction: used to enable the interrupt service. This is 
needed since the interrupt request is disabled by default. 
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clk 

instruction 

address 

interrupt 

interrupt-ack 

I ~ h e  instruction is preempted and 
"call 3FF" is implicitly executed 

Figure 18.2 Timing diagram of an interrupt event. 

A jump instruction in the end of the instruction memory (i.e., 3FF): leads to the 
interrupt service routine. 
Interrupt service routine: the code that actually performs the requested service. The 
routine should be ended with a returni instruction. 

A representative flow of an interrupt event is shown in Figure 18.1. We assume that 
the external I10 asserts the i n t e r r u p t  signal in the middle of the add SO, s 3  instruction. 
PicoBlaze performs the following steps in sequence: 

1.  Completes execution of the current execution. 
2. Saves the content ofthe program counter, clears the interrupt flag, i ,  to zero, preserves 

the zero and carry flags, and loads the program counter with 3FF. 
3. Executes the jump isr instruction in the 3FF address. 
4. Performs the service routine. 
5. Executes the returni instruction, in which the saved program counter and flags are 

restored. 
6. Resumes the interrupted program and executes the sub s 5 , 0 1  instruction. 

18.2.2 Timing 

The detailed timing diagram of the previous interrupt event is shown in Figure 18.2. The 
basic sequence is: 

At t i :  The external interrupt interface asserts the i n t e r r u p t  signal. PicoBlaze 
continues the normal operation to complete execution of the current add SO,  s3 
instruction. 
At t 2 :  PicoBlaze recognizes the interrupt and aborts the next instruction (sub s5,Oi)  
and implicitly executes the call 3FF instruction. 
At t 3 :  PicoBlaze asserts the i n t e r r u p t - a c k  signal. It also saves the address of the 
sub s5,Oi  instruction, preserves the zero and carry flags, and clears the interrupt flag 
to 0. 
At t 4 :  PicoBlaze loads and executes the instruction in address 3FF, jump i s r .  
The external interrupt interface circuit acknowledges the in te r rup t -ack  signal and 
deasserts the i n t e r r u p t  signal. 
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1 in-port out-port I 
I reset port-id I 

interrupt-ack 
address 

KCPSM3 

Figure 18.3 Interrupt interface with a single request. 

At t5: PicoBlaze starts the interrupt service routine. 
Note that it requires up to five clock cycles from the time that the interrupt signal is 
asserted to the time that the first instruction of interrupt service routine is executed. 

18.3 EXTERNAL INTERFACE 

The nature of the interrupt request is similar to that of a single-access port discussed in 
Section 17.3.2. After the request is accepted, it must be cleared so that the same request 
will not be processed multiple times. The flag FF discussed in Section 8.2.4 can be used 
for this purpose. 

18.3.1 Single interrupt request 

If there is only one 110 peripheral in a PicoBlaze system that can generate an interrupt 
request, we just need a single flag FF in the interrupt interface circuit, as shown in Fig- 
ure 18.3. When the service is required, the external 110 circuit asserted the int request 
signal for one clock cycle, which sets the flag FF to 1 and activates the interrupt input 
of PicoBlaze. If the interrupt is enabled in PicoBlaze, it acknowledges acceptance of the 
request by asserting the interrupt-ack signal for one clock cycle, which clears the flag FF 
to 0. 

18.3.2 Multiple interrupt requests 

Processing a PicoBlaze system with two or more interrupt requests is more involved. The 
PicoBlaze microcontroller must determine which peripheral issues the request and clear 
the corresponding flag FF after the request is accepted. This needs the coordination of the 
hardware interface and the interrupt service routine. 

The interrupt interface with two requests is shown in Figure 18.4. The two individual 
requests, int request0 and int request 1, are connected to two flag FFs, and the output 
signals of the FFs are passed to an or gate to generate the final interrupt request signal. In 
addition, the two signals are also routed to the input multiplexer. If at least one request 
is asserted, the interrupt signal of PicoBlaze is asserted. When PicoBlaze senses the 
request, it does not know which peripheral or whether both peripherals issue the request. 
The interrupt service routine must first input the two request signals and check their values 
according to the assigned priority, and then perform the corresponding service. 
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int request 0 

int request 1 

Figure 18.4 Interrupt interface with two requests. 

In addition, PicoBlaze also needs to clear the corresponding flag FF. The in t e r rup t  - a c k  

signal cannot be used for this purpose because it is not'known which peripheral's request 
is accepted when the i n t e r r u p t - a c k  signal is asserted. Instead, we need to use a special 
output decoding circuit to generate a clear tick. The c l r  signal of each flag FF is assigned 
to a unique port id. In the interrupt service routine, we add an output instruction after 
determining which interrupt request is accepted. The instruction does not actually output 
any data. It is used to generate a single-clock-cycle tick to clear the corresponding flag FF. 

To reduce the software overhead and increase response speed, we can design an interrupt 
controller to facilitate the process. This approach is discussed in Experiment 18.7.5. 

-+ 

18.4 SOFTWARE DEVELOPMENT CONSIDERATIONS 

set flag 
clr 

>flag FF 

set flag 
clr 

>flag FF 

- 

18.4.1 Interrupt as an alternative scheduling scheme 

Recall that a microcontroller-based application usually follows a simple polling program 
structure: 

t+ 

-- 

c a l l  initialization-routine 
forever : 

c a l l  taskl-routine; 
c a l l  task2-routine; 

in-port outgort 

- 1  

. . . 
c a l l  taskn-routine, 
jump forever; 

Some tasks may involve 110 operations. During execution, the microcontroller checks 
the VO status in turn and takes actions accordingly. The program structure implicitly 
implements a round-robin schedule, in which each task waits in turn to be executed. This 
scheme can work properly if the loop interval is short enough so that each I10 request can 
be checked and processed in a timely manner. In some applications, there may exist one or 
two time-critical 110 requests that require immediate attention. The interrupt mechanism 
provides a way to alter the original schedule and gives certain tasks higher priorities. 

Since an interrupt can occur at any time, the original loop must consider the frequency 
of interrupt and the required service time of each interrupt request. This can be complicated 
if there are multiple interrupt requests and the service routine is involved. 

reset potid 
read-stmbe 

instruction write-strobe 

intempt intempt-a& 

> address 
KCPSM3 

, 
output 
decoding 
- - 



mod-500 
counter 

flag FF 

sseg 

an + 

Figure 18.5 Interrupt interface with a timer. 

in-port out-port ; l d  q- 
reset p o t i d  - en 

read-strobe > 
instruction write-strob 

circuit 
interrupt interrupt-ack - 
> address en 

KCPSM3 > 

18.4.2 Development of an interrupt service routine 

The interrupt service routine is somewhat like a subroutine. It suspends normal program 
execution, performs an independent task, and then resumes the previous execution. How- 
ever, unlike a subroutine call, an interrupt can occur any time. To resume execution later, 
the service routine must save the current state (also known as the context) of the PicoBlaze 
processor. In other words, the service routine must save all registers used in service routine 
computation and then restore them before returning to normal execution. This process is 
known as context switching. 

Since PicoBlaze is a compact 8-bit microcontroller, the hardware support for context 
switching and scheduling is very limited. We should use the polling scheme in general and 
keep the interrupt structure simple and straightforward. Instead of worrying about context 
switching, we can allocate several dedicated registers to be used exclusively in the interrupt 
service routine. 

18.5 DESIGN EXAMPLE 

The square circuit of Chapter 17 uses a seven-segment LED display to show the values of 
input operands and result. We use the predesigned LED multiplexing module, dispmux, 
for this purpose. The design of this module is discussed in Section 4.5.1. It consists of a 
large counter to generate slow enable pulses and a multiplexing circuit to route the input 
patterns. 

To save hardware, we can implement this functionality in software and let PicoBlaze 
control the 4-bit enable signal, an, and the 8-bit LED signal, sseg, of the four-digit LED 
display directly. To generate a visually continuous pattern, the enable pulse and LED 
patterns must be refreshed at a constant rate, as shown in Figure 4.6. While using pure 
software to keep track of time is possible, the code is tedious and error-prone. We use 
a dedicated hardware timer and PicoBlaze's interrupt facility to perform the task. The 
required hardware and software modifications are illustrated in the following subsections. 

18.5.1 Interrupt interface 

The block diagram of the timer and interrupt interface, as well as the new output buffers, is 
shown in Figure 18.5. The timer is a mod-500 counter and generates a single-clock-cycle 
tick every 500 clock cycles. Since the 50-MHz clock is used for the timer, the period of 
the tick is 0.01 ms. Because there is only one interrupt request, we use the flag FF scheme 
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discussed in Section 18.3.1 for the interrupt interface. The tick sets the flag FF and activates 
the i n t e r rup t  signal of PicoBlaze. 

18.5.2 Interrupt service routine development 

To keep track of the elapsed time, PicoBlaze counts the number of timer ticks. As discussed 
in Section 18.4.2, we want to keep the interrupt service routine simple and use two dedicated 
registers, countnsb  and count-lsb, for this task. The two registers are cascaded as a 
16-bit register and are incremented each time the interrupt service routine is called. They 
can count to 0.6 second (i.e., 216 * 0.01 ms). The interrupt-related code segment is 

namereg se, count-msb ; t i m e r  t i c k  c o u n t  8 MSBs 
namereg sf, count-lsb ; t i m e r  t i c k  c o u n t  8 LSBs 
. . .  

; i n t e r r u p t  s e r v i c e  r o u t i n e  
int-service-routine: 

add count-lsb, 01 ; i n c  1 6 - b i t  c o u n t e r  
addcy count-msb, 00  
returni enable 

; i n t e r r u p t  v e c t o r  
a d d r e s s  3 F F  
jump int-service-routine 

18.5.3 Assembly code development 

With the timing information available, we can derive a new subroutine, displaynux-out,  
for the LED display. This routine replaces the disp-led routine used in Chapter 17. Two 
new output buffers are needed to store the an and sseg signals, as shown in Figure 18.5. The 
main task of the subroutine is to store the an pattern, which can be " 11 1 O", " 1 101 ", " 101 1 ", 
or "01 1 1 ", and the corresponding seven-segment LED pattern to the registers periodically. 
As discussed in Section 4.5.1, the refreshing rate should be around from a few hundred to 
a few thousand hertz. In our code we update these registers every 21° ticks, which is about 
10 ms. We also use a register, led-pos, to keep track of the current display position (i.e., 
one of the four LED displays). 

To incorporate the new interrupt feature into Listing 17.3, the code is modified as follows: 

Add new port and register definitions. 
Replace the original disp-led routine with the displaynux-out  routine. 
Add the enable interrupt instruction in the i n i t  routine to enable interrupt handling. 
Initialize the led-pos, countnsb,  and count-lsb registers in the i n i t  routine. 
Add the interrupt service routine. 

The modified portion of the assembly code is shown in Listing 18.1. 

Listing 18.1 Square program with interrupt interface 

. . . 
: r e g i s t e r  a l i a s  
namereg sb, led-pos ; l e d  d i s p  p o s i t i o n  (0, I ,  2 o r  3 )  
namereg se, count-msb ; t i m e r  t i c k  c o u n t  8 MSBs 

s namereg sf, count-lsb ; t i m e r  t i c k  c o u n t  8 LSBs 
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; o u t p u t  p o r t  d e f i n i t i o n s  
c o n s t a n t  an-port , 00 
c o n s t a n t  sseg-port , 01 

10 . . .  
; main program 

c a l l  init ; i n i t i a l i z a t i o n  
forever : 

; main l o o p  body  
15 c a l l  proc-btn ; c h e c k  & p r o c e s s  b u t t o n s  

c a l l  square ; c a l c u l a t e  s q u a r e  
c a l l  load-led-pttn ; s t o r e  l e d  p a t t e r n s  t o  ram 
c a l l  display-mux-out ; m u l t i p l e x  l e d  p a t t e r n s  
jump forever 

20 

......................................................... 

; r o u t i n e :  i n i f  
......................................................... 

init : 
5 enable interrupt 

. . . 
l o a d  led-pos, 00 
l o a d  count-msb, 00 
l o a d  count-lsb, 00 

30 r e t u r n  

......................................................... 

; r o u t i n e  : d i s p l a y - m u x - o u t  
; f u n c t i o n :  g e n e r a t e  e n a b l e  p u l s e  & l e d  p a t t e r n  

I S  ; f o r  4 - d i g i t  7 -segment  l e d  d i s p l a y  
; i n p u t  r e g i s t e r :  

coun t -msb  , c o u n t - l s b  : t i m e r  c o u n t  
l e d - p o s  : c u r r e n t  l e d  p o s i t i o n  

; o u t p u t  r e g i s t e r :  
40 ; l e d - p o s  : u p d a t e d  l e d  p o s i t i o n  
; tmp r e g i s t e r :  d a t a ,  addr  
......................................................... 

display-mux-out : 
compare count-msb , 02 ; c o u n t  =00000100~0000OOOO 

5 jump c , mux-out-done 
; c l e a r  t i m e  c o u n t e r  ( c o u n t  > 2 0 )  
l o a d  count-lsb, 00 
l o a d  count-msb, 00 
; u p d a t e  7-segment  l e d  p o s i t i o n  

SO add led-pos, 01 
compare led-pos, 04 
jump nz , gen-an-signal 
l o a d  led-pos, 0 0  ; l e d - p o s  wraps a round  

gen-an-signal : 
55 ; g e n e r a t e  4 - b i t  anode  e n a b l e  s i g n a l  

l o a d  data, OE ; x x x x - 1 1  1 0  
compare led-pos, 00 
jump z, shift-an-0 
compare led-pos, 01 



6 jump z ,  shift-an-1 
compare led-pos, 02 
jump z, shift-an-2 
sll data ; s h i f t  I l l 0  3 t i m e s  

shift-an-2: 
65 s l l d a t a  ; s h i f t  I l l 0  2 t i m e s  
shift-an-1: 

sll data ; s h i f t  I110 I t i m e s  
shift-an-0: 

o u t p u t  data, an-port 
70 : o ~ r t p u t  7-seg l e d  p a t t e r n  

l o a d  addr, led0 
add addr, led-pos 
f e t c h  data, (addr) 
o u t p u t  data, sseg-port 

7s mux-out-done : 
r e t u r n  

; r o u t i n e :  i n t e r r u p t  s e r v i c e  r o u t i n e  
RO : f u n c t i o n  ; i n c r e m e n t  16- b i t  c o u n t e r  
; i n p u t  r e g i s t e r :  

c o u n t - m s b  , c o u n t - l s b  : t i m e r  c o u n t  
: ozrtput  r e g i s t e r :  

c o u n t - m s b  , c o u n t - l s b  : i n c r e m e n t e d  
*5  .......................................................... 

int-service-routine: 
add count-lsb, 01 ; i n c  16- b i t  c o u n t e r  
addcy count-msb , 00 
returni enable 

YO 

......................................................... 

; i n t e r r u p t  v e c t o r  
......................................................... 

a d d r e s s  3 F F  
5 jump int-service-routine 

......................................................... 

: T h e  f o l l o w i n g  a r e  t h e  same as  t h e  p r e v i o u s  l i s t i n g s :  
; p r o c - b t n  , l o a d - l e d - p t t n  , 

loo ; h e x _ t o _ l e d ,  g e t ~ l o w e r - n i b b l e  , g e t - u p p e r - n i b b l e  
; square  , m u l t L s o f t  
, . . .  
......................................................... 

18.5.4 HDL code development 

The 110 interface of the interrupt-based square circuit includes three parts. The input 
interface is similar to that in Section 17.4. The output interface consists of a decoding 
circuit and two output registers for the an and sseg signals, as shown on the right of 
Figure 18.5. The interrupt interface consists of a timer and a flag FF, as shown on the 



left of Figure 18.5. The HDL code basically follows the block diagram and is shown in 
Listing 18.2. 

Listing 18.2 PicoBlaze-based square circuit with interrupt 

module pico-int 
( 

i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  [ 7 : 0 1  sw, 

s i n p u t  w i r e  [ 1 : 0 ]  btn, 
o u t p u t  w i r e  [ 3 : 0 1  an, 
o u t p u t  w i r e  [ 7 : 0 1  sseg 

1;  

10 // s i g n a l  d e c l a r a t i o n  
// KCPSM3/ROM s i g n a l s  
w i r e  [ 9 : 0 ]  address; 
w i r e  [ 1 7 : 0 1  instruction; 
w i r e  [ 7 :  01 port-id , out-port ; 

15 r e g  [ 7 : 0 1  in-port ; 
w i r e  write-strobe , read-strobe ; 
w i r e  interrupt , interrupt-ack ; 
// 1 / 0  p o r t  s i g n a l s  
// o u t p u t  e n a b l e  

20 r e g  [ 1 : 0 1  en-d; 
// f o u r - d i g i t  s e v e n - s e g m e n t  l e d  d i s p l a y  
r e g  [ 7 : 0 1  sseg-reg; 
r e g  [3:01 an-reg; 
// two  p u s h b u t t o n s  

25 r e g  btnc-f lag-reg , btns-f lag-reg ; 
wire  btnc-f lag-next , btns-f lag-next ; 
w i r e  set-btnc-flag, set-btns-flag, clr-btn-flag; 
// i n t e r r u p t  r e l a t e d  s i g n a l s  
r e g  C8: 01 timer-reg; 

l o  w i r e  [ 8 : 0 1  timer-next ; 
wire  ten-us-tick; 
r e g  timer-f lag-reg ; 
w i r e  timer-f lag-next ; 

3 5  / / b o d y  
/ /  ..................................................... 

// 1 / 0  m o d u l e s  
// ..................................................... 

debounce btnc-unit 
JO (.clk(clk), .reset(reset), .sw(btn[Ol), 

.db-level(), .db-tick(set-btnc-flag)); 
debounce btns-unit 

( .  clk(c1k) , . reset (reset ) , . sw (btn Ell , 
.db-level(), .db-tick(set-btns-flag)); 

a // ..................................................... 

/ / KCPSM and  ROM i n s t a n t i a t i o n  
// ..................................................... 



.instruction(instruction), .port-id(port-id), 

.write-strobe(write-strobe), .out-port(out-port), 

.read-strobe(read-strobe), .in-port(in-port), 

.interrupt(interrupt), .interrupt-ack(interrupt-ack)); 
int-rom rom-unit 

55 ( .  clk(c1k) , .address (address), 
.instruction(instruction)); 

// -------------------------------------======~========= 

/ /  o u t p u t  i n t e r f a c e  
/ /  ..................................................... 

60 / /  o u t p o r t  p o r t  i d :  
// 0-x-00: an 
/ / 0 x 0 1 :  s s g  

/ /  r e g i s t e r s  
65 always Q(posedge clk) 

begin 
if (en-d C01) 

an-reg <= out-port [3: 01 ; 
if (en-dC11) 

sseg-reg <= out-port ; 
end 

assign an = an-reg; 
assign sseg = sseg-reg; 
/ /  d e c o d i n g  c i r c u i t  f o r  e n a b l e  s i g n a l s  

75 always Q* 
if (write-strobe) 

case (port-id [Ol) 
l'bO: en-d = 2'bOl; 
l'bl: en-d = 2'blO; 

endcase 
else 

en-d = 2'bOO; 
/ /  ..................................................... 

/ /  i n p ~ r t  i n t e r f a c e  

/ /  i n p u t  p o r t  i d  
/ / 0 x 0 0 :  f l a g  
// 0 x 0 1 :  s w i t c h  

90 // i n p u t  r e g i s t e r  ( f o r  f l a g s )  
always Q (posedge clk) 

begin 
btnc-flag-reg <= btnc-flag-next; 
btns-flag-reg <= btns-flag-next; 

95 end 
assign btnc-flag-next = (set-btnc-flag) ? l'bl : 

(clr-btn-flag) ? l'bO : 
btnc-flag-reg; 

assign btns-flag-next = (set-btns-flag) ? l'bl : 

100 (clr-btn-flag) ? l'bO : 
btns-flag-reg; 

// d e c o d i n g  c i r c u i t  f o r  c l e a r  s i g n a l s  



assign clr-btn-f lag = read-strobe && (port-id [O]==l ' bO) ; 
/ /  i n p u t  m u l t i p l e x i n g  

105 always Q* 
case (port-id [O] 

l'bO: in-port = {6'b0, btns-flag-reg, btnc-flag-reg); 
l'bl: in-port = sw; 

endcase 
110 

/ /  ..................................................... 

/ /  i n t e r r u p t  i n t e r f a c e  
/ /  ..................................................... 

// 10 us c o u n t e r  
115 always Q(posedge clk) 

timer-reg <= timer-next ; 
assign ten-us-tick = (timer_reg==499) ; 
assign timer-next = ten-us-tick ? 0 : timer-reg + 1; 
// I0 us t i c k  f l a g  

120 always @(posedge clk) 
timer-flag-reg <= timer-flag-next; 

assign timer-f lag-next = (ten-us-tick) ? 1' bl : 
(interrupt-ack) ? l'bO : 

timer-flag-reg; 
I25 // i n t e r r u p t  r e q u e s t  

assign interrupt = timer-f lag-reg; 

endmodule 

18.6 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapters 15 to 17. 

18.7 SUGGESTED EXPERIMENTS 

18.7.1 Alternative timer interrupt service routine 

The interrupt service routine in Listing 18.1 uses two dedicated registers to record the 
number of timer ticks. The two registers thus cannot be used for other computation. An 
alternative is to use 2 bytes of the data RAM for this purpose and use the registers only 
temporarily in the service routine. Since an interrupt can occur anytime, we must save and 
restore the corresponding registers. For example, if the SO and sl registers are used in the 
service routine for computation, their contents must be saved when the service routine is 
invoked and then restored later when the computation is completed. Derive the assembly 
and HDL codes, compile and synthesize the circuit, and verify its operation. 

18.7.2 Programmable timer 

We can replace the mod-500 counter of Section 18.5 with a general mod-m counter and 
thus make the timer "programmable." The new timer operates as follows: 

a m is a 12-bit unsigned number. 



Figure 18.6 Interrupt interface with a four-request interrupt handler. 

ThefourLSBsofn~is"1111". 
The timer has an 8-bit register to store the eight MSBs of m. The register is treated 
as a new output port of PicoBlaze. 
A new pushbutton controls the loading of the register. When it is pressed, PicoBlaze 
inputs the value from the 8-bit switch and outputs the value to the timer's register. 

Design the new 110 interface, derive the assembly and HDL codes, and compile and syn- 
thesize the circuit. Load different values in the timer and observe what happens to the LED 
display. 

18.7.3 Set-button interrupt service routine 

In the square circuit discussed in Section 17.4, the s button is used to load the n and b 
operands from the 8-bit switch. Its status is polled continuously in the main loop. We can 
revise this portion of the code and use an interrupt mechanism to perform this task. The 
interrupt service routine involves several temporary registers, and they must be saved and 
restored properly, as discussed in Experiment 18.7.1. Design the new 110 interface, derive 
the assembly and HDL codes, compile and synthesize the circuit, and verify its operation. 

18.7.4 Interrupt interface with two requests 

Assume that we want to implement both the timer interrupt request of Listing 18.1 and 
the set-button interrupt request of Experiment 18.7.3 in a PicoBlaze system. Follow the 
discussion in Section 18.3.2 to design the new interrupt interface and interrupt service 
routine. Derive the assembly and HDL codes, compile and synthesize the circuit, and 
verify its operation. 

18.7.5 Four-request interrupt controller 

An interrupt controller helps the processor to process multiple interrupt requests. The 
block diagram of a four-request interrupt controller is shown in Figure 18.6. The interrupt 
controller should contain four flag FFs and a special priority encoding circuit. If one 
or more interrupt requests are activated, the controller determines which request has the 
highest priority, places its 2-bit code on the req-id port, and asserts the int signal. When 
PicoBlaze asserts the interrupt-ack signal, the controller clears the corresponding flag. 
For simplicity, we assume that int-request-3 has the highest priority and int-request-0 
has the lowest priority. 



Derive HDL code for the interrupt controller and repeat Experiment 18.7.4 using the 
new controller (the two unused interrupt requests can be tied to 0). 
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SAMPLE VERILOG TEMPLATES 

A.l NUMBERS AND OPERATORS 

A.l . l  Sized and unsized numbers 

number stored value comment 

5'bllOlO 
5'blI-010 
5'032 
5 'hla 
5'd26 
5'bO 
5'bl 
5'bz 
5'bx 
5'bxOl 
-5 ' b0000 1 

11010 
11010 
11010 
11010 
11010 
00000 
00001 
ZZZZZ 

XXXXX 

xxx0l 
I1111 

- ignored 

0 extended 
0 extended 
z extended 
x extended 
x extended 
2's complement of 00001 

' b11010 00000000000000000000OOOOOOOllOlO extended to 32 bits 
' hee 00000000000000000000OOOOl 1101 110 extended to 32 bits 
1 00000000000000000000000000000001 extended to 32 bits 
-1 11111111111111111111111111111111 extended to 32 bits 

FPGA Proto@ping by Verilog Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 



A.1.2 Operators 

n p e  of Operator Description Number 
operation symbol of operands 

Arithmetic + addition 2 
- subtraction 2 
* multiplication 2 
/ division 2 
% modulus 2 
+* exponentiation 2 

Shift >> logical right shift 2 
<< logical left shift 2 
>>> arithmetic right shift 2 
<<< logical left shift 2 

Relational > greater than 2 
< less than 2 
>= greater than or equal to 2 
<= less than or equal to 2 

Equality -- -- equality 
! = inequality 
--- --- case equality 
I == case inequality 

Bitwise - bitwise negation 1 
& bitwise and 2 
I bitwise or 2 .. bitwise xor 2 

Reduction & reduction and 1 
I reduction or 1 
.. reduction xor 1 

Logical ! logical negation 1 
&& logical and 2 

I I logical or 2 

Concatenation { } concatenation any 
{ { ) ) replication any 

Conditional ? : conditional 3 



A.2 GENERAL VERILOG CONSTRUCTS 

A.2.1 Overall code structure 

Listing A . l  Overall code structure 

module bin-counter 
/ /  o p t i o n a l  p a r a m e t e r  d e c l a r a t i o n  
# ( p a r a m e t e r  N=8) // d e f a u l t  8 
// p o r t  d e c l a r a t i o n  

5 ( 
i n p u t  w i r e  clk, reset, // c l o c k  & r e s e t  
i n p u t  w i r e  syn-clr, load, en, // i n p u t  c o n t r o l  
i n p u t  w i r e  [N-1:Ol d, // i n p u t  d a t a  
o u t p u t  w i r e  max-tick, // o u t p u t  s t a t u s  

10 o u t p u t  w i r e  [N-1:Ol q // o u t p u t  d a t a  
) ;  

/ /  c o n s t a n t  d e c l a r a t i o n  
l o c a l p a r a m  MAX = 2**N - 1; 

I ?  / /  s i g n a l  d e c l a r a t i o n  
r e g  IN-1:01 r-reg, r-next; 

// body  
............................................. 

20 // componen t  i n s t a n t i a t i o n  
............................................. 

/ /  no i n s t a n t i a t i o n  i n  t h i s  code  

zr // memory e l e m e n t s  

// r e g i s t e r  
a l w a y s  Q ( p o s e d g e  clk, p o s e d g e  reset) 

i f  (reset) 
1u r-reg <= 0; 

e l s e  
r-reg <= r-next; 

3 5  // c o m b i n a t i o n a l  c i r c u i t s  

// n e x t - . s t a t e  l o g i c  
a l w a y s  Q *  

i f  (syn-clr) 
r-next = 0; 

e l s e  i f  (load) 
r-next = d; 

e l s e  i f  (en) 
r-next = r-reg + 1 ;  

45 e l s e  
r-next = r-reg; 

/ /  o u t p u t  l o g i c  



a s s i g n  q = r-reg; 
a s s i g n  max-tick = (r-reg==2**N-1) ? lJbl : lJbO; 

50 

endmodule 

A.2.2 Component instantiation 

Listing A.2 Component instantiation template 

module counter-inst 
( 

i n p u t  w i r e  clk , reset, 
i n p u t  w i r e  syn-clrl6, loadl6, en16, 

5 i n p u t  w i r e  [15:01 d, 
o u t p u t  w i r e  max-tick8, max-tickl6, 
o u t p u t  w i r e  [15:01 q 

1;  

l o  / / b o d y  
// i n s t a n t i a t i o n  of  1 6 - b i t  c o u n t e r ,  a l l  p o r t s  u s e d  
bin-counter #(.N(16)) counter-16-unit 

( .  clk(c1k) , .reset (reset), 
. syn-clr (syn_clrl6), . load(loadl6), . en(enl61, 

IS .d(d), .max-tick(max_tickl6), . q ( q ) ) ;  
// i n s t a n t i a t i o n  of  f r e e - r u n n i n g  8 - b i t  c o u n t e r  
/ /  w i t h  o n l y  t h e  m a x - t i c k  s i g n a l  
bin-counter counter-8-unit 

(.clk(clk), .reset(reset), 
20 . syn-clr (1 'bO), . load(lJbO), . en(lJbl) , 

.d(8'h00), .max-tick(max_tick8), . q O )  ; 

endmodule 

A.3 ROUTING WITH CONDITIONAL OPERATOR AND IF AND CASE 
STATEMENTS 

A.3.1 Conditional operator and if statement 

Listing A.3 Priority encoder using conditional operator and if statement 

( 
i n p u t  w i r e  [ 4 :  11 r ,  
o u t p u t  w i r e  [2:0] yl, 
o u t p u t  r e g  [2:0] y2 

s 1;  

// C o n d i t i o n a l  o p e r a t o r  
a s s i g n  yl = (r [41) ? 3lb100 : // can a l s o  use  ( r [ 4 ] = = l  ' b l )  

(r[31) ? 3'b011 : 

(r [ 2 ] )  ? 3'bOlO : 



// I f  s t a t e m e n t  
1 5  // - each  b ranch  can  c o n t a i n  m u l t i p l e  s t a t e m e n t s  

/ / w i t h  b e g i n  . . . end  d e l i m i t e r s  
a l w a y s  Q* 

i f  (rC41) 
y2 = 3'blOO; 

20 e l s e  i f  (r [31) 
y2 = 3'b011; 

e l s e  i f  (r C21) 
y2 = 3'bOlO; 

e l s e  i f  (r [I]) 
z j  y2 = 3'bOOl; 

e l s e  
y2 = 3'bOOO; 

endmodule  

A.3.2 Case statement 

Listing A.4 Priority encoder using case statement 

module prio-encoder-case 
( 

i n p u t  w i r e  [4:11 r ,  
o u t p u t  r e g  [2:01 y1, y2 

5 1;  

/ /  c a s e  s t a t e m e n t  
/ /  - each  b ranch  can  c o n t a i n  m u l t i p l e  s t a t e m e n t s  
/ / w i t h  b e g i n  . . . end  d e l i m i t e r s  

1 0  a l w a y s  Q *  
c a s e  (r) 

4'b1000, 4'b1001, 4'b1010, 4'b1011, 
4'b1100, 4'b1101, 4'b1110, 4'bllll: 

yl = 3'blOO; 
4'b0100, 4'b0101, 4'b0110, 4'b0111: 

yl = 3'b011; 
4'b0010, 4'bOOll: 

yl = 3'bOlO; 
4' b0001: 

20 yl = 3'bOOl; 
4' boo00 : // d e f a u l t  can  a l s o  be u sed  

yl = 3'bOOO; 
e n d c a s e  

2% // c a s e z  s t a t e m e n t  
a l w a y s  Q *  

c a s e z  (r) 
4'bl???: y2 = 3'blOO; // use  ? f o r  don ' t - c a r e  



4'b01??: y2  = 3'bOll; 
30 4'b001?: y2 = 3'bOlO; 

4'bOOOl: y2  = 3'bOOl; 
4'bOOOO: y2 = 3'bOOO; // d e f a u l t  can  a l s o  be  u s e d  

e n d c a s e  

35 endmodule 

A.4 COMBINATIONAL CIRCUIT USING AN ALWAYS BLOCK 

A.4.1 Always block without default output assignment 

Listing A.5 Always block template (without default output assignment) 

module compare-no-def ult 
( 

i n p u t  w i r e  a, b ,  
o u t p u t  r e g  gt, eq 

5 1; 

// - use  @* t o  i n c l u d e  a l l  i n p u t s  i n  s e n s i t i v i t y  l i s t  
// - e l s e  b ranch  c a n n o t  be o m i t t e d  
// - a l l  o u t p u t s  mus t  be  a s s i g n e d  i n  a l l  b r a n c h e s  

10 a l w a y s  O* 
i f  ( a  > b) 

b e g i n  
gt = l'bl; 
eq = l J b O ;  

end 
e l s e  i f  (a == b) 

b e g i n  
gt = l J b O ;  
eq = l'bl; 

end 
e l s e  // e l s e  b ranch  c a n n o t  be  o m i t t e d  

b e g i n  
gt = l J b O ;  
eq = l J b O ;  

25 end 

endmodule 

A.4.2 Always block with default output assignment 

Listing A.6 Always block template (with default output assignment) 

module compare-with-default 
( 

i n p u t  w i r e  a ,  b ,  
o u t p u t  r e g  gt, eq 
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// - use  @* t o  i n c l u d e  a l l  i n p u t s  i n  s e n s i t i v i t y  l i s t  
/ /  - a s s i g n  each  o u t p u t  w i t h  a  d e f a u l t  v a l u e  
a l w a y s  Q *  

l o  b e g i n  
gt = l'bO; // d e f a u l t  v a l u e  f o r  g t  
eq = I'bO; / /  d e f a u l t  v a l u e  f o r  eq 
i f  (a > b) 

gt = l'bl; 
e l s e  i f  (a == b) 

eq = l'bl; 
end 

endmodule  

A.5 MEMORY COMPONENTS 

A.5.1 Register template 

Listing A.7 Register template 

module reg-template 

( 
i n p u t  w i r e  c l k ,  reset, 
i n p u t  w i r e  en, 

5 i n p u t  w i r e  [ 7 :  01 ql-next , q2-next , q3_next, 
o u t p u t  r e g  [7:01 ql-reg, q2-reg, q3-reg 

1;  

1 0  / /  r e g i s t e r  w i t h o u t  r e s e t  
............................................. 

/ /  use  n o n b l o c k  a s s i g n m e n t  ( <= ) 
a l w a y s  Q ( p o s e d g e  c l k )  

ql-reg <= ql-next; 
I i  

............................................. 

// r e g i s t e r  w i t h  asynchronozrs  r e s e t  

/ /  use  n o n b l o c k  a s s i g n m e n t  ( <= ) 
I a l w a y s  Q ( p o s e d g e  c l k ,  p o s e d g e  reset) 

i f  (reset) 
q2-reg <= 8'bO; 

e l s e  
q2-reg <= q2-next; 

3 

............................................. 

// r e g i s t e r  w i t h  e n a b l e  and a s y n c h r o n o u s  r e s e t  
............................................. 

/ /  use  n o n b l o c k  a s s i g n m e n t  ( <= ) 
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3 a l w a y s  @ ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  
i f  ( r e s e t )  

q3- reg  <= 8 'bO;  
e l s e  i f  ( e n )  

q3- reg  <= q 3 - n e x t ;  
35 

endmodule 

A.5.2 Register file 

Listing A.8 Register file 

module r eg - f  i l e  
# ( 

p a r a m e t e r  B = 8 ,  / /  number of  b i t s  
W = 2 // number of  a d d r e s s  b i t s  

5 1 
( 

i n p u t  w i r e  c l k ,  
i n p u t  w i r e  wr-en,  
i n p u t  w i r e  [W-1:OI w-addr,  r - a d d r ,  
i n p u t  w i r e  [B-1:Ol w-data ,  
o u t p u t  w i r e  [B-1:Ol r - d a t a  

) ;  

/ /  s i g n a l  d e c l a r a t i o n  
15 r e g  [B-1:Ol a r r a y - r e g  [2**W-1:Ol ; 

// body 
// w r i t e  o p e r a t i o n  
a l w a y s  @ ( p o s e d g e  c l k )  

20 i f  (wr-en)  
a r r a y - r e g  [w-addr] <= w-da ta ;  

// r ead  o p e r a t i o n  
a s s i g n  r - d a t a  = a r r a y - r e g  [ r - a d d r l  ; 

A.6 REGULAR SEQUENTIAL CIRCUITS 

Listing A.9 Sequential circuit template 

I I 

/ /  U n i v e r s a l  c o u n t e r  f u n c t i o n  t a b l e  
, , 

// s y n - c l r  l o a d  en q*  o p e r a t i o n  
5 // 
// I - - 0 s ynchronous  c l e a r  
/ / 0 1 - d  p a r a l l e l  l o a d  
// 0 0 I q + l  count  up 
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// 0 0 0 9  p a u s e  

module  b i n - c o u n t e r  
# ( p a r a m e t e r  N=8) // d e f a u l t  8 
( 

i n p u t  w i r e  c l k ,  r e s e t ,  // c l o c k  & r e s e t  
I S  i n p u t  w i r e  s y n - c l r ,  l o a d ,  e n ,  // i n p u t  c o n t r o l  

i n p u t  w i r e  [N-1:01 d ,  // i n p u t  d a t a  
o u t p u t  w i r e  m a x - t i c k ,  // o u t p u t  s t a t u s  
o u t p u t  w i r e  [N-1:OI q // o u t p u t  d a t a  

1; 
20 

// c o n s t a n t  d e c l a r a t i o n  
l o c a l p a r a m  MAX = 2**N - 1 ;  
/ /  s i g n a l  d e c l a r a t i o n  
r e g  [N-1:Ol r - r e g ,  r - n e x t ;  

// r e g i s t e r  
............................................. 

30 / /  r e g i s t e r  
a l w a y s  O ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  

i f  ( r e s e t )  
r - r e g  <= 0 ;  

e l s e  
3s r - r e g  <= r - n e x t ;  

............................................. 

/ /  n e x t - s t a t e  l o g i c  
............................................. 

a l w a y s  Q* 
40 i f  ( s y n - c l r )  

r - n e x t  = 0 ;  
e l s e  i f  ( l o a d )  

r - n e x t  = d ;  
e l s e  i f  ( e n )  

r - n e x t  = r - r e g  + 1 ;  
e l s e  

r - n e x t  = r - r e g ;  
............................................. 

/ /  o u t p u t  l o g i c  
............................................. 

a s s i g n  q = r - r e g ;  
a s s i g n  m a x - t i c k  = ( r - r e g = = 2 * * N - 1 )  ? l ' b l  : 1 7 b O ;  

e n d m o d u l e  



(a) State diagram 

Figure A.l State diagram 

A.7 FSM 

(b) A S M  chart 

and ASM chart of an FSM template. 

Listing A.10 FSM template 

/ /  code  f o r  [ h e  FSM i n  F i g u r e  A . 1  
module f sm-eg-2-seg 

( 
i n p u t  w i r e  clk, reset, 
i n p u t  w i r e  a, b, 
o u t p u t  r e g  yo, yl 

) ;  

/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
10 l o c a l p a r a m  [1:0] SO = 2Ib00, 

sl = 2'b01, 
s2 = 2'biO; 

// s i g n a l  d e c l a r a t i o n  
r e g  [I: 01 state-reg , state-next ; 
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/ /  s t a t e  r e g i s t e r  
a l w a y s  Q ( p o s e d g e  clk, p o s e d g e  r e s e t )  

i f  ( r e s e t )  
s t a t e - r e g  <= s o ;  

e l s e  
s t a t e - r e g  <= s t a t e - n e x t  ; 

/ /  n e x t - s t a t e  l o g i c  and  o u t p u t  l o g i c  
a l w a y s  Q *  

zs b e g i n  
s t a t e - n e x t  = s t a t e - r e g ;  // d e f a u l t  n e x t  s t a t e :  t h e  same 
y l  = l ' b O ;  // d e f a u l t  o u t p u t :  0 
yo = l ' b O ;  // d e f a u l t  o u t p u t :  0 
c a s e  ( s t a t e - r e g )  

S O  : b e g i n  
y l  = l ' b l ;  
i f  ( a )  

i f  ( b )  
b e g i n  

s t a t e - n e x t  = s 2 ;  
yo = l ' b l ;  

end 
e l s e  

s t a t e - n e x t  = s l ;  
end 

s l  : b e g i n  
y l  = l ' b l ;  
i f  ( a )  

s t a t e - n e x t  = SO; 
end 

s 2 :  s t a t e - n e x t  = SO; 
d e f a u l t :  s t a t e - n e x t  = SO; 

e n d c a s e  
end 

sa endmodule  



Figure A.2 ASMD chart of an FSMD template. 

A.8 FSMD 

Listing A . l l  FSMD template 

/ /  c o d e  f o r  t h e  FSMD shown i n  F i g u r e  A . 2  
module f i b  

( 
i n p u t  w i r e  clk, r e s e t ,  
i n p u t  w i r e  s t a r t ,  
i n p u t  w i r e  C4:OI i ,  
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o u t p u t  r e g  r e a d y ,  d o n e - t i c k  , 
o u t p u t  w i r e  [19:0]  f 

1;  
10 

/ /  s y m b o l i c  s t a t e  d e c l a r a t i o n  
l o c a l p a r a m  11 : 01 

i d l e  = 2  ' b 0 0 ,  
op = 2 ' b 0 1 ,  

I S  done = 2 ' b l O ;  

/ /  s i g n a l  d e c l a r a t i o n  
r e g  [ I :  01 s t a t e - r e g  , s t a t e - n e x t  ; 
r e g  [19:0]  t o - r e g  , t o - n e x t  , t l - r e g  , t l - n e x t  ; 

20 r e g  [4:01 n-reg , n-nex t  ; 

// body  
// s t a t e  & d a t a  r e g i s t e r s  
a l w a y s  O ( p o s e d g e  c l k ,  p o s e d g e  r e s e t )  

25 i f  ( r e s e t )  
b e g i n  

s t a t e - r e g  <= i d l e ;  
t o - r e g  <= 0 ;  
t l - r e g  <= 0 ;  
n - reg  <= 0 ;  

end 
e l s e  

b e g i n  
s t a t e - r e g  <= s t a t e - n e x t  ; 
t o - r e g  <= t o - n e x t  ; 
t l - r e g  <= t l - n e x t  ; 
n-reg <= n - n e x t ;  

end 
// n e x t - s t a t e  l o g i c  and d a t a  p a t h  f u n c t i o n a l  u n i t s  

40 a l w a y s  O* 
b e g i n  

s t a t e - n e x t  = s t a t e - r e g ;  // d e f a u l t  r e t u r n  t o  same s t a t e  
r eady  = l ' b O ;  // d e f a u l t  o u t p u t  0 
d o n e - t i c k  = l ' b O ;  // d e f a u l t  o u t p u t  0 
t o - n e x t  = t o - r e g ;  / /  d e f a u l t  k e e p  p r e v i o u s  v a l u e  
t l - n e x t  = t l - r e g ;  // d e f a u l t  k e e p  p r e v i o u s  v a l u e  
n-nex t  = n - r e g ;  / /  d e f a u l t  k e e p  p r e v i o u s  v a l u e  
c a s e  ( s t a t e - r e g )  

i d l e  : 
b e g i n  

r e a d y  = l J b l ;  
i f  ( s t a r t )  

b e g i n  
t o - n e x t  = 0 ;  
t l - n e x t  = 2 0 ' d l ;  
n-next  = i ;  
s t a t e - n e x t  = op ;  

end 
end 



61) op : 
i f  (n - r eg==O)  

b e g i n  
t l - n e x t  = 0 ;  
s t a t e - n e x t  = d o n e ;  

end 
e l s e  i f  ( n - r e g = = l )  

s t a t e - n e x t  = d o n e ;  
e l s e  

b e g i n  
t l - n e x t  = t l - r e g  + t o - r e g ;  
t o - n e x t  = t l - r e g ;  
n - n e x t  = n - r e g  - 1 ;  

end 
done  : 

b e g i n  
d o n e - t i c k  = l ' b l ;  
s t a t e - n e x t  = i d l e ;  

end 
d e f a u l t :  s t a t e - n e x t  = i d l e ;  

e n d c a s e  
end 
// OLltplrt 
a s s i g n  f = t l - r e g ;  

A.9 S3 BOARD CONSTRAINT FILE (S3 .UCF) 

# P i n  a s s i g n m e n t  f o r  X i l i n x  
# S p a r t a n - 3  S t a r t e r  b o a r d  
......................................................... 

# c l o c k  and r e s e t  
......................................................... 

NET " c l k "  LOC = "T9"  ; 
NET " r e s e t "  LOC = "L14" ;  

# b u t t o n s  & s w i t c h e s  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# 4 p u s h b u t t o n s  
NET " b t n < O > "  LOC = "M13"; 
NET " b t n < l > "  LOC = "M14"; 
NET " b t n < 2 > "  LOC = " L 1 3 " ;  
#NET " b t n < 3 > "  LOC = "L14" ;  # b t n < 3 >  a l s o  u s e d  a s  r e s e t  

# 8 s l i d e  s w i t c h e s  
NET " s w < O > "  LOC = " F 1 2 " ,  



NET " s w < l > "  LOC = "G12";  
NET " s w < 2 > "  LOC = "H14";  
NET " s w < 3 > "  LOC = "H13";  
NET " s w < 4 > "  LOC = " 5 1 4 " ;  
NET " s w < 5 > "  LOC = " 5 1 3 " ;  
NET " s w < 6 > "  LOC = "K14";  
NET " sw<7>"  LOC = "K13";  

......................................................... 

# RS232 
......................................................... 

NET " r x  " LOC = "T13"  1 DRIVE=8 I SLEW=SLOW; 
NET " t x "  LOC = "R13" I DRIVE=8 I SLEW=SLOW; 

......................................................... 

# 4 - d i g i t  t i m e - m u l t i p l e x e d  7 - segmen t  LED d i s p l a y  
......................................................... 

# d i g i t  e n a b l e  
NET "an<O>"  LOC = "D14" ;  
NET " a n < l > "  LOC = "G14";  
NET " a n < 2 > "  LOC = " F 1 4 " ;  
NET " a n < 3 > "  LOC = "E13" ;  

# 7- segmen t  l e d  s e g m e n t s  
NET " s s e g < 7 > "  LOC = " P 1 6 " ;  # d e c i m u l  p o i n t  
NET " s s e g < 6 > '  LOC = "E14" ;  # s e g m e n t  a  
NET " s s e g < 5 > "  LOC = "G13" , # s e g m e n t  b 
NET " s s e g < 4 > "  LOC = "N15";  # s e g m e n t  c 
NET " s s e g < 3 > "  LOC = " P 1 5 " ;  # s e g m e n t  d  
NET " s s e g < 2 > "  LOC = "R16" ;  # s e g m e n t  e  
NET " s s e g < l > "  LOC = " F 1 3 " ;  # s e g m e n t  f 
NET " s s e g < O > "  LOC = "N16";  # s e g m e n t  g  

......................................................... 

# 8  d i s c r e t e  LEDs 
......................................................... 

NET " l e d < O > "  LOC = "K12";  
NET " l e d < l > "  LOC = " P 1 4 " ;  
NET " l e d < 2 > "  LOC = "L12" ;  
NET " l e d < 3 > "  L O C  = "N14";  
NET " l e d < 4 > "  LOC = " P 1 3 " ;  
NET " l e d < 5 > "  LOC = "N12";  
NET " l e d < 6 > "  LOC = ' 1P12" ;  
NET " l e d < 7 > "  LOC = "P11" :  

......................................................... 

# V G A  o u t p u t s  
......................................................... 

NET " r g b < 2 > "  LOC = "R12" I DRIVE=8 I SLEW=FAST; 
NET " r g b < i > "  LOC = "T12"  I DRIVE=8 1 SLEW=FAST; 
NET " r g b < O > "  LOC = "R11" I DRIVE=8 I SLEW=FAST; 
NET " v s y n c "  LOC = "T10"  I DRIVE=8 I SLEW=FAST; 
NET " h s y n c "  LOC = "R9" I DRIVE=8 I SLEW=FAST; 



......................................................... 

# PS2 port 
......................................................... 

NET "ps2c" LOC="M1GW I IOSTANDARD=LVCMOS33 I DRIVE=8 ISLEW=SLOW: 
NET "ps2d1' LOC="M15" I IOSTANDARD=LVCMOS33 I DRIVE=8 ISLEW=SLOW; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# two SRAM chips 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

# shared 18-bit memory addres s  
NET "ad<17>" LOC="L3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<16>" LOC="KS1' I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<15>" LOC="K3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<14>" LOC="J3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<13>I1 LOC="J4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<12>" LOC="H4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<ll>" LOC="H3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<lO>" LOC="GS" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<9>" LOC="E4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<8>" LOC="E3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<7>" LOC="F4" I IOSTANDARD = LVCMOS33 I SLEW=FAST: 
NET "ad<6>" LOC="F3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<5>" LOC="G4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 

IOII NET "ad<4>" LOC="L4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<3>" LOC="M3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<2>I1 LOC="M4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<l>" LOC="N3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<O>" LOC="LSM I IOSTANDARD = LVCMOS33 I SLEW=FAST; 

# shared oe, we 
NET "oe-n" LOC="K4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET " we-n" LOC="G3" 1 IOSTANDARD = LVCMOS33 I SLEW=FAST; 

# sram chip 1 data, ce, ub, lb 
NET "dio-a<l5>" LOC="RIN I IOSTANDARD=LVCMOS33 
NET "dio-a<l4>" LOC="PIM I IOSTANDARD=LVCMOS33 
NET "dio-a <13>" LOC=" L2" I IOSTANDARD=LVCMOS33 
NET "dio-a <l2>It LOC=" J2" I IOSTANDARD=LVCMOS33 
NET "dio-a<ll>" LOC="Hll' I IOSTANDARD=LVCMOS33 
NET "dio-a<lO>" LOC=" F2" I IOSTANDARD=LVCMOS33 
NET "dio-a <9>" LOC=" P8" I IOSTANDARD=LVCMOS33 
NET "dio-a<8>" LOC="D3" I IOSTANDARD=LVCMOS33 
NET "dio-a<7>" LOC="B1" I IOSTANDARD=LVCMOS33 
NET "dio-a<6>" LOC="C1" I IOSTANDARD=LVCMOS33 
NET "dio-a<5>" LOC="C2" I IOSTANDARD=LVCMOS33 
NET " dio-a <4>" LOC="RS1' I IOSTANDARD=LVCMOS33 
NET "dio-a<3>" LOC="TSN I IOSTANDARD=LVCMOS33 
NET "dio-a <2>" LOC="RGM I IOSTANDARD=LVCMOS33 
NET "dio-a<l>" LOC="T8" I IOSTANDARD=LVCMOS33 
NET " dio-a <O>" LOC=" N7" I IOSTANDARD=LVCMOS33 
NET "ce-a-nu LOC="P7" I IOSTANDARD=LVCMOS33 
NET "ub-a-n" LOC="T4" I IOSTANDARD=LVCMOS33 
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NET "lb-a-n" LOC="P6" I IOSTANDARD=LVCMOS33 I SLEW=FAST; 

# sram chip 2 data, ce, ub, lb 
NET "dio-b<l5>I1 LOC="N1" I IOSTANDARD=LVCMOS33 
NET " dio-b <l4>" LOC="M1" I IOSTANDARD=LVCMOS33 
NET "dio-b<l3>" LOC="K2" I IOSTANDARD=LVCMOS33 
NET "dio-b <l2>" LOC=" C3" I IOSTANDARD=LVCMOS33 
NET "die-b <ll>" LOC=" F5" I IOSTANDARD=LVCMOS33 
NET " dio-b <lo>" LOC=" GI " I IOSTANDARD=LVCMOS33 
NET "dio-b <9>" LOC="E2" I IOSTANDARD=LVCMOS33 
NET " dio-b <8>" LOC="D2" I IOSTANDARD=LVCMOS33 
NET " dio-b <7>"  LOC='Dll' I IOSTANDARD=LVCMOS33 
NET "dio-b<6>" LOC="Ell' I IOSTANDARD=LVCMOS33 
NET "dio-b<5>" LOC="G2" I IOSTANDARD=LVCMOS33 
NET "dio-b<4>" LOC="Jl" I IOSTANDARD=LVCMOS33 
NET "dio-b<3>" LOC="Kl" I IOSTANDARD=LVCMOS33 
NET "dio-b<2>" LOC="M2" I IOSTANDARD=LVCMOS33 
NET "dio-b <l>" LOC="N2" I IOSTANDARD=LVCMOS33 
NET "die-b<O>" LOC="P2" I IOSTANDARD=LVCMOS33 
NET "ce-b-n" LOC="N5" I IOSTANDARD=LVCMOS33 
NET "ub-b-n" LOC="R4" I IOSTANDARD=LVCMOS33 
NET " lb-b-n" LOC="P5" I IOSTANDARD=LVCMOS33 

......................................................... 

# Timing constraint of S3 50-MHz onboard oscillator 
# name of the clock signal is clk 
......................................................... 

NET "clk" TNM-NET = "clk"; 
TIMESPEC "TS-clk" = PERIOD "clk" 40 ns HIGH 50 %; 
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