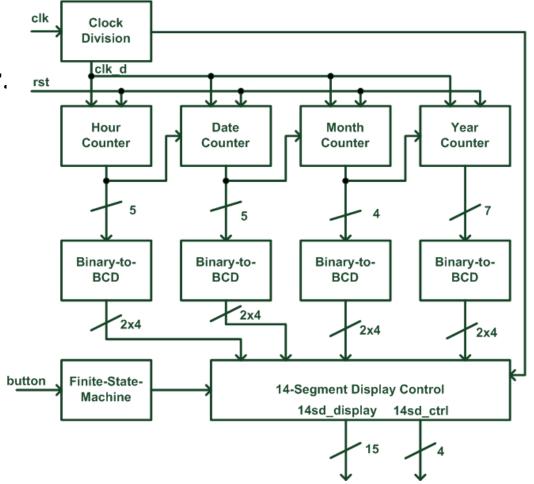


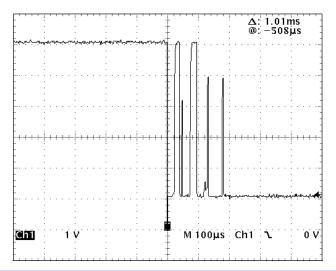
Electronic Clock -Display Control

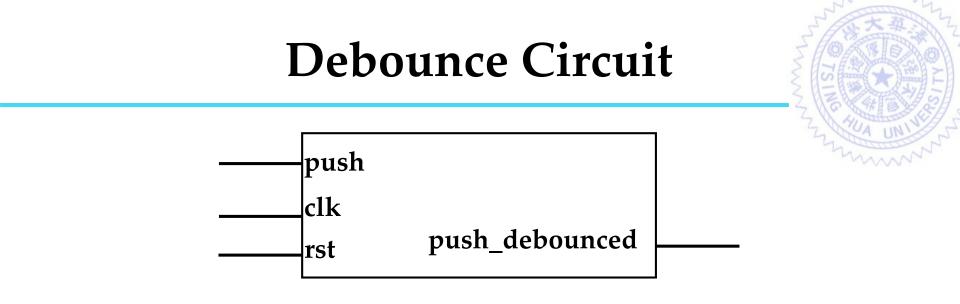
黄元豪 Yuan-Hao Huang


國立清華大學電機工程學系 Department of Electrical Engineering National Tsing-Hua University

Timer

- Timer is a counter with carry propagation.
 - Hour : 0~23
 - Date: 0~28/30/31
 - Month: Jan(0)/Feb(1)/March(2)/...../November(10)/December(11)
 - Year: 00~99
- The carry propagation is determined not only by lower counter but also upper counters.
 - Leap month
 - Leap year


Display Control of Timer


- Finite-state-Machine
 - State determines the display modes of Timer.
 - 24hr or AM/PM
 - Month + Year
 - Date + Month
 - Year

Switch Contact Bounce

- Pushbutton contains a metal spring
 - The switch contact will bounce several times before stabilization when buttons are pressed and released.
 - The random pulses causes instable results to the design.
 - The random pusles ranges in μ s, but the FPGA is sensitive to pulses down to ns range.

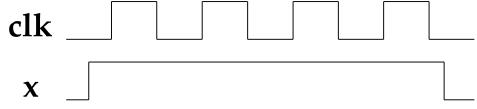
- N-bit shift register triggered with clock can be used as debounce circuit.
- When all 4 bits of the register are high (low), the output of the debounce circuit changes to high (low).

Debounce Design

module debounce (
 rst, clk, push, push_debounced);

input rst; input clk; input push; output push_debounced;

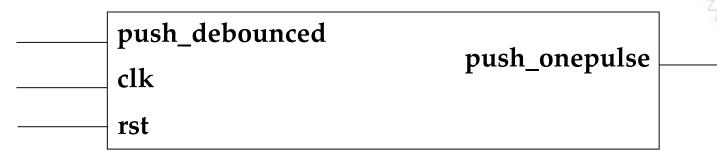
// declare the outputs
reg push_debounced;


// declare the shifting registers
reg[3:0] push_window;

always @(posedge clk or posedge rst)
begin
if (rst) begin
push_window <= 4'b0;
push_debounced <= 1'b0;
end else begin
push_window<={push, push_window[3:1]};</pre>

if (push_window[3:0] == 4'b1111) begin
 push_debounced <= 1'b1;
 end else begin
 push_debounced <= 1'b0;
 end
 end
 end
end
end</pre>

One-Pulse Generation


• Since the state of pressed is much longer than one clock period, the push-button usually recognizes one "pressed" event as successive cycles of "pressed".

Once a pushbutton is pressed (long or short), the one-pulse circuit generates only a one-clock-period-long pulse.
 clk

one_pusle_x

One-Pulse Generation

- Inputs
 - clk, rst : system clock and reset.
 - push_debounced: debounced pushbutton signal
- Output
 - push_onepulse: one-clock-cylce impulse when pushbuttone is pressed.

One-Pulse Design

```
module onepulse (
rst, clk, push_debounced, push_onepulse
);
  input clk, rst;
  input push_debounced;
```

output push_onepulse;

```
// internal registers
```

reg push_onepulse_next; reg push_debounced_delay;

```
always @* begin
  push_onepulse_next = push_debounced
  & ~push_debounced_delay;
end
```

always @(posedge clk or posedge rst) begin if (rst) begin

push_onepulse <= 1'b0; push_debounced_delay <= 1'b0;</pre>

end else begin

```
push_onepulse <= push_onepulse_next;
push_debounced_delay <=push_debounced;</pre>
```

end end endmodule