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Introduction
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Verilog HDL

• Verilog 硬體描述語言(Verilog Hardware Description 
Language)  
– 在積體電路設計（特別是超大型積體電路的計算機輔助設計
）的電子設計自動化領域中，Verilog HDL是一種用於描述
、設計電子系統（特別是數位電路的硬體描述語言）。

– Verilog是電力電子工程師學會（IEEE）的1364號標準。

• Verilog 硬體描述語言在邏輯設計上的用途

– 用途一: 邏輯電路設計的模擬與驗證

– 用途二: FPGA邏輯電路(**IC電路)的設計與實作
** IC電路的設計與實作在【EE4292積體電路設計實驗】教授。
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Verilog HDL Utilization Scenario I

• Simulation and verification of logic circuits on PC.

• Imaging what happens when the circuit is as complex as
a CPU or MP3 player processor.
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module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule
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Logic Design

Verilog HDL Coding
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Test Pattern
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Verilog HDL Utilization Scenario II

• Design and Implementation of logic circuits in FPGA (IC)
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module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

assign out = sel ? a:b;

endmodule
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Verilog HDL –
Levels of Abstraction (2/2)

• Behavioral Level (Architectural/Algorithmic Level)
– Describes a system by the flow of data between its functional blocks
– Defines signal values when they change

• Register Transfer Level (Dataflow)
– Describe a system by the flow of data and control signals between and

within its functional blocks
– Defines signal values with respect to a clock
– RTL (Register Transfer Level) is frequently used for the Verilog

description with the combination of behavioral and dataflow constructs
which is acceptable to logic synthesis tools.

• Gate Level (Structural)
– A model that describes the logic gates and the interconnections between

them
• Transistor/Switch/Physical Level

– A model that describes the transistors and the interconnections between
them
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Verilog HDL –
Levels of Abstraction (1/2)



NTHU EECS Logic Design Lab. 9

Level of Abstraction Example

• Describe the operation of a circuit at various levels of 
abstraction (MP3 Player Decoder as example)

– Behavior (MP3 Decoding, C/C++, HDL)
– Function (Filtering, Fourier Transformation, C/C++, HDL)
– Structure (Adder/Subtractor, Multiplier, Divider, HDL)

• Compared with C/C++ Program, verilog HDL
– describes the timing (delay) of a circuit
– expresses the concurrency (parallelism) of circuit operation
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Behavior Level Abstraction

• Describe the design without implying any specific 
internal architecture
– Use high level constructs (@, case, if, repeat, wait, while)
– Usually use behavioral construct in test-bench
– Synthesis tools accept only a limited subset of behavior 

level description
• Case 1 :  assign Z=(S) ? A: B;

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire out;

assign out = (sel) ? a : b ;

endmodule

a
b out

sel

SMUX
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Behavior Level Abstraction
• Case 2: always @ (input1 or input2 or …)

begin
out1=           

end 

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
reg out;

always @(a or b or sel)
if (sel)
out=a;

else
out=b;

endmodule

a
b out

sel

SMUX
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Gate Level Abstraction
• Gate-level abstraction describes a pure structural 

design of circuits.
– You must derive and draw the circuit schematics first 

before writing Verilog code.
module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule b
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VLSI Design Flow
System Specification

Functional
(Architecture) Design

Functional Verification

Logic Design

Logic Verification

Circuit Design

Circuit Verification

Physical Design

Layout Verification

Fabrication & Testing

Behavioral
Representation
(C/C++, Behavioral Verilog)

Logic (Gate-level)
Representation
(Gate-level Verilog)

Circuit
Representation
(Hspice)

Layout
Representation
(GDSII, dB in FPGA)
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Verilog Simulation
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Sample Design
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Scenario
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Verilog Module

• module module_name(port_names);

 Port declaration

 Data type declaration

 Task & function declaration

 Module functionality or structure

 Timing Specification

• endmodule

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule
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Testbench (1/4)

• module testfixture;

 Declare signals

 Instantiate modules

 Applying stimulus

 Monitor signals

• endmodule
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Testbench (2/4)

• Declare signals
– Test pattern must be stored in storage elements first

and then apply to DUT (Device under Test)
• Use “reg” to declare the storage element

• Instantiate modules
– Both behavioral level or gate level model can be

used.
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Testbench (3/4)

• Describing Stimulus
– The testbench always be described behaviorally.
– Procedural blocks are bases of behavioral modeling.
– The simulator starts executing all procedure blocks at

time 0 and executes them concurrently.
– Two types of procedural blocks

• initial
• always

initial
c    
c

c
c

always
c    
c

c
c
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Testbench (4/4)

• module test_SMUX;

• reg A,B,SEL;
• wire OUT;

• SMUX U0(.out(OUT),.a(A),.b(B),.sel(SEL));

• initial
• begin
• A=0;B=0;SEL=0;
• #10 A=0;B=1;SEL=1;
• #10 A=1;B=0;
• #10 SEL=0;
• …..
• #10 SEL=1;
• end

• endmodule

Assign values to 
storage elements

#10 to specify 10
time unit delay

Declare signals
Make an instance
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Structural Modeling
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Verilog Primitives

• and : Logical AND
• or : Logical OR
• not : Inverter
• buf : Buffer
• xor : Logical exclusive OR
• nand : Logical AND inverted
• nor : Logical OR inverted
• xnor : Logical exclusive OR inverted
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Structural Modeling

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule

b

a
sel out

U0
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RTL Modeling
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Operators (1/3)
Bitwise Operators

OP Usage Description

~ ~m Invert each bit of m 

& m & n AND each bit of m with each bit of n 

| m | n OR each bit of m with each bit of n 

^ m ^ n Exclusive OR each bit of m with n 

~^ or ^~ m ~^ n or m ^~ n Exclusive NOR each bit of m with n

Unary Reduction Operators

OP Usage Description

& &m AND all bits in m together (1-bit result) 

~& ~&m NAND all bits in m together (1-bit result) 

| |m OR all bits in m together (1-bit result) 

~| ~|m NOR all bits in m together (1-bit result) 

^ ^m Exclusive OR all bits in m (1-bit result) 

~^ or ^~ ~^m or ^~m Exclusive NOR all bits in m (1-bit result)
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Operators (2/3)
Arithmetic Operators

OP Usage Description

+ m + n Add n to m

- m - n Subtract n from m

- -m Negate m (2's complement)

* m * n Multiply m by n

/ m / n * Divide m by n

% m % n * Modulus of m / n

Logical Operators

OP Usage Description

! !m Is m not true? (1-bit True/False result)

&& m && n Are both m and n true? (1-bit True/False result)

|| m || n Are either m or n true? (1-bit True/False result)

Equality Operators (compares logic values of 0 and 1)

OP Usage Description

== m == n Is m equal to n? (1-bit True/False result)

!= m != n Is m not equal to n? (1-bit True/False result)

Identity Operators (compares logic values of 0, 1, x, and z)

OP Usage Description

=== m === n * Is m identical to n? (1-bit True/False result)

!== m !== n * Is m not identical to n? (1-bit True/False result)

Synthesis not supported

* Synthesis not supported : The divisor for 
divide operator may be restricted to constants 
and a power of 2 

Synthesis not supported
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Operators (3/3)

Relational Operators

OP Usage Description

< m < n Is m less than n? (1-bit True/False result)

> m > n Is m greater than n? (1-bit True/False result)

<= m <= n Is m less than or equal to n? (True/False result)

>= m >= n Is m greater than or equal to n? (True/False result)

Logical Shift Operators

OP Usage Description

<< m << n Shift m left n-times

>> m >> n Shift m right n-times

Misc Operators

OP Usage Description

? : sel?m:n If sel is true, select m: else select n

{} {m,n} Concatenate m to n, creating larger vector

{{}} {n{m}} Replicate m n-times



NTHU EECS Logic Design Lab. 29

assign

• assign continuous construct
– combinational logics

b

a
sel out

U0 U2

U1

U3

module SMUX (out,a,b,sel);
output out;
input a,b,sel;

assign out = (a&sel) | (b&(~sel));

endmodule

This out has to be declared as “wire” or “output” data type.
This expression can not be inside always @().
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always

• always statements

module SMUX (out,s,b,sel);
output out;
input a,b,sel;
reg out;

always @(a or b or sel)
out = (a&sel) | (b&(~sel));

endmodule

sensitivity list

This out has to be declared as “reg” data type.

b

a
sel out

U0 U2

U1

U3



NTHU EECS Logic Design Lab. 31

Logic Modeling and Simulation 
Using Xilinx Vivado
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• General design flow
– Design construction
– Behavioral simulation
– Design implementation
– Timing simulation

• HDL-based design Flow

Design Flow

User Interface Design Software
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Important Notes

• Draw schematic first and then construct
Verilog codes.

• Verilog RTL coding philosophy is not the same
as C programming
– Every Verilog RTL construct has its own logic

mapping (for synthesis)
– You should have the logics (draw schematic) first

and then the RTL codes
– You have to write synthesizable RTL codes
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Open Vivado

3
4
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Open New Project (1/3)

3
5

Double Click
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Open New Project (2/3)

3
6

Finish



NTHU EECS Logic Design Lab.

Open New Project (3/3)

3
7
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New Source (1/5)

3
8

Press and Right Click
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New Source (2/5)

3
9
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New Source (3/5)

4
0
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New Source (4/5)

4
1
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New Source (5/5)

4
2

press and double click

Remember to save files
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Add Testbench (1/5)

4
3

Press and Right Click



NTHU EECS Logic Design Lab.

Add Testbench (2/5)

4
4
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Add Testbench (3/5)

4
5
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Add Testbench (4/5)

4
6

Double Click and Edit
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Add Testbench (5/5)

4
7
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Simulation (1/4)

4
8

Press and Select
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Simulation (2/4)

4
9

Press to maximize
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Simulation (3/4)

5
0

Scroll this to the beginning

Use to zoom in or zoom out
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Simulation (4/4)

5
1

Press to close simulation
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