
NTHU EECS Logic Design Lab. 1

Verilog HDL – I

黃元豪
Yuan-Hao Huang

國立清華大學電機工程學系
Department of Electrical Engineering

National Tsing-Hua University

NTHU EECS Logic Design Lab. 2

Outline

• Introduction
• Sample Design
• Structural Modeling
• RTL Modeling
• Logic Modeling and Simulation Using Xilinx ISE
• An Example of Combinational Circuits

NTHU EECS Logic Design Lab. 3

Introduction

NTHU EECS Logic Design Lab.

Verilog HDL

• Verilog 硬體描述語言(Verilog Hardware Description
Language)
– 在積體電路設計（特別是超大型積體電路的計算機輔助設計
）的電子設計自動化領域中，Verilog HDL是一種用於描述
、設計電子系統（特別是數位電路的硬體描述語言）。

– Verilog是電力電子工程師學會（IEEE）的1364號標準。

• Verilog 硬體描述語言在邏輯設計上的用途

– 用途一: 邏輯電路設計的模擬與驗證

– 用途二: FPGA邏輯電路(**IC電路)的設計與實作
** IC電路的設計與實作在【EE4292積體電路設計實驗】教授。

4

NTHU EECS Logic Design Lab.

Verilog HDL Utilization Scenario I

• Simulation and verification of logic circuits on PC.

• Imaging what happens when the circuit is as complex as
a CPU or MP3 player processor.

5

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule

b

a

sel
out

U0

U2

U1
U3

S MUX
sel_n

t1

t2

2-to-1 Multiplexer

Logic Design

Verilog HDL Coding
Specification

a, b, sel
000
001
010
…
111

Test Pattern

Verilog HDL Simulator

NTHU EECS Logic Design Lab.

Verilog HDL Utilization Scenario II

• Design and Implementation of logic circuits in FPGA (IC)

6

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

assign out = sel ? a:b;

endmodule

b

a

sel
out

U0

U2

U1
U3

S MUX
sel_n

t1

t2

2-to-1 Multiplexer

Verilog HDL Coding

Specification

FPGA Implement Design
and Programming

Verilog HDL Logic Synthesizer

Synthesized Logic Circuits

FPGA

NTHU EECS Logic Design Lab. 7

Verilog HDL –
Levels of Abstraction (2/2)

• Behavioral Level (Architectural/Algorithmic Level)
– Describes a system by the flow of data between its functional blocks
– Defines signal values when they change

• Register Transfer Level (Dataflow)
– Describe a system by the flow of data and control signals between and

within its functional blocks
– Defines signal values with respect to a clock
– RTL (Register Transfer Level) is frequently used for the Verilog

description with the combination of behavioral and dataflow constructs
which is acceptable to logic synthesis tools.

• Gate Level (Structural)
– A model that describes the logic gates and the interconnections between

them
• Transistor/Switch/Physical Level

– A model that describes the transistors and the interconnections between
them

NTHU EECS Logic Design Lab. 8

Verilog HDL –
Levels of Abstraction (1/2)

NTHU EECS Logic Design Lab. 9

Level of Abstraction Example

• Describe the operation of a circuit at various levels of
abstraction (MP3 Player Decoder as example)

– Behavior (MP3 Decoding, C/C++, HDL)
– Function (Filtering, Fourier Transformation, C/C++, HDL)
– Structure (Adder/Subtractor, Multiplier, Divider, HDL)

• Compared with C/C++ Program, verilog HDL
– describes the timing (delay) of a circuit
– expresses the concurrency (parallelism) of circuit operation

NTHU EECS Logic Design Lab. 10

Behavior Level Abstraction

• Describe the design without implying any specific
internal architecture
– Use high level constructs (@, case, if, repeat, wait, while)
– Usually use behavioral construct in test-bench
– Synthesis tools accept only a limited subset of behavior

level description
• Case 1 : assign Z=(S) ? A: B;

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire out;

assign out = (sel) ? a : b ;

endmodule

a
b out

sel

SMUX

NTHU EECS Logic Design Lab. 11

Behavior Level Abstraction
• Case 2: always @ (input1 or input2 or …)

begin
out1=

end

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
reg out;

always @(a or b or sel)
if (sel)
out=a;

else
out=b;

endmodule

a
b out

sel

SMUX

NTHU EECS Logic Design Lab. 12

Gate Level Abstraction
• Gate-level abstraction describes a pure structural

design of circuits.
– You must derive and draw the circuit schematics first

before writing Verilog code.
module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule b

a
sel out

U0

U2
U1

U3

S MUX
sel_n

t1

t2

NTHU EECS Logic Design Lab. 13

VLSI Design Flow
System Specification

Functional
(Architecture) Design

Functional Verification

Logic Design

Logic Verification

Circuit Design

Circuit Verification

Physical Design

Layout Verification

Fabrication & Testing

Behavioral
Representation
(C/C++, Behavioral Verilog)

Logic (Gate-level)
Representation
(Gate-level Verilog)

Circuit
Representation
(Hspice)

Layout
Representation
(GDSII, dB in FPGA)

NTHU EECS Logic Design Lab. 14

Verilog Simulation

NTHU EECS Logic Design Lab. 15

Sample Design

NTHU EECS Logic Design Lab. 16

Scenario

Stimulus
&

Control

Response
Generation

&
Verification

a
b

out
sel

Device under Test (DUT)

A
B

SEL

OUT

SMUX

a
b

out
sel

a
b

out
sel

A’
B’

SEL’

OUT ’

U0

U1

Module + Testbench

NTHU EECS Logic Design Lab. 17

Verilog Module

• module module_name(port_names);

 Port declaration

 Data type declaration

 Task & function declaration

 Module functionality or structure

 Timing Specification

• endmodule

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule

NTHU EECS Logic Design Lab. 18

Testbench (1/4)

• module testfixture;

 Declare signals

 Instantiate modules

 Applying stimulus

 Monitor signals

• endmodule

NTHU EECS Logic Design Lab. 19

Testbench (2/4)

• Declare signals
– Test pattern must be stored in storage elements first

and then apply to DUT (Device under Test)
• Use “reg” to declare the storage element

• Instantiate modules
– Both behavioral level or gate level model can be

used.

NTHU EECS Logic Design Lab. 20

Testbench (3/4)

• Describing Stimulus
– The testbench always be described behaviorally.
– Procedural blocks are bases of behavioral modeling.
– The simulator starts executing all procedure blocks at

time 0 and executes them concurrently.
– Two types of procedural blocks

• initial
• always

initial
c
c

c
c

always
c
c

c
c

NTHU EECS Logic Design Lab. 21

Testbench (4/4)

• module test_SMUX;

• reg A,B,SEL;
• wire OUT;

• SMUX U0(.out(OUT),.a(A),.b(B),.sel(SEL));

• initial
• begin
• A=0;B=0;SEL=0;
• #10 A=0;B=1;SEL=1;
• #10 A=1;B=0;
• #10 SEL=0;
• …..
• #10 SEL=1;
• end

• endmodule

Assign values to
storage elements

#10 to specify 10
time unit delay

Declare signals
Make an instance

NTHU EECS Logic Design Lab. 22

Structural Modeling

NTHU EECS Logic Design Lab. 23

Verilog Primitives

• and : Logical AND
• or : Logical OR
• not : Inverter
• buf : Buffer
• xor : Logical exclusive OR
• nand : Logical AND inverted
• nor : Logical OR inverted
• xnor : Logical exclusive OR inverted

NTHU EECS Logic Design Lab. 24

Structural Modeling

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule

b

a
sel out

U0

U2
U1

U3

SMUX
sel_n

t1

t2

NTHU EECS Logic Design Lab. 25

RTL Modeling

NTHU EECS Logic Design Lab. 26

Operators (1/3)
Bitwise Operators

OP Usage Description

~ ~m Invert each bit of m

& m & n AND each bit of m with each bit of n

| m | n OR each bit of m with each bit of n

^ m ^ n Exclusive OR each bit of m with n

~^ or ^~ m ~^ n or m ^~ n Exclusive NOR each bit of m with n

Unary Reduction Operators

OP Usage Description

& &m AND all bits in m together (1-bit result)

~& ~&m NAND all bits in m together (1-bit result)

| |m OR all bits in m together (1-bit result)

~| ~|m NOR all bits in m together (1-bit result)

^ ^m Exclusive OR all bits in m (1-bit result)

~^ or ^~ ~^m or ^~m Exclusive NOR all bits in m (1-bit result)

NTHU EECS Logic Design Lab. 27

Operators (2/3)
Arithmetic Operators

OP Usage Description

+ m + n Add n to m

- m - n Subtract n from m

- -m Negate m (2's complement)

* m * n Multiply m by n

/ m / n * Divide m by n

% m % n * Modulus of m / n

Logical Operators

OP Usage Description

! !m Is m not true? (1-bit True/False result)

&& m && n Are both m and n true? (1-bit True/False result)

|| m || n Are either m or n true? (1-bit True/False result)

Equality Operators (compares logic values of 0 and 1)

OP Usage Description

== m == n Is m equal to n? (1-bit True/False result)

!= m != n Is m not equal to n? (1-bit True/False result)

Identity Operators (compares logic values of 0, 1, x, and z)

OP Usage Description

=== m === n * Is m identical to n? (1-bit True/False result)

!== m !== n * Is m not identical to n? (1-bit True/False result)

Synthesis not supported

* Synthesis not supported : The divisor for
divide operator may be restricted to constants
and a power of 2

Synthesis not supported

NTHU EECS Logic Design Lab. 28

Operators (3/3)

Relational Operators

OP Usage Description

< m < n Is m less than n? (1-bit True/False result)

> m > n Is m greater than n? (1-bit True/False result)

<= m <= n Is m less than or equal to n? (True/False result)

>= m >= n Is m greater than or equal to n? (True/False result)

Logical Shift Operators

OP Usage Description

<< m << n Shift m left n-times

>> m >> n Shift m right n-times

Misc Operators

OP Usage Description

? : sel?m:n If sel is true, select m: else select n

{} {m,n} Concatenate m to n, creating larger vector

{{}} {n{m}} Replicate m n-times

NTHU EECS Logic Design Lab. 29

assign

• assign continuous construct
– combinational logics

b

a
sel out

U0 U2

U1

U3

module SMUX (out,a,b,sel);
output out;
input a,b,sel;

assign out = (a&sel) | (b&(~sel));

endmodule

This out has to be declared as “wire” or “output” data type.
This expression can not be inside always @().

NTHU EECS Logic Design Lab. 30

always

• always statements

module SMUX (out,s,b,sel);
output out;
input a,b,sel;
reg out;

always @(a or b or sel)
out = (a&sel) | (b&(~sel));

endmodule

sensitivity list

This out has to be declared as “reg” data type.

b

a
sel out

U0 U2

U1

U3

NTHU EECS Logic Design Lab. 31

Logic Modeling and Simulation
Using Xilinx Vivado

NTHU EECS Logic Design Lab. 32

• General design flow
– Design construction
– Behavioral simulation
– Design implementation
– Timing simulation

• HDL-based design Flow

Design Flow

User Interface Design Software

NTHU EECS Logic Design Lab. 33

Important Notes

• Draw schematic first and then construct
Verilog codes.

• Verilog RTL coding philosophy is not the same
as C programming
– Every Verilog RTL construct has its own logic

mapping (for synthesis)
– You should have the logics (draw schematic) first

and then the RTL codes
– You have to write synthesizable RTL codes

NTHU EECS Logic Design Lab.

Open Vivado

3
4

NTHU EECS Logic Design Lab.

Open New Project (1/3)

3
5

Double Click

NTHU EECS Logic Design Lab.

Open New Project (2/3)

3
6

Finish

NTHU EECS Logic Design Lab.

Open New Project (3/3)

3
7

NTHU EECS Logic Design Lab.

New Source (1/5)

3
8

Press and Right Click

NTHU EECS Logic Design Lab.

New Source (2/5)

3
9

NTHU EECS Logic Design Lab.

New Source (3/5)

4
0

NTHU EECS Logic Design Lab.

New Source (4/5)

4
1

NTHU EECS Logic Design Lab.

New Source (5/5)

4
2

press and double click

Remember to save files

NTHU EECS Logic Design Lab.

Add Testbench (1/5)

4
3

Press and Right Click

NTHU EECS Logic Design Lab.

Add Testbench (2/5)

4
4

NTHU EECS Logic Design Lab.

Add Testbench (3/5)

4
5

NTHU EECS Logic Design Lab.

Add Testbench (4/5)

4
6

Double Click and Edit

NTHU EECS Logic Design Lab.

Add Testbench (5/5)

4
7

NTHU EECS Logic Design Lab.

Simulation (1/4)

4
8

Press and Select

NTHU EECS Logic Design Lab.

Simulation (2/4)

4
9

Press to maximize

NTHU EECS Logic Design Lab.

Simulation (3/4)

5
0

Scroll this to the beginning

Use to zoom in or zoom out

NTHU EECS Logic Design Lab.

Simulation (4/4)

5
1

Press to close simulation

	投影片編號 1
	Outline
	Introduction
	Verilog HDL
	Verilog HDL Utilization Scenario I
	Verilog HDL Utilization Scenario II
	Verilog HDL –�Levels of Abstraction (2/2)
	Verilog HDL –�Levels of Abstraction (1/2)
	Level of Abstraction Example
	Behavior Level Abstraction
	Behavior Level Abstraction
	Gate Level Abstraction
	VLSI Design Flow
	Verilog Simulation
	Sample Design
	Scenario
	Verilog Module
	Testbench (1/4)
	Testbench (2/4)
	Testbench (3/4)
	Testbench (4/4)
	Structural Modeling
	Verilog Primitives
	Structural Modeling
	RTL Modeling
	Operators (1/3)
	Operators (2/3)
	Operators (3/3)
	assign
	always
	Logic Modeling and Simulation Using Xilinx Vivado
	Design Flow
	Important Notes
	Open Vivado
	Open New Project (1/3)
	Open New Project (2/3)
	Open New Project (3/3)
	New Source (1/5)
	New Source (2/5)
	New Source (3/5)
	New Source (4/5)
	New Source (5/5)
	Add Testbench (1/5)
	Add Testbench (2/5)
	Add Testbench (3/5)
	Add Testbench (4/5)
	Add Testbench (5/5)
	Simulation (1/4)
	Simulation (2/4)
	Simulation (3/4)
	Simulation (4/4)

