
For Loop - VHDL and Verilog Example
Write synthesizable and testbench For Loops
For loops are one of the most misunderstood parts of any HDL code. For loops can be used in both synthesizable and
non-synthesizable code. However for loops perform differently in a software language like C than they do in VHDL.
You must clearly understand how for loops work before using them!

Converting A Software-Style For Loop to VHDL/Verilog
For loops are an area that new hardware developers struggle with. You have likely seen for loops dozens of times in C, so
you think that they are the same in Verilog and VHDL. Let me be clear here: For loops do not behave the same way in
hardware as in software.

For loops in synthesizable code are used to expand replicated logic. They are simply a way of shrinking the amount of
code that is written by the hardware designer. Again, until you understand how exactly this expansion of replicated logic
works, do not use for loops. Instead think about how you want your code to behave and figure out a way to write it in C
without using a for loop, then write your code in VHDL or Verilog. Below is an example of this:

This code will take every value in the array "data" and increment it by 1. Here is equivalent code in VHDL:

And here is equivalent code in Verilog:

Usually all you need is to add a counter signal (like index in the example above) to do the same thing that the for
loop will do.

Using For Loops in Synthesizable Code
For loops can be synthesized. For loops in synthesizable code are used for expanding replicated logic. They are simply a
way of shrinking the amount of code that is written by the hardware designer. They do not loop like a C program loops.
They only expand replicated logic. Let's look at an example of this. Note that the code below is written in both VHDL and
Verilog, but the simulation results are the same for both languages.

VHDL Synthesizable for loop example code:

The two processes perform exactly the same functionality except the for loop is more compact. For loops can also be used
to expand combinational logic outside of a process or always block. For that, you need to use a Generate Statement.

1
2
3

// Example Software Code:
For (int i=0; i<10; i++)
 data[i] = data[i] + 1;

1
2
3
4
5
6
7
8
9

P_INCREMENT : process (clock)
begin
 if rising_edge(clock) then
 if index < 10 then
 data(index) <= data(index) + 1;
 index <= index + 1;
 end if;
 end if;
end process P_INCREMENT;

1
2
3
4
5
6
7
8

always @(posedge clock)
 begin
 if (index < 10)
 begin
 data[index] <= data[index] + 1;
 index <= index + 1;
 end
 end

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity Example_For_Loop is
 port (
 i_Clock : std_logic
);
end Example_For_Loop;

architecture behave of Example_For_Loop is

 signal r_Shift_With_For : std_logic_vector(3 downto 0) := X"1";
 signal r_Shift_Regular : std_logic_vector(3 downto 0) := X"1";

begin

 -- Creates a Left Shift using a For Loop
 p_Shift_With_For : process (i_Clock)
 begin
 if rising_edge(i_Clock) then

https://www.nandland.com/articles/synthesizable-vs-non-synthesizable-code-fpga-asic.html
https://www.nandland.com/vhdl/examples/example-generate-statement.html

Verilog Synthesizable For Loop Example Code

The two always blocks below perform the same purpose, except one uses a for loop and the other does not. Again, all the
loop does is to expand replicated logic.

For Loop Simulation Results

As can be seen in the example above, all the for loop does for synthesis is to expand replicated logic. It will
essentially unwrap the entire loop and replace the loop with the expanded code. The signals r_Shift_With_For and
r_Shift_Regular behave exactly the same way! Now let's look how for loops can be used in simulation.

Using For Loops in Simulation
For loops when used in a simulation environment can behave more like the traditional for loop that you have seen in other
software programming languages. They can have delays inside them and can actually delay the simulation while executing
them.

The example below will initialize r_Data in an incrementing pattern, assigning one value every 10 ns of simulation time. It
also displays the values as it assigns them. This is not synthesizable code!

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

 for ii in 0 to 2 loop
 r_Shift_With_For(ii+1) <= r_Shift_With_For(ii);
 end loop; -- ii
 end if;
 end process;

 -- Performs a shift left using regular assignments
 p_Shift_Without_For : process (i_Clock)
 begin
 if rising_edge(i_Clock) then
 r_Shift_Regular(1) <= r_Shift_Regular(0);
 r_Shift_Regular(2) <= r_Shift_Regular(1);
 r_Shift_Regular(3) <= r_Shift_Regular(2);
 end if;
 end process;

end behave;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

module for_loop_synthesis (i_Clock);
 input i_Clock;
 integer ii=0;
 reg [3:0] r_Shift_With_For = 4'h1;
 reg [3:0] r_Shift_Regular = 4'h1;

 // Performs a shift left using a for loop
 always @(posedge i_Clock)
 begin
 for(ii=0; ii<3; ii=ii+1)
 r_Shift_With_For[ii+1] <= r_Shift_With_For[ii];
 end

 // Performs a shift left using regular statements
 always @(posedge i_Clock)
 begin
 r_Shift_Regular[1] <= r_Shift_Regular[0];
 r_Shift_Regular[2] <= r_Shift_Regular[1];
 r_Shift_Regular[3] <= r_Shift_Regular[2];
 end
endmodule

module for_loop_synthesis_tb (); // Testbench
 reg r_Clock = 1'b0;
 // Instantiate the Unit Under Test (UUT)
 for_loop_synthesis UUT (.i_Clock(r_Clock));
 always
 #10 r_Clock = !r_Clock;
endmodule

VHDL Implementation

Verilog Implementation

Console Result from Modelsim Simulation:
(Same for both VHDL and Verilog Examples above)

Time 0: r_Data at Index 0 is 0
Time 10: r_Data at Index 1 is 1
Time 20: r_Data at Index 2 is 4
Time 30: r_Data at Index 3 is 9
Time 40: r_Data at Index 4 is 16
Time 50: r_Data at Index 5 is 25

Help Me Make Great Content! Support me on Patreon! Buy a Go Board!

Content cannot be re-hosted without author's permission. (contact me)
Help me to make great content! Support me on Patreon!

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity for_loop_simulation is
end entity for_loop_simulation;

architecture behave of for_loop_simulation is
 type t_Data is array (0 to 5) of integer;
begin

 process is
 variable r_Data : t_Data; -- Create 6 words deep array of integers
 begin

 for ii in 0 to 5 loop
 r_Data(ii) := ii*ii;
 report("r_Data at Index " & integer'image(ii) & " is " &
 integer'image(r_Data(ii)));
 wait for 10 ns;
 end loop;

 assert false report "Test Complete" severity failure;
 end process;
end architecture behave;

1
2
3
4
5
6
7
8
9

10
11
12
13
14

module for_loop_simulation ();
 integer ii=0;
 reg [7:0] r_Data[5:0]; // Create reg 8 bit wide by 6 words deep.

 initial
 begin
 for (ii=0; ii<6; ii=ii+1)
 begin
 r_Data[ii] = ii*ii;
 $display("Time %2d: r_Data at Index %1d is %2d", $time, ii, r_Data[ii]);
 #10;
 end
 end
endmodule

https://www.patreon.com/user?u=2732133
https://www.nandland.com/goboard/introduction.html
https://www.nandland.com/contact.html
https://www.patreon.com/user?u=2732133

