

Keyboard

黄元豪 Yuan-Hao Huang

國立清華大學電機工程學系 Department of Electrical Engineering National Tsing-Hua University

USB HID Host (1/3)

HID : Human Interface Device

USB HID Host (2/3)

USB HID Host (3/3)

Microchip PIC24FJ128

• Configuration mode

– Download a bit-stream to the FPGA.

- Application mode
 - In Basys 3, this is called USB HID Host mode.
 - Only a single mouse or a single keyboard can be used.
 - PS2_CLK and PS2_DATA are used to implement a standard PS/2 interface.

HID Controller

Symbol	Parameter	Min	Max
T _{CK}	Clock time	30 us	50 us
T _{SU}	Data-to-clock setup time	5 us	25 us
T _{HLD}	Clock-to-data hold time	5 us	25us

Unit 8

Initialization

- Initially, Basys3 identifies the devices through PS2_CLK and PS2_DATA.
- When Basys3 is idled (unconnected), Basys3 reads 0xFA using a Read ID command.
- When a keyboard or mouse is connected to the Basys3, a "self-test passed" command (0xAA) is sent to the Basys3.
 - $0xFA \rightarrow 0xAA$
- Scancode of keyboard
 - Each key is assigned a code
 - If the key is held down, the scan code will be sent repeatedly about once every 100ms.
 - When a key is released, an F0 key-up code is sent, followed by the scan code of the released key.
 - Some keys (right Ctrl, right Alt, ...), called extended keys, send an E0 ahead of the scan code.

PS/2 Port

Example PC compatible (IBM PS/2) scancodes

kov	set 1 (IBM PC XT)		set 2 (IBM PC AT)		set 3 (IBM 3270 PC)	
Key	press	release	press	release	press	release
A (normal letter)	1E	9E	10	F0 1C	10	F0 1C
Return / Enter (main keyboard)	10	90	5A	FØ 5A	5A	F0 5A
Enter (numeric keypad)	E0 1C	E0 9C	E0 5A	E0 F0 5A	79	F0 79
Left Windows key	E0 5B	EØ DB	E0 1F	E0 F0 1F	8B	F0 8B
Right Windows key	E0 5C	E0 DC	EØ 27	E0 F0 27	8C	F0 8C

from Wiki

PS/2 Scancode

Extend Code	Break Code	Make code	
E0	F0	XX	
	(means "release")		

We only use the yellow parts of the keyboard.

PS/2 Scancode (Example)

L Alt press			11
L Alt release		F0	11
R Alt press	EO		11
R Alt release	EO	F0	11

Verilog Module: KeyboardCtrl(1/2)

- In Keyboard-Controller
 - Ps2Interface.v
 - KeyboardCtrl.v
- KeyboardCtrl.v
 - Input: PS2_CLK, PS2_DATA, rst, clk
 - Output:key_in, is_extend, is_break, valid, err

Verilog Module: KeyboardCtrl(1/2)

KeyboardCtrl (Output Example 1)

L Alt press

KeyboardCtrl (Output Example 2)

L Alt release

Unit 8

KeyboardCtrl (Output Example 3)

R Alt press

KeyboardCtrl (Output Example 4)

R Alt release

Verilog Module: KeyboardDecoder (1/5)

- In Keyboard Sample Code
 KeyboardDecoder.v
- I/O for KeyboardDecoder
 - Input : PS2_CLK, PS2_DATA, rst, clk
 - Output : key_down, last_change, Key_valid

Verilog Module: KeyboardDecoder (2/5)

Verilog Module: KeyboardDecoder (3/5)

- last_change: 9 bits
 - represent the key which has been pressed or released.

extend code

make code

- key_valid: 1 bit
 - should be active for one clock period (100MHz) when any key is pressed or released.

Verilog Module: KeyboardDecoder (4/5)

• key_down [511:0] are status bits. Each bit indicates pressed (1) or released (0) of each button of the keyboard.

– the key indexed by "0_0100_0001" is released.

Verilog Module: KeyboardDecoder (5/5)

- key_down [511:0]
- key_down <= key_down | key_decode;

	0	1	1	0	1
or	0	0	0	1	0
	0	1	1	1	1

key_down <= key_down & (~key_decode);

	0	1	1	0	1
and	1	1	0	1	1
	0	1	0	0	1

How to Use IP (1/3)

How to Use IP (2/3)

How to Use IP (3/3)

Project Manager - IP

