Lab 1: Verilog HDL

Objective

- ✓ Review fundamental logic components.
- ✓ Introduce Verilog HDL modeling and verification.

Prerequisite

✓ Fundamentals of logic gates and Verilog HDL.

Experiments

- 1 Design and implement a full adder. (s+cout=x+y+cin)
 - 1.1 Write the logic equation.
 - 1.2 Draw the related logic diagram.
 - 1.3 Verilog RTL representation with verification.
- Design a 3-to-8-line decoder with enable (input in[2:0], enable en and output d[7:0]).
 - 2.1 Logic equation,
 - 2.2 Logic schematic,
 - 2.3 Verilog RTL representation with verification.
- 3 For two 3-bit unsigned numbers a ($a_2a_1a_0$)and b ($b_2b_1b_0$), build a logic circuit to output the larger number.
- 4 (Bonus) Design a single digit decimal adder with input $A(a_3a_2a_1a_0)$, $B(b_3b_2b_1b_0)$, $C_{in}(ci)$, and output $S(s_3s_2s_1s_0)$ and $C_{out}(co)$.