
Keyboard

EECS2070 Logic Design Lab

Hsi-Pin Ma

http://lms.nthu.edu.tw/course/43639
Department of Electrical Engineering

National Tsing Hua University

http://lms.nthu.edu.tw/course/43639

Hsi-Pin Ma

FPGA Configuration

2

Basys 3Ρ FPGA Boaƌd Refeƌence ManƵal

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 19

2 FPGA Configuration
After power-on, the Artix-7 FPGA must be configured (or programmed) before it can perform any functions. You

can configure the FPGA in one of three ways:

1. A PC can use the Digilent USB-JTAG circuitry (portJ4, labeled "PROG") to program the FPGA any time the

power is on.

2. A file stored in the nonvolatile serial (SPI) flash device can be transferred to the FPGA using the SPI port.

3. A programming file can be transferred from a USB memory stick attached to the USB HID port.

Figure 3 shows the different options available for configuring the FPGA. An on-board "mode" jumper (JP1) selects

between the programming modes.

M0

M1

JTAG
Port

USB
Controller SPI Quad mode

Flash

1x6 JTAG
Header

SPI
Port

Micro-AB USB
Connector (J4)

USB-JTAG/UART Port

Artix-7

Done

PIC24Type A USB Host
Connector (J2) Serial

Prog. Port

2

6-pin JTAG
Header (J5)

Prog

M2

Mode (JP1)

Programming Mode

JP1

SPI Flash

JTAG

USB

Figure 3. Basys 3 configuration options.

The FPGA configuration data is stored in files called bitstreams that have the .bit file extension. The Vivado

software from Xilinx can create bitstreams from VHDL, Verilog®, or schematic-based source files.

Bitstreams are stored in SRAM-based memory cells within the FPGA. This data defines the FPGA's logic functions

and circuit connections, and it remains valid until it is erased by removing board power, by pressing the reset

button attached to the PROG input, or by writing a new configuration file using the JTAG port.

An Artix-7 35T bitstream is typically 17,536,096 bits and can take a long time to transfer. The time it takes to

program the Basys 3 can be decreased by compressing the bitstream before programming, and then allowing the

FPGA to decompress the bitsream itself during configuration. Depending on design complexity, compression ratios

of 10x can be achieved. Bitstream compression can be enabled within the Xilinx Tools (Vivado) to occur during

generation. For instructions on how to do this, consult the Xilinx documentation for the toolset being used.

After being successfully programmed, the FPGA will cause the "DONE" LED to illuminate. Pressing the "PROG"

button at any time will reset the configuration memory in the FPGA. After being reset, the FPGA will immediately

attempt to reprogram itself from whatever method has been selected by the programming mode jumper.

The following sections provide greater detail about programming the Basys 3 using the different methods

available.

Hsi-Pin Ma

USB-UART Bridge (Serial Port)

• FTDI FT2232HQ
– Allow to use PC applications to communicate with the

board using standard Windows COM port commands
• Virtual Com Port convert USB packets to UART/serial

port data
• Serial port data is exchanged with the FPGA using a

two-wire serial port (TXD/RXD)

3

Basys 3Ρ FPGA Boaƌd Refeƌence ManƵal

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 19

5 USB-UART Bridge (Serial Port)
The Basys 3 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J4) that allows you to use PC
applications to communicate with the board using standard Windows COM port commands. Free USB-COM port
drivers, available from www.ftdichip.com under the "Virtual Com Port" or VCP heading, convert USB packets to
UART/serial port data. Serial port data is exchanged with the FPGA using a two-wire serial port (TXD/RXD). After
the drivers are installed, I/O commands can be used from the PC directed to the COM port to produce serial data
traffic on the B18 and A18 FPGA pins.

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the transmit LED (LD18) and
the receive LED (LD17). Signal names that imply direction are from the point-of-view of the DTE (Data Terminal
Equipment), in this case the PC.

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the USB-UART and USB-JTAG
functions behave entirely independent of one another. Programmers interested in using the UART functionality of
the FT2232 within their design do not need to worry about the JTAG circuitry interfering with the UART data
transfers, and vice-versa. The combination of these two features into a single device allows the Basys 3 to be
programmed, communicated with via UART, and powered from a computer attached with a single Micro USB
cable. The connections between the FT2232HQ and the Artix-7 are shown in Fig. 6.

TXD B18
Micro-USB

(J4)

2

RXD

Artix-7FT2232

JTAG
4

JTAG

A18

Figure 6. Basys 3 FT2232HQ connections.

6 USB HID Host
The Auxiliary Function microcontroller (Microchip PIC24FJ128) provides the Basys 3 with USB HID host capability.
After power-up, the microcontroller is in configuration mode, either downloading a bitstream to the FPGA or
waiting for it to be programmed from other sources. Once the FPGA is programmed, the microcontroller switches
to application mode, which in this case is USB HID Host mode. Firmware in the microcontroller can drive a mouse
or a keyboard attached to the type A USB connector at J2 labeled "USB." Hub support is not currently available, so
only a single mouse or a single keyboard can be used. The PIC24 drives several signals into the FPGA – two are
used to implement a standard PS/2 interface for communication with a mouse or keyboard, and the others are
connected to the FPGA's two-wire serial programming port, so the FPGA can be programmed from a file stored on
a USB pen drive.

Artix-7

C17

PIC24FJ128

PS2_CLK
B17

USB HOST (J2)

2
PS2_DAT

FPGA
Config

7 FPGA
Config

Figure 7. Basys 3 PIC24 connections.

Hsi-Pin Ma

USB HID Host

• USB HID (Human Interface Device) host capability
– Aux function microcontroller (Microchip PIC24FJ128)

• PIC24FJ128 function
– Power-up: configuration mode
– After programmed: application mode (USB HID Host mode)
– Do not support Hub. Only a single mouse or a single keyboard

can be used (standard PS/2 interface)

4

Basys 3Ρ FPGA Boaƌd Refeƌence ManƵal

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 19

5 USB-UART Bridge (Serial Port)
The Basys 3 includes an FTDI FT2232HQ USB-UART bridge (attached to connector J4) that allows you to use PC
applications to communicate with the board using standard Windows COM port commands. Free USB-COM port
drivers, available from www.ftdichip.com under the "Virtual Com Port" or VCP heading, convert USB packets to
UART/serial port data. Serial port data is exchanged with the FPGA using a two-wire serial port (TXD/RXD). After
the drivers are installed, I/O commands can be used from the PC directed to the COM port to produce serial data
traffic on the B18 and A18 FPGA pins.

Two on-board status LEDs provide visual feedback on traffic flowing through the port: the transmit LED (LD18) and
the receive LED (LD17). Signal names that imply direction are from the point-of-view of the DTE (Data Terminal
Equipment), in this case the PC.

The FT2232HQ is also used as the controller for the Digilent USB-JTAG circuitry, but the USB-UART and USB-JTAG
functions behave entirely independent of one another. Programmers interested in using the UART functionality of
the FT2232 within their design do not need to worry about the JTAG circuitry interfering with the UART data
transfers, and vice-versa. The combination of these two features into a single device allows the Basys 3 to be
programmed, communicated with via UART, and powered from a computer attached with a single Micro USB
cable. The connections between the FT2232HQ and the Artix-7 are shown in Fig. 6.

TXD B18
Micro-USB

(J4)

2

RXD

Artix-7FT2232

JTAG
4

JTAG

A18

Figure 6. Basys 3 FT2232HQ connections.

6 USB HID Host
The Auxiliary Function microcontroller (Microchip PIC24FJ128) provides the Basys 3 with USB HID host capability.
After power-up, the microcontroller is in configuration mode, either downloading a bitstream to the FPGA or
waiting for it to be programmed from other sources. Once the FPGA is programmed, the microcontroller switches
to application mode, which in this case is USB HID Host mode. Firmware in the microcontroller can drive a mouse
or a keyboard attached to the type A USB connector at J2 labeled "USB." Hub support is not currently available, so
only a single mouse or a single keyboard can be used. The PIC24 drives several signals into the FPGA – two are
used to implement a standard PS/2 interface for communication with a mouse or keyboard, and the others are
connected to the FPGA's two-wire serial programming port, so the FPGA can be programmed from a file stored on
a USB pen drive.

Artix-7

C17

PIC24FJ128

PS2_CLK
B17

USB HOST (J2)

2
PS2_DAT

FPGA
Config

7 FPGA
Config

Figure 7. Basys 3 PIC24 connections.

Hsi-Pin Ma

USB HID Host

5

Only one keyboard or mouse can be used

Host device

Peripheral A

Peripheral B

Hsi-Pin Ma

HID Controller

6

Basys 3Ρ FPGA Boaƌd Refeƌence ManƵal

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 19

6.1 HID Controller
The Auxiliary Function microcontroller hides the USB HID protocol from the FPGA and emulates an old-style PS/2

bus. The microcontroller behaves just like a PS/2 keyboard or mouse would. This means new designs can re-use

existing PS/2 IP cores. Mice and keyboards that use the PS/2 protocol use a two-wire serial bus (clock and data) to

communicate with a host. On the Basys 3, the microcontroller emulates a PS/2 device while the FPGA plays the

role of the host. Both the mouse and the keyboard use 11-bit words that include a start bit, data byte (LSB first),

odd parity, and stop bit, but the data packets are organized differently, and the keyboard interface allows bi-

directional data transfers (so the host device can illuminate state LEDs on the keyboard). Bus timings are shown in

Fig. 8.

TCK

TSU

Clock time
Data-to-clock setup time

30us
5us

50us
25us

Symbol Parameter Min Max

THLD Clock-to-data hold time 5us 25us

Edge 0

µ0¶ sWarW biW µ1¶ sWop biW

Edge 10

Tsu

Thld

Tck Tck
CLOCK

DATA

Figure 8. PS/2 device-to host timing diagram.

The clock and data signals are only driven when data transfers occur; otherwise they are held in the idle state at

logic '1.' This requires that when the PS/2 signals are used in a design, internal pull-ups must be enabled in the

FPGA on the data and clock pins. The clock signal is normally driven by the device, but may be held low by the host

in special cases. The timings define signal requirements for mouse-to-host communications and bi-directional

keyboard communications. A PS/2 interface circuit can be implemented in the FPGA to create a keyboard or

mouse interface.

When a keyboard or mouse is connected to the Basys 3, a "self-test passed" command (0xAA) is sent to the host.

After this, commands may be issued to the device. Since both the keyboard and the mouse use the same PS/2

port, one can tell the type of device connected using the device ID. This ID can be read by issuing a Read ID

command (0xF2). Also, a mouse sends its ID (0x00) right after the "self-test passed" command, which distinguishes

it from a keyboard.

6.2 Keyboard
The keyboard uses open-collector drivers so the keyboard, or an attached host device, can drive the two-wire bus

(if the host device will not send data to the keyboard, then the host can use input-only ports).

PS/2-style keyboards use scan codes to communicate key press data. Each key is assigned a code that is sent

whenever the key is pressed. If the key is held down, the scan code will be sent repeatedly about once every

100ms. When a key is released, an F0 key-up code is sent, followed by the scan code of the released key. If a key

can be shifted to produce a new character (like a capital letter), then a shift character is sent in addition to the scan

code and the host must determine which ASCII character to use. Some keys, called extended keys, send an E0

ahead of the scan code (and they may send more than one scan code). When an extended key is released, an E0 F0

key-up code is sent, followed by the scan code. Scan codes for most keys are shown in Fig. 9.

TCK

‘0’ start bit

‘1’ stop bit

THLDTSU

• 11-bit words protocol
– start bit, data byte (LSB first), odd parity, stop bit

Hsi-Pin Ma

4x4 Keypad

7

C3

C2

C1

C0

R0

R1

R2

R3

F E D C

B 3 6 9

A 2 5 6

0 1 4 7

• Keypad scan

Hsi-Pin Ma

PS/2-style Keyboard Operation
• Use scan codes to communicate key press data

– Each key is assigned a code
– If the key is held down, the scan code will be sent repeatedly

about once every 100ms.
– When a key is released, an F0 key-up code is sent, followed

by the scan code of the released key.
– Some keys (right Ctrl, right Alt, …) , called extended keys,

send an E0 ahead of the scan code.

8from Wiki

Hsi-Pin Ma

PS/2 Keyboard Scan Code

9

We only use the yellow parts of the keyboard.

L Alt press 11

L Alt release F0 11

R Alt press E0 11

R Alt release E0 F0 11

Extend Code Break Code Make code

E0 F0 XX

(means “release”)

Hsi-Pin Ma

PS/2-style Keyboard Operation
• A host device can also send data to the keyboard
• The keyboard can send data to the host only when both the

data and clock lines are high (or idle)
– If the host drive the clock line low, the keyboard must not send any data until

the clock is released.

• The keyboard generates 11 clock transitions (at 20 to 30 KHz)
when the data is sent, and data is valid on the falling edge of
the clock.

• When a keyboard or a mouse is connected to the Basys3, a
“self-test passed” command (0xAA) is sent to Basys3

• A Read ID command for Basys 3 is used to identify what kind
of device is connected
– Keyboard: 0xFA -> 0xAA

10

Hsi-Pin Ma

KeyboardDecoder

11

KeyboardDecoder.v

Ps2Interface.v

KeyboardCtrl.v

Inout:
PS2_DATA, PS2_CLK
rst (high active reset)
clk (100MHz)

Outputs:
last_change [8:0]
key_down [511:0]: address of the key pressed
key_valid: high for 1 clock period (100MHz) when a key is pressed or released

0 0 0 0 1 0 1 0 0

extend code make code

Hsi-Pin Ma

KeyboardDecoder

• FSM in the decoder

12

WAIT_
FOR_

SIGNAL

GET_
SIGNAL

WAIT_
RELEASE

valid == 0
valid == 1

valid == 1

valid == 0

INIT

key_in == 8’hAA

Hsi-Pin Ma

For Lab9

• Use KeyboardDecoder to get the codes of pressed
key

• Remember to add three .v files into your projects
– Ps2Interface.v
– KeyboardCtrl.v
– KeyboardDecoder.v

13

