
Introduction

Hsi-Pin Ma

http://lms.nthu.edu.tw/course/24953
Department of Electrical Engineering

National Tsing Hua University

EE2230 Logic Design Lab

Hsi-Pin Ma 2

Outline

• Introduction
• Sample Design
• Structural Modeling
• RTL Modeling
• Logic Modeling and Simulation Using Xilinx ISE
• A Simple Example

Hsi-Pin Ma 3

Introduction

Hsi-Pin Ma 4

Hardware Description Language

• A high-level programming language offering
special constructs to model microelectronic
circuits
– Describe the operation of a circuit at various level of

abstraction
• Behavior
• Function
• Structure

– Describe the timing of a circuit
– Express the concurrency of circuit operation

Hsi-Pin Ma 5

Levels of Abstraction (1/2)

Hsi-Pin Ma 6

Levels of Abstraction (2/2)

• Behavioral Level (Architectural/Algorithmic Level)
– Describes a system by the flow of data between its functional blocks
– Defines signal values when they change

• Register Transfer Level (Dataflow Level)
– Describe a system by the flow of data and control signals between and

within its functional blocks
– Defines signal values with respect to a clock
– RTL (Register Transfer Level) is frequently used for the Verilog

description with the combination of behavioral and dataflow constructs
which is acceptable to logic synthesis tools.

• Gate Level (Structural)
– A model that describes the gates and the interconnections between them

• Transistor/Switch/Physical Level
– A model that describes the transistors and the interconnections between

them

Hsi-Pin Ma 7

Behavior Level Abstraction
• Describe the design without implying any

specific internal architecture
– Use high level constructs (@, case, if, repeat, wait,

while)
– Usually use behavioral construct in testbench
– Synthesis tools accept only a limited subset of these

• Case 1: assign Z = (S) ? A : B;

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire out;

assign out = (sel) ? a : b ;

endmodule

a
b out?

sel

SMUX

Hsi-Pin Ma 8

Behavior Level Abstraction
• Case 2:

always @(input1 or input2 or ...)
begin
 out1 =
end

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
reg out;

always @(a or b or sel)
 if (sel)
 out=a;
 else
 out=b;
endmodule

a
b out

sel

SMUX

Hsi-Pin Ma 9

Gate Level Abstraction

• Synthesis tools produce a purely structural
design description

– You must derive and draw the circuit schematics first
before writing Verilog codes

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule

b

a
sel out

U0

U2

U1
U3

SMUX
sel_n

t1

t2

Hsi-Pin Ma 10

VLSI Design Flow
System Specification

Functional
(Architecture) Design

Functional Verification

Logic Design

Logic Verification

Circuit Design

Circuit Verification

Physical Design

Layout Verification

Fabrication & Testing

Behavioral
Representation
(C++,Behavioral Verilog)

Logic (Gate-level)
Representation
(Gate-level Verilog)

Circuit
Representation
(Hspice)

Layout
Representation
(GDSII, dB in FPGA)

Hsi-Pin Ma 11

Event Simulation of a Verilog Model

• Compilation
– Compilation and elaboration

• Initialization
– Initialize module parameters

• Set other storage element to unknown (X) state
– Unknown or un-initialized

• Set undriven nets to the high-impedance (Z) state
– Tri-state or floating

• Simulation

Hsi-Pin Ma 12

Verilog Simulation

Hsi-Pin Ma 13

Sample Design

Hsi-Pin Ma 14

Scenario

Stimulus
&

Control

Response
Generation

&
Verification

a
b out
sel

Device under Test (DUT)

A
B

SEL

OUT

SMUX

a
b out
sel

a
b out
sel

A’
B’

SEL’

OUT ’

U0

U1

Module + Testbench

Hsi-Pin Ma 15

Verilog Module

module module_name(port_names);

Ø Port declaration

Ø Data type declaration

Ø Task & function declaration

Ø Module functionality or structure

Ø Timing Specification

endmodule

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule

Hsi-Pin Ma 16

Testbench (1/4)

module testfixture;

Ø Declare signals

Ø Instantiate modules

Ø Applying stimulus

Ø Monitor signals

endmodule

Compare this to a breadboard experiment!

Hsi-Pin Ma 17

Testbench (2/4)

• Declare signals
– Test pattern must be stored in storage elements first and

then apply to DUT (Device under Test)
• Use “reg” to declare the storage element

• Instantiate modules
– Both behavioral level or gate level model can be used.

Hsi-Pin Ma 18

Testbench (3/4)

• Describing Stimulus
– The testbench always be described behaviorally.
– Procedural blocks are bases of behavioral modeling.
– The simulator starts executing all procedure blocks at

time 0 and executes them concurrently.
– Two types of procedural blocks

• initial
• always

initial
c
c

c
c

always
c
c

c
c

Hsi-Pin Ma 19

Testbench (4/4)
module test_SMUX;

reg A,B,SEL;
wire OUT;

SMUX U0(.out(OUT),.a(A),.b(B),.sel(SEL));

initial
begin

A=0;B=0;SEL=0;
#10 A=0;B=1;SEL=1;
#10 A=1;B=0;
#10 SEL=0;
…..
#10 SEL=1;

end

endmodule

Assign values to
storage elements

#10 to specify 10
time unit delay

Declare signals

Make an instance

Hsi-Pin Ma 20

Structural Modeling

Hsi-Pin Ma 21

Verilog Primitives

• and : Logical AND
• or : Logical OR
• not : Inverter
• buf : Buffer
• xor : Logical exclusive OR
• nand : Logical AND inverted
• nor : Logical OR inverted
• xnor : Logical exclusive OR inverted

Hsi-Pin Ma 22

Structural Modeling

module SMUX(out, a, b, sel);

output out;
input a,b,sel;
wire sel_n,t1,t2;

not U0(sel_n,sel);
and U1(t1,a,sel);
and U2(t2,b,sel_n);
or U3(out,t1,t2);

endmodule

b

a
sel out

U0

U2

U1
U3

SMUX
sel_n

t1

t2

Hsi-Pin Ma 23

RTL Modeling

Hsi-Pin Ma 24

Operators (1/3)

Bitwise Operators

OP Usage Description

~ ~m Invert each bit of m

& m & n AND each bit of m with each bit of n

| m | n OR each bit of m with each bit of n

^ m ^ n Exclusive OR each bit of m with n

~^ or
^~ m ~^ n or m ^~ n Exclusive NOR each bit of m with n

Unary Reduction Operators

OP Usage Description

& &m AND all bits in m together (1-bit result)

~& ~&m NAND all bits in m together (1-bit result)

| |m OR all bits in m together (1-bit result)

~| ~|m NOR all bits in m together (1-bit result)

^ ^m Exclusive OR all bits in m (1-bit result)

~^ or ^~ ~^m or ^~m Exclusive NOR all bits in m (1-bit result)

Hsi-Pin Ma 25

Operators (2/3)
Arithmetic Operators

OP Usage Description

+ m + n Add n to m	

- m - n Subtract n from m	

- -m Negate m (2's complement)	

* m * n Multiply m by n	

/ m / n Divide m by n	

% m % n Modulus of m / n

Logical Operators

OP Usage Description

! !m Is m not true? (1-bit True/False result)	

&& m && n Are both m and n true? (1-bit True/False result)	

|| m || n Are either m or n true? (1-bit True/False result)

Equality Operators (compares logic values of 0 and 1)

OP Usage Description

== m == n Is m equal to n? (1-bit True/False result)	

!= m != n Is m not equal to n? (1-bit True/False result)

Identity Operators (compares logic values of 0, 1, x, and z)

OP Usage Description

=== m === n Is m identical to n? (1-bit True/False result)	

!== m !== n Is m not identical to n? (1-bit True/False result)

Synthesis not supported

The divisor for divide operator may be restricted to constants and a power of 2

Synthesis not supported

Synthesis not supported

Hsi-Pin Ma 26

Operators (3/3)

Relational Operators

OP Usage Description

< m < n Is m less than n? (1-bit True/False result)	

> m > n Is m greater than n? (1-bit True/False result)	

<= m <= n Is m less than or equal to n? (True/False result)	

>= m >= n Is m greater than or equal to n? (True/False result)

Logical Shift Operators

OP Usage Description

<< m << n Shift m left n-times	

>> m >> n Shift m right n-times

Misc Operators

OP Usage Description

? : sel?m:n If sel is true, select m: else select n	

{} {m,n} Concatenate m to n, creating larger vector	

{{}} {n{m}} Replicate m n-times

Hsi-Pin Ma 27

assign

• assign continuous construct
– combinational logics

b

a
sel out

U0 U2

U1

U3

module SMUX (out,a,b,sel);
output out;
input a,b,sel;

 assign out = (a&sel) | (b&(~sel));

endmodule

This out has to be declared as “wire” or or “output” data type.
This expression can not be inside always @().

Hsi-Pin Ma 28

always

• always statements

module SMUX (out,s,b,sel);
output out;
input a,b,sel;
reg out;

always @*
 out = (a&sel) | (b&(~sel));  

endmodule

b

a
sel out

U0 U2

U1

U3

This out has to be declared as “reg” data type.

Hsi-Pin Ma

Logic Modeling and Simulation Using
Xilinx ISE

29

Hsi-Pin Ma

• General design flow
– Design construction
– Behavioral simulation
– Design implementation
– Timing simulation

• HDL-based design Flow

Design Flow

30

Hsi-Pin Ma 31

Important Notes

• Draw schematic first and then construct
Verilog codes.

• Verilog RTL coding philosophy is not the same as
C programming
– Every Verilog RTL construct has its own logic mapping (for

synthesis)
– You should have the logics (draw schematic) first and then

the RTL codes
– You have to write synthesizable RTL codes

Hsi-Pin Ma

Open ISE

32

Hsi-Pin Ma

Open New Project (1/4)

33

Hsi-Pin Ma

Open New Project (2/4)

34

��:"1."Family"����Automotive"Spartan6	 ��
����6
"""""""""""2."Simulator"	�ISim�

Hsi-Pin Ma

Open New Project (3/4)

35

Hsi-Pin Ma

Open New Project (4/4)

36

Hsi-Pin Ma

New Source (1/6)

37

Hsi-Pin Ma

New Source (2/6)

38

assign z = sel ? a : b;

�

Hsi-Pin Ma

New Source (3/6)

39

input a, b, sel;
output z;

assign z = sel ? a :
b;

�

Hsi-Pin Ma

New Source (4/6)

40

Hsi-Pin Ma

New Source (5/6)

41

Hsi-Pin Ma

New Source (6/6)

42

Edit your simulation pattern�

save�

Left click to edit simulation duration�

Right click�

Hsi-Pin Ma

Simulation (1/2)

43

Double click to
obtain simulation results�

Write simulation duration�

Hsi-Pin Ma

Simulation (2/2)

44

Zoon In/Zoon Out�

Scroler Bar�

You can use Zoom In/Zoon Out/Scroller to adjust waveform display�

Hsi-Pin Ma

A Combinational Logic Example

45

Hsi-Pin Ma

Design Procedure

• From the specifications, determine the inputs,
outputs, and their symbols.

• Derive the truth table (functions) from the
relationship between the inputs and outputs

• Derive the simplified Boolean functions for each
output function.

• Draw the logic diagram.
• Construct the Verilog code according to the logic

diagram.
• Write the testbench and verify the design.

46

1

2

3

4

5

6

Hsi-Pin Ma 47

x y z f

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

f=F(x,y,z)=x+y’z

F (x, y, z) =
�

(1, 4, 5, 6, 7) = f

x
y
z

f

input: x,y,z output: f1

2
3

4

Hsi-Pin Ma 48

f=F(x,y,z)=x+y’z

module ex(f,x,y,z);
output f;
input x,y,z;

 assign f = x|((~y)&z);

endmodule

F (x, y, z) =
�

(1, 4, 5, 6, 7) = f

x
y
z

f

module t_ex;
wire f1;
reg x1,y1,z1;

ex U0(.f(f1),.x(x1),.y(y1),.z(z1));

initial
begin
 x1=0;y1=0;z1=0;
 #5 x1=0;y1=0;z1=1;
 #5 x1=0;y1=1;z1=0;
 #5 x1=0;y1=1;z1=1;
 #5 x1=1;y1=0;z1=0;
 #5 x1=1;y1=0;z1=1;
 #5 x1=1;y1=1;z1=0;
 #5 x1=1;y1=1;z1=1;
 #5 x1=0;y1=0;z1=0;
end

endmodule

5

4 6

Hsi-Pin Ma 49

F (x, y, z) =
�

(1, 4, 5, 6, 7) = f

Hsi-Pin MaHsi-Pin Ma

Decimal Adders (1/3)

•Addition of 2 decimal digits in BCD
– {Cout,S}=A+B+Cin

•S=S8S4S2S1, A=A8A4A2A1, B=B8B4B2B1

– A digit in BCD cannot exceed 9, add 6 (0110)
for final correction.

50

Decimal
symbol

BCD digit

0
1
2
3
4
5
6
7

0000
0001
0010
0011
0100
0101
0110
0111

A

B

1 0
 810

 910

1 710

 1 0 0 0 0
 1 0 0 02

 1 0 0 12

 1 0 0 0 12

 0 1 1 02

0 0 0 1 0 1 1 12

KZ binary coded results

BCD coded results

1

2 3

if >9, add 6

Hsi-Pin MaHsi-Pin Ma

Decimal Adders (2/3)

51

Z8 Z4 Z2 Z1

Z8Z4 Z8Z2

2 3

Hsi-Pin MaHsi-Pin Ma

Decimal Adders (3/3)

52

B8 B4 B2 B1 A8 A4 A2 A1

Cout=K+Z8Z4+Z8Z2

4

3

Cout

Cin

Hsi-Pin Ma

Verilog Construction

• 1. Use direct mapping of figure from P52
• 2. Use definition

– two additions
• kz3z2z1z0=a3a2a1a0+b3b2b1b0

• kz3z2z1z0+00110
– selection

– output = kz3z2z1z0 (if kz3z2z1z0 <= 6)
– output = kz3z2z1z0+00110 (if kz3z2z1z0 > 6)

53

Hsi-Pin Ma

Verilog Module Construction (1/2)

• Separate flip-flops with other logics (two types)
– flip-flops (edge-triggered with clock, reset)
– combinational logics (level sensitive)

• Combinational logics
– simple logics (AND, OR, NOT)
– coder/decoder (mapping, addressing)
– comparison (conditional/equality test)
– selection (select correct results, MUX)
– arithmetic functions and superposition (+,-,*,binary shift)

• Finite state machine (FSM)

54

Hsi-Pin Ma

Verilog Module Construction (2/2)

• Separate flip-flops with other logics
– For a D-type flip-flop

– For a 2-to-1 MUX

55

always @(posedge clk or negedge rst_n)
 if (~rst_n)
 q<=0;
 else
 q<=1;

always @*
 if (select==1’b1)
 out=a;
 else
 out=b;

assign out = (select==1’b1) ? a : b;

