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Band-Pass Processes

Definition

A real random process n(t) is band-pass if its power spectral density SN(f )
is zero outside the vicinity of a central (or mid-band) frequency fc , i.e.,

SN(f ) = 0, for all |f ± fc | > B.

The band-pass process is called narrow-band if 2B ≪ fc .

Assume that n(t) is a wide-sense stationary narrow-band noise with
zero mean, autocorrelation function RN(τ), and power spectral
density SN(f ).
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Let the pre-envelope of n(t) be

n+(t) = n(t) + j n̂(t)

and the complex envelope be

ñ(t) = n+(t)e
−j2πfc t = nI (t) + jnQ(t).

Then

n(t) = Re [n+(t)] = Re
[
ñ(t)e j2πfc t

]
= nI (t) cos(2πfct)− nQ(t) sin(2πfct).

We also have

nI (t) = Re [ñ(t)] = Re
[
n+(t)e

−j2πfc t
]

= n(t) cos(2πfct) + n̂(t) sin(2πfct)

nQ(t) = Im [ñ(t)] = Im
[
n+(t)e

−j2πfc t
]

= −n(t) sin(2πfct) + n̂(t) cos(2πfct).
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Properties

Property 1

Both nI (t) and nQ(t) have zero mean.

Proof. Since

E [n̂(t)] = E

[
1

π

∫ ∞

−∞

n(τ)

t − τ
dτ

]
=

1

π

∫ ∞

−∞

E [n(τ)]

t − τ
dτ = 0

we have

E [nI (t)] = E [n(t)] cos(2πfct) + E [n̂(t)] sin(2πfct) = 0.

Similarly,

E [nQ(t)] = −E [n(t)] sin(2πfct) + E [n̂(t)] cos(2πfct) = 0.
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Property 2

RNN̂(τ) = −R̂N(τ)

RN̂N(τ) = R̂N(τ)

RN̂(τ) = RN(τ).

Proof. Since n̂(t) is the output of n(t) passed through a linear time-
invariant (LTI) system with impulse response 1/(πt), we have

RNN̂(τ) = RN(τ) ⋆
1

π(−τ)

= −RN(τ) ⋆
1

πτ

= −R̂N(τ)

where ⋆ denotes convolution and R̂N(τ) is the Hilbert transform of RN(τ).
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Also

RN̂N(τ) = RN(τ) ⋆
1

πτ
= R̂N(τ).

Finally,
SN̂(f ) = SN(f ) |−jsgn(f )|2 = SN(f )

which yields
RN̂(τ) = RN(τ).
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Property 3

E [nI (t + τ)nI (t)] = RNI
(τ)

= E [nQ(t + τ)nQ(t)]= RNQ
(τ)

= RN(τ) cos(2πfcτ) + R̂N(τ) sin(2πfcτ)

E [nI (t + τ)nQ(t)] = RNINQ
(τ)

= −E [nQ(t + τ)nI (t)]= −RNQNI
(τ)

= RN(τ) sin(2πfcτ)− R̂N(τ) cos(2πfcτ).
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Proof.

E [nI (t + τ)nI (t)]

= E [(n(t + τ) cos(2πfc(t + τ)) + n̂(t + τ) sin(2πfc(t + τ)))

(n(t) cos(2πfct) + n̂(t) sin(2πfct))]

=
1

2

[
RN(τ) + RN̂(τ)

]
cos(2πfcτ)

+
1

2

[
−RNN̂(τ) + RN̂N(τ)

]
sin(2πfcτ)

+
1

2

[
RN(τ)− RN̂(τ)

]
cos(2πfc(2t + τ))

+
1

2

[
RNN̂(τ) + RN̂N(τ)

]
sin(2πfc(2t + τ))

= RN(τ) cos(2πfcτ) + R̂N(τ) sin(2πfcτ) (by Property 2)

= RNI
(τ).
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Similarly,

E [nQ(t + τ)nQ(t)]

= E [(−n(t + τ) sin(2πfc(t + τ)) + n̂(t + τ) cos(2πfc(t + τ)))

(−n(t) sin(2πfct) + n̂(t) cos(2πfct))]

=
1

2

[
RN(τ) + RN̂(τ)

]
cos(2πfcτ)

+
1

2

[
−RNN̂(τ) + RN̂N(τ)

]
sin(2πfcτ)

+
1

2

[
−RN(τ) + RN̂(τ)

]
cos(2πfc(2t + τ))

+
1

2

[
−RNN̂(τ)− RN̂N(τ)

]
sin(2πfc(2t + τ))

= RN(τ) cos(2πfcτ) + R̂N(τ) sin(2πfcτ) (by Property 2)

= RNI
(τ)

= RNQ
(τ).
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Also

E [nI (t + τ)nQ(t)]

= E [(n(t + τ) cos(2πfc(t + τ)) + n̂(t + τ) sin(2πfc(t + τ)))

(−n(t) sin(2πfct) + n̂(t) cos(2πfct))]

=
1

2

[
RNN̂(τ)− RN̂N(τ)

]
cos(2πfcτ)

+
1

2

[
RN(τ) + RN̂(τ)

]
sin(2πfcτ)

+
1

2

[
RNN̂(τ) + RN̂N(τ)

]
cos(2πfc(2t + τ))

+
1

2

[
−RN(τ) + RN̂(τ)

]
sin(2πfc(2t + τ))

= RN(τ) sin(2πfcτ)− R̂N(τ) cos(2πfcτ) (by Property 2)

= RNINQ
(τ).
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Similarly,

E [nQ(t + τ)nI (t)]

= E [(−n(t + τ) sin(2πfc(t + τ)) + n̂(t + τ) cos(2πfc(t + τ)))

(n(t) cos(2πfct) + n̂(t) sin(2πfct))]

=
1

2

[
−RNN̂(τ) + RN̂N(τ)

]
cos(2πfcτ)

+
1

2

[
−RN(τ)− RN̂(τ)

]
sin(2πfcτ)

+
1

2

[
RNN̂(τ) + RN̂N(τ)

]
cos(2πfc(2t + τ))

+
1

2

[
−RN(τ) + RN̂(τ)

]
sin(2πfc(2t + τ))

= −RN(τ) sin(2πfcτ) + R̂N(τ) cos(2πfcτ) (by Property 2)

= −RNINQ
(τ)

= RNQNI
(τ).
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Property 4

Both nI (t) and nQ(t) are wide-sense stationary; also nI (t) and nQ(t) are
jointly wide-sense stationary.

Proof. This property follows directly from Properties 1 and 3.
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Property 5

SNI
(f ) = SNQ

(f ) =

{
SN(f − fc) + SN(f + fc), −B ≤ f ≤ B
0, elsewhere.

Proof. This property can be obtained by taking the Fourier transform of
both sides of the following equation in Property 3:

RNI
(τ) = RNQ

(τ) = RN(τ) cos(2πfcτ) + R̂N(τ) sin(2πfcτ).
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Property 6

SNINQ
(f ) = −SNQNI

(f ) =

{
j [SN(f + fc)− SN(f − fc)] , −B ≤ f ≤ B
0, elsewhere.

Proof. This property can be obtained by taking the Fourier transform of
both sides of the following equation in Property 3:

RNINQ
(τ) = −RNQNI

(τ) = RN(τ) sin(2πfcτ)− R̂N(τ) cos(2πfcτ).
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Property 7

Var [nI (t)] = Var [nQ(t)] = Var [n(t)] .

Proof. Since nI (t), nQ(t), and n(t) all have zero mean, it is equivalent to
showing that

E
[
n2I (t)

]
= E

[
n2Q(t)

]
= E

[
n2(t)

]
which follows from the fact that∫ ∞

−∞
SNI

(f ) df =

∫ ∞

−∞
SNQ

(f ) df =

∫ ∞

−∞
SN(f ) df

by Property 5.
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Property 8

RN(τ) = Re

[
1

2
RÑ(τ)e

j2πfcτ

]
where

RÑ(τ) = E [ñ(t + τ)ñ∗(t)] .
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Proof.

RN(τ) = E [n(t + τ)n(t)]

= E [(nI (t + τ) cos(2πfc(t + τ))− nQ(t + τ) sin(2πfc(t + τ)))

(nI (t) cos(2πfct)− nQ(t) sin(2πfct))]

=
1

2

[
RNI

(τ) + RNQ
(τ)
]
cos(2πfcτ)

+
1

2

[
RNINQ

(τ)− RNQNI
(τ)
]
sin(2πfcτ)

+
1

2

[
RNI

(τ)− RNQ
(τ)
]
cos(2πfc(2t + τ))

−1

2

[
RNINQ

(τ) + RNQNI
(τ)
]
sin(2πfc(2t + τ))

= RNI
(τ) cos(2πfcτ) + RNINQ

(τ) sin(2πfcτ) (by Property 3).
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E [ñ(t + τ)ñ∗(t)] = E [(nI (t + τ) + jnQ(t + τ)) (nI (t)− jnQ(t))]

= RNI
(τ) + RNQ

(τ)− jRNINQ
(τ) + jRNQNI

(τ)

= 2RNI
(τ)− j2RNINQ

(τ)

= RÑ(τ).

Therefore,

RN(τ) = Re

[
1

2
RÑ(τ)e

j2πfcτ

]
.

Since also E [ñ(t)] = E [nI (t)] + jE [nQ(t)] = 0, ñ(t) is wide-sense
stationary.
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Property 9

SN(f ) =
1

4

[
SÑ(f − fc) + SÑ(−f − fc)

]
.
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Proof.

RN(τ) = Re

[
1

2
RÑ(τ)e

j2πfcτ

]
=

1

4

(
RÑ(τ)e

j2πfcτ + R∗
Ñ
(τ)e−j2πfcτ

)
.

Since

F
[
RÑ(τ)

]
= SÑ(f )

F
[
R∗
Ñ
(τ)
]

= S∗
Ñ
(−f )

we have

F
[
RÑ(τ)e

j2πfcτ
]

= SÑ(f − fc)

F
[
R∗
Ñ
(τ)e−j2πfcτ

]
= S∗

Ñ
(−f − fc)

where F [•] denotes the Fourier transform.
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Also since

S∗
Ñ
(f ) =

∫ ∞

−∞
R∗
Ñ
(τ)e j2πfcτ dτ

=

∫ ∞

−∞
RÑ(−τ)e

j2πfcτ dτ

=

∫ ∞

−∞
RÑ(τ

′)e−j2πfcτ ′ dτ ′

= SÑ(f )

SÑ(f ) is real. Therefore,

SN(f ) = F [RN(τ)] =
1

4

[
SÑ(f − fc) + SÑ(−f − fc)

]
.
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Property 10

If n(t) is a Gaussian process, then nI (t) and nQ(t) are jointly Gaussian
processes.

Proof. Recall that n̂(t) can be considered as the output of n(t) passed
through an LTI system. If n(t) is a Gaussian process, then n̂(t) is a
Gaussian process, and n(t) and n̂(t) are jointly Gaussian processes. Since

nI (t) = n(t) cos(2πfct) + n̂(t) sin(2πfct)

and
nQ(t) = −n(t) sin(2πfct) + n̂(t) cos(2πfct)

nI (t) and nQ(t) are jointly Gaussian processes.
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Property 11

If the power spectral density SN(f ) is locally symmetric around fc , then

RNINQ
(τ) = E [nI (t + τ)nQ(t)] = 0, for all τ

i.e., nI (t + τ) and nQ(t) are uncorrelated.

Proof. If SN(f ) is locally symmetric around fc , then

SN(f − fc) = SN(f + fc), for − B ≤ f ≤ B

and hence by Property 6

SNINQ
(f ) = SNQNI

(f ) = 0.

Therefore, RNINQ
(τ) = RNQNI

(τ) = 0, for all τ .
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Property 12

If n(t) is a Gaussian process with power spectral density SN(f ) locally
symmetric around fc , then nI (t1) and nQ(t2) are statistically independent,
for all t1, t2.

Proof. This property follows from Properties 10 and 11 and also the fact
that uncorrelated jointly Gaussian random variables are statistically
independent.
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Ideal Band-Pass Filtered Noise

Consider a white Gaussian noise of zero mean and power spectral
density N0/2 which is passed through an ideal band-pass filter of
mid-band frequency fc and bandwidth 2B.

The power spectral density of the filtered noise n(t) is given by

SN(f ) =


N0/2, −fc − B ≤ f ≤ −fc + B
N0/2, fc − B ≤ f ≤ fc + B
0, elsewhere.
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Then the autocorrelation function of n(t) is

RN(τ) =

∫ −fc+B

−fc−B

N0

2
e j2πf τ df +

∫ fc+B

fc−B

N0

2
e j2πf τ df

= N0B sinc(2Bτ)
(
e−j2πfcτ + e j2πfcτ

)
= 2N0B sinc(2Bτ) cos(2πfcτ).
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Since SN(f ) is locally symmetric around fc , we have

SNINQ
(f ) = SNQNI

(f ) = 0 and RNINQ
(τ) = RNQNI

(τ) = 0.

We also have

SNI
(f ) = SNQ

(f ) =

{
SN(f − fc) + SN(f + fc), −B ≤ f ≤ B
0, elsewhere

=

{
N0, −B ≤ f ≤ B
0, elsewhere.

Hence
RNI

(τ) = RNQ
(τ) = 2N0B sinc(2Bτ).
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Envelope and Phase of Narrow-Band Noise

Consider a narrow-band noise n(t) which is a Gaussian process of zero
mean and power spectral density SN(f ).

Assume that SN(f ) is locally symmetric around fc and E[n2(t)] =∫∞
−∞ SN(f ) df = σ2.

We have

n(t) = nI (t) cos(2πfct)− nQ(t) sin(2πfct)

= r(t) cos [2πfct + ψ(t)]

where
r(t) =

[
n2I (t) + n2Q(t)

]1/2
ψ(t) = tan−1

[
nQ(t)

nI (t)

]
.
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Let NI and NQ represent nI (t) and nQ(t) at some fixed time t,
respectively. Also R and Ψ represent r(t) and ψ(t) at the same fixed
time t, respectively.

Then NI and NQ are independent Gaussian random variables with
joint probability density function given by

fNI ,NQ
(nI , nQ) =

1

2πσ2
exp

(
−
n2I + n2Q
2σ2

)
.

We have

nI = r cosψ

nQ = r sinψ.

The Jacobian of the transformation is then given by

J =

∣∣∣∣∣ ∂nI
∂r

∂nI
∂ψ

∂nQ
∂r

∂nQ
∂ψ

∣∣∣∣∣ =
∣∣∣∣ cosψ −r sinψ
sinψ r cosψ

∣∣∣∣ = r
(
cos2 ψ + sin2 ψ

)
= r .
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Hence the joint probability density function of R and Ψ is

fR,Ψ(r , ψ) = fNI ,NQ
(r cosψ, r sinψ)|J| = r

2πσ2
exp

(
− r2

2σ2

)
.

We then have
fR,Ψ(r , ψ) = fR(r)fΨ(ψ)

where R is Rayleigh distributed with probability density function given
by

fR(r) =

{
r
σ2 exp

(
− r2

2σ2

)
, r ≥ 0

0, elsewhere

and Ψ is uniformly distributed with probability density function given
by

fΨ(ψ) =

{
1
2π , 0 ≤ ψ ≤ 2π
0, elsewhere.

Note that R and Ψ are independent.

Chi-chao Chao (NTHU) EE 3640 Communication Systems I 29 / 34



Let v = r/σ and then fV (v) = σfR(r).

The probability density function of the Rayleigh distribution in the
normalized form is then given by

fV (v) =

{
v exp

(
− v2

2

)
, v ≥ 0

0, elsewhere.
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Sinusoidal Signal Plus Narrow-Band Noise

Assume that the narrow-band noise n(t) is a Gaussian process of zero
mean and power spectral density SN(f ).

Also assume that SN(f ) is locally symmetric around fc and E[n2(t)] =∫∞
−∞ SN(f ) df = σ2.

Consider

x(t) = A cos(2πfct) + n(t)

= A cos(2πfct) + nI (t) cos(2πfct)− nQ(t) sin(2πfct)

= n′I (t) cos(2πfct)− nQ(t) sin(2πfct)

where
n′I (t) = A+ nI (t).

Let N ′
I and NQ represent n′I (t) and nQ(t) at some fixed time t,

respectively.
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The joint probability density function of N ′
I and NQ is then given by

fN′
I ,NQ

(n′I , nQ) =
1

2πσ2
exp

[
−
(n′I − A)2 + n2Q

2σ2

]
.

Consider
r(t) =

{
[n′I (t)]

2 + n2Q(t)
}1/2

ψ(t) = tan−1

[
nQ(t)

n′I (t)

]
.

Let R and Ψ represent r(t) and ψ(t) at the same fixed time t,
respectively.

We can then obtain

fR,Ψ(r , ψ) =
r

2πσ2
exp

(
− r2 + A2 − 2Ar cosψ

2σ2

)
.

Note that now R and Ψ are dependent.
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The marginal probability density function of R can be found by

fR(r) =

∫ 2π

0
fR,Ψ(r , ψ) dψ

=
r

2πσ2
exp

(
− r2 + A2

2σ2

)∫ 2π

0
exp

(
Ar

σ2
cosψ

)
dψ.

Note that the modified Bessel function of the first kind of zero order
is given by

I0(α) =
1

2π

∫ 2π

0
exp(α cosψ) dψ.

We hence obtain

fR(r) =
r

σ2
exp

(
− r2 + A2

2σ2

)
I0

(
Ar

σ2

)
, r ≥ 0

which is called the Rician distribution.
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Let v = r/σ and a = A/σ; then fV (v) = σfR(r).

The probability density function of the Ricain distribution in the
normalized form is then given by

fV (v) = v exp

(
−v2 + a2

2

)
I0(av), v ≥ 0.

When a = 0, the Rician distribution reduces to the Rayleigh
distribution.
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