
EE 3640 Communication Systems I Spring 2023

Solution to Homework Assignment No. 4

1. (a) Since X and Y are independent Gaussian random variables and Z1 and Z2 are
both linear combinations of X and Y , Z1 and Z2 are jointly Gaussian random
variables. We have

E[Z(t)] = E[X] cos(2πt) + E[Y ] sin(2πt) = 0

and hence
E[Z1] = E[Z2] = 0.

Moreover,

E[Z(t+ τ)Z(t)] =E[(X cos(2π(t+ τ)) + Y sin(2π(t+ τ)))

(X cos(2πt) + Y sin(2πt))]

= cos(2π(t+ τ)) cos(2πt)E
[
X2

]
+ sin(2π(t+ τ)) sin(2πt)E

[
Y 2

]
+ [cos(2π(t+ τ)) sin(2πt) + sin(2π(t+ τ)) cos(2πt)] E[XY ]

= cos(2π(t+ τ)) cos(2πt) + sin(2π(t+ τ)) sin(2πt)

= cos(2πτ)

and thus
E
[
Z2

1

]
= E

[
Z2

2

]
= 1

E [Z1Z2] = cos (2π (t1 − t2)) .

The correlation coefficient between Z1 and Z2 is then given by

ρ = cos (2π (t1 − t2)) .

Therefore, the joint probability density function of Z1 and Z2 is

fZ1,Z2(z1, z2) =
1

2π
√

1− cos2 (2π (t1 − t2))
exp

{
−z21 − 2 cos (2π (t1 − t2)) z1z2 + z22

2 [1− cos2 (2π (t1 − t2))]

}
=

1

2π |sin (2π (t1 − t2))|
exp

{
−z21 − 2 cos (2π (t1 − t2)) z1z2 + z22

2 sin2 (2π (t1 − t2))

}
.

(b) From (a), we have the mean of Z(t)

E[Z(t)] = 0

and the autocorrelation function of Z(t)

E[Z(t+ τ)Z(t)] = cos(2πτ).

Therefore, Z(t) is wide-sense stationary.
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2. (a) From class, we know that the autocorrelation function of V (t)

RV (τ) = RX(τ) ⋆ h1(τ) ⋆ h1(−τ)

where ⋆ denotes the convolution. Then we get the autocorrelation function of
Y (t)

RY (τ) = RV (τ) ⋆ h2(τ) ⋆ h2(−τ)

= RX(τ) ⋆ h1(τ) ⋆ h1(−τ) ⋆ h2(τ) ⋆ h2(−τ).

(b) Since

RV Y (τ) = RV (τ) ⋆ h2(−τ)

we obtain

RV Y (τ) = RX(τ) ⋆ h1(τ) ⋆ h1(−τ) ⋆ h2(−τ).

3. (a) The random variable Y (t1) is given by

Y (t1) =

∫ ∞

−∞
X (t1 − u)h1(u) du

and the mean of Y (t1) is

µY1 = E [Y (t1)]

= E

[∫ ∞

−∞
X (t1 − u)h1(u) du

]
=

∫ ∞

−∞
E[X(t1 − u)]h1(u) du

=

∫ ∞

−∞
µXh1(u) du = µX

∫ ∞

−∞
h1(u) du.

Similarly, the random variable Z (t2) is given by

Z (t2) =

∫ ∞

−∞
X (t2 − u)h2(u) du

and the mean of Z (t2) is

µZ2 = E [Z (t2)] = µX

∫ ∞

−∞
h2(u) du.

The covariance of Y (t1) and Z (t2) is

Cov [Y (t1) , Z (t2)]

= E [(Y (t1)− µY1) (Z (t2)− µZ2 ])

= E

[∫ ∞

−∞
(X (t1 − τ1)− µX)h1(τ1) dτ1

∫ ∞

−∞
(X (t2 − τ2)− µX)h2(τ2) dτ2

]
= E

[∫ ∞

−∞

∫ ∞

−∞
(X (t1 − τ1)− µX) (X (t2 − τ2)− µX)h1 (τ1)h2 (τ2) dτ1dτ2

]
=

∫ ∞

−∞

∫ ∞

−∞
E [(X (t1 − τ1)− µX) (X (t2 − τ2)− µX)]h1 (τ1)h2 (τ2) dτ1dτ2.
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With the the autocovariance function of X(t)

CX(τ) = E [(X(t+ τ)− µX) (X(t)− µX)]

we can further obtain

Cov [Y (t1) , Z (t2)]

=

∫ ∞

−∞

∫ ∞

−∞
CX (τ − τ1 + τ2)h1 (τ1)h2 (τ2) dτ1dτ2

= CX (τ) ⋆ h1 (τ) ⋆ h2 (−τ)

where τ = t1 − t2.

(b) Since Y (t) and Z(t) are jointly Gaussian processes, the random variables Y (t1)
and Z (t2) are statistically independent if they are uncorrelated. We know that
Y (t1) and Z (t2) are uncorrelated if and only if their covariance is zero. If H1(f)
and H2(f) are non-overlapping, we have H1(f)H2(f) = 0 and H1(f)H

∗
2 (f) = 0.

Then

FCX
(f)H1(f)H

∗
2 (f) = 0

where FCX
(f) is the Fourier transform of CX(τ). By taking the inverse Fourier

transform, from (a) we obtain

0 = CX(τ) ⋆ h1(τ) ⋆ h2(−τ) = Cov [Y (t1) , Z (t2)]

which implies that Y (t1) and Z (t2) are statistically independent.

4. (a) We have the noise equivalent bandwidth B given by

B =
1

H2 (0)

∫ ∞

0

|H (f)|2 df

=

∫ ∞

0

df

1 + (f/f0)
2n

= f 2n
0

∫ ∞

0

df

f 2n + f 2n
0

= f 2n
0

πf−2n+1
0

2n sin (π/2n)

=
f0π

2n sin (π/2n)

=
f0

sinc (1/2n)
.

(b) As n approaches infinity, sinc (1/2n) approaches sinc (0), which is 1. Hence,

lim
n→∞

B = f0.

3



5. (a) Let RW (τ) denote the autocorrelation of the white noise, which is (N0/2)δ(τ);
then

RX(τ) = RW (τ) ⋆ h(τ) ⋆ h(−τ)

=
N0

2
δ(τ) ⋆ h(τ) ⋆ h(−τ)

=
N0

2
h(τ) ⋆ h(−τ).

So the condition that h(t) must satisfy is

h(τ) ⋆ h(−τ) =
2

N0

RX(τ).

(b) By taking the Fourier transform on both sides of the equation h(τ) ⋆ h(−τ) =
(2/N0)RX(τ), we get

|H(f)|2 = 2

N0

SX(f)

implying

|H(f)| =

√
2SX(f)

N0

which is the corresponding condition on H(f).

6. (a) From the result

RNI
(τ) = RNQ

(τ) = RN(τ) cos (2πfcτ) + R̂N sin (2πfcτ)

we can get

SNI
(f) = SNQ

(f) =
1

2
[SN (f − fc) + SN (f + fc)] +

1

2j

[
ŜN (f − fc)− ŜN (f + fc)

]
by taking the Fourier transform. Since ŜN(f) = SN(f)(−j sgn(f)), we then obtain

ŜN (f − fc) =

{
jSN (f − fc) , −B ≤ f ≤ B
−jSN (f − fc) , elsewhere

and

ŜN (f + fc) =

{
−jSN (f + fc) , −B ≤ f ≤ B
jSN (f + fc) , elsewhere.

Combining the above results, we have

SNI
(f) = SNQ

(f) =

{
SN (f − fc) + SN (f + fc) , −B ≤ f ≤ B
0, elsewhere.
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Figure 1: SNI
(f) and SNQ

(f) in Problem 7.(a).

(b) From the result

RNINQ
(τ) = −RNQNI

(τ) = RN(τ) sin (2πfcτ)− R̂N cos (2πfcτ) ,

we can get

SNINQ
(f) = −SNQNI

(f) =
1

2j
[SN (f − fc)− SN (f + fc)]−

1

2

[
ŜN (f − fc) + ŜN (f + fc)

]
by taking the Fourier transform. By the results of ŜN (f + fc) and ŜN (f + fc) in
(a), we then obtain

SNINQ
(f) = −SNQNI

(f) =

{
j [SN (f + fc)− SN (f − fc)] , −B ≤ f ≤ B
0, elsewhere.

7. (a) According to the result of Problem 6.(a), we have

SNI
(f) = SNQ

(f) =

{
SN (f − fc) + SN (f + fc) , −B ≤ f ≤ B
0, elsewhere.

The power spectral densities of the in-phase and quadrature components are then
plotted in Fig. 1.

(b) According to the result of Problem 6.(b), we have

SNINQ
(f) = −SNQNI

(f) =

{
j [SN (f + fc)− SN (f − fc)] , −B ≤ f ≤ B
0, elsewhere.

The cross-spectral densities of the in-phase and quadrature components are plot-
ted in Figs. 2 and 3.

8. (a) Since n (t) is band-pass, we have

n (t) = nI (t) cos (2πfct)− nQ (t) sin (2πfct) .
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Figure 2: SNINQ
(f) in Problem 7.(b).

Figure 3: SNQNI
(f) in Problem 7.(b).
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Then the envelope r (t) is given by√
n2
I (t) + n2

Q (t).

At time t1, nI (t1) and nQ (t1) are jointly Gaussian random variables, both with
zero mean and variance 2N0B, and are independent of each other since SN (f)
is locally symmetric around ±fc. Thus, R follows a Rayleigh distribution with
probability density function given by

fR (r) =
r

2N0B
exp

(
− r2

4N0B

)
.

(b) The mean of R is given by

E [R] =

∫ ∞

0

r
r

2N0B
exp

(
− r2

4N0B

)
dr.

By integration by parts, we have

E [R] = −r exp

(
− r2

4N0B

) ∣∣∣∣∞
0

+

∫ ∞

0

exp

(
− r2

4N0B

)
dr

=

∫ ∞

0

exp

(
− r2

4N0B

)
dr.

Note that for a Gaussian random variable of zero mean and variance σ2,

1 =
1

σ
√
2π

∫ ∞

−∞
exp

(
− x2

2σ2

)
dx =

2

σ
√
2π

∫ ∞

0

exp

(
− x2

2σ2

)
dx.

Hence,

E [R] =

∫ ∞

0

exp

(
− r2

4N0B

)
dr =

√
2N0B

√
2π

2
=

√
πN0B.

The variance of R is given by

E
[
R2

]
− E2 [R] = E

[
n2
I (t1) + n2

Q (t1)
]
− πN0B

= 4N0B − πN0B = (4− π)N0B.
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