EE 3640 Communication Systems [ Spring 2023

Solution to Homework Assignment No. 4

1. (a) Since X and Y are independent Gaussian random variables and Z; and Z, are
both linear combinations of X and Y, Z; and Z, are jointly Gaussian random
variables. We have

E[Z(t)] = E[X] cos(2nt) + E[Y]sin(27t) = 0
and hence
E[Z1] = E[Z,] = 0.
Moreover,
E[Z(t+ 7)Z(t)] =E[(X cos(2n(t + 7)) + Y sin(27(t + 7)))
(X cos(2nt) + Y sin(27t))]
=cos(27(t + 7)) cos(2mt)E [X?] + sin(27 (¢ + 7)) sin(27t)E [V?]
+ [cos(2m(t + 7)) sin(27t) + sin(27(t + 7)) cos(2nt)] E[X Y]
=cos(2m(t + 7)) cos(27t) + sin(2mw(t + 7)) sin(27¢)

= cos(277)

and thus
E[Z}]|=E[Z3] =1

E [2122] = COS (27T (tl — tz)) .
The correlation coefficient between Z; and Z; is then given by
p = cos (27 (t; — t3)) .

Therefore, the joint probability density function of Z; and Z; is

o ) 1 . { 22 —2cos (27 (t; — t3)) 2120 + zg}
z ,Z — X —
asith 2m4/1 — cos? (27 (11 — 12)) P 2[1 — cos? (27 (t1 — t2))]
1 22 —2cos (27 (t, — t3)) 2120 + 22
= —— exp { — o~ :
27 [sin (27 (t; — ta))| 2sin” (27 (t; — t2))

(b) From (a), we have the mean of Z(t)
E[Z({t)] =0
and the autocorrelation function of Z(t)
E[Z(t+ 7)Z(t)] = cos(27T).

Therefore, Z(t) is wide-sense stationary.
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2. (a) From class, we know that the autocorrelation function of V()
Ry (7) = Rx(T) % hy(T) x hy(—7)

where x denotes the convolution. Then we get the autocorrelation function of

Y (t)
Ry (1) = Ry(7)*ha(T) * ho(—7)
Rx (1) % hy(7) *x hi(—7) % ho(T) % hao(—7).
(b) Since
Ryy(7) = Ry(7) x hao(—T)
we obtain

Rvy(T) = RX<T) * h1<7') * h1<—7') * hg(—T).
3. (a) The random variable Y (¢;) is given by
Y (1) = / X (ty — u) by (1) du

and the mean of Y (¢;) is

v, = B[V (8]
_EV X (t — ) ha(u du} /ZE (tr — w)]ha (u) du
= [ ety du=pox [t du

Similarly, the random variable Z (t5) is given by

tg / th—u hg( )d

and the mean of Z (t5) is

o0

iz, = E[Z (1)) = pix / ha(us) du.

[e.9]

The covariance of Y (t1) and Z (t2) is
Cov [Y (tl) s Z (tg)]
= E[(Y () = p») (Z (t2) = p2.])

g UOO (X (b —7) — ux)hl(ﬁ)dﬁ/

—00

o0

(X (t2 = 72) — pix) ha(72) d72}
_F {/ / X (t1— 71) — jx) (X (b2 — 72) — i) bt (72) By () dﬁd@]
= /_OO /_OOE (X (1 —71) — px) (X (T2 — 7o) — pux)] ha (1) g (12) dridre.



With the the autocovariance function of X ()
Cx(r) = E[(X( +7) — px) (X(8) = px)]
we can further obtain
Cov|Y (t1), Z (to)]
= /OO /OO Cx (1 — 11+ 72) hy (11) ha (12) dridrs
=Cx (T)xhy (1) * hy (—7)

where 7 = t; — to.

(b) Since Y'(t) and Z(t) are jointly Gaussian processes, the random variables Y (¢;)
and Z (ty) are statistically independent if they are uncorrelated. We know that
Y (t1) and Z (t3) are uncorrelated if and only if their covariance is zero. If Hi(f)
and Hs(f) are non-overlapping, we have H,(f)Hs(f) = 0 and H,(f)H;(f) = 0.
Then

Fox (f)Hi(f)H3(f) =0

where Fe, (f) is the Fourier transform of Cx (7). By taking the inverse Fourier
transform, from (a) we obtain

0= Cx (1) *hi(T) *x ho(—7) = Cov [Y (t1), Z (to)]
which implies that Y (¢;) and Z (¢2) are statistically independent.

4. (a) We have the noise equivalent bandwidth B given by

1 °° 2
B | P

_/Oo 4
0 1+ f/fo)
= 5" 2n sin (7/2n)
Jor
2nsin (7w/2n)

__fo
~ sinc (1/2n)

f2n +f2n
fO 2n+1

(b) As n approaches infinity, sinc (1/2n) approaches sinc (0), which is 1. Hence,

n—oo

3



5. (a) Let Ry (7) denote the autocorrelation of the white noise, which is (Ny/2)d(7);
then

Rx(t) = Rw(7)*h(T)*h(—7)
No
= 75(7’) *x h(T) *x h(—T)

N,
= S h(r) < h(=7).
So the condition that A(t) must satisfy is

h(t)*xh(—7) = NioRX(T).

(b) By taking the Fourier transform on both sides of the equation h(7) * h(—7) =
(2/No)Rx (1), we get

HE = 5-5x(0)

()] = 220

which is the corresponding condition on H(f).

implying

6. (a) From the result
Ry, (T) = Rny(T) = Bn(7) cos (27 feT) + Ry sin (27 f.7)

we can get
Sy, (1) = Swg(£) = 5 S (F = £+ S (7 + £ + 5= [ (£ = o) = S (£ + 1)

by taking the Fourier transform. Since S’N(f) = Sn(f)(—jsgn(f)), we then obtain

N - jS (f_fc)7 _BSfSB
Sn(f = fe) = { _j]qu (f — fe), elsewhere

and

A [ —iSv(f+f). -B<f<B
Sn(f+[fo) = { jSy ](Vf + f.), elsewhere.

Combining the above results, we have

Sv(f—=f)+Sn(f+f), —B<[f<B

0, elsewhere.

Sw(f) = Sxel) = {



SN, (f) = SNQ (f)

(W/Hz)

— f (H2)

Figure 1: Sy, (f) and Sy, (f) in Problem 7.(a).

(b) From the result
Ry;no(T) = —RNQNI(T) = Ry(7)sin (2n f.1) — Ry cos (2m f.1),

we can get
Syinia() = =S, () = - (S (7 = £ = S (7 + £ = 5 [ (F = £+ S (£ + 1)

by taking the Fourier transform. By the results of Sy (f + f.) and Sy (f + f.) in
(a), we then obtain

SNINQ (f) = _SNQNI (f> - { 67[5]\[ (f " fC) : SN (f B fC)] ’ (;SB;WSthI"eS "’

(a) According to the result of Problem 6.(a), we have

Sy (f) = Sng (f) :{ Sn(f=f)+Sv(f+f), -B<Sf<B

0, elsewhere.

The power spectral densities of the in-phase and quadrature components are then
plotted in Fig. 1.

(b) According to the result of Problem 6.(b), we have

_ _ j[S <f+fc)_5 (f_fc)]v _BSfSB
Sning(f) = =Sngn; (f) = { 0, ! ! elsewhere.

The cross-spectral densities of the in-phase and quadrature components are plot-
ted in Figs. 2 and 3.

(a) Since n (t) is band-pass, we have

n(t) =ny (t) cos (2nfet) — ng (t) sin (27w f.t) .
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Figure 2: Sy, n,(f) in Problem 7.(b).
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Figure 3: Sy,n,(f) in Problem 7.(b).



Then the envelope 7 (t) is given by

At time t1, ny (1) and ng (1) are jointly Gaussian random variables, both with
zero mean and variance 2NyB, and are independent of each other since Sy (f)
is locally symmetric around +f.. Thus, R follows a Rayleigh distribution with
probability density function given by

fr(r) = — -
= e — .
R = 5N, B P\ TaN, B

The mean of R is given by

E[R]—/Oo - I
— ), ToneB P\ Tan,B )

By integration by parts, we have
r? > *© r?
E|R|=— — — d
= (ap) |, [ o (amp)

[ o (i)
= ex — T.
. CPA\TIN,B

Note that for a Gaussian random variable of zero mean and variance o2,

1 0 1'2 2
1= exp| —— | dx = ex dz.
oV21 J - p( 202) 0\/277/ p< 02>

Hence,

E[R]:/Oooexp(— - )dr mm — /7N, B.

4Ny B
The variance of R is given by

E [R?] —E*[R] = E [n] (t1) + nj, (t1)] — 7NoB
= 4NyB — TNgB = (4 — ) Ny B.



