
EE 3640 Communication Systems I Spring 2023

Solution to Final Examination

1. (a) The autocorrelation function of Y (t) is

RY (τ) =E [(X(t+ τ) +X(t+ τ − T )) (X(t) +X(t− T ))]

=E [X(t+ τ)X(t)] + E [X(t+ τ)X(t− T )]

+ E [X(t+ τ − T )X(t)] + E [X(t+ τ − T )X(t− T )]

=2RX(τ) +RX(τ + T ) +RX(τ − T ).

(b) The power spectral density of Y (t) is

SY (f) = 2SX(f) + ej2πfTSX(f) + e−j2πfTSX(f)

= [2 + 2 cos(2πfT )]SX(f)

= 4SX(f) cos
2(πfT ).

2. (a) Since

Y (t) =
1

T

∫ t

t−T

X (α) dα =

∫ ∞

∞
h (t− α)X (α) dα

we have

h (t− α) =

{
1/T , t− T < α < t
0, elsewhere.

Hence the impulse response h (t) is given by

h (t) =
1

T
rect

(
t− (T/2)

T

)
=

{
1/T , 0 < t < T
0, elsewhere.

(b) The mean of Y (t) is

E [Y (t)] =
1

T

∫ t

t−T

E [X (α)] dα =
1

T

∫ t

t−T

µXdα = µX .

(c) The Fourier transform of h (t) is

H (f) = sinc (fT ) exp (−jπfT )

and the power spectral density of X (t) is

SX (f) =
N0

2
.

Therefore, the power spectral density of Y (t) is given by

SY (f) = |H (f)|2 SX (f) =
N0

2
sinc2 (fT ) .
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(d) The autocorrelation function of Y (t) is given by

RY (τ) = RX (τ) ⋆ h (τ) ⋆ h (−τ)

=
N0

2
h (τ) ⋆ h (−τ)

=
N0

2

∫ ∞

−∞
h (α)h (τ + α) dα

=

{
N0

2T

(
1− |τ |

T

)
, |τ | < T

0, elsewhere

=
N0

2T
Λ
( τ
T

)
.

(e) Since X (t) is a Gaussian process, so is Y (t). Hence, Ȳ follows a Gaussian distri-
bution of mean µX and variance

Var
[
Ȳ
]
= E

[
Ȳ 2
]
− µ2

X = RY (0)− µ2
X =

N0

2T
− µ2

X .

Therefore, the probability density function of Ȳ is given by

fȲ (ȳ) =
1√

π (N0/T − 2µ2
X)

exp

(
− (ȳ − µX)

2

N0/T − 2µ2
X

)
.

3. (a) From class, the average power of the DSB-SC signal m(t) cos (2πfct) is P/2. The
SSB signal s(t) can be considered as the result of filtering out the lower sideband
of the DSB-SC signal, and hence the average power of the SSB signal s(t) is
(1/2) · (P/2) = P/4. The channel signal-to-noise ratio is therefore given by

(SNR)C =
P/4

(N0/2) · 2W
=

P

4N0W
.

(b) From class, we know that for −W ≤ f ≤ W ,

SNI
(f) = SN (f − fc) + SN (f + fc) .

The power spectral density of nI(t) is hence plotted in Fig. 1

(c) First, the output of the product modulator is

v(t) = x(t) cos (2πfct)

=

[(
1

2
m(t) + nI(t)

)
cos(2πfct)−

(
1

2
m̂(t) + nQ(t)

)
sin(2πfct)

]
cos (2πfct)

=
1

2

[(
1

2
m(t) + nI(t)

)
+

(
1

2
m(t) + nI(t)

)
cos(4πfct)

]
− 1

2

[(
1

2
m̂(t) + nQ(t)

)
sin(4πfct)

]
.
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Figure 1: SNI(f) in Problem 3.(b).

After the low-pass filter, the demodulator output is hence given by

y(t) =
1

4
m(t) +

1

2
nI(t).

(d) The output signal-to-noise ratio and the figure of merit are therefore given by,
respectively,

(SNR)O =
(1/4)2P

(1/2)2 · (N0/2) · 2W
=

P

4N0W

and
(SNR)O
(SNR)C

∣∣∣∣
SSB

=
P

4N0W
P

4N0W

= 1.

(e) Since the coherent detector is a linear device and the threshold effect only exists
in nonlinear devices, it will not happen in this receiver.

4. (a) By taking the Fourier transform of g(t), we obtain

G(f) =
1

200
rect

(
f

200

)
+

1

200
rect

(
f

200

)
⋆

1

200
rect

(
f

200

)
=

1

200
rect

(
f

200

)
+

1

200
Λ

(
f

200

)
which implies that the message bandwidth is 200 Hz. Thus, the Nyquist rate is
2 · 200 = 400 Hz.

(b) Note that the bandwidth of 10 kHz means that the in-phase and quadrature
components are band-limited from−5 kHz to 5 kHz. Thus, the minimum sampling
rate is 2 · 5 = 10 kHz.

5. (a) The waveforms with unipolar nonreturn-to-zero signaling, unipolar return-to-zero
signaling, and bipolar return-to-zero signaling for {an}10n=1 are shown in Figs. 2,
3, and 4, respectively.
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Figure 2: Unipolar nonreturn-to-zero signaling in Problem 5.(a).

Figure 3: Unipolar return-to-zero signaling in Problem 5.(a).
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Figure 4: Bipolar return-to-zero signaling in Problem 5.(a).

(b) First note that {bn}10n=1 = 0101101011. The waveforms with polar nonreturn-to-
zero signaling and Manchester code signaling for {bn}10n=1 are shown in Figs. 5
and 6, respectively.

6. (a) Let T be the symbol duration of the PAM system. We have the transmission
bandwidth given by

BT =
1

2T
(1 + α)

for a raised-cosine spectrum with roll-off factor α. Since binary PAM is used, the
bit duration Tb = T . Hence the bit rate is

Rb =
1

Tb

=
2BT

1 + α
=

2 · 24
3/2

= 32 kb/s.

(b) For 256 representation levels, log2 256 = 8 bits are required to transmit a sample.
From (a) the bit rate 32 kb/s, so the sampling rate is given by

fs =
32 kb/s

8 bits/sample
= 4 kHz.

In order to avoid aliasing, the maximum bandwidth of the analog signal is fs/2 = 2
kHz.

(c) For a quaternary PAM system, we have T = (log2 4)Tb = 2Tb. Given the same
transmission bandwidth and same roll-off factor of the raised-cosine spectrum,
the symbol duration T is the same as that in (a). Hence the bit rate is twice
faster than that in (a), which is 2 · 32 = 64 kb/s.
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Figure 5: Polar nonreturn-to-zero signaling in Problem 5.(b).

Figure 6: Manchester code signaling in Problem 5.(b).
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