Homework #7

1. Assume a noise $n_1(t)$ is stationary with a power spectral density shown in Fig. 1. Another noise process $n_2(t)$ is related with $n_1(t)$ by:

 $n_1(t) = n_1(t) \cos(2\pi f_c t + \theta) - n_1(t) \sin(2\pi f_c t + \theta)$,

where f_c is a carrier frequency and θ is the value of a random variable Θ uniformly distributed within $(0, 2\pi)$.

- (a) Please find and sketch the autocorrelation function of $n_1(t)$.
- (b) Show that the cross correlation of $n_1(t)$ and $n_2(t)$ is 0. Assume that random variables N_1 and Θ are statistically independent.
- (c) Demonstrate that $n_2 (t) = \sqrt{2} n_1 (t) \cos(2 \pi f_c t + \pi / 4 + \theta)$.
- (d) Using (c) to find the autocorrelation function of $n_2(t)$ in terms of the autocorrelation of $n_1(t)$: $R_{N_1}(\tau)$, where τ is the time difference.
- (e) Plot power spectral density of $n_2(t)$.

- 2. Consider a phase modulation (PM) signal with the modulated wave defined by $s(t) = A_c \cos[2\pi f_c t + k_m m(t)]$, where k_p is a phase sensitivity and $m(t)$ is the message. The filtered additive white Gaussian noise $n(t)$ at the input of the phase detector is $n(t) = n_t(t) \cos(2\pi f_c t) - n_o(t) \sin(2\pi f_c t)$. Assume the carrier to noise ratio is large, please determine
	- (a) Output SNR
	- (b) FOM.
	- (c) Please compare this PM signal with FM one in terms of sinusoidal modulation.
- 3. A conventional AM signal is expressed as: $s(t) = A_c[1 + \mu m(t)]\cos(2\pi f_c t)$. Assume we apply a "square-law" detector to detect this signal with the following receiving block diagram:

- If $m(t) = \cos(2\pi f_m t)$.
- (a) Find *SNRC*.
- (b) Find *SNRI*.
- (c) Please find *V*(*t*).
- (d) Please find *y*(*t*).

(e) Assume $|\mu m(t)| \ll 1$, please find *SNR_O*.

- (f) If SNR_C >>1, Please find an approximation value of FOM.
- (g) If $SNR_C \ll 1$, Please find an approximation value of FOM. You may need the following Gaussian Integrals:

$$
\int_0^\infty x^{2n} e^{-\frac{x^2}{a^2}} dx = \sqrt{\pi} \frac{a^{2n+1} (1 \times 3 \times 5 \cdots \times (2n-1))}{2^{n+1}}
$$

$$
\int_0^\infty x^{2n+1} e^{-\frac{x^2}{a^2}} dx = \frac{n!}{2} a^{2n+2}
$$

Please note: Homework must be turned in by the beginning of class. No late homework submission is allowable!

 $RN(1)$ $S(t) = S(f) + \{ |f| \le f_0$ $1. (0)$ O elsewhere $R_{N_1}(t) = \frac{7}{7} \sqrt[3]{5} \sqrt{1 + 2} \sqrt[3]{2}$
= $\int_{\infty}^{\infty} 5x_1(t) e^{j2\pi f t} df$
= $\int_{\infty}^{\infty} 5(t) e^{j2\pi f t} df + \int_{0}^{\infty} 1 e^{j2\pi f t} df$ ҭ = $1+ 2f_0 \text{ sinc}(2f_0 \zeta)$ (b) $R_{\mathcal{N},N_z}(\tau)=E[N_1(\hbar+\tau)/N_z\hbar)]$ $=\mathbb{E}[\text{N}_{1}(t_{1}\tau)\cdot(\text{N}_{1}(t)\text{Cov}(2\pi\tau t_{1}+\theta)-\text{N}_{1}(t)\sin(2\pi\tau t_{1}+\theta)]$ $= E\left[N_1(\pi + \tau) N_1(\pi) \right] \cdot E\left[C_{00}(2\pi + \pi + \theta) \right]$ $-EfN_{1}(1+1)N_{1}(1)E[Sin(2xf_{ct}+\theta)]$ $= R_{N_1}(\tau) \cdot 0 - R_{N_1}(\tau) \cdot 0 = 0$ $n_1(t) = n_1(t)$ co-($2\pi f_c(t+\theta) - n_1(t)$ sin ($2\pi f_c(t+\theta)$) (C) $= n_1(t)$ [00127 f f f f g $)$ S in $(27f$ f f f g $)$ J = $\sqrt{2}$ nilt)[$\frac{1}{12}$ (re(2xfct+b) - $\frac{1}{12}$ sin(2xfct+b)] $=\sqrt{\sum n_1 (1+\sum C_{00} \frac{2}{f} \cos(2\pi f_t + \theta)} - \sin \frac{\pi}{4} \sin(2\pi f_t + \theta)$ $=\sqrt{2}N_{1}(t)$ $\omega_{0}(2\pi f_{t}t+\frac{\pi}{2}+\theta).$ (d) $R_{N_{2}}(\tau) = E[\Lambda_{2}(1+\tau), \Lambda_{2}(1)]$ $=\geq \mathbb{E}[N_1|H\tau)-N_1|H_1]\mathbb{E}[F_1|\gg f_1(H\tau)+\frac{\pi}{4}+\theta)(\log[\gg]{\mathcal{X}_1^0}H+\frac{\pi}{4}+\theta)]$ $=$ $R_{N_{1}}(t)$ $\frac{1}{2}$ (co (27 \hat{t} c t) = $R_{N_{1}}(t)$ - C_{V} (27 \hat{t} c t) $S_{N_{2}}(f) = \frac{7}{7} S R_{N_{2}}(t)$ = $\frac{7}{7} S R_{N_{1}}(t)$ cro (27 fc () <u>(P)</u> $=\frac{1}{2}\sin{(f-f_{L})}+\frac{1}{2}\sin{(f+f_{L})}$ $\frac{1}{2} \frac{1}{8} (f + f_c)$ $\sqrt{54} (f)$ $\frac{1}{2} \frac{1}{8} (f - f_c)$

For a PM signal: sit) = Accoo(2xfct+\$it), where $g(t)$ = $k_{p}m(t)$ $2.$ $g(t) = s(t) + n(t) = Ae$ co (22+2++ \$(+) + 8(+) co (2x+2++ 4(+)) \ddot{i} where $r(t) = \left[\frac{n^2(t) + n^2(t)}{2}, \frac{\psi(t)}{2}\right] = \tan^{-1}(\frac{n\omega(t)}{n\omega(t)})$ the received phase $\theta(t) = \phi(t) + \tan^{-1}\left[\frac{r(t) \sin(\psi(t) - \phi(t))}{\phi(t) - \phi(t)}\right]$ For large CNR, $A_c \gg r(t)$
0(t) $\simeq \cancel{\phi(t)} + \frac{r(t)}{A_c} \sin(\psi(t) - \cancel{\phi(t)})$ $=$ kp m $(t) + \frac{y(t)}{4c} sin(\psi(t) - \phi(t))$ <u>Since Ult) is uniformly distributed over [0.27], so is</u> $\nu(t)$ - $\nu(t)$, \Rightarrow the noise after phase detector is independent of $\phi(t) \Rightarrow \tau$ he output $y(t) = k_p m(t) + \Delta t$ sin($\phi(t) = k_p m(t) + \Delta t$
The output signal is $k_p m(t) \Rightarrow$ signal power: $P_s = k_p^2 P$.
Noise power: $Ph = \frac{1}{dz} \cdot No \cdot 2W \Rightarrow (SNR)_0 = Ae^2 k_P^2 P / 2 Now$ (a) The channel SNR: the modulated signal power: $p_s = \frac{1}{2}A_c^2$
The noise power = $\frac{N_s}{2} \times 2W = N_0W$.
 \therefore (SNR)_c = $\frac{A_c^2}{2} \times N_0W$ (b) $\frac{1}{2}$ FOM = $(SNR)_{0}/(SNR)_{0} = \frac{1}{k_{p}}P$ (C) It the message is a sinusoidal wave: mut) = Am Coolexfort) $P=\frac{1}{2}Am^{2}$, Then $(50M)_{PM}=\frac{1}{2}(k_{P}/dm)^{2}=\frac{1}{2}\beta_{P}^{2}$, where Pp is phase deviation in PM. (FOM) = $\frac{3}{2}$ β^2 , where β is the phase deviation. in FM. i For the same phase deviation, FM is 3 times better than PM. $S(t) = A_0 \left[1 + \text{Mm}(t)\right]$ Gov (2xfit) and $m(t) = \text{Gm}(2x + \pi t)$ $3₁$ (0) $\frac{\frac{1}{1}hln \sin \sin \theta}{\frac{1}{1}hln \cos \theta} = \frac{\frac{1}{1}h^2 (1 + M^2)}{\frac{1}{1}h^2 (1 + M^2)} = \frac{h^2 (2 + M^2)}{4N_0 w}$ (b) $(SNF)_I = \frac{1}{2}Ac^2(1+MZ)}{2N_0W} = -\frac{Ac^2(2+M^2)}{8N_0W}$

 $\vert \cdot$ (c) $\vert \vert$ V(t)= LPF{x²(t)}= LPF{(sut)+nut))²⁷, if μ [mut)|<< 1 $\approx 4e^{2}[1+2Mm(k)] + Ac[1+Mm(k)]m(k)+\frac{1}{2}n^{2}(k)+\frac{1}{2}n_{a}(k)$ $\frac{y(t) is the time varying term of v(t)}{y(t) = Ae^2Mm(t) + Ae\int [t/m(t)]r(t(t) + \frac{1}{2}h^2(t) + \frac{1}{2}h^2(t)]$ $d)$ $|e\rangle$ il The corresponding noise power: PN = σ_n^2 = $E[n^2]$ - $(E[n^2])$
 $\Rightarrow PN = Ac(1 + \frac{A^2}{2})6n^2 + 6n^4$ where $6\sqrt{2} = 2N_0W$ $=604R_0=\frac{2Ac^{4}M^{2}}{4c^{2}(1+\frac{M^{2}}{L})6N^{2}+6N^{4}}=\frac{2Ac^{4}M^{2}}{(1+c^{2})(2\pi N^{2})+36N^{2})26N^{2}}$ =>($\frac{u}{1+\frac{1}{(5NR)c}}$) where $(5NR)c$ 4NOW $\frac{1}{1}^{2}\frac{(SNR)_{C}77}{(SNR)_{C}2}^{2} \times 10^{20} \times 2^{20} \times 10^{20} \times 10^{20$ (f) $($ $\frac{6}{3}$ $\frac{1}{2}$ n(t)=rt(t)coo(zxfct)-no(t)sin(zxfct)=r(t)co(2xfct+y(t)) Note: where $\hat{y(t)} = h(t) + n\hat{a}(t)$, $\psi(t) = \tan^{-1} \frac{n_0(t)}{n_0(t)}$. $Var[\frac{1}{2}N_1^2+\frac{1}{2}N_0^2]=Var[\frac{1}{2}Y^2]=E[(\frac{1}{2}Y^2)^2]-(E[\frac{1}{2}Y^2])^2=[E[Y^4]-(E[Y^2])^2]$ The Pdf of R is $f_R(Y) = \frac{Y}{\sqrt{2}}e^{-\frac{Y^2}{26\pi^2}}$ and $\alpha \in Y \in \infty$

From Gaussian Integral: $\int_{0}^{\infty} \chi^{2nt} e^{-\frac{Y^2}{4\pi^2}} dx = \frac{n!}{2} \Omega^{2nt+2}$
 $\therefore \underline{F}[Y^4] = \int_{0}^{\infty} Y^4 \frac{Y}{\sigma^2} e^{-\frac{Y^2}{26\pi^2}} dY = \frac{1}{2} \Omega^{2nt+2}$
 \there $\therefore Var[\frac{1}{2}n_{F}^{2}+\frac{1}{2}n_{B}^{2}]=\frac{1}{4}[E[Y^{4}]-(E[Y^{2}])^{2}]=\frac{1}{4}[86N^{4}-66N^{2})^{2}]$ $=$ \pm \times 40 π = σ