Homework #7

1. Assume a noise $n_1(t)$ is stationary with a power spectral density shown in Fig. 1. Another noise process $n_2(t)$ is related with $n_1(t)$ by:

 $n_2(t) = n_1(t)\cos(2\pi f_c t + \theta) - n_1(t)\sin(2\pi f_c t + \theta),$

where f_c is a carrier frequency and θ is the value of a random variable Θ uniformly distributed within $(0, 2\pi)$.

- (a) Please find and sketch the autocorrelation function of $n_1(t)$.
- (b) Show that the cross correlation of $n_1(t)$ and $n_2(t)$ is 0. Assume that random variables N_1 and Θ are statistically independent.
- (c) Demonstrate that $n_2(t) = \sqrt{2}n_1(t)\cos(2\pi f_c t + \pi/4 + \theta)$.
- (d) Using (c) to find the autocorrelation function of $n_2(t)$ in terms of the autocorrelation of $n_1(t)$: $R_{N_1}(\tau)$, where τ is the time difference.
- (e) Plot power spectral density of $n_2(t)$.

- 2. Consider a phase modulation (PM) signal with the modulated wave defined by $s(t) = A_c \cos[2\pi f_c t + k_p m(t)]$, where k_p is a phase sensitivity and m(t) is the message. The filtered additive white Gaussian noise n(t) at the input of the phase detector is $n(t) = n_I(t)\cos(2\pi f_c t) n_Q(t)\sin(2\pi f_c t)$. Assume the carrier to noise ratio is large, please determine
 - (a) Output SNR
 - (b) FOM.
 - (c) Please compare this PM signal with FM one in terms of sinusoidal modulation.
- 3. A conventional AM signal is expressed as: $s(t) = A_c [1 + \mu m(t)] \cos(2\pi f_c t)$. Assume we apply a "square-law" detector to detect this signal with the following receiving block diagram:

- If $m(t) = \cos(2\pi f_m t)$.
- (a) Find SNR_C .
- (b) Find *SNR*_{*I*}.
- (c) Please find V(t).
- (d) Please find y(t).

(e) Assume $|\mu m(t)| \ll 1$, please find SNR_O .

- (f) If $SNR_C >> 1$, Please find an approximation value of FOM.
- (g) If $SNR_C \ll 1$, Please find an approximation value of FOM. You may need the following Gaussian Integrals:

$$\int_{0}^{\infty} x^{2n} e^{-\frac{x^{2}}{a^{2}}} dx = \sqrt{\pi} \frac{a^{2n+1} (1 \times 3 \times 5 \dots \times (2n-1))}{2^{n+1}}$$
$$\int_{0}^{\infty} x^{2n+1} e^{-\frac{x^{2}}{a^{2}}} dx = \frac{n!}{2} a^{2n+2}$$

Please note: Homework must be turned in by the beginning of class. No late homework submission is allowable!

RN.IZ) $S_{N_{i}}(f) = S(f) + \{1 | f| \le f.$ |.(a)|0 elsewhere $\frac{R_{N_{i}}(t) = \overline{f_{i}}^{+} \left\{ S_{N_{i}}(f) \right\}}{= \int_{w}^{w} S_{N_{i}}(f) e^{j2\pi f t} df} \frac{1}{f} \\ = \int_{w}^{w} S(f) e^{j2\pi f t} df + \int_{f_{0}}^{f_{0}} 1 e^{j2\pi f t} df$ 韦 = $1 + 2f_0 \operatorname{Sinc}(2f_0 T)$ *(b)* $\frac{R_{N_1N_2}(\tau) = E[N_1(t+\tau) N_2(t)]}{E[N_1(t+\tau) N_2(t)]}$ $= \underline{F} \left[N_1(t_1\tau) \cdot (N_1(t_1)cop(2\pi t_1\tau t_1 + \Theta) - N_1(t_1)sin(2\pi t_1\tau t_1 + \Theta) \right]$ = E[NINHT) NILTI]. E[Coo(27.fet+10)] -E[N, Ut+2) N, (t)]·E[Sin [=2, fet+0]] $= RN_1(\tau) \cdot 0 - RN_1(\tau) \cdot 0 = 0$ N=1+)= n1+)co-12xfet+0)-n1+)sin (>xfet+0). (())= $n_1(t) [w(2\pi f_c t + \theta) - sin(2\pi f_c t + \theta)]$ = vin(t)[症 (m(2xfct+b) - 症 sin(2xfct+b)] = VZNIH/[Coo 柔 Coo 127 fet++) - sin 歪 sinl=x fet++) = J2 n.(t) wo (2xtit+ &+ 0). (d) $R_{N_2}(\tau) = E[N_2(t+\tau), N_2(t)]$ = 2 E[N(1+12).N(1+1] E[(~(27 f(1+12)+2+0) (~)27 f(1+2+0)] => RN, (2) + (10 (27, fct) = RN, (2) - Cool 27, fct). SN2(+) = FSRN2(2)3 = FSRN1(2) C= 122 fc2)3 (e) $= \pm SN_1 (f - f_L) + \pm SN_1 (f + f_L)$ 38(f+f,) SN2(+) -28(f-f.) -te-to-fe-tetto o -fe-to-fe-tetto f

For a PM signal: sit) = Ac coo(2xfit + \$t)), where \$t) = kp mit) 2. $\gamma(t) = s(t) + n(t) = Ac \cos(2\pi f_c t + g(t)) + \gamma(t) \cos(2\pi f_c t + y(t))$; where $r(t) = [n_1^2(t) + n_2^2(t)]^{1/2}$, $\psi(t) = tan^{-1}(\frac{n_0(t)}{n_1(t)})$ the received phase $\theta(t) = \varphi(t) + t_{qn} - \frac{1}{2} \frac{r(t) \sin(\psi(t) - \varphi(t))}{Ac + r(t) \cos(\psi(t) - \varphi(t))}$ For large CNR, $A_{c} >> r(t)$ $O(t) \simeq \phi(t) + \frac{r(t)}{\delta} \sin(\psi(t) - \phi(t))$ $= kpm(t) + \frac{\gamma(t)}{4}sin(\psi(t) - \beta(t))$ Since Ult) is uniformly distributed over [0,27], so is 1/1)- \$1, => The noise after phase detector is independent of $\phi(t) \Rightarrow$ The output $\gamma(t) = k_p m(t) + \gamma(t) \sin(\gamma(t)) = k_p m(t) + \frac{n_0 t}{A_c}$ The output signal is $k_p m(t) \Rightarrow$ signal power $P_s = k_p^2 P$. Noise power: $P_N = \frac{1}{A_c^2} \cdot N_0 \cdot 2W \Rightarrow (SNR)_0 = A_c^2 k_p^2 P_2 N_0 W$ (a)The channel SNR: the modulated signal power: Ps = 1/2 Ac² The noise power = N° × 2W = NoW. .: (SNP)c = Ac²/2NoW (6) : FOM= (SNR)0/(SNR)c = kp2P (C)It the message is a sinuspidal wave : mut) = Am Coolarfint) P= 1 Am, Then (FOM) pM = = (kp/1m) = = Bp, where Bp is phase deviation in PM. (FOM)==== B², where B is the phase deviation. in FM. . For the same phase deviation, FM is 3 times better than PM. S(t) = ACCI+MMUT)] Cool2xfit) and MUTI= cool2xfmt) 3 $\frac{\text{then signal power: } P_{s} = \frac{1}{2} Ac^{2} (1 + M^{2} z)}{(01)} (SNR)_{c} = \frac{1}{2} Ac^{2} (1 + M^{2} z)}{N_{0} W} = \frac{Ac^{2} (2 + M^{2})}{4N_{0} W}$ $\frac{(b)}{(SNP)_{I}} = \frac{\frac{1}{2}Ac^{2}(1+M^{2}/2)}{2NOW} = \frac{Ac^{2}(2+M^{2})}{8NOW}$

 $(c) |_{V(t)} = LPF \{q^{2}(t)\} = LPF \{ (s(t) + n(t))^{2} \}, if u[m(t)] < 1$ $\simeq A^{c^2}[1+2 Um(t)] + A^{c}[1+Um(t)] n_{t}(t) + \frac{1}{2}n_{t}^2(t) + \frac{1}{2}n_{a}(t)$ ytt) is the time varying term of V(t) ⇒ y(t) = Ac² Um(t) + Ac [It Um(t)] nI(t) + ± NJ²(t) + ± NB(t) d) | demodulated message power: PM = + Act M2 demodulated noise: no= Ac[1+Mmuti] n=1(t) + = n=2(t) 191 The corresponding noise power: PN = Ono = E[no] - (E[no]) = PN = Ac (H =) GN + GN where ON = = NoW $= \frac{1}{(S_{1}^{2}N_{0}^{2})} = \frac{1}{2} \frac{Ac^{4}M^{2}}{Ac^{2}(1+\frac{M^{2}}{2})} = \frac{2Ac^{4}M^{2}}{(Ac^{2}(2+M^{2})+26N^{2})} = \frac{2Ac^{4}M^{2}}{(Ac^{2}(2+M^{2})+26N^{2})} = \frac{1}{26N^{2}}$ $= 2\left(\frac{M}{2+M^2}\right)^2 \left(\frac{(SNR)_c}{1+\frac{1}{(SNR)_c}}\right) - where \left(\frac{SNR}{c}\right) = \frac{Ac^2(2+M^2)}{4N_0W}$ $\frac{if(SNR)c77}{if(SNR)c<<|(SNR)o~2(\frac{M}{S+M^2})(SNR)c}$ (F) (91 $n(t) = n_1(t) \cos(2\pi f_c t) - n_0(t) \sin(2\pi f_c t) = r(t) \cos(2\pi f_c t + \psi(t))$ Note: where vit)= Nit)+Natt), Ut)= tan-1 north $Var[\pm N_{1}^{2} + \pm N_{0}^{2}] = Var[\pm Y^{2}] = E[(\pm r^{2})^{2}] - (E[\pm r^{2}])^{2} = \pm [E[r^{4}] - (E[r^{2}])^{2}]$ $\frac{VHL2THS}{The Pdf of R is f_{R}(Y) = \frac{Y}{6\pi}e^{-\frac{Y^{2}}{26\pi}} and o \leq Y \leq \infty}{Fyom Gaussian Integral: <math display="block">\int_{0}^{\infty} \chi^{2n+1}e^{-\frac{T^{2}}{4\pi}} dX = \frac{n!}{2}a^{2n+2}$ $\frac{E[Y^{4}] = \int_{0}^{\infty} Y^{4} \cdot \frac{Y}{6\pi}e^{-\frac{Y^{2}}{26\pi}} dY = \frac{f_{2}}{5\pi}\int_{0}^{\infty} Y^{5}e^{-\frac{Y^{2}}{26\pi}} dY, take h=2, a=\sqrt{2}6M$ $= \frac{1}{6\pi} \cdot \frac{Z'}{5\pi} (\sqrt{2}6M)^{6} = 86M$ $E[Y^{2}] = \int_{0}^{\infty} Y^{2} \cdot \frac{Y}{6\pi}e^{-\frac{Y^{2}}{26\pi}} dY = \frac{1}{6\pi^{2}} (\sqrt{2}6M)^{7} = 26M^{2}$: $Var[\pm n_{\tilde{t}}^{2}+\pm n_{\tilde{t}}^{2}]=\pm [E[r^{4}]-(E[r^{2}])^{2}]=\pm [86N^{4}-126N^{2}]^{2}$ = = + + + 5N = 5N