

1.

(b) We can consider, f(t) as a convolution of a rectangular function rect $(\frac{t}{T_p})$ and a comb function $= \frac{2}{N_p} S(t-nT_b)$. $f(t) = rect (\frac{t}{T_p}) \otimes \sum_{n=-\infty}^{\infty} S(t-nT_b)$ $= \frac{1}{N_p} \sum_{n=-\infty}^{\infty} sinc(fT_p) \cdot S(f-\frac{m}{T_b})$

2. (a)

Alt)
$$\gamma(t)$$
 $\gamma(t)$ $\gamma($

Since the system is causal, we may assume h(t)=0 for t<0, then $H(f)=\int_{0}^{\infty}h(t)e^{-j2\pi ft}dt=\int_{0}^{\infty}h(t)e^{-j2\pi ft}dt$ Let $S=j2\pi f$, then $H(S)=\int_{0}^{\infty}h(t)e^{-st}dt$: a Laplace Transform.

$$H(s) = \frac{s+z}{s^{2}+4s+3} = \frac{1}{z}(\frac{1}{s+1} + \frac{1}{s+3})$$
Then $h(t) = \frac{1}{z}(e^{-t} + e^{-3t})$ for $t \ge 0$

We may also express $h(t) = \frac{1}{z}(e^{-t} + e^{-3t})$ where $h(t) = \frac{1}{z}(e^{-t} + e^{-3t})$ where $h(t) = \frac{1}{z}(e^{-t} + e^{-3t})$

3. (a)

 $S(t) = 50 \, \text{Coo}(27.11000 \, t) + 100 \, \text{Coo}(27.10000 \, t) + 150 \, \text{Coo}(27.9000 \, t)$ Then $S(t) = 25 \, \text{E}(f-11000) + 8(f+11000) \text{T}$ $+ 50 \, \text{E}(f-10000) + 8(f+10000) \text{T}$ $+ 75 \, \text{E}(f-9000) + 8(f+9000) \text{T}$

Then the spectrum S(f).

Then the spectrum S(f). 150

(b) $f_c = 10$ kHz, can also be 9 kHz or 11 kHz, then answers for (d), (e), (f) and (g) need to be modified.

(c) Transmission Bandwidth $B_T = 2 \text{ kHz}$

(d)

```
SIt) = 50 ej 27.1000$ +100 + 150 e-J28.1000$.
    S(f) = 50 8(f-1000) + 1008(f) + 150 8(f+1000)
                    150 100
                              ->f(x1000)
(f)
                                           00 100 100
 Milt)= 100+ 200 coo(21. (000 t)
> MI(f) = 100 &(f) + 100 [8(f-1000) +8[f+1000)]
  [Mz(f) = Mz(f)
(g)
( toool, 75) niz 00) - = (tram
                                             Ma(f)
Ma(f) = -100x = [8(f-1000)-8(f+1000)]
      = j50[s(f-1000)-8(f+1000)]
                                                    (X 1000)
[Ma(f) = 1,50[8(f-1000)-8(f+1000)]
        = 50 8(f-1000) + 50 8(f+1000)
4.
(a) Rut) = 2 sinc2(2t) = 2. sinc(2t). sinc(2t)
    H(f)= 2· 手引sinc(2/13 @ 子了sinc(2/1)
          ((f) = x(f). H(f) = $ rect(好) tri(圭) = $ tri(九)
         K(f)
      y(t)= F-1 ftri(1/2)]= 4x(2sinc2(2t))=== sin(2(2t)
```