04/02/2018

Duality of electrons

Probability that electrons reach position $\mathsf{x} \mathbin{\neq} \mathsf{P}_1$ + P_2

$$
\Psi = \psi_1 + \psi_2
$$

\n
$$
|\Psi|^2 = |\psi_1 + \psi_2|^2 = |\psi_1|^2 + |\psi_2|^2 + \psi_1^* \psi_2 + \psi_1 \psi_2^*
$$

de Broglie wave

Momentum of a photon:

$$
p = \frac{h\nu}{c} = \frac{h}{\lambda} \qquad c = \lambda \nu
$$

Photon wavelength:

$$
\lambda = \frac{h}{p}
$$

de Broglie wavelength:

$$
\Rightarrow \qquad \lambda = \frac{h}{m_0 v} = \frac{h}{mv} \qquad m = \frac{m_0}{\sqrt{1 - \frac{v^2}{m_0^2}}}
$$

$$
\frac{h}{nv} \qquad m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}
$$

Probability density:

$$
P=\big|\psi\big(\vec{r}\,,\,t\big)\!\big|^2
$$

Infinite waves and wave packets

 \vee De Broglie waves cannot be represented by infinite waves.

 \vee Amplitudes of wave packets depend on likelihood of detecting a body.

 \vee A typical example of how wave packets come into being.

Electron diffraction

An experiment that confirms the existence of de Broglie waves

Quiz

Particle in a box

Assumption: no dissipation of energy no relativistic considerations

de Broglie wavelength of trapped particles: $\lambda_n = \frac{2L}{n}$ $n = 1,2,3 \cdots$ $2L$ 100 $=\frac{2L}{n}$ $n=1,2,3...$ *n L* $\lambda_n = \frac{\gamma_n}{\gamma_n}$ r. 2 2 $\sqrt{2}$ 2 μ 2 2m $2m\lambda^2$ 1, p^2 ℓ $m\lambda^2$ *h m* $E = \frac{1}{2}mv^2 = \frac{p}{2} = \frac{n}{2}$ $1, 2, 3, \cdots$ $8mL^2$ \cdots \cdots 2×2 $=$ $\frac{1}{2}$ $n = 1, 2, 3, \cdots$ *mL* $E_n = \frac{n^2 h^2}{2h^2}$ $n = 1, 2, 3, \cdots$ Energy level E_n is expressed by,

n: quantum number

Any particle confined to a certain region

Quantized energies for particle in a box:

$$
E_n = \frac{n^2 h^2}{8mL^2}
$$
 $n = 1, 2, 3, \cdots$ **n**: quantum number

- \vee A trapped particle cannot have an arbitrary energy, as a free particle can.
- \vee A trapped particle cannot have zero energy.

$$
\lambda = \frac{h}{mv}, \quad v = 0 \quad \Rightarrow \quad \lambda \to \infty \qquad \text{No meaning!}
$$

 \vee Planck's constant h=6.63x10⁻³⁴J \cdot s is so small, \rightarrow Quantization of energy is conspicuous

only when m and L are so small .

Two contrast examples

An electron in a box 0.10 nm across.

$$
m = 9.1 \times 10^{-31} kg
$$
, $L = 0.10 nm = 1.0 \times 10^{-10} m$

$$
E_n = \frac{n^2 (6.63 \times 10^{-34})^2}{8 \times (9.1 \times 10^{-31} kg)(1.0 \times 10^{-10} m)^2} = 6.0 \times 10^{-18} n^2 J
$$

= 38n² eV \t\t (n = 1, 2, 3, ...)

A 10-g marble in a box 10 cm across.

 $m = 1.0 \times 10^{-2}$ kg, $L = 10$ cm $= 1.0 \times 10^{-1}$ m

$$
E_n = \frac{n^2 (6.63 \times 10^{-34})^2}{8 * (1.0 \times 10^{-2} kg)(1.0 \times 10^{-1} m)^2} = 5.5 \times 10^{-64} n^2 J \qquad (n = 1, 2, 3, \cdots)
$$

"Modern Physics", M. Oh-e 9 **Uncertainty principle**

Instead of the light source and the screen , we use an electron gun and a photographic plate or electron counter.

"Modern Physics", M. Oh-e 10 **Double slit experiment by electrons**

Even in the case that a single electron is emitted one by one, a fringe pattern can be observable.

Which slit an electron passes though does not mean anything in the quantum world.

"Modern Physics", M. Oh-e 11 **Classical and quantum physics**

Classical physics:

```
The state of a particle: 
position and velocity (position and momentum)
                         cf. equation of motion
```
Quantum physics:

The state of an electron: Exact propagation path of electrons cannot be determined. Only probability of position and momentum (Quantum state)

What is uncertainty?

- \blacktriangleright Narrower wave groups \rightarrow more precise position $\quad \lambda = \frac{h}{\tau}$
- \vee Wider wave groups \rightarrow more accurate wavelength \rightarrow more accurate momentum

It is impossible to know both the exact position and exact momentum of an object at the same time.

p

 φ λ λ $p_y = \frac{h}{\lambda} \sin \varphi$ Suppose an electron is detected by a counter in the direction φ, the momentum y is described as

Probability distribution is describe by the diffraction of light.

$$
\sin \varphi = \frac{\lambda}{d}
$$
 Uncertainty of momentum
in the y direction:

$$
\Delta p_y = \frac{h}{\lambda} \frac{\lambda}{d} = \frac{h}{d}
$$
Uncertainty relation: $\Delta y \cdot \Delta p_y \ge h$

"Modern Physics", M. Oh-e 14 **Heisenberg's thought experiment**

Uncertainty of time and energy

 $\Delta E \cdot \Delta t \geq h$

Comments

$\Delta x \cdot \Delta p_x \geq h$ $\Delta E \cdot \Delta t \geq h$

 \vee This is not a statement about the inaccuracy of measurement instruments, nor a reflection on the quality of experimental methods.

 \vee It arises from the wave properties inherent in the quantum mechanical description of nature. Even with perfect instruments and technique, the uncertainty is inherent in the nature of things.