<u>"Modern Physics", M. Oh-e</u> Periodic table: how electrons are organized.

✓ Periodic table: an arrangement of the elements according to atomic number in a series of rows such that elements with similar properties form vertical columns.

<u>"Modern Physics", M. Oh-e</u>

The P	the Periodic Table of the Elements																	
Group	1	2											3	4	5	6	7	8
Period	1																	2
1	Н		The number above the symbol of each element is its atomic number, and															He
	Hydrogen 4 009		the number below its name is its average atomic mass. The elements															Helium
2	1.000		whose atomic masses are given in parentheses do not occur in nature but															4.005
2	3 Li	4 Ro	h	ave been c	reated i	n nuclear r	eactions.	The atom	ic mass	in such	a case i	s	B	6 C	/ N	8	9	10 No
	Lithium	Beryllium the mass number of the most long-lived radioisotope of the element.													Nitrogen	Oxvaen	Fluorine	Neon
	6.941	9.012 Elements with atomic numbers 110, 111, 112, 114, and 116 have also been													14.01	16.00	19.00	20.18
3	11	12 created but not yet named. 13 14 15 16 17														17	18	
	Na	Mg AI Si P													S	CI	Ar	
	Sodium	Magnesium	agnesium												Phosphorus	Sulfur	Chlorine	Argon
	22.99	24.31	24.31 Transition metals											28.09	30.97	32.07	35.45	39.95
4	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	SC	ТІ	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Potassium 39.10	Calcium 40.08	Scandium 44.96	17 AZ	Vanadium 50.94	Chromium 52.00	Manganese 54.94	Iron 55.8	Cobalt 58.93	Nickel 58.69	Copper 63.55	Zinc 65.39	Gallium 69.72	Germanium 72.59	Arsenic 74.92	Selenium 78.96	Bromine 79.90	Krypton 83.80
5	97		20	40	44	40	49	44	45	40	47	40	40	50	E4	F0.00	F0.00	EA
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	₽d	Aa	Cd	In	Sn	Sb	Te	1	Xe
	Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.9	127.6	126.9	131.8
6	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
	132.9	137.3		1/8.5	180.9	183.9	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
	87 Er	88 Ro		104 Df	105 Db	106 So	107 No	108 He	109								lalogens i	nert gases
	Francium	Badium		Rutherfordium	Dubnium	Seaborgium	Nielsbohrium	Hassium	Meitnerium									
	(223)	226.0		(261)	(262)	(263)	(262)	(264)	(266)									
	Alkali me	tals		Lanthanides (rare earths)														
				57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Sarnarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
				138.9	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	184.9	167.3	168.9	173.0	175.0
				89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
				Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	LW
			Actinium (227)	232.0	231.0	238.0	(237)	(244)	Americium (2/3)	(2/17)	(247)	(251)	(252)	(257)	(260)	(250)	(262)	
				Actinides	232.0	201.0	2.30.0	(237)	(244)	(243)	(247)	(247)	(201)	(202)	(201)	(200)	(2.08)	(202)

<u>2</u>

Mean field in an atom

 \checkmark A system of particles is stable when its total energy is the minimum.

✓ Only one electron can exist in any particular quatnum state in an atom.

Consider each electron as if it exists in a mean field,

Quantum numbers

$$\psi_{n\ell m}(r,\theta,\phi) = R_{n\ell}(r)Y_{\ell}^{m}(\theta,\phi) \qquad n = 1, 2, 3, \cdots \qquad \ell = 0, 1, 2, \cdots (n-1)$$
$$m = 0, \pm 1, \pm 2, \pm 3 \cdots, \pm \ell$$

Quantum numbers:

- ✓ Principal quantum number: n=1, 2, 3,...
 - : Principal energy level of the electron
- ✓ Orbital quantum number: ℓ=0, 1, 2, ..., (n-1)
 - : Values of the angular momentum of the electron
- ✓ Magnetic quantum number: $m_l=0, \pm 1, \pm 2, \dots, \pm l$

: Possible properties of an electron

in a magnetic field

✓ Spin quantum number: m_s = -1/2, +1/2

: Possible spin vectors or orientations of

an electron in a magnetic field

Shells and subshells of electrons

- ✓ Shells split into subshells labelled s, p, d and f.
- ✓ Within each sub shell, there are a number of possible Orbitals (2ℓ+1). The energy values of the orbitals in a sub shell are normally degenerate.
- \checkmark These energy levels are then described by the quantum number m which can have values from - ℓ to + ℓ .
- ✓ Each electron has a spin quantum number s.

Periodic table with quantum numbers

✓ Each electron in an atom is described by a set of four quantum numbers.
 ✓ n represents the period of the periodic table while also noting that the d and f electrons have n quantum numbers that are 1 and 2 units less than the period in which they are found.

✓ Next the I quantum number represents various "blocks" within the periodic table similar to the periodic table shown below.

Energy term

C atom: a spin and β spin

 $C: (1s)^2(2s)^2(2p)^2$ (2p)² : Open shell

 $2p_+, 2p_0, 2p_-$: How two electrons are located? Coupling of n electrons:

$$\begin{split} L &= \ell_1 + \ell_2 + \cdots + \ell_n, \quad S = s_1 + s_2 + \cdots + s_n \\ \text{Total angular momentum:} \qquad J = L + S \\ J &= |L - S|, |L - S| + 1, |L - S| + 2, \cdots, L + S \\ \text{\# of J values:} \qquad L \geq S \Rightarrow 2S + 1 \qquad S \geq L \Rightarrow 2L + 1 \\ \text{Term:} \quad \overset{2S+1}{L_J} \qquad \begin{array}{c} L = 0, & 1, & 2, & 3, & \cdots \\ & \text{S P D F} \\ \end{split}$$

<u>"Modern Physics", M. Oh-e</u>

Russel-Saunders or L-S coupling

- 1. The orbital angular momenta of the individual electrons add to form a resultant orbital angular momentum L.
- 2. Likewise, the individual spin angular momenta are presumed to couple to produce a resultant spin angular momentum S.
- 3. Then L and S combine to form the total angular momentum.

How to deduce terms?

$$(2p)^{2} \quad \ell_{1}=1; \ \ell_{2}=1 \qquad m_{1}=1, \ 0, \ -1; \ m_{2}=1, \ 0, \ -1 \\ \ell_{1}=1 \\ \hline m_{1} \quad 1 \quad 0 \quad -1 \qquad m_{2} \\ \hline 2 \quad 1 \quad 0 \quad 1 \\ \hline 1 \quad 0 \quad -1 \qquad 0 \quad \ell_{2}=1 \\ \hline 0 \quad -1 \quad -2 \quad -1 \\ \hline \end{array}$$

<u>"Modern Physics", M. Oh-e</u>

Hund's rule

- 1. The term with maximum multiplicity lies lowest in energy. (Spin-spin interaction)
- 2. For a given multiplicity, the term with the largest value of L lies lowest in energy. (Orbit-orbit interaction)
- 3. For atoms with less than half-filled shells, the level with the lowest value of J lies lowest in energy. When the shell is more than half full, the opposite rule holds (highest J lies lowest).
 (Spin-orbit interaction) #1

10

About Hund's rule #1

Consider two one-electron orbitals a and b, a: ε_a b: ε_b Electron Spin: anti-parallel \rightarrow singlet configuration (a)(b) Spin: parallel \rightarrow triplet If $\varepsilon_a = \varepsilon_b$: Degenerated states If $\varepsilon_a < \varepsilon_b$ ${}^{1}\psi = \frac{1}{\sqrt{2}} \left\{ a(1)b(2) + b(1)a(2) \right\} \qquad {}^{3}\psi = \frac{1}{\sqrt{2}} \left\{ a(1)b(2) - b(1)a(2) \right\}$ $\hat{H} = \hat{h}(1) + \hat{h}(2) + \frac{1}{r_{12}}, \quad \hat{h}(i) = -\frac{1}{2}\nabla^2 - \frac{1}{r_i} \quad (i = 1, 2)$ ${}^{1}E = h_{aa} + h_{bb} + J_{ab} + K_{ab}$, ${}^{3}E = h_{aa} + h_{bb} + J_{ab} - K_{ab}$ $J_{ab} = \left\langle a(1)b(2) \Big| \frac{1}{r_{12}} \Big| a(1)b(2) \right\rangle = J_{ba}, \quad K_{ab} = \left\langle a(1)b(2) \Big| \frac{1}{r_{12}} \Big| b(1)a(2) \right\rangle = K_{ba}$

About Hund's rule #2

For a given multiplicity, the term with the largest value of L lies lowest in energy.

High L values:Low L values:Electrons orbitingElectrons orbitingthe same directionthe opposite directionto add to L values.to reduce L values.

✓ Electrons meet less often than when they orbit in opposite directions. Hence their repulsion is less on average when L is large.

13 <u>"Modern Physics", M. Oh-e</u> About Hund's rule #3 Heavy atom effect: Spin-orbit coupling Nucleus(Z) Field:Ze/r f(r) S·L Interaction Spin Orbital angular angular Electron spin Magnetic dipole moment The interaction energy if of the form momentum momentum **↑**or **↓** $E = \mu \cdot \vec{B}$ $E = \mu \cdot \vec{B}$ $\mathbf{B}_{n} = \frac{Ze\mu_{0}}{4\pi r^{3}m_{e}} \cdot \ell \qquad \mu_{s} = -\frac{e}{m}\mathbf{s} \qquad \begin{array}{like a magnet in applied magnet}\\ \mathbf{\hat{H}}_{so} = -\frac{1}{2}\mathbf{B}_{n} \cdot \mu_{s} = \frac{Ze^{2}}{8\pi\varepsilon_{0}m_{e}^{2}c^{2}r^{3}}\hat{\ell} \cdot \hat{s} = \xi(r)\hat{\ell} \cdot \hat{s} \end{array}$ like a magnet in an applied magnetic field. From From electron orbital spin motion $\hat{\mathbf{H}}_{so} = \sum_{i}^{I} \xi_{i}(r_{i})\hat{\ell}_{i} \cdot \hat{s}_{i} \qquad \left\langle \psi_{n,\ell,m} \middle| \xi(r) \middle| \psi_{n,\ell,m} \right\rangle = \frac{e^{2}}{2m_{e}^{2}c^{2}a_{0}^{3}} \frac{Z^{4}}{n^{3}\ell(\ell+1)\left(\ell+\frac{1}{2}\right)}$

The scalar product $S \cdot L$ is negative if the spin and orbital angular momentum are in opposite directions. Since the coefficient of $S \cdot L$ is positive, lower J is lower in energy.