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Fine spectral structures of atoms
06/04/2018

When an atom is placed in a magnetic field, each of its fine structure 
lines further splits into a series of equidistant lines with a spacing 
proportional to the magnetic field strength. The electron has an 
orbital magnetic moment.

The anomalous Zeeman effect shows up particularly for atoms 
with odd atomic number Z (hydrogen, for example). In such cases, the 
number of Zeeman sub-levels is actually even rather than odd. This 
suggests the possible existence of an angular momentum like quantity 
that can take on half-integer values.

Normal Zeeman effect !! Anomalous Zeeman effect !!! 
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Stern-Gerlach Experiment

Potential energy in magnetic field:

W. Gerlach and O. Stern, Z. Physik, 8, 110 (1922); 9, 349 (1922); 9, 353 (1922).
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What would be the result?
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From the Stern-Gerlach Experiment

✔ Ag atoms have magnetic moments.

✔ Each z component of their magnetic moments just shows 
one of the two values. 

✔ The value of (μmag)z can be determined with the velocity 
of Ag, the distance to the glass plate, the magnitude of 
inhomogeneous magnetic field and the distance between the 
two spots on the screen.
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Double Stern-Gerlach Experiment I
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Double Stern-Gerlach Experiment II
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Measurement and operator

Physical quantity that can be observed by measurement
: Observable

Wave function ψ

Measurement: Operator Ô

Ô ψ=λψ

Average=<ψ|Ô |ψ>=∫ψ*Ô ψdτ
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Electron spin hypothesis

1. Electron: spin angular momentum S

Operator Su (u=x, y, z): eigenvalues +1/2ħ, -1/2ħ
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3. Commutation relations

Year 1925 Uhlenbeck and Goudsmit
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ŜiŜŜ
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Ŝ

01

10

2
Ŝ
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Interpretation of Stern-Gerlach Experiment

Ag atom: α spin and β spin
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xz SS ˆsinˆcos  The eigen function ψ of operator
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Spin angular momentum operator
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Anomalous Zeeman effect
Zeeman effect:

Splitting of energy states with the interaction of the 
resultant angular momentum and magnetic fields. No spin 
magnetism occurs with pure orbital angular momentum. Only 
for the states involving several (at least two) electrons.

Anomalous Zeeman effect:

The resultant angular momentum is composed of both spin 
and orbital angular momentum.

Atomic magnetism

Superposition of orbital and spin magnetism.
Different g factors
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Angular momentum coupling
These two angular momenta are vectors to 
"adding" them requires vector addition. That 
means you cannot simply add magnitudes of the 
momenta but need to know the direction of the 
momenta.

The orbital angular momentum of each electron is 
vectorially added.

In multi-electron atoms,
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Interaction of the magnetic moment with 
magnetic fields

Zeeman effect for single-electron system:
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Picture of angular momentum coupling

The number of splitting components in the field is given 
by MJ and is again 2J+1. The distance b/w the 
components with different values of MJ depends on the 
quantum numbers L, S and J.

Whole system 
processes slowly 
around B.
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Sodium D lines
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Recall the hydrogen atom

✔When we solve the Schrödinger Equation using the 
potential energy for an electron around a proton 
(hydrogen atom), we get a 3-D solution that gives us 
three quantum numbers:  one for energy (n), one for 
angular momentum (L), and one for the z component of 
angular momentum (mL).  

✔ There is a fourth quantum number (recall your 
chemistry), (spin).

Next step:
How do we extend the quantum theory to systems 
beyond the hydrogen atom?



20“Modern Physics”, M. Oh-e

Extend the theory to two-electron system

✔ For systems of 2 electrons, we simply have a Ψ that 
depends on time and the coordinates of each of the 
two electrons:

Ψ(x1,y1,z1,x2,y2,z2,t)
and the Schrodinger’s equation has two kinetic energies 
instead of one.

       tfrrtrr ba 2121 ,, 

✔ This is like having electron #1 in state a, and having 
electron #2 in state b.  Note that each state (a or b) 
has its own particular set of quantum numbers. 
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Indistinguishable electrons

       1221 rrrr baba  

✔ However, from the Heisenberg Uncertainty Principle 
(i.e., from wave/particle duality), we are not really sure 
which electron is electron number #1 and which is 
number #2.  This means that the wave function must 
also reflect this uncertainty.

Indistinguishable!!
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Wave functions for indistinguishable 
two electrons

There are two ways of making the wave functions that 
reflect the indistinguishability of the two electrons: 
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Which (if either) possibility agrees with experiment?
✔ It turns out that some particles are explained nicely 
by the symmetric, and some are explained by the 
antisymmetric.
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Bosons

✔ Those particles that work with the symmetric form are 
called Bosons.  All of these particles have integer spin
as well.  Note that if boson #1 and boson #2 both have 
the same state (a=b), then  > 0.  This means that both 
particles CAN be in the same state at the same location 
at the same time.

✔ Bosons.  Photons and alpha particles (2 neutrons + 2 
protons) are bosons. These particles can be in the same 
location with the same energy state at the same time.

✔ This occurs in a laser beam, where all the photons are at 
the same energy (monochromatic).
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Fermions

✔ Those particles that work with the anti-symmetric 
wavefunction are called Fermions.  All of these particles 
have half-integer spin.  Note that if fermion #1 and 
fermion #2 both have the same state, (a=b), then  = 0.  
This means that both particles can NOT be in the same 
state at the same location at the same time.

✔ Fermions.  Electrons, protons and neutrons are fermions.  
These particles can NOT be in the same location with the 
same energy state at the same time.

✔ This means that two electrons going around the same 
nucleus can NOT both be in the exact same state at 
the same time! This is known as Pauli’s Exclusion Principle!
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Pauli’s Exclusion Principle

✔ Since no two electrons can be in the same energy state 
in the same atom at the same time, the concept of 
filling shells and valence electrons can be explained and 
this law of nature makes chemistry possible (and so 
makes biology, psychology, sociology, politics, and 
religion possible also)!

✔ Thus, the possibility of chemistry is explained by the 
wave/particle duality of light and matter with electrons 
acting as fermions!
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Quantum numbers

      ,,, m

nmn YrRr  

  ,3,2,1,0m

)1(,2,1,0  n,3,2,1n

Quantum numbers:
✔ Principal quantum number: n=1, 2, 3,… 

: Principal energy level of the electron
✔ Orbital quantum number: ℓ=0, 1, 2, … , (n-1) 

: Values of the angular momentum of the electron
✔ Magnetic quantum number: mℓ=0, ±1, ± 2, … , ±ℓ

: Possible properties of an electron 
in a magnetic field

✔ Spin quantum number: ms= -1/2, +1/2
: Possible spin vectors or orientations of 

an electron in a magnetic field



27“Modern Physics”, M. Oh-e



28“Modern Physics”, M. Oh-e

Energy of orbitals


