7))
D
|
= oo 3
e O o
e
©® Q% & 3
tUH nEm
- e =
atoo . 2 2
T ©° g 5
DSC g =z &

Outline

* 8.1 Introduction

8.2 Static hashing

* (8.3 Dynamic hashing)
* 8.4 Bloom filters

Registration Division Example

as A XK [a)aE i
S 2R AE

#H

Division of Registration

BROO
800
Z00
MOO
+00

31300 / chen@nthu...
31301 / kuo@nthu...
31302 / li@nthu...
31303 / lin@nthu..

31304 / wang@nthu...

3

Registration Division Example

as A [O) s it AH
S 2R AE

OO 31300 / chen@nthu...

sf00 31301 / kuo@nthu...
Z00 31302 / li@nthu...
#OO 31303 / lin@nthu..

+00 31304 / wang@nthu...

4

Hash Concepts

 Hash function

* Any deterministic function that can map data of
arbitrary size (original keys) to data of a desired fixed
size (hash keys)

Keys Hash Hash Keys Values
(e.g., names) (e.g., 0~4)
w4 , 0 [ROO 31300
1 300 31301
"Donald Trump"—— f{) 3 2 Z=00 31302
sk 0 3 MO0 31303
| 4 FOO 31304

Hash Concepts

 Hash function
* |t shuffles the order of mapping
e Butitis deterministic

Keys Hash Hash Keys

(e.g., names) (e.g., 0~4)
n);é'._ j:‘ f)ﬁ% n 2
"Donald Trump" —— f() 3
"k - WY 0

A wWw N B O

Values
fROO 31300
sf00 31301
200 31302
OO 31303

+00

31304

Hash in Cooking

e Hash: chop and mix foods

« Example: hash browns (& 4#)

McDonald's
Recipe

Hash in Chinese Decomposition

 Decompose Chinese characters into keyboard strokes

* Facilitate Chinese input

* Example: the Boshiamy (®& 5 5}) decomposition scheme

2 » Boshiamy

scheme

"

OAO

YYY

TOTO

Hash in a Data Store

* Example: Storing students' grades according to
their name initial letters

A | (Alice, 100)

Name » A
initial J | John, 95) | (Jane, 100)

Advantages of Hashing

* Inserting, deleting, and
searching can be as fast as

O(1) time
* Let hash function
computation be O(1) A | (Alice, 100)
* Indexing the corresponding 8 | (Bob, 80) | (Ben, 70)

bucket in the table is O(1)

e Searching all slots in a bucket

for a key is also O(1) || lirene, 8)

* The number of slots is J | Uohn, 95) | (ane, 100)

independent of the number of K | (Ken, 75)

pairs stored in the table

Z | (Zoe, 80)

Hashing

* A pair with a key k is stored
in a hash table ht

* Key parameters Slots
* b bucketsin ht) - B
e h(k) is the home bucket of a A | (Alice, 100)
key k B | (Bob, 80) | (Ben, 70)

* sslots per bucket

* T possible different keys é | | (Irene, 85)

* n stored pairsin ht é) J | John, 95) | (Jane, 100)
K| (Ken, 75)
Z | (Zoe, 80)

Hashing

e Other terms
» Key density =n/T
* Loading factor (or loading
density) = n/(sb)
* k, and k, are synonyms with
respect to h if h(k,) = h(k,)
e A collision occurs when the

home bucket for a newly
inserted pair is non-empty

* An overflow occurs when
the home bucket for a newly
inserted pair is full

* Key parameters
* b buckets in ht

* h(k) is the home
bucket of a key k

* sslots per bucket

e T possible
different keys

* n stored pairs in ht

12

Hashing

e Good hash functions reduce
the chance of collisions and

overflows

* Enlarging hash table size can
also reduce collisions and

overflows

* To save memory, we usually do
not want to do so too much

* |deal hash functions
e Rare collisions (i.e., a uniform
hash function)
* Easy to compute

Buckets

Slots

AN

/

(Alice, 100)

(Bob, 80)

(Ben, 70)

(Irene, 85)

(John, 95)

(Jane, 100)

(Ken, 75)

(Zoe, 80)

Key Techniques

* Hash functions
* Overflow handling for a hash table with a static size

Hash Functions

* Classical examples

Modulo (division)
Mid-square

Folding

Digit analysis
String-to-integer conversion

* We can design our own hash functions

Modulo (Division)

* Most widely used hash function in practice

* Procedure
* h(k)=k% D

e Selection of D
e D < the number of buckets

* D would better be an odd number
* Even divisor D always maps even keys to even buckets and odd

keys to odd buckets
* Real-world data tend to have a bias toward either odd or even

keys
* It would be even desirable if D can be a prime number
or a number having no prime factors smaller than 20

Mid-Square

* h(k) = some middle r bits of the square of k
 The number of bucket is equal to 2"

* Example

k K2 h(k)
0 0 0000 0000 0
1 | 1 | 00000001 0
2 | 4 | 00000100 1
3 9 0000 1001 2
4 | 16 | 00010000 | 4
5 | 25 | 00011001 6
6 | 36 | 00100100 | 9
7 | 49 | 00110001 | 12

k k2 h(k)
8 | 64 | 01000000 | O
9 | 81 | 01010001 | 4
10 | 100 | 01100100 | 9
11 | 121 | 01111001 | 14
12 | 144 | 10010000 | 4
13 | 169 | 10101001 | 10
14 | 196 | 11000100 | 1
15 | 225 | 11100001 | 8

17

Folding

 Partition the key into several parts and add them

together

* Two strategies: shift folding and folding at the boundary

* Example

 k=12320324111220 =

 Shift folding

h(k) = 2]

h(k) = 2]

123 | 203 | 241 | 112 20
=T
123 | 203 | 241 | 112 20 |=699 Il‘
» Folding at the boundary =
v vV v Vv F
123 | 302 | 241 | 211 20 |=897 I—

Digit Analysis

e Useful when all the keys
are known in advance

* Procedure

e Key is interpreted as a
number using some radix

* Analyze the value
distributions of each digit

 Discard digits having the
most skewed distributions
first

* The remaining digits are
used as the hash

k (radix 2)

h(k)

14

15

20

22

30

31

P lIRPr[P|PIO[OC|O|O

R (PO O| R |~ |O|O

RllRr|Rr|OlR|RLR|[R]|O

P ([O|lOC|O|FRL,r|O(FR |k

N|([o(~AhA{WIN|EF

0:1 ratio

o=
I

»
D

N
(@)

e
s

x..

String-to-Integer Conversion

* Useful when keys are strings

* Procedure

* Treat every n character as an 8n-bit integer
* ASCII represents a character using 8 bits

Characters: h O p e

ASCII Values: 104 111 112 101

Binary Values: 01101000 01101111 01110000 01100101

* Add all integers together to obtain the overall value

* Adopt the aforementioned hash functions (modulo,
folding...)

Design Our Own Hash

* Recall that
* Hash function is any deterministic function that can map

fixed size (hash keys)

* So of course we can design a hash like this

Original
Keys

Folding

+ Obama's
Birthday

Square

Modulo

Digit
Analyze

* Key consideration:

* We need to argue the advantages of our hash compared
with the commonly used ones

data of arbitrary size (original keys) to data of a desired

, Hash

Keys

Chain-Based Hash Table

e Each bucket is a chain

* Chain nodes are typically
unordered

* We typically expect the
hash function spreads
records uniformly
enough

* Thus each chain does not
contain too many nodes
* Linearly traversing a
chain is required for
inserting, finding, and
removing a key

\ 4

(Alice, 100)

A 4

(Bob, 80)

A 4

(Ben, 70)

A 4

(Irene, 85)

\ 4

(John, 95)

\ 4

(Jane, 100)

\ 4

(Ken, 75)

\ 4

(Kevin, 70)

A 4

(Linda, 90)

A 4

(Mary, 85)

A 4

(Zoe, 80)

22

Outline

* 8.1 Introduction

8.2 Static hashing

* (8.3 Dynamic hashing)
8.4 Bloom filters

23

Bloom Filter Concepts

* Proposed by Burton Howard Bloom in 1970

* A probabilistic data structure

. Frc])r constructing a set and then determining whether some keys is in
the set

Traditional set data Bloom filters
structures, e.g., a BST

False positive

(It could be wrong when it X O (HHER)
says "Yes")

False negative

(It could be wrong when it X X

says "No")

Easy insertion @) @)

Easy deletion 0 X (SEE)
Memory space efficiency Low High ({Z%h)

24

Grocery Shop Example

e Suppose we own a grocery
shop

e Customers occasionally ask
for an item that we are not
sure about the availability

* We spend significant time
looking for an item before

realizing that the item is
unavailable

25

Grocery Shop Example

* Bloom filter can help

e Determine the availability of
an requested item

e Some false positive are
acceptable

e j.e., the data structure
determines that an item is
available, but the fact is
otherwise

* No false negative

* We do not want to mistakenly
turn down a customer's request

26

Bloom Filter

* Components
* A bit vector
* Multiple hash functions

* Example
e Atable with 26 entries, A~ Z

* Three hash functions for a string
 First character
e Second character
e Third character

< r@r- R « — I O m m OO @ >

N < X g < c 4w = p © 0 2

Bloom Filter

* Example

* Register string "Coke" into the Bloom
filter to indicate that our grocery sells
Coke

* Set the bit vector according to the three
hash values, C, O, and K

"Coke"
IICII

IIOII

IIKII

0ot

T O m m O O W >

— —

< - R

Available items

- -_—
- - o

~
~
=~ -

N
0] 1
1 P
Q
R
S
T
U
Vv
W
1 X
Y
Z

Available items

- -_—
- - o

Bloom Filter

e Asimpletest T - -

* If a customer request for "Coke" afterward A N
* Bit vector is examined according to the B ol 1
three hash values
* Bloom filter determines that cokeis cl 1 P
available because the corresponding bits D Q
have been set
E R
"Coke" F S
~ _’®_’ oy T
<) uon/ H U
I Vv
K 1 X
L Y
M Z

Available items

——— -
- - o

Bloom Filter

* Asimpletest e

* If a customer request for "orange juice"

afterward

* Bloom filter determines that orange
juice is unavailable because at least one

corresponding bit is not set

"Tea" @ - x

N < X g < c 4w = p © 0 2

Available items

Bloom Filter

* We register more strings into the

: Al 1 N| 1
Bloom filter
B O 1
¢ 1 " !
vg D Q
% agi " "
Fanta” > FAN i g
F| 1 S 1
"Sprite" > SPR ° -
H U
| 1| 1 V| 1
-5 ! "
wxa "Vitali" 2> VIT K| 1 X
‘ L I_ Y
M Z

Bloom Filter

* Test again
* Bloom filter still works

v

"Coke" =2 COK

s/

Y "Tea" > TEA

Y

"Fanta" 2 FAN

T O m m O O W™ >

—_— -

< - R

Available items

1 N 1
0] 1
1 P 1
Q
R 1
1 S 1
T 1
U
1 V 1
W
1 X
Y
Z

Advantages

 Coca Cola
* Fanta

* Sprite

e Vitali

Available items

A 4

26 charz.acters 26 bits
(>208 bits)

Size further

grows with the

number of

available items

T O m m O O @™ >

— —

< - R

N < X g < c 4w = p © 0 2

Available items

Disadvantages -

* Bloom filter exhibits false positive

* When Bloom filter says "yes", it is not AL N 1
100% true B O 1
* But, when Bloom filter says "no", it is cl 1 Pl 1
always true
n n e D Q
» "Coffee" is a false positive in our - N —
example
/// F 1 S 1
G T 1
& Coffee" > COF
- H U
Our grocery does not sell I 1 Vv 1
coffee actually!] W
K 1 X
L Y
M Z

Bloom Filter Analysis

* Key factors of a bloom filter
* Number of hash functions, k
* Number of bits in the bit vector, m
 Number of items expected to be stored, n
* Uniformity of the hash functions

* False positive analysis
* Bit vector is set nk times after n items are stored
* Each time, the probability that a particular bit is set is (1/m)
* Assume true uniformity of hash functions
* The probability that a bit is setis (1 - (1 - 1/m)"¥) after n items
are stored
* The probability of a false positive is (1 - (1 - 1/m)"k)k

* We can carefully select m, n, and k to achieve our
acceptable false positive rate, e.g., 1%

