
Data
Structures

Prof. Ren-Shuo Liu

NTHU EE

Spring 2017

CH8 Hashing

Outline

• 8.1 Introduction

• 8.2 Static hashing

• (8.3 Dynamic hashing)

• 8.4 Bloom filters

2

Registration Division Example

3

請大家向註冊組
查詢學期成績

承辦人 分機 / Email

陳OO 31300 / chen@nthu...

郭OO 31301 / kuo@nthu...

李OO 31302 / li@nthu...

林OO 31303 / lin@nthu..

王OO 31304 / wang@nthu...

Registration Division Example

承辦人 分機 / Email

陳OO 31300 / chen@nthu...

郭OO 31301 / kuo@nthu...

李OO 31302 / li@nthu...

林OO 31303 / lin@nthu..

王OO 31304 / wang@nthu...

4

請大家向註冊組
查詢學期成績

Hash Concepts

5

Keys
(e.g., names)

Hash Values

"周杰倫"

"Donald Trump"

"鈴木一朗"

… …

0

1

2

3

4

Hash Keys
(e.g., 0~4)

• Hash function
• Any deterministic function that can map data of

arbitrary size (original keys) to data of a desired fixed
size (hash keys)

3

2

0

f()

承辦人 分機

陳OO 31300

郭OO 31301

李OO 31302

林OO 31303

王OO 31304

Hash Concepts

6

• Hash function
• It shuffles the order of mapping

• But it is deterministic

Keys
(e.g., names)

Hash Values

"周杰倫"

"Donald Trump"

"鈴木一朗"

0

1

2

3

4

Hash Keys
(e.g., 0~4)

3

2

0

f()

承辦人 分機

陳OO 31300

郭OO 31301

李OO 31302

林OO 31303

王OO 31304

Hash in Cooking

• Hash: chop and mix foods

• Example: hash browns (薯餅)

7

McDonald's
Recipe

Hash in Chinese Decomposition

• Decompose Chinese characters into keyboard strokes
• Facilitate Chinese input

• Example: the Boshiamy (嘸蝦米) decomposition scheme

8

哈

州

OAO

YYY

TOTO哥

O O

o
o

Boshiamy
scheme

Hash in a Data Store

(Alice, 100)

(John, 95) (Jane, 100)

9

Name
initial

J

A

J

A

B

…

J

K

Z

…

I

• Example: Storing students' grades according to
their name initial letters

John
95

Alice
100

Jane
100

Advantages of Hashing

• Inserting, deleting, and
searching can be as fast as
O(1) time
• Let hash function

computation be O(1)

• Indexing the corresponding
bucket in the table is O(1)

• Searching all slots in a bucket
for a key is also O(1)
• The number of slots is

independent of the number of
pairs stored in the table

10

(Alice, 100)

(Bob, 80) (Ben, 70)

(Irene, 85)

(John, 95) (Jane, 100)

(Ken, 75)

(Zoe, 80)

A

B

…

J

K

Z

…

I

Hashing

• A pair with a key k is stored
in a hash table ht

• Key parameters
• b buckets in ht

• h(k) is the home bucket of a
key k

• s slots per bucket

• T possible different keys

• n stored pairs in ht

11

A

B

…

J

K

Z

…

I

B
u

ck
et

s

Slots

(Alice, 100)

(Bob, 80) (Ben, 70)

(Irene, 85)

(John, 95) (Jane, 100)

(Ken, 75)

(Zoe, 80)

Hashing

• Key parameters
• b buckets in ht

• h(k) is the home
bucket of a key k

• s slots per bucket

• T possible
different keys

• n stored pairs in ht

12

• Other terms
• Key density ≡ n/T

• Loading factor (or loading
density) ≡ n/(sb)

• k1 and k2 are synonyms with
respect to h if h(k1) = h(k2)

• A collision occurs when the
home bucket for a newly
inserted pair is non-empty

• An overflow occurs when
the home bucket for a newly
inserted pair is full

Hashing

• Good hash functions reduce
the chance of collisions and
overflows

• Enlarging hash table size can
also reduce collisions and
overflows
• To save memory, we usually do

not want to do so too much

• Ideal hash functions
• Rare collisions (i.e., a uniform

hash function)
• Easy to compute

13

A

B

…

J

K

Z

…

I

B
u

ck
et

s

Slots

(Alice, 100)

(Bob, 80) (Ben, 70)

(Irene, 85)

(John, 95) (Jane, 100)

(Ken, 75)

(Zoe, 80)

Key Techniques

• Hash functions

• Overflow handling for a hash table with a static size

14

Hash Functions

• Classical examples
• Modulo (division)

• Mid-square

• Folding

• Digit analysis

• String-to-integer conversion

• We can design our own hash functions

15

Modulo (Division)

• Most widely used hash function in practice

• Procedure
• h(k) = k % D

• Selection of D
• D ≤ the number of buckets

• D would better be an odd number
• Even divisor D always maps even keys to even buckets and odd

keys to odd buckets

• Real-world data tend to have a bias toward either odd or even
keys

• It would be even desirable if D can be a prime number
or a number having no prime factors smaller than 20

16

Mid-Square

• h(k) = some middle r bits of the square of k
• The number of bucket is equal to 2r

• Example

17

k k2 h(k)

0 0 0000 0000 0

1 1 0000 0001 0

2 4 0000 0100 1

3 9 0000 1001 2

4 16 0001 0000 4

5 25 0001 1001 6

6 36 0010 0100 9

7 49 0011 0001 12

k k2 h(k)

8 64 0100 0000 0

9 81 0101 0001 4

10 100 0110 0100 9

11 121 0111 1001 14

12 144 1001 0000 4

13 169 1010 1001 10

14 196 1100 0100 1

15 225 1110 0001 8

Folding

• Partition the key into several parts and add them
together
• Two strategies: shift folding and folding at the boundary

• Example
• k = 12320324111220 =

• Shift folding

• Folding at the boundary

18

123 203 241 112 20

123 203 241 112 20h(k) = = 699

h(k) = = 897123 302 241 211 20 20

123

20

Digit Analysis

• Useful when all the keys
are known in advance

• Procedure
• Key is interpreted as a

number using some radix

• Analyze the value
distributions of each digit

• Discard digits having the
most skewed distributions
first

• The remaining digits are
used as the hash

19

k k (radix 2) h(k)

1 0 0 0 0 1 1

3 0 0 0 1 1 1

14 0 1 1 1 0 2

15 0 1 1 1 1 3

20 1 0 1 0 0 4

22 1 0 1 1 0 4

30 1 1 1 1 0 6

31 1 1 1 1 1 7

0:1 ratio 4:4 4:4 2:6 2:6 4:4

String-to-Integer Conversion

• Useful when keys are strings

• Procedure
• Treat every n character as an 8n-bit integer

• ASCII represents a character using 8 bits

• Add all integers together to obtain the overall value

• Adopt the aforementioned hash functions (modulo,
folding…)

20

Design Our Own Hash

• Recall that
• Hash function is any deterministic function that can map

data of arbitrary size (original keys) to data of a desired
fixed size (hash keys)

• So of course we can design a hash like this

• Key consideration:
• We need to argue the advantages of our hash compared

with the commonly used ones

21

+ Obama's
Birthday

Folding Square
Digit

Analyze
Original
Keys

Modulo
Hash
Keys

Chain-Based Hash Table

• Each bucket is a chain
• Chain nodes are typically

unordered
• We typically expect the

hash function spreads
records uniformly
enough

• Thus each chain does not
contain too many nodes

• Linearly traversing a
chain is required for
inserting, finding, and
removing a key

22

0

A

B

…
J

K

I

L

M

…

(Alice, 100) 0

(Ben, 70) 0(Bob, 80)

(Irene, 85) 0

(John, 95) (Jane, 100) 0

(Ken, 75) (Kevin, 70) 0

(Linda, 90) 0

(Mary, 85) 0

(Zoe, 80) 0

Outline

• 8.1 Introduction

• 8.2 Static hashing

• (8.3 Dynamic hashing)

• 8.4 Bloom filters

23

Bloom Filter Concepts

• Proposed by Burton Howard Bloom in 1970

• A probabilistic data structure
• For constructing a set and then determining whether some keys is in

the set

24

Traditional set data
structures, e.g., a BST

Bloom filters

False positive
(It could be wrong when it
says "Yes")

X O (缺點)

False negative
(It could be wrong when it
says "No")

X X

Easy insertion O O

Easy deletion O X (缺點)

Memory space efficiency Low High (優點)

Grocery Shop Example

• Suppose we own a grocery
shop

• Customers occasionally ask
for an item that we are not
sure about the availability
• We spend significant time

looking for an item before
realizing that the item is
unavailable

25

Grocery Shop Example

• Bloom filter can help
• Determine the availability of

an requested item

• Some false positive are
acceptable
• i.e., the data structure

determines that an item is
available, but the fact is
otherwise

• No false negative
• We do not want to mistakenly

turn down a customer's request

26

Bloom Filter

• Components
• A bit vector

• Multiple hash functions

• Example
• A table with 26 entries, A ~ Z

• Three hash functions for a string
• First character

• Second character

• Third character

27

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Bloom Filter

• Example
• Register string "Coke" into the Bloom

filter to indicate that our grocery sells
Coke
• Set the bit vector according to the three

hash values, C, O, and K

28

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

1

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

h1

h2

h3

"Coke"
"C"

"O"

"K"

Available items

Bloom Filter

• A simple test
• If a customer request for "Coke" afterward
• Bit vector is examined according to the

three hash values
• Bloom filter determines that coke is

available because the corresponding bits
have been set

29

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

1

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

h1

h2

h3

"Coke"
"C"

"O"

"K"

Available items

Bloom Filter

• A simple test
• If a customer request for "orange juice"

afterward
• Bloom filter determines that orange

juice is unavailable because at least one
corresponding bit is not set

30

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

1

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

h1

h2

h3

"Tea"
"T"

"E"

"A"

Available items

Bloom Filter

• We register more strings into the
Bloom filter

31

1

1

1

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

1

1

1

1

1

1

1

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

"Sprite"  S P R

"Vitali"  V I T

"Fanta"  F A N

Available items

Bloom Filter

• Test again
• Bloom filter still works

32

"Fanta"  F A N

"Coke"  C O K

"Tea"  T E A

Available items

1

1

1

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

1

1

1

1

1

1

1

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Advantages

33

1

1

1

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

1

1

1

1

1

1

1

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

• Coca Cola
• Fanta
• Sprite
• Vitali • 26 characters

(>208 bits)
• Size further

grows with the
number of
available items

26 bits

Available items

Disadvantages

• Bloom filter exhibits false positive
• When Bloom filter says "yes", it is not

100% true
• But, when Bloom filter says "no", it is

always true

• "Coffee" is a false positive in our
example

34

"Coffee"  C O F

Available items

1

1

1

1

1

A

B

C

D

E

F

G

H

I

J

K

L

M

1

1

1

1

1

1

1

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

Our grocery does not sell
coffee actually!

Bloom Filter Analysis

• Key factors of a bloom filter
• Number of hash functions, k
• Number of bits in the bit vector, m
• Number of items expected to be stored, n
• Uniformity of the hash functions

• False positive analysis
• Bit vector is set nk times after n items are stored
• Each time, the probability that a particular bit is set is (1/m)

• Assume true uniformity of hash functions
• The probability that a bit is set is (1 - (1 - 1/m)nk) after n items

are stored
• The probability of a false positive is (1 - (1 - 1/m)nk)k

• We can carefully select m, n, and k to achieve our
acceptable false positive rate, e.g., 1%

35

