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• 8.1 Introduction

• 8.2 Static hashing

• (8.3 Dynamic hashing)

• 8.4 Bloom filters
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Registration Division Example
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請大家向註冊組
查詢學期成績

承辦人 分機 / Email

陳OO 31300 / chen@nthu...

郭OO 31301 / kuo@nthu...

李OO 31302 / li@nthu...

林OO 31303 / lin@nthu..

王OO 31304 / wang@nthu...
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請大家向註冊組
查詢學期成績



Hash Concepts
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Keys
(e.g., names)

Hash Values

"周杰倫"

"Donald Trump"

"鈴木一朗"

… …
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Hash Keys
(e.g., 0~4)

• Hash function
• Any deterministic function that can map data of 

arbitrary size (original keys) to data of a desired fixed 
size (hash keys)  
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Hash Concepts
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• Hash function
• It shuffles the order of mapping

• But it is deterministic 
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Hash in Cooking

• Hash: chop and mix foods

• Example: hash browns (薯餅)
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McDonald's
Recipe



Hash in Chinese Decomposition

• Decompose Chinese characters into keyboard strokes
• Facilitate Chinese input

• Example: the Boshiamy (嘸蝦米) decomposition scheme
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Hash in a Data Store

(Alice, 100)

(John, 95) (Jane, 100)
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• Example: Storing students' grades according to 
their name initial letters
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Advantages of Hashing

• Inserting, deleting, and 
searching can be as fast as
O(1) time 
• Let hash function 

computation be O(1)

• Indexing the corresponding 
bucket in the table is O(1)

• Searching all slots in a bucket 
for a key is also O(1)
• The number of slots is 

independent of the number of 
pairs stored in the table
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(Alice, 100)

(Bob, 80) (Ben, 70)

(Irene, 85)

(John, 95) (Jane, 100)

(Ken, 75)

(Zoe, 80)
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Hashing

• A pair with a key k is stored 
in a hash table ht

• Key parameters
• b buckets in ht

• h(k) is the home bucket of a 
key k

• s slots per bucket

• T possible different keys

• n stored pairs in ht
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Hashing

• Key parameters
• b buckets in ht

• h(k) is the home 
bucket of a key k

• s slots per bucket

• T possible 
different keys

• n stored pairs in ht
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• Other terms
• Key density ≡ n/T

• Loading factor (or loading 
density) ≡ n/(sb)

• k1 and k2 are synonyms with 
respect to h if h(k1) = h(k2)

• A collision occurs when the 
home bucket for a newly 
inserted pair is non-empty 

• An overflow occurs when 
the home bucket for a newly 
inserted pair is full



Hashing

• Good hash functions reduce 
the chance of collisions and 
overflows

• Enlarging hash table size can 
also reduce collisions and 
overflows
• To save memory, we usually do 

not want to do so too much

• Ideal hash functions
• Rare collisions (i.e., a uniform 

hash function)
• Easy to compute
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Key Techniques

• Hash functions

• Overflow handling for a hash table with a static size
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Hash Functions

• Classical examples
• Modulo (division)

• Mid-square

• Folding

• Digit analysis

• String-to-integer conversion

• We can design our own hash functions
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Modulo (Division)

• Most widely used hash function in practice

• Procedure
• h(k) = k % D

• Selection of D
• D ≤ the number of buckets

• D would better be an odd number
• Even divisor D always maps even keys to even buckets and odd 

keys to odd buckets 

• Real-world data tend to have a bias toward either odd or even 
keys

• It would be even desirable if D can be a prime number 
or a number having no prime factors smaller than 20 
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Mid-Square

• h(k) = some middle r bits of the square of k
• The number of bucket is equal to 2r

• Example
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k k2 h(k)

0 0 0000 0000 0

1 1 0000 0001 0

2 4 0000 0100 1

3 9 0000 1001 2

4 16 0001 0000 4

5 25 0001 1001 6

6 36 0010 0100 9

7 49 0011 0001 12

k k2 h(k)

8 64 0100 0000 0

9 81 0101 0001 4

10 100 0110 0100 9

11 121 0111 1001 14

12 144 1001 0000 4

13 169 1010 1001 10

14 196 1100 0100 1

15 225 1110 0001 8



Folding 

• Partition the key into several parts and add them 
together
• Two strategies: shift folding and folding at the boundary

• Example
• k = 12320324111220 = 

• Shift folding

• Folding at the boundary
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123 203 241 112 20

123 203 241 112 20h(k) =  = 699

h(k) =  = 897123 302 241 211 20 20

123
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Digit Analysis

• Useful when all the keys 
are known in advance

• Procedure
• Key is interpreted as a 

number using some radix

• Analyze the value 
distributions of each digit

• Discard digits having the 
most skewed distributions 
first

• The remaining digits are 
used as the hash 
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k k (radix 2) h(k)

1 0 0 0 0 1 1

3 0 0 0 1 1 1

14 0 1 1 1 0 2

15 0 1 1 1 1 3

20 1 0 1 0 0 4

22 1 0 1 1 0 4

30 1 1 1 1 0 6

31 1 1 1 1 1 7

0:1 ratio 4:4 4:4 2:6 2:6 4:4



String-to-Integer Conversion

• Useful when keys are strings

• Procedure
• Treat every n character as an 8n-bit integer

• ASCII represents a character using 8 bits

• Add all integers together to obtain the overall value

• Adopt the aforementioned hash functions (modulo, 
folding…)
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Design Our Own Hash

• Recall that
• Hash function is any deterministic function that can map 

data of arbitrary size (original keys) to data of a desired 
fixed size (hash keys) 

• So of course we can design a hash like this

• Key consideration:
• We need to argue the advantages of our hash compared 

with the commonly used ones 
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Chain-Based Hash Table 

• Each bucket is a chain
• Chain nodes are typically 

unordered
• We typically expect the 

hash function spreads 
records uniformly 
enough

• Thus each chain does not 
contain too many nodes

• Linearly traversing a 
chain is required for 
inserting, finding, and 
removing a key
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Outline

• 8.1 Introduction

• 8.2 Static hashing

• (8.3 Dynamic hashing)

• 8.4 Bloom filters
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Bloom Filter Concepts

• Proposed by Burton Howard Bloom in 1970

• A probabilistic data structure
• For constructing a set and then determining whether some keys is in 

the set
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Traditional set data 
structures, e.g., a BST

Bloom filters

False positive
(It could be wrong when it 
says "Yes")

X O (缺點)

False negative
(It could be wrong when it 
says "No")

X X

Easy insertion O O

Easy deletion O X (缺點)

Memory space efficiency Low High (優點)



Grocery Shop Example

• Suppose we own a grocery 
shop

• Customers occasionally ask 
for an item that we are not 
sure about the availability 
• We spend significant time 

looking for an item before 
realizing that the item is 
unavailable
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Grocery Shop Example

• Bloom filter can help
• Determine the availability of 

an requested item  

• Some false positive are 
acceptable
• i.e., the data structure 

determines that an item is 
available, but the fact is 
otherwise

• No false negative
• We do not want to mistakenly 

turn down a customer's request 
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Bloom Filter

• Components
• A bit vector

• Multiple hash functions

• Example
• A table with 26 entries, A ~ Z

• Three hash functions for a string
• First character

• Second character

• Third character
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Bloom Filter

• Example
• Register string "Coke" into the Bloom 

filter to indicate that our grocery sells 
Coke
• Set the bit vector according to the three 

hash values, C, O, and K
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Bloom Filter

• A simple test
• If a customer request for "Coke" afterward
• Bit vector is examined according to the 

three hash values
• Bloom filter determines that coke is 

available because the corresponding bits 
have been set
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Bloom Filter

• A simple test
• If a customer request for "orange juice" 

afterward
• Bloom filter determines that orange 

juice is unavailable because at least one 
corresponding bit is not set
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Bloom Filter

• We register more strings into the 
Bloom filter
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Bloom Filter

• Test again
• Bloom filter still works
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Advantages
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Disadvantages

• Bloom filter exhibits false positive
• When Bloom filter says "yes", it is not 

100% true
• But, when Bloom filter says "no", it is 

always true 

• "Coffee" is a false positive in our 
example
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Our grocery does not sell 
coffee actually!



Bloom Filter Analysis

• Key factors of a bloom filter
• Number of hash functions, k
• Number of bits in the bit vector, m
• Number of items expected to be stored, n
• Uniformity of the hash functions

• False positive analysis
• Bit vector is set nk times after n items are stored
• Each time, the probability that a particular bit is set is (1/m)

• Assume true uniformity of hash functions
• The probability that a bit is set is (1 - (1 - 1/m)nk) after n items 

are stored
• The probability of a false positive is (1 - (1 - 1/m)nk)k

• We can carefully select m, n, and k to achieve our 
acceptable false positive rate, e.g., 1%
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