
Data
Structures

Prof. Ren-Shuo Liu

NTHU EE

Spring 2017

CH6 Graphs

Outline

• 6.1 Introduction and the graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks

2

Konigsberg Bridge Problem

• Also known as "一筆畫
問題"
• Four land areas are

interconnected by seven
bridges

• Is it possible to walk
across seven bridges
exactly once in returning
to the starting place?

3Google Map 54.706 N, 20.510 E

Konigsberg Bridge Problem

• Euler solved the problem
by representing the land
areas as vertices and the
bridges as edges (1736)
• First recorded evidence of

the use of graphs

• Since then, graphs have
been used in a wide
variety of applications
• Analysis of circuits,

genetics, social
networks…

4Google Map 54.706 N, 20.510 E

Graphs

• Definition : A graph, G, consists of two sets, V and E
• G = (V, E)

• V is a finite, nonempty set of vertices

• E is a set of pairs of vertices, called edges
• Undirected graphs (無向圖)

• Pair of vertices representing any edge is unordered

• (u, v) and (v, u) represent the same edge

• Directed graphs (digraphs) (有向圖)
• Each edge is represented by a directed pair <u, v>

• u is the tail and v the head of the edge

5

Graphs

6

3

0

1 2

3

0

1 2

4 5 6

0

1

2

G1 G2
G3

V(G1) = {0, 1, 2, 3}
E(G1) = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
V(G2) = {0, 1, 2, 3, 4, 5, 6}
E(G2) = {(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)}
V(G3) = {0, 1, 2}
E(G3) = {<0, 1>, <1, 0>, <1, 2>}

Simple Graphs (Strict Graphs)

• This book only considers simple graphs (strict graphs)

• The followings are not allowed in simple graphs
• Self edges / self loops

• (v, v)
• <v, v>

7

0 1

2

1 3

2

0

• Multiple occurrences of the
same edge

• Therefore, the max number of edges of an n-vertex simple graph
• n(n-1)/2 for an undirected graph
• n(n-1) for an directed graph

Terminologies

• Complete graphs (also called as cliques (團))
• A graph having the max possible number of edges

• n(n-1)/2 for an undirected graph

• n(n-1) for an directed graph

• Adjacency and incidence
• u and v are adjacent if (u, v) ∈ G

• (u, v) is incident on (關聯) u and also v

• A subgraph of G is a graph G' such that
• V(G') ⊆ V(G)

• E(G') ⊆ E(G)

8

Terminologies

• A path from u to v in a graph G is
• a sequence of vertices: u, i1, i2, …, ik, v

• (u, i1), (i1, i2), …, (ik, v) ∈ E(G), G is undirected

• <u, i1>, <i1, i2>, …, <ik, v> ∈ E(G), G is directed

• A simple path is
• a path in which all vertices except possibly the first and

last are distinct

• A cycle is
• a simple path in which the first and last are the same

9

Connectivity

• In an undirected graph, vertices u and v are
connected iff there is a path from u to v

• An undirected graph is connected iff every pair of
distinct vertices u and v in V(G) is connected
• A tree is a connected acyclic graph

10

Connected Components

• A connected component (or component for short),
H, of an undirected graph is
• the maximal connected subgraph

• By maximal, we mean that G contains no other subgraph
that is both connected and properly contains H

11

3

0

1 2

4

5

6

G1

3

0

1 2

3

0

1 2

4

5

6

Some connected components of G1

Strongly Connected Graphs

• A digraph G is said to be strongly connected iff for
every pair of distinct vertices u and v in V(G) there
is a directed path from u to v and also from v to u

• A strongly connected component is a maximal
subgraph that is strongly connected

12

0

1

2

G3

0

1

Strongly connected components of G3

2

Degree

• The degree of a vertex is the number of edges
incident to that vertex

• For digraph
• The out-degree of a vertex v is the number of edges for

which v is the tail
• The in-degree of a vertex v is the number of edges for

which v is the head

13

0

1

23

0

1 2

degree=3

in-degree=1
out-degree=2

Graph ADT

14

class Graph
{
public:

virtual ~Graph() {} // virtual destructor
bool IsEmpty() const {return n == 0};
int NumberOfVertices() const {return n};
int NumberOfEdges() const {return e};

virtual int Degree(int u) const = 0;
virtual bool ExistsEdge(int u, int v) const = 0;
virtual void InsertVertex(int v) = 0;
virtual void InsertEdge(int u, int v) = 0;
virtual void DeleteVertex(int v) = 0;
virtual void DeleteEdge(int u, int v) = 0;

private:
int n; // number of vertices
int e; // number of edges

};

Inheritance vs. Template

• Key question: do types affect the behaviors of a class
according to your expectation?

• Inheritance: types may affect behaviors
• Rectangle and Circle can calculate their areas but have

different calculating mechanisms
• According to this expectation, we design a base class, Shape,

with a virtual GetArea() method and let specific shape classes
to inherit

• Template: types do not affect behaviors
• Stack exhibits a last-in-first-out behavior

• Both Stack of Rectangle and Stack of Circle do so

• According to this expectation, we design a template stack
instead of a base stack and different inherited classes

15

Non-Virtual vs Virtual Functions

• Non-virtual
• Static-binding (at compile time) according to the type of a object

pointer or reference

• Virtual
• Dynamic-binding (resolved at run time) according to hidden

information in each object
• Polymorphism: derived classes exhibit their specific behavior even

if they are referred to using the base class pointer/reference

16

int main()
{

Rectangle r;
Circle c;
cout << AreaRatio(r, c);
cout << AreaRatio(c, r);

}
float AreaRatio(Shape& s1, Shape& s2)
{

return s1.GetArea() / s2.GetArea();
}

Pure Virtual Functions

• Sometimes we want derived classes NOT to inherit
the implementation of a virtual function by default
• Implementation of GetArea()

• Maybe impractical to have one method to calculate the area of
both Rectangle and Circle

• Maybe error-prone if someone inherits from Shape another
specific shape, say Star, without redefining Star's GetArea

17

Graph Representations

• Three categories most commonly used
representations
• Adjacency matrices

• Adjacency lists

• Adjacency multi-lists

• The choice of a particular representation will
depend upon the application one has in mind and
the functions one expects to perform on the graph

18

Adjacency Matrices

• The adjacency matrix of an n-vertex graph, G, is a 2D n×n
array, say array A
• A[u][v] = 1 iff (u, v) (or <u, v>) is in E(G)
• A[u][v] = 0 otherwise

• Adjacency matrices of undirected graphs are always
symmetric
• This allows optimization that halves the space requirement

• Adjacency matrices are wasteful of space for sparse graphs
(i.e., graphs with only few edges)

19

3

0

1 2

0

1

2

0 1 2

0 0 1 0

1 1 0 1

2 0 0 0

0 1 2 3

0 0 1 0 0

1 1 0 0 1

2 0 0 0 1

3 0 1 1 0

Adjacency Matrix Operations

Degree (int u) Return Σ a[u][i]; O(n)

Out-degree(int u) Return Σ a[u][i]; O(n)

In-degree(int u) Return Σ a[i][u]; O(n)

ExistsEdge(int u, int v) Return a[u][v]; O(1)

InsertEdge(int u, int v) Set a[u][v] = 1; O(1)

DeleteEdge(int u, int v) Set a[u][v] = 0; O(1)

IsConnectedGraph() O(n2)

20

(Linked) Adjacency Lists

21

3

0

1 2

0

1

2

0

1

2

3

1

3 0 0

1 2 0

3

0

0

1

2

1 0

0 2 0

• The adjacency list of an n-vertex, e-edge graph, G
• Contains an n-element array, n chains, and 2e chain

nodes
• Nodes in chain i represent the vertices adjacent from vertex i
• Nodes in each chain are not required to be ordered

• (Recall the equivalence class problem)

USER
文字注釋
for undirected graph

(Linked) Adjacency List Operations

22

Degree (int u) Count the # of nodes in chain u; O(e)

Out-degree(int u) Count the # of nodes in chain u; O(e)

In-degree(int u) Count the # of u's in all the chains; O(n+e)

ExistsEdge(int u, int v) Look for v in chain u; O(e)

InsertEdge(int u, int v)
• Check the existence of v in chain u

(and u in v);
• Push v onto chain u (and u onto v);

O(e)

O(1)

DeleteEdge(int u, int v)
• Find v in chain u (and u in v);
• Remove v from chain u (and u from

v);

O(e)
O(1)

IsConnectedGraph() O(n+e)

Facebook would need to scan its billions of users to calculate how many
people follows your page if Facebook uses the simple Adjacency List
representation

USER
螢光標示
?

Sequential Adjacency Lists

23

3

0

1 2

• Sequential adjacency list of an n-vertex, e-edge
graph, G
• Contains an (n+2e+1)-element array

• n+1 for indexing the list of each vertex

• 2e for adjacency information

5 6 8 9 11 1 3 0 3 1 2

0 1 2 3 4 5 6 7 8 9 10

starting/ending indices
of the lists of n vertices

set to (n+2e+1)

Sequential Adjacency List Operations

24

Degree (int u)
Return the index difference between u
and u+1

O(1)

Out-degree(int u)
Return the index difference between u
and u+1

O(1)

In-degree(int u) Count the # of u's in the entire graph; O(n+e)

ExistsEdge(int u, int v) Look for v in list u; O(e)

InsertEdge(int u, int v) Make space and insert the edge O(n+e)

DeleteEdge(int u, int v) Delete the edge and compact the array O(n+e)

IsConnectedGraph() O(n+e)

Inverse Adjacency Lists

25

0

1

2

3

1 0

3

2 0

3 0

3

0

1 2

• Ease repeatedly accessing all vertices adjacent to
and from another vertex in a digraph
• E.g., in-degree and out-degree
• Keep an additional inverse adjacency list

• List i stores edges of the form <x, i>

• An alternative is to use orthogonal adjacency lists

2 0

00

1

2

3 1 0

0 0

2

1 3 0

Orthogonal Adjacency List

26

3

0

1 2

• Use an n×n orthogonal (正交) list to store the adjacency
information
• Terms correspond to edges, (u, v) or <u, v>

• (Recall p.218 sparse matrices)

0 1 2 3

0
1
2
3

header nodes shown twice

array of n
header nodes

1 2 1 3
0

2 3
0 0

3 2
0 0

0 1
0 0

Orthogonal Adjacency List Operations

27

Out-degree(int u) Count the # of nodes in chain u O(e)

In-degree(int u) Count the # of nodes in chain u O(e)

ExistsEdge(int u, int v) Look for v in chain u ; O(e)

InsertEdge(int u, int v)

• Check the existence of v in chain u
(and u in v);

• Insert (instead of push or append) v
into chain u (and u into v);

O(e)

O(e)

DeleteEdge(int u, int v)
• Locate v in chain u (and u in v);
• Remove v from chain u (and u from

v);

O(e)
O(1)

IsConnectedGraph() O(n+e)

USER
文字注釋
?

USER
螢光標示

USER
註解
One can go through every vertices (if possible) by traversing all the linked lists !

Note: in extreme case like a straight line without branches, i.e. e =n-1
.n can dminate over n in terms of complexity too!
therefore, the overall complexity ought to be n +e

Adjacency Multi-Lists

• Multi-lists
• One node can be shared among multiple lists

• Adjacency multi-lists
• An edge is represented by a node
• Support accessing all edges incident on a vertex in undirected

graphs

28

3

0

1
0 1

0 2

0 3
0

1 2

1 3
0

2 3
0 0

N0

N1

N2

N3

N4 N5

N0 N1

N2

N3

N4 N5 0
1
2
3

2

0

Multi-Lists vs. Orthogonal Lists

29

0 1 2 3

0
1
2
3

header nodes shown twice

array of n
header nodes

1 2
0

1 3
0

2 3
0 0

0 20 1
0

3

0

1

N0 N1

N2

N3

N4 N5

2
0 3

0

N1

N3

N5

N2

N4

N0

• Orthogonal lists are also a kind of multi-list
• However, for orthogonal lists with one node per edge

• Accessing all edges incident on a vertex is not supported for
undirected graphs

Discussion:
Adjacency Matrices vs Adjacency Lists

Operation
Which performs
better

Determining if (u, v) is an edge in G

Degree of vertex u

Determining if there is a path from u to v

Adding an edge to G

Space to store a dense graph

Space to store a sparse graph

Konigsberg Bridge Problem

30

Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks

31

Elementary Graph Operations

• Depth-first search (DFS)

• Breadth-first search (BFS)

• Connected components

• Spanning trees

• Biconnected components

32

Concept of Search

• Suppose we want to systematically traverse a city with
a subway map in hand
• Depth-first style

• Following a subway path and visiting the places one after one

• Breadth-first style
• Visiting all places within a certain traveling distance

33

Depth-First Search (DFS)

• Begin by visiting the start vertex v

• Next an unvisited vertex w
adjacent to v is selected

• A depth-first search from w is
initiated
• Recursion

• Backtrack if no unvisited vertices
are reachable

34

DFS

3

0

1 2

4 5 6

7

1

2

3

4

5 6

7

8

Depth-First Search (DFS)

35

virtual void Graph::DFS() // Driver
{
visited = new bool[n];
fill (visited, visited + n, false);
DFS(0); // start search at vertex 0
delete [] visited;

}
virtual void Graph::DFS(const int v)
{
visited[v] = true;
for (each vertex w adjacent to v)
if (!visited[w])

DFS(w);
}

DFS

3

0

1 2

4 5 6

7

1

2

3

4

5 6

7

8

Breadth-First Search

• Begin by visiting the start vertex v

• All unvisited vertices adjacent to v
are visited

• Unvisited vertices adjacent to
these newly visited vertices are
then visited, and so on

36

BFS

3

0

1 2

4 5 6

7

1

2 3

4 5 6 7

8

Breadth-First Search

37

BFS

3

0

1 2

4 5 6

7

1

2 3

4 5 6 7

8

virtual void Graph::BFS(int v)
{
visited = new bool [n];
fill (visited, visited + n, false);
visited[v] = true;
Queue<int> q;
q.Push (v);
while (!q.IsEmpty ()) {
v = q.Front ();
q.Pop ();
for (all vertices w adjacent to v)

if (!visited [w]) {
q.Push (w);
visited[w] = true;

}
}
delete [] visited;

}

Concept of Connect Component

• Determine whether a graph is connected
• Call DFS of BFS and then determine if there is any

unvisited vertex

• Find connected components in a graph
• Make repeated calls to either DFS(v) or BFS(v)

• where v is a vertex that has not yet been visited

38

Connect Components

39

virtual void Graph::Components()
{

visited = new bool [n];
fill (visited, visited + n, false);
for (i = 0 ; i < n ; i++){

if (!visited[i]) {
DFS(i); // find the component containing i
OutputNewComponent ();

}
}
delete [] visited;

}

Concept of Spanning Tree

• Any tree consisting solely of edges in G and
including all vertices in G is called a spanning tree
• Tree is a connected graph without loops
• Graph has multiple spanning trees
• Traversing a graph can produce a spanning tree

• Depth-first spanning trees or breadth-first spanning trees

40
G Some spanning trees of G

3

0

1 2

4 5 6

7

3

0

1 2

4 5 6

7

3

0

1 2

4 5 6

7

3

0

1 2

4 5 6

7

DFS(0) BFS(0) BFS(7)

Spanning Tree  Independent Cycles

• Introducing a nontree edge (v, w) into a spanning tree
produces a cycle

• These cycles are independent
• Each introduced nontree edge is not contained in any other

cycle
• We cannot obtain any of these cycles by taking a linear

combination of the remaining cycles
• (# of independent cycles) = (# edges) - (# vertices - 1)

41

3

0

1 2

4 5 6

7

DFS(0)

3

0

1 2

4 5 6

7

DFS(0) + (6, 7)

3

0

1 2

4 5 6

7

DFS(0) + (0, 2)

3

0

1 2

4 5 6

7

DFS(0) + (1, 4)

USER
文字注釋
edges needed to form a tree

Spanning Tree  Independent Cycles

• Producing independent Kirchhoff's voltage
equations of an electrical circuit network

42

A B

D

G

E

F

C

G

A B

D

G

E

F

C

G

BFS(A)GraphCircuit
Equations:
• VBC+VCE+VEB = 0
• VAB+VBD+VDG+VGF+VFA= 0
• …

Biconnected Components

• A vertex v of undirected, connected graph G is an
articulation (關節) point iff
• Deleting v and all edges incident to v makes G

disconnected

• A biconnected graph is a connected graph with no
articulation points
• No single point of failure

• A desired property for, say, a communication network

• A biconnected component is a maximal
binconected subgraph

43

USER
螢光標示

Biconnected Components

44

3

0

1 2

4 5 6

7

Biconnected

0

1

2 3

4

5

6

7

8 9

Non-biconnected

Vertices 1, 3, 5, 7 are
articulation points

0

1
5

6

7

Biconnected components

1

2 3

4 6

7 This is not a
biconnected
component because
it is not maximal

7

8

7

9
3 5

Biconnected Components

• A binnected graph has just one biconnected
component: the whole graph

• Two biconnected components of the same graph can
have at most one common vertex
• Therefore, no edges can be in two or more biconnected

components

• Biconnected components of G partition the edges of G

45

Biconnected components

7
8 9

1
0

1
5

6

2 3

4
7 7

3 5

0

1

2 3

4

5

6

7

8 9

USER
文字注釋
otherwise the to components should belong to the same (bigger) component

Differently put, in the bigger common component, deleting either shared vertex is still connected.

USER
螢光標示

Find Biconnected Components

• Depth-first spanning tree can be used to find
articulation points, which indicate biconnected
components

46

0

1

2 3

4

5

6

7

8 9 0

1

2 3

4

5

6

7

8 9

DFS(3) spanning tree
(shaded vertices are articulation points)
(We can pick any vertex as the root and

find the same articulation points)

3

4

2

1

0

5

6

7

8 9

=

Graph

Depth-First Spanning Trees of Graphs

• Nontree edges
• Back edge

• A nontree edge (u, v) in which either u is
an ancestor of v or v an ancestor of u

• Cross edge
• A nontree edge that is not a back edge

• From the definition of DFS, a graph
has no cross edges with respect to its
depth-first spanning trees

• Depth-first number, dfn,
• The sequence in which the vertices

are visited during the DFS

47

2

3

4 5

6

7

8

9 10

cross

back

back

cross

1

Identifying Articulation Points

• Analyzing any depth-first spanning
tree of the graph
• Leaf

• Never being an articulation point

• Root
• Being an articulation point iff it has ≥ 2

children
• since there are no cross edges among the

root's subtrees

• Other (non-root ,non-leaf) vertex, u
• Being an articulation point iff u's

ancestors lacks a non-tree edge to any of
u's subtrees

• Without the non-tree edge, u separates
the ancestors from the subtrees

48

3

4

2

1

0

5

6

7

8 9

Algorithm

• Technique
• Find the lowest reachable

ancestor through descendants
and one back edge

• Define f(w) for a vertex w as the
minimum of the following values
• dfn(w)

• dfn(x | (w,x) is a nontree edge)

• f(w's children)

49

3

4

2

1

0

5

6

7

8 9

1

1

1

9

6

6

f() dfn()

5

1

10

6

Algorithm

• u has any child w such that
f(w) ≥ dfn(u)
•  u's ancestors lacks a non-tree

edge to any of u's subtrees

•  u is an articulation point

• Conventional name of f() is low()

50

3

4

2

1

0

5

6

7

8 9
5

1

1

1

1

10 9

6

6

6

f() dfn()

Computing dfn, low, and Outputing
Biconnected Components

51

virtual void Graph::Biconnected()
{

num = 1; // num is an int data member of Graph
dfn = new int[n]; // dfn is declared as int* in Graph
low = new int[n]; // low is declared as int* in Graph
fill(dfn, dfn + n, 0);
fill(low, low + n, 0);
rBiconnected(0, -1);
delete [] dfn;
delete [] low;

}

Computing dfn, low, and Outputing
Biconnected Components

52

void Graph::rBiconnected (const int u, const int v)
{

dfn[u] = low[u] = num++;
for (each vertex w adjacent from u){ // (u, w)

if ((v != w) && (dfn[w] < dfn[u]))
add (u, w) into stack s;

if (dfn[w] == 0) { // w is an unvisited vertex, a child
rBiconnected(w, u);
low[u] = min(low[u], low[w]);
if (low[w] >= dfn[u]) { // u is an articulation point

cout << “New Biconnected Component:” << endl;
do {

delete an edge from the stack s;
let this edge be (x, y);
cout << x << “,” << y << endl;

} while ((x, y) and (u, w) are not the same edge)
}

}
else if (w != v)

low[u] = min(low[u], dfn[w]); // back edge
}

}

v

u

w w

USER
註解
dfn : w is a ancestor of u

USER
註解
dfs here

USER
螢光標示

Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees (MSTs)

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks

53

Minimum-Cost Spanning Trees (MSTs)

• An graph can have many spanning
trees

• For a weighted, connected, and
undirected graph
• We define the cost of a spanning tree

is the sum of the weights of the edges
in the spanning tree

• We may want to minimize the cost
• Possible applications: road

construction, circuit layout, internet
routing

54

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

Minimum-Cost Spanning Trees

• Three greedy methods
• Kruskal's
• Prim's
• Sollin's

• In a greedy method, we construct an
optimal solution in stages
• At each stage, we make the best

decision possible at the time
• (e.g., the least-cost edge is chosen for

building a minimum-cost spanning tree

• We do not change this decision later

• Greedy strategy can lead to MST
construction

55

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

Kruskal's Algorithm

• Create an empty graph, T

• Sort edges according to weights

• Add edges to T one at a time
• The least-cost edge that does not form a cycle with T's

edges

• Exactly n-1 edges are added, where n is the number
of vertices

56

Kruskal's Example

57

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

Kruskal's Algorithm

61

T = Φ;
while ((T contains less than n–1 edges) &&

(E is not empty)) {
choose an edge (v, w) from E of lowest cost;
delete (v, w) from E;
if (v and w belong to diff. sets){ // no loop
add (v, w) to T;
merge v's and w's sets;

}else{
discard (v, w);

}
}
if (T contains fewer than n–1 edges)

cout << "no spanning tree" << endl;

Prim's Algorithm

• Begin with an empty tree, T

• Sort edges according to weights

• Add to T any vertex of the graph

• Add vertices to T one at a time
• The vertex is adjacent to a vertex in T

• The vertex corresponds to the least-cost edge

62

Prim's Example

63

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

Prim's Algorithm

64

if (G has at least one vertex)
cout << "no spanning tree" << endl;

TV = {0}; // start with vertex 0 and no edges
for (T = Φ；T contains less than n–1 edges；add (u, v) to T)
{

Let (u, v) be a least-cost edge with u in TV && v not in TV;
if (there is no such edge)

break;
add v to TV;

}

if (T contains fewer than n-1 edges)
cout << "no spanning tree" << endl;

USER
註解
?

Sollin's Algorithm

• Create n subgraphs, each subgraph having a single
vertex

• Sort edges according to weights

• Add edges to each subgraph one at a time
• The least-cost edge that does not form a cycle with each

subgraph 's edges

• Duplicate edges are discarded

• A total of exactly n-1 edges are added, where n is
the number of vertices

65

Sollin's Example

66

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks

67

Shortest Path Problem

• Let's consider a GPS device using
graph data structures to represent
the highway structures of a state
• Vertices representing cities

• Edges representing sections of
highway

• Edge weights representing lengths of
the highway sections

• Important questions
• Is there a path from A to B

• What is the shortest path from A to B

68

Various Flavors of Path Problems

• Edge costs
• Non-negative costs (e.g., traveling distance, spent time)

• General costs (e.g., spent/obtained fuels)

• Number of sources and destinations
• Single source single destination

• Single source all destinations

• All sources single destination

• All pairs

• Textbook covers
• Single source all destinations Non-negative costs

• All pairs General costs

69

×

Comparisons

• Prim's (for MST)

• Dijkstra's (for shortest paths)

• Bellman-Ford (for shortest paths)

• All pairs (for shortest paths)

70

Strategy: greedy

Strategy: table

Prim's Example

71

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

Dijastra's Example

72

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

Single Source, All Destinations, and
Nonnegative Costs
• Input

• A directed graph G = (V, E)
• Length(i, j) for the edges of G
• A source vertex v

• Output
• Determine a shortest path from v to each of the remaining

vertices of G in non-decreasing length order

73

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

Path Length

0, 3 10

0, 3, 4 25

0, 3, 4, 1 45

0, 2 45

Graph All-destinations
shortest path from 0

N
o

n
-d

e
cr

ea
si

n
g

S

Dijkstra's Algorithm Example

74

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

50

10 ∞ ∞

45

S
0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

50

10 ∞ ∞

45

Path Length
0, 3 10

Vertex 3 has the least-cost dist , i.e., 10.
So, output the 0-3 path.

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

50

10 ∞

45

S

Include 3 in to S and update
vertices adjacent from 3.

25

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

50

10 25 ∞

45

S
Path Length
0, 3 10
0, 3, 4 25

Vertex 4 has least-cost dist , i.e., 25.
Output the 0-4 path.

Dijkstra's Algorithm Example

75

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

45

10 25 ∞

45

S

Include 4 in to S and update
vertices adjacent from 4.

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

45

10 25 ∞

45

S

Both vertices 1 and 2 have the least-
cost dist. Output one of them, e.g., 1.

Path Length
0, 3 10
0, 3, 4 25
0, 3, 4, 1 45

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

45

10 25 ∞

45

S

Include 1 in to S and update
vertices adjacent from 1.

0

10

1 2

3 4 5

20

50

15

45

10

35
30

315

20

45

10 25 ∞

45

S

Include 1 in to S and update
vertices adjacent from 1.

Path Length
0, 3 10
0, 3, 4 25
0, 3, 4, 1 45
0, 2 45

S

Dijkstra’s Algorithm

76

v

• S: A set of vertices to which the shortest paths have
already been found
• S = {v} in the beginning

• dist[u]: Shortest distance from v, through vertices in S, to a
vertex u not in S
• <v, u> exists  dist[u] = edge weight
• <v, u> doesn't exist  dist[u] = ∞
• dist[v] is considered as 0

∞

∞

∞

∞

∞

∞

𝑥

𝑦

𝑧

dist
Edsger W. Dijkstra
• Dutch computer scientist
• Turing award recipient
"Dijkstra" pronounces similar
to /dye-k-stla/

• When S contains n≥1
vertices

• A next shortest path must
contain only vertices in S
plus the destination
• There may be multiple

equal-length shortest path.
At least one of them is so

S

Dijkstra’s Algorithm

77

v • Let u be the
destination of a next
shortest path

• Assume said path
contains an
intermediate vertex
w not in S
• The length of the v-

w path is no greater
than the v-u path

• u should not be the
destination of a next
shortest path (→←)

v u

w

Dijkstra’s Algorithm

78

v

• Greedy: among vertices not in S, find a vertex u with the
lowest dist[]
• u becomes a new member of S

• Keep dist[] updated
• u may lower dist[] of vertices that are not in S and adjacent from u

• The algorithm stops when S contains all n vertices

uSa

b
c

d
e

f
g

dist
dist[u]: Shortest distance from
v, through vertices in S, to a
vertex u not in S

Dijkstra's Algorithm

79

void MatrixWDigraph::ShortestPath(const int n, const int v)
{

for (int i = 0; i < n ; i++) { // initialization
s[i] = false; // the set, S
dist[i] = length[v][i]; // dist[]

}
s[v] = true;
dist[v] = 0;
for (i = 0; i < n−1 ; i++) { // n-1 shortest paths from v

choose u that is not in S and has smallest dist[u];
s[u] = true; // u becomes a member of S
for (each <u, w> in the graph) // update dist[w]

if (!s[w] && (dist[u] + length[u][w]) < dist[w])
dist[w] = dist[u] + length[u][w];

}
}

"choosing the smallest dist[u]" is typically in O(n).
So, the overall complexity is O(n2)

USER
註解
update dist. from newly-acquired u

S

S

Single Source, All Destinations, and
General Costs
• All edge costs (positive,

negative, zero) are permitted
• A more general (also more

difficult) problem
• Dijkstra's greedy strategy does

not work here

• Offsetting all edge costs does
not help
• Paths consist of different

number of edges
• Different offset amounts

change the length order of
paths

80

v u

w
-1520

10

v u

w
540

30

offset by 20

shortest

shortest

Single Source, All Destinations, and
General Costs
• Cycles with negative length are not

permitted
• Otherwise, a cycle produces a path

with −∞ cost
• e.g., … a-b-c - a-b-c- …

• A shortest path must exist and has
at most n-1 edges (i.e., n vertices)
• Paths with more than n vertices must

contain a cycle
• Cycles do not lead to shorter paths

• With at most n vertices, there are a
finite number of possible paths
• The shortest one must exist

81

-205

5a

b

c

Bellman-Ford Algorithm Concept

82

目標1 目標2 目標3 目標n-1

shortest path with #edge =1

…

shortest path with #edge ≦2

shortest path with #edge ≦3

shortest path with #edge ≦n-1

這行可從edge cost直接得知

這行是我們要的結果

#edge >n-1 的 path cost 並不會更低

dist𝒍[u]

Bellman-Ford Algorithm

83

v

• dist𝒍[u]: Length of a shortest path from v to u with the
number of edges ≦ 𝒍
• dist1[u]

• = edge weight if <v, i> exists
• = ∞ if <v, i> doesn't exist

• distn-1[u] for all u is our needed results

∞

∞𝑦

𝑧

𝑥
dist1[u]

Bellman-Ford Algorithm

84

• Calculate distk[u] from distk-1[u], k = 2~(n-1)
• v-u shortest path with at most k edges, k>1,

distk[u] is the minimum of

• distk-1[u]

• (distk-1[i] + length(<i, u>)) for all <i, u>

v
𝑦

𝑧

dist2[u]
𝑥

dist2[x] = min of
• dist1[x]
• dist1[y] + cost(y, x)
• dist1[z] + cost(z, x)
• dist1[…] + cost(…, x)

Bellman-Ford Example

k

distk[]

0 1 2 3 4 5 6

1 0 6 5 5 ∞ ∞ ∞

2 0 3 3 5 5 4 ∞

3 0 1 3 5 2 4 7

4 0 1 3 5 0 4 5

5 0 1 3 5 0 4 3

6 0 1 3 5 0 4 3

85

0

1

2

3 5

4

6

6

5

5
-2

-2 1

-1

-1

3

3
v

• Optimization
• Updating dist[] in-place

• Use only one array for dist1[], dist2[] …

-2 -2

-2

Bellman-Ford Algorithm

86

void MatrixWDigraph::BellmanFord(const int v)
{ // n is the number of vertices

// in-place update for dist[] is used
for (int i = 0; i < n ; i++)

dist[i] = length[v][i]; // dist1[] initialization

for (int k = 2; i <= n−1 ; k++) // dist2 ~ dist(n-1)

for (each u, u != v)
for (each <i, u> in the graph)
if (dist[u] > dist[i] + length[i][u])

dist[u] = dist[i] + length[i][u];
}

• "for(each u)" and "for (each <i, u>)" together is O(n2) for
an adjacency matrix and is O(e) for an adjacency list.

• The overall complexity is O(n3) for an adjacency matrix
and is O(ne) for an adjacency list.

USER
文字注釋
e = number of edges

All Pairs and General Costs

• Viable approaches
• Perform n Bellman-Ford algorithms

• O(n4) if an adjacency matrix is used

• O(n2e) if an adjacency list is used

• There is an O(n3) all pair shortest path algorithm
• Suitable for a dense graph with e being several folds of n

87

All-Pair Shortest Path Algorithm
Concept
• For each (i, j) pair

• Shortest path without an intermediate vertex

• Shortest path with some restricted intermediate vertices

• Shortest path with any intermediate vertices

88

i j

i j

i jx x
x

x x
x

x

x

x

x ≦ k

m ≦ n

x

x

x

• Define Ak[i][j]
• length of the shortest path from i to j going through no

intermediate vertex of index greater than k

• A-1[i][j] is just the length of the edge <i, j>

• An-1[i][j] is our needed results

• Calculate Ak[i][j] based on Ak-1[i][j]
• Ak[i][j] is the minimum of the following

• Ak-1[i][j]

• Ak-1[i][k] + Ak-1[k][j]

All-Pair Shortest Path Algorithm

89

A-1

A0

A1

An-1

0
1

2
3

10 2 3

…

All-Pair Shortest Path Algorithm

• Given
• ShortestPathCost(u, k)

• ShortestPathCost(k, v)

• If k is on a shortest path
from u to v
 ShortestPathCost(u, v)
= ShortestPathCost(u, k) + ShortestPathCost(k, v)
• Proof: If there were another path, (u, k, v)', with an even

lower cost
• Either Cost((u, k)') is < ShortestPath(u, k)

or Cost((k, v)') is < ShortestPath(k, v),
a contradiction

90

u v
k

shortest

All-Pair Shortest Path Algorithm

91

void MatrixWDigraph::AllLengths(const int n)
{

for (int i = 0; i<n; i++)
for (int j = 0; j<n; j++)

a[i][j]= length[i][j];

for (int k= 0; k<n; k++)
for (int i= 0; i<n; i++)

for (int j= 0; j<n; j++)
if(a[i][j] > (a[i][k] + a[k][j]))

a[i][j] = a[i][k] + a[k][j];
}

USER
註解
Note : It's a pseudocode

Maybe a A ^ (k-1) matrix is required
to prevent misusing A ^ k 's data

Concept of Transitive Closure

• Transition matrix, T
• State change after a step

• Closure, C
• The steady state after many steps

• (C × T) = C
• (Here we use AND for scalar

multiplication and OR for scalar
addition in the above example)

92

0

1

2

3

0 1 2 3 4

0 1 1 1

1 1 1

2 1 1 1

3 1 1

4 1

T =

4
0 1 2 3 4

0 1 1 1 1 1

1 1 1 1

2 1 1 1 1

3 1 1

4 1

C =

Transitive Closure of a Graph

• Given a graph with unweighted edges
• Transitive closure matrix, A+

• A+[i][j] = 1 if there is a path of positive length from i to j

• A+[i][j] = 0 otherwise

• Reflexive transitive closure matrix, A*

• A*[i][j] = 1 if there is a path of non-negative length from i to j

• A*[i][j] = 0 otherwise

• The only difference between two (given unweighted edges)
• A+[i][i] = 0

• A*[i][i] = 1, as the name "reflexive" suggests

• Meanings of '+' and '*'
• '+' means "one or more" in regular expression

• '*' means "zero or more" in regular expression
93

Transitive Closure Algorithm

• For a directed graph (with unweighted edges)
• Perform all-pair shortest path algorithms

• O(n3) time complexity

• Perform n independent Dijkstra algorithms
• O(n2e) time complexity

• For an undirected graph (with unweighted edges)
• Perform connect component algorithm using searches

(e.g., DFS or BFS)
• O(n2) time complexity

94

Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks

95

Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks

96

Activity-on-Vertex (AoV) Networks

• Directed graphs
• Vertices represent tasks (i.e., activities)

• Edges represent precedence relations

• Vertex i is a predecessor (successor) of vertex j iff there's
a path from i to j (j to i)

• Vertex i is an immediate predecessor (successor) of
vertex j iff there's an edge from i to j (j to i)

Activity-on-Vertex (AoV) Networks

C1

C2

C4

C3

C5

C7

C6

C8

C9

C10

C12

C13

C15

C11

C14

Programming

Data
Structures

Assembly
Language

Discrete
Mathematics Algorithms

Operating
Systems

Calculus I Calculus II

Topological Order

• A linear order of the vertices of a graph such that
• for any two vertices i and j, if i is a predecessor of j in the

graph, then i precedes j in the linear ordering

• Two valid topological orderings (there are many of
them)
• C1, C2, C4, C5, C3, C6, C8, C7, C10, C13, C12, C14, C15, C11, C9
• C4, C5, C2, C1, C6, C3, C8, C15, C7, C9, C10, C11, C12, C13, C14 99

C1

C2

C4

C3

C5

C7

C6

C8

C9

C10

C12

C13

C15

C11

C14

Programming

Data
Structures

Assembly
Language

Discrete
Mathematics Algorithms

Operating
Systems

Calculus I Calculus II

Note:
• Transitivity among >2

vertices
• Topology order

between two vertices
does not always imply
their precedence in
the graph

Topological Sorting Algorithm (Draft)

• Graph representation considerations for the above
algorithm
• How can we remove all edges leading out of a vertex?

• How can we determine whether a vertex has a
predecessor?

100

for (int i = 0; i<n; i++) {
if (every vertex has a predecessor){
// network has a cycle and thus is infeasible
return;

}
if (vertex v has no predecessors) {
cout << v;
remove v and all edges leading out of v;

}
}

Graph Representation Choice

101

0

1

2

3

4

5

0

1

1

1

3 0

1 2 3 0

4 0

4

4

5 0

5 0

indegree[] Adjacency list

0

1

2

3

4

2 05

Topological Sorting Algorithm

102

void LinkDigraph::TopologicalOrder()
{

Stack s; // A stack holds 0-indegree vertices
// Any container is good for this algorithm

for (int i = 0; i<n; i++)
if (indegree[i] == 0) s.push(i);

for (i = 0; i< n; i++) {
if (s.isEmpty()) throw “Network has a cycle.”;
int j = s.top(); s.pop();
cout << j <<endl;
Chain<int>::ChainIterator ji = adjLists[j].begin();
while (ji) {

indegree[*ji]--;
if (indegree[*ji] == 0) s.push(*ji);
ji++;

}
}

}

Topological Sorting Example

103

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0 0 3

0 3 2 0 3 2 5 0 3 2 5 1

0 1
2
3

1
2

1
5

1 4

• Directed graph
• Edges represent tasks (activities) to be performed

• Vertices represent events

• Edge cost of each activity is the time needed to perform
the activity

• Event vertex signals the completion of all activities edges
entering the vertex

• Edges leaving a vertex cannot be started until the event
at the vertex has

Activity-on-Edge (AoE) Networks

104

8

a10 = 2

a11 = 10

a7 = 9

a8 = 7

4

• Events
• e0: start of the project
• e1: completion of activity a1
• e4: completion of activities a4 and a5
• …
• e8: finish of the project

e1

e2

e3

Activity-on-Edge Network

105

e0

e5

e4

e7

e6

e8start

a1 = 6

a2 = 4

a3 = 5

a4 = 1

a5 = 1

a6 = 2

a7 = 9

a8 = 7

a9 = 4

a10 = 2

a11 = 10

finish

Some Important Concepts

• Critical path
• The longest path from the start vertex to the finish

vertex

• Earliest time
• The earliest time an activity (event) can start (occur)

• Latest time
• The latest time an activity (event) must start (occur) so

as not to delay the project

• Critical activities
• All activities for which the earliest time equals the latest

time
106

• The longest path from the start vertex to the finish
vertex

• The above network has two critical paths
• Length(0, 1, 4, 6, 8) = 18
• Length(0, 1, 4, 7, 8) = 18

Critical Path

107

e1

e2

e3

e0

e5

e4

e7

e6

e8start

a1 = 6

a2 = 4

a3 = 5

a4 = 1

a5 = 1

a6 = 2

a7 = 9

a8 = 7

a9 = 4

a10 = 2

a11 = 4

finish

Earliest Event/Activity Time

• The length of the longest path from the start vertex
to a vertex

• Earliest event time(e4) = 7

• Earliest activity time(a7) = Earliest activity time(a8) = 7

• Earliest event time(finish) = 18

108

e1

e2

e3

e0

e5

e4

e7

e6

e8start

a1 = 6

a2 = 4

a3 = 5

a4 = 1

a5 = 1

a6 = 2

a7 = 9

a8 = 7

a9 = 4

a10 = 2

a11 = 4

finish

Latest Event/Activity Time

• Earliest time of the finish vertex - the length of the
longest path a vertex to the finish

• Earliest event time(finish) = 18

• longest path length(e4, finish) = 11

• latest event time(e4) = 7

109

e1

e2

e3

e0

e5

e4

e7

e6

e8start

a1 = 6

a2 = 4

a3 = 5

a4 = 1

a5 = 1

a6 = 2

a7 = 9

a8 = 7

a9 = 4

a10 = 2

a11 = 4

finish

Critical Activities

• The difference between the earliest time and the
latest time, i.e., the slack (寬裕), is a measure of
the criticality of an activity
• The time by which an activity may be delayed or slowed

without delaying the finish of the project

• Activities having no slack are called critical activities

110

Critical Path Analysis

• Purpose
• Speed up things, e.g., a project or a circuit

• Steps
• Compute earliest time and latest time
• Identify critical activities
• Find paths in the graph with noncritical activities

removed

• Notes
• Speeding up noncritical activities or single critical

activity not on all critical paths will not reduce the
overall duration

• Critical paths can change after speeding up an activity
111

Critical Path Analysis

112

e1

e2

e3

e0

e5

e4

e7

e6

e8start

a1 = 6

a2 = 4

a3 = 5

a4 = 1

a5 = 1

a6 = 2

a7 = 9

a8 = 7

a9 = 4

a10 = 2

a11 = 4

finish

e1

e2

e3

e0

e5

e4

e7

e6

e8start

a1 = 3

a2 = 4

a3 = 5

a4 = 1

a5 = 1

a6 = 2

a7 = 9

a8 = 7

a9 = 4

a10 = 2

a11 = 4

finish

• a7, a8, a9, a10 are
critical. However,
speeding up one of
them cannot
reduce overall
duration

• After a1 is speeded
up from 6 to 3
units, critical paths
change

Calculating Earliest and Latest Times

• Earliest activity time(<a, b>)
• = Earliest event time(a)
• = Longest path(start, a)

• Latest activity time(<a, b>)
• = Latest event time(b) - Edge cost(<a, b>)

• Latest event time(b)
• = Earliest event time(finish) - Longest path(b, finish)

• The above calculation can be performed in two passes
based on topological sorting
• Detailed in the textbook

113

a b
<a, b>

start finish

Critical Path Analysis in Circuit Design

• (Supplement materials)

• CAD (computer-aided design) algorithms
• Identify critical paths in circuits
• Push the limits for the paths to meet timing constraints

• The following circuit example is an adder
• Add three bits and produce two resulting bits
• Red parts are typical critical paths

114

A

B

Ci

x S

y

z Co

x

y

z

start finish

