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System Life Cycle

* Five phases

( N

1. Requirements ReqU

. equirements
2. Analysis \ . )

3. Design Analysis
4. Refinement and coding \ ; y
5. Verification ( Design )
[Refinement} 4 N

- Coding
o * :

Verification




Requirements

* Clarify problem specifications

( )

* Input Requirements
* What are given \ T J
e Output ( R
Analysis
 What must be produced N ; )
o . Design
* Initially vague - more precise . )
[Refinement} r g )\
— Coding
o * :
Verification




Analysis

* Break the problem down
* Into manageable pieces

 Also known as divide and
conquer

* Two approaches

1. Bottom-up (not good)
2. Top-down (better)

[Refinement}

( N

Requirements
N ; )
Analysis
v

Design

N
J

Coding
!

Verification

\ J/




Bottom-up Analysis

* |ssues
* Too early emphasis on implementing fine points
e Lack of prior planning and a big picture

e Risks and difficulties

- Resulting system can have many loosely connected and
error-ridden segments ®

- Unpractical for tackling large-scale, complex problem



Top-down Analysis

* Strategies

 Start from a high-level plan
* Breaking a problem down into manageable pieces

e Subsequently refining the plan
e Gradually taking into account low-level details

* Advantages
—>Necessary for tackling large-scale, complex problem



Risks of Bottom-Up




Difficulties of Bottom-Up

* Please imagine analyzing a smartphone
bottom-up

* Things become complicated

b Source

Substrate P




Benefits of Top-Down

* Now let’s alternatively analyze a smartphone top-
down

Case Processor
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Design

* |dentify
* Data objects . §
* Operations pgrformed on.the qata types Requirements
«Implementation (Not decided in this phase) N ;
* Produce implementation-independent results ( ,
* Abstract data types \ Analysis )
e Algorithm specifications ( v .
e Design
- Scheduling system for NTHU ) ’
e Data objects [Refinement} r )
e Students T \ Coding |
 Name, ID, major, and phone # . ! .
: gssfgss?si)rs Verification

* Operations
* Inserting, removing, and searching



Coding and Refinement

* Decide implementation
* Representations for objects
* Algorithms for operations

( N

Requirements
. * J

Analysis

* Algorithm and object \ : )
representations affect the ( Dot )
efficiency of each other et

* Design the algorithms that are [ . J
. : : Refinement| )
independent of data objects first o Coding
\_ * :
* Good design can absorb changes Verification

found in this stage easily \ )



Verification

* Three techniques

1.
2.
3.

Correctness proofs
Testing
Debugging

Vs

~

Requirements
. J

v

Analysis

v

Design

A\ 4 \ 4

|

|

Correctness Testin .
Proofs g iInement
Debugging J

A 4

N

Coding

v

S

\

Verification

13



Verification (Cont'd)

e Correctness proofs
* Formal method
* Typically required for individual algorithm
* Not easily achievable for the whole program



Verification (Cont'd)

* Testing

* Run a program against possible inputs
* Check correctness
e Check performance (e.g., execution time)
* Coverage — a metric for assessing the completeness of
testing

e Testing inputs should be developed to cover as many
percentages of codes as possible

* E.g., all the cases within a switch statement should at least be
touched

* Debugging
e Removal of errors found

* Well-documented and well-structured program eases
debugging

15
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Programming Paradigms

* Non-structured
e Structured

* Object-oriented

A 4

More disciplines are
imposed on programmers



Non-Structured Programming

e Characteristics
* Sequentially ordered commands
* Lines are numbered or labeled
* Unrestricted jump/branch to any line

* Pros

* Extremely skillful programmers can find tricky methods
to produce high performance or compact code

* Cons
* Encourage spaghetti codes
* Poor maintainability
 Difficult in building large programs (poor scalability)



Spaghetti Code
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expression was
negative, zero, or

positive.

RLTINR [VTRY]
fggiodod

C—w_ll
11 SUM99=SUMIB+TERM(N)
SUM100=SUM99+TERM (N+1)
_IF (SUM98-3.141592) 14 23,73
C+14 IF (SUM99-3.141592) 23,23,15
15 IF (SUM100-3.141592) 16,23,23
(416 AV89=(SUMIB+SUMI9) /2.
AV90=(SUMI9+SUM100) /2.
COMANS=(AV89+AV90) /2.
_—IF (COMANS-3.1415920) g“ig 1o
519 IF (COMANS-3.1415930) ;0 ;1 21
20 WRITE(%,26)  —  J
G007
{521 WRITE(%,27) CoMANS
22 STOP
WRITE (,25)
GO TO 22
25 FORMAT('ERROR IN MAGNITUDE OF SUM')
26 FORMAT('PROBLEM SOLVED')
27 FORMAT('PROBLEM UNSOLVED', F14.6)
FORMAT (I3, F14.6)
END
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https://craftofcoding.wordpress.com/2013/10/07/what-is-spaghetti-code/ 19
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Spaghetti Circuit

< Spaghetti circuit

J’ Clean circuit

AR B R TR ey & s [

T 3

s "
IS AT (R
? 2 "' ﬁx@

? What do you think the possible ;
) function of these circuits is?

http://www.quora.com/What-does-spaghetti-code-actually-look-like
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Structured Programming

e Basic structures

] N
( Statement ‘i TrIse Fa
: G I AE
1| Statement True

' : [Statement(s)] [Statement(s)] [Statement(s)]
| Statement |; | [ '
LT I.______:_: |
Sequence Selection (or choice) Repetition (or looping)
If(condition) {...} else {...} While(condition) {...}

e All programs can be equivalently transformed to that
use only the above three structures without using goto



Structured Programming (Cont’d)

* Pros
e Easy to understand
* Easy to maintain
e Easy to analyze

* Pure structured languages strictly dis-allow
* goto
* break
* continue



Structured Programming (Cont’d)

 Compared with non-structured programming

* Structured programming restricts programmers'
freedom

e Structured programming prevent spaghetti codes

e Structured programming does not change
programmability

* What problem non-structured programming can solve can also
be done using structured programming (and vice versa)



Structured Programming (Cont’d)

e C and C++ are structured
languages but NOT pure
ones

e goto, break, continue
statements are allowed

* goto statement is
notorious but not always
bad

* See the example on the
right

Efor(x= ; X< ; X+ )
for(y=0; y<1000; y++){
for(z=0; z< ; 2++){

if( g(x,y,2) >0\
cout << x<<“”
<ky<<“ <<z
goto END;

______________________________________________________

Code snippet for searching an integer
solution of g(x, vy, z)>0 in a brute force
way. In this example, it is convenient
to use goto to leave the nested loops.



Object-Oriented Programming

* Philosophy of divide-and-conquer is the same as
structured programming

* How a project should be decomposed is changed

* Decomposition methods

1. Algorithmic (functional) decomposition is used for the
structured programming method

2. Object-oriented decomposition is used for the object-
oriented programming method



Algorithmic/Functional
Decomposition

* Used by structured programming
* View software as a process

* Decompose software into modules that represent
steps of the process
* In C, the modules are implemented by functions

* Compute-centric perspective
e Data structures are a secondary concern



Object-Oriented (OO) Decomposition

* Used by object-oriented programming

* View software as a set of well-defined objects

* Objects model entities in the application domain

e e.g., students, courses, and teachers in a course scheduling
system

* Objects interact with one another

* Algorithmic or functional decomposition is
addressed after the system has been decomposed
into objects



OO Decomposition (cont'd)

* Pros

* Encourage the reuse of software

e Software becomes more flexible that can evolve as
requirements change

* More intuitive because objects naturally model entities
in the application domain



Definitions

* Object
* Entity that has a local state and performs computations
* i.e., a combination of data and operations

* Object-oriented programming
* Method of implementation in which ...

* Objects are the fundamental building blocks
* Each object is an instance of some type (or class)
* Classes are related to each other by inheritance relationships



Definitions

* A language is said to be an object-oriented
language if
* |t supports objects
* It requires objects to belong to a class
* |t support inheritance

* A language is said to be merely an object-based
language if it supports the first two features but
does not support inheritance




Evolution of Programming

* Four generations of higher level languages
* FORTRAN, etc.
 Salient feature of evaluating mathematical expression

e C, Pascal, etc.
* Emphasis on effectively expressing algorithm

 Modula, etc.
* Introduce of the concept of abstract data types (ADT)

* Smalltalk, Objective C, C++, etc.
* Emphasis on inheritance between ADTs
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Definition

» Data Encapsulation (or Information Hiding) (7<)

* Conceal the implementation details of a data object
form the outside world

» Data Abstraction (12 1E)

» Separation between the specification of a data object
and its implementation

33



DVD Player Analogy

* Encapsulation —the
buttons and remote
control

* The only interfaces exposed
to users

* Hide and protect internal
(vulnerable, dangerous, and

proprietary) design from
users

e Abstraction — the user
manual

* Only specify what the
function of each button is

* How the player achieve the
function is not mentioned
nor restricted

34



Definition

* Data Type

* objects
+
operations on the objects

e Abstract Data Type (ADT)

4 A\
* Object Specification
* Operation Specification

. Representation

Implementation

35



Data Types in C++

* Predefined (built-in) * Derived types

types * Pointer (*)
e Reference (&)

 Fundamental types
* Aggregate types

e char
. int * Arrays
. float  struct
. double * class
* Modifiers * User-defined types
e short e struct
* long * class
* signed

* unsigned



ADT Example: NaturalNumber

ADT NaturalNumber is
objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on
the computer.

functions:

for all x, y € NaturalNumber; true, false € Boolean

and where +, -, <, ==, = are the usual integer operations

Zero (): NaturalNumber =0

IsZero (x): Boolean .= if (x ==0) IsZero = true
else IsZero = false

Add (x, y): NaturalNumber = if (x+y <= MAXINT) Add =x +vy
else Add = MAXINT

Equal (x, y): Boolean .= if (x ==vy) Equal = true

else Equal = false

Successor (x): NaturalNumber .= if (x == MAXINT) Successor = x
else Successor = x +1

Substract (x, y): NaturalNumber = if (x<vy) Substract =0
else Substract =x—y

end NaturalNumber



ADT Example: NaturalNumber

objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on

the computer.

functions specification:

Zero ()

IsZero (x)

Add (x, y)

Equal (x, )

Successor (x)

Substract (x, y)

NaturalNumber

Boolean

NaturalNumber

Boolean

NaturalNumber

NaturalNumber

0
if (x==0)

return true
else
return false

if (x+y <= MAXINT) return x +y
else return MAXINT

if (x ==y) return true
else return false

if (x == MAXINT) return x
else return (x+1)

if (x<vy) return 0
else return (x-y)



Advantages of Encapsulation and
Abstraction

1. Simplify software development

s W N

Ease testing and debugging
Enable reusability

Support modifications to the representation of a
data type

39



Comparing Two Scenarios

* Consider developing a course scheduling program
for NTHU

* One can either adopt ADTs or directly dive into coding

ADTs are identified VS. A monolithic program

) h

ADT Teachers

Searching a course
Deleting a course

Adding a course

Glue

L Y

ADT Courses  ADT Students




Simplify Software Development

* With encapsulation and abstraction
* If we have four programmers )

* They can parallelly workon T, S, C, and T ‘ S
Glue

* No one need to know how another one
implement their portion of code

* More concentration and less
interference (especially when the
project is large)

* |f we have only one programmer
e FocusonT,S, C, and Glue one at a time
* Less things need to be kept in mind

Glue

J




Testing and Debugging

* With encapsulation and abstraction

* T, S, C, and Glue can be individually
tested and debugged
» Testing efforts are T(T) + T(S) + T(C) +
T(Glue) < T(T+S+C+Glue)
 Assume we are confident that some
portions, e.g., T, S, and C, are good,
but a bug exists...
= The remainder, i.e., Glue, has the bug

* Assume we notice the bug is related
to a specific operation on a data type,
say mistakenly deleting a course...

* - The bug resides in the corresponding
objects and operations




Reusability

 When we (or other people) develop
* Textbook ordering program

* Dorm allocation program

* NTHU-NCTU tournament program

s
X

4 )

\. Glue )

-

s
N

\_ Glue

v

Glue

il

J

-~

/

N

2}
i

Glue

s
2

~
/




Modifications

* ADTs lead to information hiding
* Implementation of a data type is

invisible to users and the rest of '
the program

* Ease changing (e.g., upgrade) a
data type without rewriting the

entire program or affecting any
users

e Allow us to start from a quick
implementation then
progressively refine the program

e Even if we need to modify the
interface of a data type
* We can systematically identify

the required modifications to the
other parts




Overhead of Adopting ADT

e Execution time overhead
* Accessing data through interfacing operations is potentially
slower than directly accessing them
* Memory space overhead
* Every object maintains a table specifying its operations

* Coding is more tedious

* Therefore, C (not C++) is still widely used for
programming the following things
* Operating systems
* Performance sensitive systems
* Resource constrained systems
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Algorithm

* Criteria of an algorithm

* Exampling algorithms
* Selection sort
* Binary search

e Recursion
e Selection sort

* Binary search
* Permutation

47



Algorithm (Definition)

* A finite set of instructions with the following properites
* [nput
* Read zero or more quantities
Output
* Produce one or more quantities
Correctness
* Accomplishes a particular task for all possible inputs
Definiteness
e Each instruction is unambiguous

Effectiveness
* Each instruction is basic enough

Finiteness
e Terminates after a finite number steps for all possible inputs



Algorithms vs. Programs

* (From computational theorists’ perspective)

* Unlike an algorithm, a program needs not always
satisfy “finiteness”

* Kernel of an operating system is an infinite loop
e Continuously wait until more tasks are entered
* Continuously dispatch available tasks

49



Algorithms vs. Programs (Cont’d)

)) Which program(s) can always terminate in a finite |

' number of steps? '

. Testing whether any given number is a prime

. Calculating 10000! (i.e, factorial(10000))

. Displaying all prime numbers |

Deciphering an RSA-encoded message without knowing

the private key

5. Testing whether an arbitrary program terminates in a
finite number of steps

> W NP

______________________________________________________________________________________________



Algorithms vs. Programs (Cont’d)

* Primality test

* Even with the brutal force method, it can terminate in a
finite number step

 Calculating factorial(10000)

* Factorial(10000) is an astronomical figure (AX EF)
though, it involves a finite number of digits. So the
program can terminate in a finite number step

* Displaying all prime numbers

* Since there are infinitely many primes, this program
never terminates



10000 Factorial

10000 factorial is 35,659 digits long. Here it is:

2846259680917054518906413212119868890148051401702799230794179994274411
3400037644437729907867577847758158840621423175288300423399401535187390
5242116138271617481982419982759241828925978789812425312059465996259867
0656016157203603239792632873671705574197596209947972034615369811989709
2611277500484198845410475544642442136573303076703628825803548967461117
0973695786036701910715127305872810411586405612811653853259684258259955
8468814643042558983664931705925171720427659740744613340005419405246230
3436869154059404066227828248371512038322178644627183822923899638992827
2218797024593876938030946273322925705554596900278752822425443480211275
5901916942542902891690721909708369053987374745248337289952180236328274
1217040268086769210451555840567172555372015852132829034279989818449313
6106403814893044996215999993596708929801903369984844046654192362584249
4716317896119204123310826865107135451684554093603300960721034694437798
2349430780626069422302681885227592057029230843126188497606560742586279
4488271559568315334405344254466484168945804257094616736131876052349822
8632645292152942347987060334429073715868849917893258069148316885425195
6006172372636323974420786924642956012306288720122652952964091508301336
6309827338063539729015065818225742954758943997651138655412081257886837
0423920876448476156900126488927159070630640966162803878404448519164379
0807186112370622133415415065991843875961023926713276546986163657706626

http://gimbo.org.uk/texts/ten_thousand factorial.txt



http://gimbo.org.uk/texts/ten_thousand_factorial.txt

Algorithms vs. Programs (Cont’d)

?) * Breaking RSA

* This problem corresponds to factorization (& K &7 ##)
* Factorization is feasible in a finite number of steps

* RSA is based on the belief (not proof) that factoring large

integers (particularly that with exactly two huge prime factors)
is difficult (i.e., takes unreasonably long time)

* E.g., thousands of years with a GHz computer
e Conspiracy theory (PF2:E @)

* Since the proof is unavailable nowadays, some people oppositely
believe that some countries have efficient ways to do factorization!!

* Interested students may want to take a Cryptography
class



Algorithms vs. Programs (Cont’d)

2 - Testing whether an arbitrary program (with an
input) terminates in a finite number of steps

* Very useful tool to check whether our program contain
bugs that lead to infinite looping

* Discussions on this problem is out of the scope of this
course

* Interested students may want to
* Google “halting problem”
* Take a Computational Theory class



Halting Problem Explanations

* Barber paradox (F2EEM|Z )

* A barber shaves all, and only, people who do not shave
themselves

* Who shaves the barber?

* Halting problem paradox

* Program has difficulty in testing whether another
program derived from itself terminates or not



Halting Problem Explanations

e Suppose someone claims
* Terminate(program, input) = true if the program(input) terminates
* Terminate(program, input) = false if the program(input) does not
terminate

* You can develop a counterexample program

void f(program)
{
if(Terminate(program, program) == true)
for(;;); // do not terminate
else
return;

¥

* What is the answer of Terminate(f, f)
* Terminate(f, f)=true > f(f) should terminate, but actually it doesn't

. 'é'erminate(f, f)=false = f(f) should not terminate, but it actually
oes



Describing Algorithms

* Many allowable ways
* Programming languages (e.g., C++)
* Natural languages
* Must assure definiteness and effectiveness
* Pseudocode (e.g., combining C, C++, and English)

* Less language-dependent
* More flexibility

* Graphic representations (i.e., flowcharts)
* Typically for small and simple algorithms only



Algorithm Specification

* Examples
* Selection sort
* Binary search
* Permutation generator

* Focuses
* Inputs and outputs
e Clear and basic-enough instructions
* Finiteness and correctness proofs



Selection Sort (Algorithm)

* Input
* A collection of n integers, n=1

* Output
e A collection of n integers

* Instructions (in pseudocode)

void SelectionSort(int *a, const int n)
{ //Sort the n integers a[@] to a[n-1] into non-decreasing order.
for(int i=0; i<n; i++) {
exam a[i] to a[n-1] and suppose the smallest one is at a[j];
interchange a[i] and a[j];

59



Selection Sort — C++

void SelectionSort(int *a, const int n)
{ // Sort the n integers a[@] to a[n-1] into
// non-decreasing order.
for(int i=0; i<n; i++)

{
int j=i;
//find the smallest integer in a[i] to a[n-1]
for(int k = i+1; k<n; k++)
if(a[k] < a[j]) 7 = k;
swap(al[i], a[3]); |
} void swap(int & i, int & j)

} { '
int temp = i; Passed by
i=7; reference
J = temp;




Illustration




Selection Sort — Proof

* At the end of loop q (i=q)

alg]<alr],g+1 <r<n-1. 'void SelectionSort(int a[], const int
* When i becomes greater than q, :{ // Sort the n integers into
al0] ... a[q] is unchanged. /] non-decreasing order.
* Hence, after the lines are executed |  for(int i=0; in; i+)
for n-1times (i.e,0<i<n-2),the | {
following n-1 inequalities hold g Int j=1; | |
« a[0]<a[r], 1<r<n-1 | //find the smallest integer in
. : for(int k = i+1; k<n; k++)
 a[n-3]<alr], n-2<r<n-1 i if(alk] < a[3]) J = k;
 a[n-2]<alr], n-1<r<n-1 \ swap(a[i], a[3]);

* a[0] ... a[n-1] is unchanged for the i}
last iteration (i.e., i = n-1) =

 Combining these inequalities leads
to a[0]<a[l]< ... £a[n-2]<a[n-1]



Binary Search

* Input

* n=1 distinct integers that are already sorted and stored
in the array a[0] ... a[n-1]

* Integer x

* Output
* If xis present in the array, produce j such that x == a[j]
* Otherwise, produce -1



Binary Search — Pseudocode

void BinarySearch(int *a, const int x, const int n)
{ // Search the sorted array a[@], .. , a[n-1] for x
// Lleft and right are set to the two ends of al[]

while(there’re elements between the two ends)

{
Let middle be the middle element;
if(x < a[middle]) set right to middle-1;
else if(x > a[middle]) set Lleft to middle+1;
else return middle;

}

Not found;

}

64



Binary Search — C++

int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[@]..a[n-1] for x
int left = @, right = n-1;
while(left <= right)
{//there are more elements
int middle =(left+right)/2;

if(x < a[middle]) right=middle-1;
else if(x > a[middle]) left = middle+1;
else return middle;

}//end of while
return -1;

65




Binary Search — lllustration

Search a number,

25, in a sorted array of boxes

37
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T

o[

Left ®Right
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Recursion

e Definition
* Functions that invoke (F0U ~ £ /) themselves
* Directly or Indirectly through other functions

e Recursion is powerful
e Divide and conquer
e Method of induction (B8 41;%)

e Can simplify the expression of an otherwise complex
process



Recursion (Cont’d)

e Recursion is particular useful for
e Factorial (P& 3F)
* Binomial coefficients
* Binary search
* Problems that are recursively defined

e Recursion is not limited to the above tasks

* Recursion can simulate looping
(Looping can simulate recursion, too)

e Recursion tends to be (B%&E{E[o) - {EAZ4EEY) slower than
looping
* Because function invocation typically incurs longer latency
than loop branches



Develop Recursion

* Key components

* Driver
* Invoke the first workhorse

* Workhorse(s)

* Self-similar piece of the
algorithm

e Termination condition(s)

* Determine whether no more
progress needs be made

* If a workhorse fails to check
termination conditions, the
program can never end

* Make some progress

* |f nothing changes before the
workhorse is again invoked,
the program can never end

Driver()

{

workhorse();

}

many

lonce

workhorse()
{
if(termination conditions) {
return void or something;

} else {
Make some progress; j
invoke child workhorse(s); =
(Make more progress;)

}




Recursive Selection Sort

e Thisis an exampling

void SelectionSort(int a[], const int n) recursive algorithm

{ . derived from an non-
{/ l-entry array does not need sorting e are. [ T
if(n==1) return; . " example, recursion is

Termination condition :
. . easier to understand
int j=0;

but likely performs
slower than the non-
recursive one.

/* find the smallest in the received
array and place it at the first */
for(int k = 9; k<n; k++)

if(alk] < a[j]) 3 = k;

swap(a[@], a[j]);
Create a new workhorse

to sort the remaining n-1
} elements

SelectionSort(a+l, n-1); //recursion

70



Recursive Binary Search

int BinarySearch(int a[], const int x, const int left, const int right)

{
// no entries to search T inati diti
if(left>right) return -1; ermination condition

int middle = (left+right)/2;

if(x<a[middle]) return BinarySearch(a, x, left, middle-1);
else if(x>a[middle]) return BinarySearch(a, x, middle+1l, right);

else return middle;
} N

Create a new workhorse to
search the half that possibly

contain the target
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Permutation Generator

* Input
 Aset of n>1 elements

* Output
* Print all n! possible permutations of this set

* Example

* Permutations of (a, b, c)
* (a, b, ), (a,cb),
(b, a, c), (b, ¢, a),
(c,a, b), (c, b, a)



Permutation Generator
— Observation

* Permutations of (a, b, ¢, d) can be constructed by
» ‘a’ followed by all permutations of (b, c, d)
* ‘b’ followed by all permutations of (a, c, d)
« ‘¢’ followed by all permutations of (a, b, d)

e ‘d’ followed by all permutations of (a, b, c)

* Clue to adopt recursion

* Solve an n-element problem based on the results of an (n-1)-
element problem



Recursive Permutation Generator

void Permutations(int a[], const int k, const int m)

{ if(k == m) { zTermination condition

for(int i=0; i<=m; i++) cout << a[i] << " ";
cout << endl;
return;

} Note that this loop can invoke
Permutatinos() multiple times

for(int i=k; i<=m; i++) {
swap(a[k], a[i]); //enumerate all possible elements at a[k]
Permutations(a, k+1, m); // a workhorse to handle the rest
swap(a[k], a[i]); //restore the element

}
}

It is a bit hard (but still feasible) to transform
this algorithm into an non-recursion version |
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Outline

e 1.1 Overview: System Life Cycle

* 1.2 Object-Oriented Design

* 1.3 Data Abstraction and Encapsulation

* (1.4 Basics of C++)

e 1.5 Algorithm Specification

* (1.6 Standard Template Library)

e 1.7 Performance Analysis and Measurement
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Complexity

* Time complexity
 Amount of execution time a program needs to solve a
problem
* Space complexity

 Amount of memory space a program needs to solve a
problem

* We want to find complexity as a function of
problem size

* Problem size = the total amount of input information



Space Complexity

* Memory space breakdown
* Problem size-dependent part
 Variables whose size/number depends on problem size
* Fixed part
e Space for storing the program
* Fixed amount of variables during computation

* Read-only space for Inputs
* Write-only space for outputs

 We shall concentrate on the Problem size-
dependent part



Space Complexity (Cont’d)

float abc (float a, float b, float c)
{

}

return a+b+b*c+(a+b-c)/(a+b);

 a,b,and careread-only
inputs

* A fixed amount of space
is required to do the

L computation

T — Problem size-dependent

partis O

float sum (float *a, const int n)
{
float s = 0;
for (int i = 0; i < n; i++)
s += a[i];
return s;

}

™, amount of space

e a[0]...a[n-1] are read-
only inputs

* Float * a, const int n,
float s, inti, etc.

consume a fixed

-

™. = Problem size-dependent
 partis 0

L g



Space Complexity ~ |* allelntlerereadonly

inputs
/¢ float *aandintn (and
' other variables local to

float Rsum (float *a, const int n)

{ , Rsum()) consume a fixed
if (n <=0)
amount of space for each
return O; )
else execution of Rsum though,

Rsum is called n+1 times.

return (Rsum(a, n-1) + a[n-1]); * Variable part is c¢(n+1)

} where c is a constant, say
c=4
a[ol]nf:[ts_l] Rsum(a, 90){ / Rsum(a, 89){ / Rsum(a, O){
| Rsum(a,89); Rsum(a,88); |
output «— } } \ }
R R R
al(n||.]]. al(n||..[[.. al(n||..]].
\ ~ /

Variables whose number depends on the problem size



Time Complexity

* Time consumption breakdown
* Execution time
* Compile time

* Execution time is important
* Problem size, n,T = execution time, tp(n), ™

* Compile time is less important
* Independent of problem size, n
* Only present for the first execution



Methods to Derive Execution Time

e Derive the exact formula
e tp(n) = c,ADD(n) + c.SUB(n) + ¢, MUL(n) + ---

* Almost impossible to obtain such a formula
* Step counts

* Asymptotic notation (E#T3<7~)%) of step counts

* Real system measurement



Step Count

* Definition of a step

* A segment of program whose execution time is independent
of problem size

* Example of a step

* One addition - a step
* One multiplication - a step
« 1000 additions - a step
* 1000 multiplications - a step

r=a+b+b*c+(a+b-c)/(a+b)+4.0 > astep

* The following one is NOT a step
* n additions, where n is the size of the input array



Zero-Step Program Segments

* Comments
* // this is binary search
o /*thisis
* selection sort
*/
* Declarative statements of variables and functions
* int a;
 float b, c, d;
* int max(a, b);

 Brackets
* {
* }



Single-Step Program Segments

e Assignments and expressions
* inta=10;
e b=0.1;
e c=a+b*d;
Control statements of loops
e for(int i=0; i<n; i++)
* while(j<n)
e do ... while(1)

Function independent of problem size
* a=max(b, c)

Conditional statements
 if(a>10)

Unconditional branches
* goto, break, continue, return



Those May Depend on Problem Size

* Object/variable construction
* int *a = new int[size(input)];
* Function execution
e MatrixAdd(a, b, c); // adding two matrixes

* Parameter passing

e Passing an object whose size depends on problem size
e Statements that involve the above events

* int a =sum(a, n);

e if(search(a, x, n) == true)



Methods of Obtaining Step Count

* Instrumentation
* Introduce a new global variable count
* Initialize count to zero
* Add statements to increment count for each step
* Report count

e Table analysis
* List the step count of each program segment
* List the frequency of each program segment
 Summarize the total step count



Step Counting — Example 1

float sum (float *a, const int n)
{
float s = 0O;
for (int 1 = 0; i < n; i++)
s += a[i];
return s;

}




Step Counting Using Instrumentation

float sum (float *a, const int n)

{

float s = 9O;
count++; // count 1s global
for (int 1 =0; 1 < n; i++) {
count++; // for loop
s += a[i];
count++; // assignment
}
count++; // last time of for
count++; // return
return s;

—\Simpliﬁed version

void sum (float *a, const int n)

{

for (int i =
count+=2;

}

count+=3;

return;

O; 1 < n; i++) {

38




Step Counting Using a Table

float sum (float *a, const int n)
{
float s = 0;
for (int 1 = 0; 1 < n; i++)
s += a[i];

return s;

s/fe freq. subtotal

0)
1 1 1
1 n+l n+l
1 n n
1 1 1
0)
total: 2n+3

s/e: steps per execution

T
21
-
-7 1
g
_d
=
g
-

.............

The frequency of executing
the control statement is one
time more than that of the
loop body.




Step Counting — Example 2

float Rsum
{
if (n <=
return
else
return

(float *a, const int n)

0)
0;

(Rsum(a, n-1) + a[n-1]);

e Recursion



Step Counting — Instrumentation

float Rsum (float *a, const int n)
{
count++; // if conditional
if (n <= 0) {
count++; // return statement
return 0;
} else {
count++; // return statement
return (Rsum(a, n-1) + a[n-1]);
}
}

| count is a global variable and will be

~—-4 incremented throughout the entire recurrent
™ computation.
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Step Counting — Table

freq. subtotal
float Rsum (float *a, const int n) s/e n=0 n>0 n=0 n>0
{ 0
if (n <= 0) 1 1 1 1 1
return O; 1 1 0 1 0
else 0
return (Rsum(a, n-1) + a[n-1]); 1+t(n-1) O 1 0 1+t(n-1)
} 0

s/e: steps per execution A N
Recurrence relations:

_12+th—-1),n>0
A= { 2,0therwise




Solving Recurrence

* Technique
e Repeatedly substituting

ctin) =2+tn—-1)
=24+2+tn—2)
=24+2+-+2+t(0)
= 2n+ t(0)
=2n + 2



Step Counting — Example 3

void MatAdd (int **a, int **b, int **c, int m, int n)

{

for (int 1 = 0; 1 < m; i++) { o
for (int j = @; j < n; j++) { ™ Program containing nested
c[i][3]1 = a[il[3] + b[il[3]; |loops
} |
}
return;




Step Counting — Instrumentation

void MatAdd (int **a, int **b, int **c, int m, int n)
{
for (int 1 =0; 1 < m; i++) {
count++; // for loop i
for (int j = 0; j < n; j++) {
count++; // for loop j
c[i][j] = a[i][j] + b[i][]];
count++; // assignment

}

count++; // last time of for loop j

}

count++; // last time of for 1
count++; // return statement

return;

~
LN
~~
~
) ~~o
~-
~~
~
~

............

The textbook omits the return
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Step Counting — Table

void MatAdd (int **a, int **b, int **c, int m, int n)

s/e freq. subtotal
{ 0
for (inti=0;i<m; i++) 1 m+1 m+1
for (int j=0;j<n;j++) 1 m(n+1) mn+m
clillj] = alillj] + b[i]lj]; 1 mn mn
return; 1 1 1
} . 0

total: 2mn+2m+2

— The textbook omits the return

~,
.,
~
~
~
~
S
( P ———

We are allowed to use more
than one variables to describe
problem size




Step Counting — Example 4

void fibonacci (int n) //compute the Fibonacci number F[n]

{
if (n <= 1) //steps=1

cout << n << endl; // F[@] = 0@ and F[1] =1 //steps=1

else { // compute F[n]
int fn; int fnm2 = @; int fnml = 1; // steps =2
for (int i = 2; i<=n; i++) { //Stepszn
fn = fnml + fnm2;

fnm2 = fnml; // steps = 3(n-1)
fnml = fn;
} // end of for // steps =1

cout << fn << endl; //steps=1
} // end of else

return; // steps =1 Ifn>1
} // end of fibonacci ’

=4n+2
Otherwise, t(n) = 1+1+1 =3

tin) =1+2+n+3(n-1)+1+1+1




Inexactness of Step Count

* We cannot know which following program exhibits
the shortest execution time for the same problem

size
. tl(n) - n+1 Smc_e the notlc?n of a_step is
\ (deliberately) imprecise
* t,(n) =n+1000 One multiplications = 1 step
N t3(n) = 1000n 100 multiplications = 1 step

* t,(n) = 1000n+1000

~
DO
N, SS
~.
~d)

* But we know the execution time of these programs
linearly increases with problem size



Motivation of Asymptotic Notation

* We also know the fifth program exhibits the shortest
execution time once the problem size, n, is large
enough

* t,(n) =n+l N

* t,(n) = n+1000 | |

. t3(n) =1000n > Llnearly INncrease

* t,(n) =1000n+1000 )

* t5(n) = log(n)+1 } Logarithmically increase

* Asymptotic Notations are introduce to emphasize
* Trend that step count increases with problem size
* Classification of problems/algorithms based on the trend



Asymptotic Notations (O, Q, O)

O BigO Upper bound

©® Theta Tight bound (i.e., both an upper bound and
lower bound )

QQ Omega Lower bound

* “f(n) = O(n)” reads as + “Big” O > Upper
* “fof nis big O of n” . “@” > A hyphen
* We can alternatively say in the middle
“f(n) € O(n)” - tight bound

e “f of n belongs to big O of n”



Big O (Cont’d)

° f(n) = O(g(n)) Iff _.r_—_—_-::::::_‘_’_': “iff” means “if and only if” (“&”)

* there exist positive constants c and n,
such that f(n ) < c-g(n) for all n, n=n,

-~
~~o
~~
~~
S~
~~o
~~o
~~o,

...................

“<” suggests that c-g(n) is an upper bound of f(n)

“V” means “for all”

* Example | |
* n+l =0(n), n+l1<2-n Vn=1
* n+1000 =0(n), n+1000 < 1001:n V n=1
* 1000n =0(n), 1000n < 1000-n Vn=l1
+ 1000n+1000 = O(n), 1000n+1000 < 2000-n  V n>1

* log(n)+1 = O(log(n)), log(n)+1 < 2-log(n) vV n=10



Big O (Cont’d)

* More examples
* 2n%+3n+4 = 0(n?), 2n%+3n+4 < 9:-n? Vn=>1
2n%+3n+4 = 0(n?), 2n%+3n+4 < 90 n? VY n= 40

We may have an infinite number of ¢
and nO satisfying the inequality.

* 2n’+3n+4 =0(n*?), o ' Since by definition, Big O does not
* 2n?+3n+4 =0(n3), » ™y . need to be a tight bound, we may
e 2n2+3n+4 = 0(n%), : ' have infinite number of g(n)

| satisfying the inequality.

2n%+3n+4 #+ 0(n*?),




Big O of a Polynomial Function

* Theorem 1.2

* f(n) =a,n™ + ... + an + a,
= f(n) = 0(n™)



Big O Hierarchy exp.

cubic
e O(n!) factorial
 O(2") exponential
e O(nk) .
guadratic
) _ const.
* O(n3) cubic 7 %
o O(nZ) quadratic O(n?) algorithms/problems
are also O(n3) ones, and so on

* O(nlog(n)) log-linear

e

. el Many other classes are not listed here,
° O(n) linear e.g., O(n'>), O(loglog(n)), O(nlog?(n))...

° 0.5 _h
O(n ) sub-linear * 0(1) means that the execution time is

. O(Iog(n)) logarithm independent of problem size
,,,,,,,,,, * E.g., time for retrieving the k" entry
° 0(1) constant ‘ of an array (of size n) is O(1)




Omega
+ f(n) = Q(g(n)) iff

* there exist positive constants c and n,
such that f(n) = ¢-g(n) for all n, n=n,

I Compare with Big O

* Example
* n+l =Q(n), n+l>1-n V n=1
* n+1000 = Q(n), n+1000 > 1-n vV n>1
« 1000n = Q(n), 1000n > 1000-n vV n>1
* 1000n+1000 = Q(n), 1000n+1000 > 1000-n  V n>1

log(n)+1 =Q(log(n)), log(n)+1 = 1-log(n) V n>10



Omega (Cont’d)

* More examples

e 2n2+3n+4 =Q(n?),

e 2n2+3n+4 = Q(n?),
* 2n2+3n+4 = Q(n),

e 2n2+3n+4 =Q(1),

e 2n24+3n+4 + Q(n21),

* Theorem 1.3

e f(m) =amn™ + ..+ an + a,, a,;, >0
= f(n) = Q™)



Theta
 f(n) = O(g(n)) iff

* there exist positive constants c,, ¢, and n,
such that ¢;-g(n) < f(n) < ¢,-g(n) for all n, n=n,

 i.e., f(n)is O(g(n)) and Q(g(n))

 Example
° n+l =0(n), l-n<ntl<2:-n Vn=1
* n+1000 =0(n), 1-n < n+1000 < 1001-n Vn=1
* 1000n = 0(n), 1000-n < 1000n < 1000-n V n>1
 1000n+1000 =6©(n), 1000-n < 1000n+1000 < 2000-n V n>1
* log(n)+1 = 0(log(n)), 1-log(n) < log(n)+1 < 2-log(n) vV n=10

e Theorem 1.4

s fn)=amn™ + ..+ an + q,, a >0
= f(n) = o(n™



Step Counting — Asymptotic Notation

float sum (float *a, const int n)
{
float s = 0;
for (inti=0;i<n;i++)
s += ali];
return s;

}

s/e freq. subtotal
0
1 ©O(1) 06(1)
1 ©(n) ©(n)
1 ©(n) ©(n)
1 ©O(1) 06(1)
0
total: O(n)

s/e: number of steps per execution




Step Counting — Asymptotic Notation

(recursion of sum()) freq. subtotal
float Rsum (float *a, const int n) s/e n=0 n>0 n=0 n>0
{ 0
if (n <=0) 1 ©(1) 6(1) 0o(1) o(1)
return O; 1 ©(1) O ©(1) O
else 0
return (Rsum(a, n-1) + a[n-1]); 1+t(n-1) O ©(1) O O(1+t(n-1))
} 0
total 0O(1) O(1+t(n-1))

s/e: number of steps per execution




Step Counting — Asymptotic Notation

void MatAdd (int **a, int **b, int **c, int m, int n)

{
for (inti=0;i<m;i++) ©(m)
for(int j=0;j<n;j++) T ©(mn)
clilljl = alillj] + blilljl;
return;

}
total: ©(mn)




Recursive Permutation Generator

void Permutations(int *a, const int k, const int m)

{

// one element between k and m means one possible permutation

if(k ==m) { N
for(int i=0; i<=m; i++)
cout << a[i] << " "; > ==m
cout << endl; -2 O(t(k, m)) = ©(m)
return;
} J

for(int i=k; i<=m; i++) { h
swap(a[k], a[il); : O(t(k, m)) =
Permutations(a, k+1, m); _
swap(alk], a[i]): (m-k+1)xO(t(k+1, m)) + O(1)

} J
} ©(1) comes from the if statement
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Recursive Permutation Generator

Solve the recurrence

O(t(k, m)) = (m-k+1)xO(t(k+1, m)) + ©(1) Eq. (1)
O(t(m, m)) = ©(m) Eq. (2)
Let k=0 and m=(n-1) ~

O(t(0, n-1)) = n X O(t(1, n-1)) + ©(1)
=n X (n-1)X0(t(2, n-1)) + ©(1) + ©(1)

= n>< (n-1) X (n-2) ... X 2 XO(t(n-1, n-1)) + (n-1)><G)(1)/

Y

Y
n-1 equations

n-1 terms
=n! X O(t(n-1, n-1)) + ©(n-1)
=n! X O(n-1) + ©(n-1) ... because of Eqg. (2)

= 0O(n X nl!)



Binary Search

int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[@0], ..

int left = 0, right = n-1;

while(left <= right)

{//there are more elements

if(x<a[middle])

else return middle;
}//end of while
return -1;

int middle =(left+right)/2;

right=middle-1;

else if(x>a[middle]) left = middle+1;

, a[n-1] for x

N

- ©(log(n))
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Magic Square

15 3 1 24 | 17
16 | 14 7 5 23
22 | 20 | 13 6 4
3 21 | 19 | 12 | 10
9 2 25 | 18 | 11

59

59

59

59

59
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Generate the Magic Square

. NN
N S~
15 | 8 1 24\ 17\
™ AN
\\ l \\ ! N \
16 |14 | 7 5 23\
\\ AN \\l N
22 | 20 |13 | 6 4
AN AN N
IR
3 |21 (1719 | 12 | 10
NN N |\\
NN !
9 2 | 25 |18 1
NN
O N\
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Magic Square Algorithm

void magic (int n)

// create a magic square of size n, n is odd

{
const int MaxSize = 51; // maximum square size o(1)
int square[MaxSize][MaxSize], k, 1;

// check correctness of n
if ((n > MaxSize) || (n < 1)) {
cerr << "Error!..n out of range \n";
eturn; > 0(1)
}else if (! (n%2)) {

cerr << "Error!..n is even \n";
return; ~

¥

// n is odd. Coxeter's rule can be used
for (int 1 = 0; i < n; i++) // initialize square to ©
for (int j = 0; j < n; j++)
square[i][]] = ©;
square[@][(n-1)/2] = 1; // middle of first row - @(1)
// please continue to the next slide..

} O(n?)




// 1 and j are current position

int key = 2; 1 = 0; }9(1)
int j = (n-1)/2;
while (key <= n*n) { h

// move up and left

if (i-1 < 9) k = n-1; else k = i-1;
if (j-1 <9) 1 =n-1; else 1l = j-1;
if (square[k][1]) 1 = (i+1)%n;
else { // square[k][1l] is unoccupied
i = k;
j = 1;

> 0O(n?)

}

square[i][]j] = key;

key++;

} // end of while J

// output the magic square

cout << "magic square of size " << n << endl; j> O(1)

for (1 =0; 1< n; i++) { B

for ( j =0; j < n; j++)
cout << square[i][j] << " "; > O(n?)

cout << endl;




Magic Square (Cont’d)

* We just show how can we quickly analyze the
complexity of an algorithm without knowing all the
details

* O(n?) is the optimal one we can achieve (in terms of
asymptotic complexity) to generate an n? magic
square

* Since there are n? positions the algorithm must place a
number



Practical Complexities

Prob.size n nlog(n) n? n3 n* 2"
103 Ips  10ps  1ms 1s 17 min 3.2 x 10283y
104 10pus  130us 100ms 17 m 116 d

10° 0.lms 1.7ms 10s 12 d 3171y

106 Ims 20ms 17m 32y  3x107y

Assume a 1-billion-steps-per-second computer



Practice Complexity

1 2 3 4 5 6 7 8 9 10 11
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Performance Measurement

* Techniques

e Use time-related library functions
» gettimeofday()
* clock()
* time()
* Repeatedly measure a program to reduce noises

e Use randomized inputs to obtain best-case, average, and
worst-case execution time
* Prediction
* Regression (curve fitting)
* Interpolation
* Extrapolation

e Please read Section 1.7.2 for details



Performance Measurement

e Benefits
* Provide actual execution time

* Limitations of asymptotic analysis
* For two programs that are both O(n?) time complexity
e We cannot tell which is faster

* For one program that is O(n) and the other is O(n?)
 The O(n) one can be slower for a practical size of n



Alan Turing

* One of the greatest computer scientists and
computational theorists

* Complexity analysis is part of computational theory
e Often called the father of modern computing
* Some famous things

Google ™™=
* Turing award { 111700 J
* Nobel Prize of computing »
* Turing machine /'

* Theoretical computer model
* http://www.google.com/doodles/alan-turings-100th-birthday
* Turing test

* Test of a computer’s ability to exhibit behavior equivalent to
human
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Alan Turing (Cont’d)

S o
* The Imitation Game
* A movie about Alan Turing m**
trying to crack the enigma oo

EXCEPCIONAL.

code during World War Il KA KKK

ek kk

KEIRA,
CUMBERBATCH  KNIGHTLEY

THE BENEDICT
* IMDB 8.2 IMITATION GAME

(DESCIFRANDO ENIG

User Reviews

Compelling and Enthralling from start to finish.
16 October 2014 | by fruitbat00 (United Kingdom) - See all my reviews

Truly excellent film and definitely Ocsar worthy matenal for both the film and the actors. The
entire cast are amazing.
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Complexity of Learning DS

* O(1)
* Number of weeks in the semester
=18 =0(1)
* Number of chapters covered in the semester
=8 =0(1)
* Time(read these chapters twice)

=2 X8 X Time
= 0(1)

read_one_chapter




