
Data
Structures

Prof. Ren-Shuo Liu

NTHU EE

Spring 2017

CH1 Basic Concepts

Outline

• 1.1 Overview: System Life Cycle

• 1.2 Object-Oriented Design

• 1.3 Data Abstraction and Encapsulation

• (1.4 Basics of C++)

• 1.5 Algorithm Specification

• (1.6 Standard Template Library)

• 1.7 Performance Analysis and Measurement

2

System Life Cycle

• Five phases
1. Requirements

2. Analysis

3. Design

4. Refinement and coding

5. Verification

3

Refinement

Requirements

Analysis

Design

Coding

Verification

Requirements

• Clarify problem specifications
• Input

• What are given

• Output
• What must be produced

• Initially vague more precise

4

Refinement

Requirements

Analysis

Design

Coding

Verification

Analysis

• Break the problem down
• Into manageable pieces

• Also known as divide and
conquer

• Two approaches
1. Bottom-up (not good)

2. Top-down (better)

5

Refinement

Requirements

Analysis

Design

Coding

Verification

Bottom-up Analysis

• Issues
• Too early emphasis on implementing fine points

• Lack of prior planning and a big picture

• Risks and difficulties
Resulting system can have many loosely connected and

error-ridden segments

Unpractical for tackling large-scale, complex problem

6

Top-down Analysis

• Strategies
• Start from a high-level plan

• Breaking a problem down into manageable pieces

• Subsequently refining the plan
• Gradually taking into account low-level details

• Advantages
Necessary for tackling large-scale, complex problem

7

Risks of Bottom-Up

8

Difficulties of Bottom-Up

• Please imagine analyzing a smartphone
bottom-up
• Things become complicated

9

Benefits of Top-Down

• Now let’s alternatively analyze a smartphone top-
down

10

Battery

Case ScreenProcessor

Cameras

Memory

Software

Design

• Identify
• Data objects
• Operations performed on the data types
• Implementation (Not decided in this phase)

• Produce implementation-independent results
• Abstract data types
• Algorithm specifications

11

Scheduling system for NTHU

• Data objects
• Students

• Name, ID, major, and phone #
• Courses
• Professors

• Operations
• Inserting, removing, and searching

Refinement

Requirements

Analysis

Design

Coding

Verification

• Decide implementation
• Representations for objects

• Algorithms for operations

• Algorithm and object
representations affect the
efficiency of each other
• Design the algorithms that are

independent of data objects first

• Good design can absorb changes
found in this stage easily

Refinement

Coding and Refinement

12

Requirements

Analysis

Design

Coding

Verification

Verification

• Three techniques
1. Correctness proofs

2. Testing

3. Debugging

13

Testing

Debugging

Correctness
Proofs Refinement

Requirements

Analysis

Design

Coding

Verification

Verification (Cont'd)

• Correctness proofs
• Formal method

• Typically required for individual algorithm

• Not easily achievable for the whole program

14

Verification (Cont'd)

• Testing
• Run a program against possible inputs

• Check correctness
• Check performance (e.g., execution time)

• Coverage – a metric for assessing the completeness of
testing
• Testing inputs should be developed to cover as many

percentages of codes as possible
• E.g., all the cases within a switch statement should at least be

touched

• Debugging
• Removal of errors found
• Well-documented and well-structured program eases

debugging

15

Outline

• 1.1 Overview: System Life Cycle

• 1.2 Object-Oriented Design

• 1.3 Data Abstraction and Encapsulation

• (1.4 Basics of C++)

• 1.5 Algorithm Specification

• (1.6 Standard Template Library)

• 1.7 Performance Analysis and Measurement

16

Programming Paradigms

• Non-structured

• Structured

• Object-oriented

17

More disciplines are
imposed on programmers

Non-Structured Programming

• Characteristics
• Sequentially ordered commands

• Lines are numbered or labeled

• Unrestricted jump/branch to any line

• Pros
• Extremely skillful programmers can find tricky methods

to produce high performance or compact code

• Cons
• Encourage spaghetti codes

• Poor maintainability

• Difficult in building large programs (poor scalability)

18

Spaghetti Code

19https://craftofcoding.wordpress.com/2013/10/07/what-is-spaghetti-code/
http://www.quora.com/What-does-spaghetti-code-actually-look-like

FORTRAN’s three-way
arithmetic IF
Jump to one of three
locations in the
program depending on
the whether
expression was
negative, zero, or
positive.

Spaghetti Circuit

20

 Spaghetti circuit

↓ Clean circuit

http://www.quora.com/What-does-spaghetti-code-actually-look-like

What do you think the possible
function of these circuits is?

Structured Programming

• Basic structures

• All programs can be equivalently transformed to that
use only the above three structures without using goto

21

Condition

Statement(s)Statement(s)

Condition

Statement(s)

Statement

Statement

Statement

Sequence Selection (or choice)
If(condition) {…} else {…}

Repetition (or looping)
While(condition) {…}

True False False

True

Structured Programming (Cont’d)

• Pros
• Easy to understand

• Easy to maintain

• Easy to analyze

• Pure structured languages strictly dis-allow
• goto

• break

• continue

22

Structured Programming (Cont’d)

• Compared with non-structured programming
• Structured programming restricts programmers'

freedom

• Structured programming prevent spaghetti codes

• Structured programming does not change
programmability
• What problem non-structured programming can solve can also

be done using structured programming (and vice versa)

23

Structured Programming (Cont’d)

• C and C++ are structured
languages but NOT pure
ones
• goto, break, continue

statements are allowed

• goto statement is
notorious but not always
bad
• See the example on the

right

24

for(x=0; x<1000; x++){
for(y=0; y<1000; y++){

for(z=0; z<1000; z++){
if(g(x, y, z) > 0){

cout << x << “, ”
<< y << “, ” << z;

goto END;
}

}
}

}
END:

Code snippet for searching an integer
solution of g(x, y, z)>0 in a brute force
way. In this example, it is convenient
to use goto to leave the nested loops.

Object-Oriented Programming

• Philosophy of divide-and-conquer is the same as
structured programming

• How a project should be decomposed is changed

• Decomposition methods
1. Algorithmic (functional) decomposition is used for the

structured programming method

2. Object-oriented decomposition is used for the object-
oriented programming method

25

Algorithmic/Functional
Decomposition
• Used by structured programming

• View software as a process

• Decompose software into modules that represent
steps of the process
• In C, the modules are implemented by functions

• Compute-centric perspective

• Data structures are a secondary concern

26

Object-Oriented (OO) Decomposition

• Used by object-oriented programming

• View software as a set of well-defined objects
• Objects model entities in the application domain

• e.g., students, courses, and teachers in a course scheduling
system

• Objects interact with one another

• Algorithmic or functional decomposition is
addressed after the system has been decomposed
into objects

27

OO Decomposition (cont'd)

• Pros
• Encourage the reuse of software

• Software becomes more flexible that can evolve as
requirements change

• More intuitive because objects naturally model entities
in the application domain

28

Definitions

• Object
• Entity that has a local state and performs computations

• i.e., a combination of data and operations

• Object-oriented programming
• Method of implementation in which …

• Objects are the fundamental building blocks

• Each object is an instance of some type (or class)

• Classes are related to each other by inheritance relationships

29

Definitions

• A language is said to be an object-oriented
language if
• It supports objects

• It requires objects to belong to a class

• It support inheritance

• A language is said to be merely an object-based
language if it supports the first two features but
does not support inheritance

30

Evolution of Programming

• Four generations of higher level languages
• FORTRAN, etc.

• Salient feature of evaluating mathematical expression

• C, Pascal, etc.
• Emphasis on effectively expressing algorithm

• Modula, etc.
• Introduce of the concept of abstract data types (ADT)

• Smalltalk, Objective C, C++, etc.
• Emphasis on inheritance between ADTs

31

Outline

• 1.1 Overview: System Life Cycle

• 1.2 Object-Oriented Design

• 1.3 Data Abstraction and Encapsulation

• (1.4 Basics of C++)

• 1.5 Algorithm Specification

• (1.6 Standard Template Library)

• 1.7 Performance Analysis and Measurement

32

Definition

• Data Encapsulation (or Information Hiding) (封裝)
• Conceal the implementation details of a data object

form the outside world

• Data Abstraction (抽象化)
• Separation between the specification of a data object

and its implementation

33

DVD Player Analogy

• Encapsulation ―the
buttons and remote
control
• The only interfaces exposed

to users
• Hide and protect internal

(vulnerable, dangerous, and
proprietary) design from
users

• Abstraction ― the user
manual
• Only specify what the

function of each button is
• How the player achieve the

function is not mentioned
nor restricted

34

Definition

• Data Type
• objects

+
operations on the objects

• Abstract Data Type (ADT)

• Object

• Operation

35

Specification Representation

Specification Implementation

• Predefined (built-in)
types
• Fundamental types

• char

• int

• float

• double

• Modifiers
• short

• long

• signed

• unsigned

• Derived types
• Pointer (*)

• Reference (&)

• Aggregate types
• Arrays

• struct

• class

• User-defined types
• struct

• class

36

Data Types in C++

ADT Example: NaturalNumber
ADT NaturalNumber is

objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on
the computer.

functions:

for all x, y ∈ NaturalNumber; true, false ∈ Boolean
and where +, -, <, ==, = are the usual integer operations

Zero (): NaturalNumber ::= 0

IsZero (x): Boolean ::= if (x == 0) IsZero = true
else IsZero = false

Add (x, y): NaturalNumber ::= if (x+y <= MAXINT) Add = x + y
else Add = MAXINT

Equal (x, y): Boolean ::= if (x == y) Equal = true
else Equal = false

Successor (x): NaturalNumber ::= if (x == MAXINT) Successor = x
else Successor = x +1

Substract (x, y): NaturalNumber ::= if (x < y) Substract = 0
else Substract = x – y

end NaturalNumber 37

ADT Example: NaturalNumber
objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on
the computer.

functions specification:

38

Format Return Type Behavior

Zero () NaturalNumber 0

IsZero (x) Boolean if (x == 0)
return true

else
return false

Add (x, y) NaturalNumber if (x+y <= MAXINT) return x + y
else return MAXINT

Equal (x, y) Boolean if (x == y) return true
else return false

Successor (x) NaturalNumber if (x == MAXINT) return x
else return (x+1)

Substract (x, y) NaturalNumber if (x < y) return 0
else return (x-y)

Advantages of Encapsulation and
Abstraction
1. Simplify software development

2. Ease testing and debugging

3. Enable reusability

4. Support modifications to the representation of a
data type

39

Comparing Two Scenarios

• Consider developing a course scheduling program
for NTHU
• One can either adopt ADTs or directly dive into coding

40

T S

CGlue

ADTs are identified A monolithic program

Adding a course
Deleting a course
Searching a course

vs.
ADT Teachers

ADT Courses ADT Students

Simplify Software Development

• With encapsulation and abstraction
• If we have four programmers

• They can parallelly work on T, S, C, and
Glue

• No one need to know how another one
implement their portion of code

• More concentration and less
interference (especially when the
project is large)

• If we have only one programmer
• Focus on T, S, C, and Glue one at a time

• Less things need to be kept in mind

41

T S

CGlue

Testing and Debugging

• With encapsulation and abstraction
• T, S, C, and Glue can be individually

tested and debugged
• Testing efforts are T(T) + T(S) + T(C) +

T(Glue) ≤ T(T+S+C+Glue)

• Assume we are confident that some
portions, e.g., T, S, and C, are good,
but a bug exists…
• The remainder, i.e., Glue, has the bug

• Assume we notice the bug is related
to a specific operation on a data type,
say mistakenly deleting a course…
• The bug resides in the corresponding

objects and operations

42

T S

CGlue

• When we (or other people) develop
• Textbook ordering program

• Dorm allocation program

• NTHU-NCTU tournament program

• …

Reusability

43

T S

CGlue

T2 S1

Glue

S2T2

S

C

S

D

GlueGlue

Modifications

• ADTs lead to information hiding
• Implementation of a data type is

invisible to users and the rest of
the program

• Ease changing (e.g., upgrade) a
data type without rewriting the
entire program or affecting any
users

• Allow us to start from a quick
implementation then
progressively refine the program

• Even if we need to modify the
interface of a data type
• We can systematically identify

the required modifications to the
other parts

44

T S+

CGlue

T S

CGlue

Overhead of Adopting ADT

• Execution time overhead
• Accessing data through interfacing operations is potentially

slower than directly accessing them

• Memory space overhead
• Every object maintains a table specifying its operations

• Coding is more tedious

• Therefore, C (not C++) is still widely used for
programming the following things
• Operating systems
• Performance sensitive systems
• Resource constrained systems

45

Outline

• 1.1 Overview: System Life Cycle

• 1.2 Object-Oriented Design

• 1.3 Data Abstraction and Encapsulation

• (1.4 Basics of C++)

• 1.5 Algorithm Specification

• (1.6 Standard Template Library)

• 1.7 Performance Analysis and Measurement

46

Algorithm

• Criteria of an algorithm

• Exampling algorithms
• Selection sort

• Binary search

• Recursion
• Selection sort

• Binary search

• Permutation

47

Algorithm (Definition)

• A finite set of instructions with the following properites
• Input

• Read zero or more quantities

• Output
• Produce one or more quantities

• Correctness
• Accomplishes a particular task for all possible inputs

• Definiteness
• Each instruction is unambiguous

• Effectiveness
• Each instruction is basic enough

• Finiteness
• Terminates after a finite number steps for all possible inputs

48

Algorithms vs. Programs

• (From computational theorists’ perspective)

• Unlike an algorithm, a program needs not always
satisfy “finiteness”
• Kernel of an operating system is an infinite loop

• Continuously wait until more tasks are entered

• Continuously dispatch available tasks

49

Algorithms vs. Programs (Cont’d)

50

Which program(s) can always terminate in a finite
number of steps?

1. Testing whether any given number is a prime
2. Calculating 10000! (i.e, factorial(10000))
3. Displaying all prime numbers
4. Deciphering an RSA-encoded message without knowing

the private key
5. Testing whether an arbitrary program terminates in a

finite number of steps

Algorithms vs. Programs (Cont’d)

• Primality test
• Even with the brutal force method, it can terminate in a

finite number step

• Calculating factorial(10000)
• Factorial(10000) is an astronomical figure (天文數字)

though, it involves a finite number of digits. So the
program can terminate in a finite number step

• Displaying all prime numbers
• Since there are infinitely many primes, this program

never terminates

51

10000 Factorial
• 10000 factorial is 35,659 digits long. Here it is:

2846259680917054518906413212119868890148051401702799230794179994274411
3400037644437729907867577847758158840621423175288300423399401535187390
5242116138271617481982419982759241828925978789812425312059465996259867
0656016157203603239792632873671705574197596209947972034615369811989709
2611277500484198845410475544642442136573303076703628825803548967461117
0973695786036701910715127305872810411586405612811653853259684258259955
8468814643042558983664931705925171720427659740744613340005419405246230
3436869154059404066227828248371512038322178644627183822923899638992827
2218797024593876938030946273322925705554596900278752822425443480211275
5901916942542902891690721909708369053987374745248337289952180236328274
1217040268086769210451555840567172555372015852132829034279989818449313
6106403814893044996215999993596708929801903369984844046654192362584249
4716317896119204123310826865107135451684554093603300960721034694437798
2349430780626069422302681885227592057029230843126188497606560742586279
4488271559568315334405344254466484168945804257094616736131876052349822
8632645292152942347987060334429073715868849917893258069148316885425195
6006172372636323974420786924642956012306288720122652952964091508301336
6309827338063539729015065818225742954758943997651138655412081257886837
0423920876448476156900126488927159070630640966162803878404448519164379
0807186112370622133415415065991843875961023926713276546986163657706626
…

52http://gimbo.org.uk/texts/ten_thousand_factorial.txt

http://gimbo.org.uk/texts/ten_thousand_factorial.txt

Algorithms vs. Programs (Cont’d)

• Breaking RSA
• This problem corresponds to factorization (質因數分解)

• Factorization is feasible in a finite number of steps

• RSA is based on the belief (not proof) that factoring large
integers (particularly that with exactly two huge prime factors)
is difficult (i.e., takes unreasonably long time)
• E.g., thousands of years with a GHz computer

• Conspiracy theory (陰謀論)
• Since the proof is unavailable nowadays, some people oppositely

believe that some countries have efficient ways to do factorization!!

• Interested students may want to take a Cryptography
class

53

Algorithms vs. Programs (Cont’d)

• Testing whether an arbitrary program (with an
input) terminates in a finite number of steps
• Very useful tool to check whether our program contain

bugs that lead to infinite looping

• Discussions on this problem is out of the scope of this
course

• Interested students may want to
• Google “halting problem”

• Take a Computational Theory class

54

Halting Problem Explanations

• Barber paradox (理髮師悖論)
• A barber shaves all, and only, people who do not shave

themselves

• Who shaves the barber?

• Halting problem paradox
• Program has difficulty in testing whether another

program derived from itself terminates or not

55

Halting Problem Explanations

• Suppose someone claims
• Terminate(program, input) = true if the program(input) terminates
• Terminate(program, input) = false if the program(input) does not

terminate

• You can develop a counterexample program

• What is the answer of Terminate(f, f)
• Terminate(f, f)=true f(f) should terminate, but actually it doesn't
• Terminate(f, f)=false f(f) should not terminate, but it actually

does

56

void f(program)
{
if(Terminate(program, program) == true)
for(;;); // do not terminate

else
return;

}

Describing Algorithms

• Many allowable ways
• Programming languages (e.g., C++)

• Natural languages
• Must assure definiteness and effectiveness

• Pseudocode (e.g., combining C, C++, and English)
• Less language-dependent

• More flexibility

• Graphic representations (i.e., flowcharts)
• Typically for small and simple algorithms only

57

Algorithm Specification

• Examples
• Selection sort

• Binary search

• Permutation generator

• Focuses
• Inputs and outputs

• Clear and basic-enough instructions

• Finiteness and correctness proofs

58

• Input
• A collection of n integers, n≥1

• Output
• A collection of n integers

• Instructions (in pseudocode)

Selection Sort (Algorithm)

59

void SelectionSort(int *a, const int n)
{ //Sort the n integers a[0] to a[n-1] into non-decreasing order.

for(int i=0; i<n; i++) {
exam a[i] to a[n-1] and suppose the smallest one is at a[j];
interchange a[i] and a[j];

}
}

Selection Sort — C++

60

void SelectionSort(int *a, const int n)
{ // Sort the n integers a[0] to a[n-1] into
// non-decreasing order.
for(int i=0; i<n; i++)
{

int j=i;
//find the smallest integer in a[i] to a[n-1]
for(int k = i+1; k<n; k++)

if(a[k] < a[j]) j = k;
swap(a[i], a[j]);

}
}

void swap(int & i, int & j)
{

int temp = i;
i = j;
j = temp;

}

Passed by
reference

Illustration

61

7 110 4 613 2336

7

1

10 4 613 2336

7 1

10 4 613 2336

7

1 10 4 613 2336

71 10 4 613 2336

71 10

4

613 2336

71

10 4

613 2336

71

10

4 613 2336

Selection Sort — Proof

• At the end of loop q (i=q)
a[q]≤a[r], q+1 ≤ r ≤ n-1.

• When i becomes greater than q,
a[0] … a[q] is unchanged.

• Hence, after the lines are executed
for n-1 times (i.e., 0 ≤ i ≤ n-2), the
following n-1 inequalities hold
• a[0]≤a[r], 1 ≤ r ≤ n-1
• ...
• a[n-3]≤a[r], n-2 ≤ r ≤ n-1
• a[n-2]≤a[r], n-1 ≤ r ≤ n-1

• a[0] … a[n-1] is unchanged for the
last iteration (i.e., i = n-1)

• Combining these inequalities leads
to a[0]≤a[1]≤ ... ≤a[n-2]≤a[n-1]

62

void SelectionSort(int a[], const int n)
{ // Sort the n integers into
// non-decreasing order.
for(int i=0; i<n; i++)
{

int j=i;
//find the smallest integer in a[i] to a[n-1]
for(int k = i+1; k<n; k++)

if(a[k] < a[j]) j = k;
swap(a[i], a[j]);

}
}

Binary Search

• Input
• n≥1 distinct integers that are already sorted and stored

in the array a[0] … a[n-1]

• Integer x

• Output
• If x is present in the array, produce j such that x == a[j]

• Otherwise, produce -1

63

Binary Search — Pseudocode

64

void BinarySearch(int *a, const int x, const int n)
{ // Search the sorted array a[0], … , a[n-1] for x
// left and right are set to the two ends of a[]
while(there’re elements between the two ends)
{

Let middle be the middle element;
if(x < a[middle]) set right to middle-1;
else if(x > a[middle]) set left to middle+1;
else return middle;

}
Not found;

}

Binary Search — C++

65

int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[0]…a[n-1] for x

int left = 0, right = n-1;
while(left <= right)
{//there are more elements

int middle =(left+right)/2;
if(x < a[middle]) right=middle-1;
else if(x > a[middle]) left = middle+1;
else return middle;

}//end of while
return -1;

}

Binary Search ― Illustration

66

Search a number, 25, in a sorted array of boxes

Left Right

37

20

30

24.9

Recursion

• Definition
• Functions that invoke (呼叫、使用) themselves

• Directly or Indirectly through other functions

• Recursion is powerful
• Divide and conquer

• Method of induction (歸納法)

• Can simplify the expression of an otherwise complex
process

67

Recursion (Cont’d)

• Recursion is particular useful for
• Factorial (階乘)
• Binomial coefficients
• Binary search
• Problems that are recursively defined

• Recursion is not limited to the above tasks
• Recursion can simulate looping

(Looping can simulate recursion, too)

• Recursion tends to be (有這個傾向，但不是絕對) slower than
looping
• Because function invocation typically incurs longer latency

than loop branches

68

Develop Recursion

• Key components
• Driver

• Invoke the first workhorse

• Workhorse(s)
• Self-similar piece of the

algorithm

• Termination condition(s)
• Determine whether no more

progress needs be made
• If a workhorse fails to check

termination conditions, the
program can never end

• Make some progress
• If nothing changes before the

workhorse is again invoked,
the program can never end

69

workhorse()
{

if(termination conditions) {
return void or something;

} else {
Make some progress;
invoke child workhorse(s);
(Make more progress;)

}
}

Driver()
{

workhorse();
}

once many

Recursive Selection Sort

70

void SelectionSort(int a[], const int n)
{

// 1-entry array does not need sorting
if(n==1) return;

int j=0;
/* find the smallest in the received

array and place it at the first */
for(int k = 0; k<n; k++)

if(a[k] < a[j]) j = k;

swap(a[0], a[j]);

SelectionSort(a+1, n-1); //recursion
}

Termination condition

Create a new workhorse
to sort the remaining n-1
elements

• This is an exampling
recursive algorithm
derived from an non-
recursive one. In this
example, recursion is
easier to understand
but likely performs
slower than the non-
recursive one.

Recursive Binary Search

71

int BinarySearch(int a[], const int x, const int left, const int right)
{

// no entries to search
if(left>right) return -1;

int middle = (left+right)/2;

if(x<a[middle]) return BinarySearch(a, x, left, middle-1);
else if(x>a[middle]) return BinarySearch(a, x, middle+1, right);
else return middle;

}

Termination condition

Create a new workhorse to
search the half that possibly
contain the target

Permutation Generator

• Input
• A set of n≥1 elements

• Output
• Print all n! possible permutations of this set

• Example
• Permutations of (a, b, c)

• (a, b, c), (a, c, b),
(b, a, c), (b, c, a),
(c, a, b), (c, b, a)

72

Permutation Generator
— Observation
• Permutations of (a, b, c, d) can be constructed by

• ‘a’ followed by all permutations of (b, c, d)

• ‘b’ followed by all permutations of (a, c, d)

• ‘c’ followed by all permutations of (a, b, d)

• ‘d’ followed by all permutations of (a, b, c)

• Clue to adopt recursion

• Solve an n-element problem based on the results of an (n-1)-
element problem

73

Recursive Permutation Generator

74

void Permutations(int a[], const int k, const int m)
{
if(k == m) {

for(int i=0; i<=m; i++) cout << a[i] << " ";
cout << endl;
return;

}

for(int i=k; i<=m; i++) {
swap(a[k], a[i]); //enumerate all possible elements at a[k]
Permutations(a, k+1, m); // a workhorse to handle the rest
swap(a[k], a[i]); //restore the element

}
}

Termination condition

Note that this loop can invoke
Permutatinos() multiple times

It is a bit hard (but still feasible) to transform
this algorithm into an non-recursion version

Outline

• 1.1 Overview: System Life Cycle

• 1.2 Object-Oriented Design

• 1.3 Data Abstraction and Encapsulation

• (1.4 Basics of C++)

• 1.5 Algorithm Specification

• (1.6 Standard Template Library)

• 1.7 Performance Analysis and Measurement

75

Complexity

• Time complexity
• Amount of execution time a program needs to solve a

problem

• Space complexity
• Amount of memory space a program needs to solve a

problem

• We want to find complexity as a function of
problem size
• Problem size ≡ the total amount of input information

76

Space Complexity

• Memory space breakdown
• Problem size-dependent part

• Variables whose size/number depends on problem size

• Fixed part
• Space for storing the program

• Fixed amount of variables during computation

• Read-only space for Inputs

• Write-only space for outputs

• We shall concentrate on the Problem size-
dependent part

77

Space Complexity (Cont’d)

78

float sum (float *a, const int n)
{

float s = 0;
for (int i = 0; i < n; i++)

s += a[i];
return s;

}

float abc (float a, float b, float c)
{

return a+b+b*c+(a+b-c)/(a+b);
}

• a[0]…a[n-1] are read-
only inputs

• Float * a, const int n,
float s, int i, etc.
consume a fixed
amount of space

 Problem size-dependent
part is 0

• a, b, and c are read-only
inputs

• A fixed amount of space
is required to do the
computation

 Problem size-dependent
part is 0

Space Complexity

79

float Rsum (float *a, const int n)
{

if (n <= 0)
return 0;

else
return (Rsum(a, n-1) + a[n-1]);

}

• a[0]…a[n-1] are read-only
inputs

• float * a and int n (and
other variables local to
Rsum()) consume a fixed
amount of space for each
execution of Rsum though,
Rsum is called n+1 times.

• Variable part is c(n+1),
where c is a constant, say
c=4

Rsum(a, 90){
…
Rsum(a,89);

}

a[0]…a[n-1]
Inputs

Rsum(a, 89){
…
Rsum(a,88);

}

Rsum(a, 0){
…

}

……

Variables whose number depends on the problem size

a n a n a n

output

Time Complexity

• Time consumption breakdown
• Execution time

• Compile time

• Execution time is important
• Problem size, 𝑛,↑ ⇒ execution time, 𝑡𝑃 𝑛 , ↑

• Compile time is less important
• Independent of problem size, 𝑛

• Only present for the first execution

80

Methods to Derive Execution Time

• Derive the exact formula
• 𝑡𝑃 𝑛 = 𝑐𝑎𝐴𝐷𝐷 𝑛 + 𝑐𝑠𝑆𝑈𝐵 𝑛 + 𝑐𝑚𝑀𝑈𝐿 𝑛 +⋯

• Almost impossible to obtain such a formula

• Step counts

• Asymptotic notation (漸近表示法) of step counts

• Real system measurement

81

Step Count

• Definition of a step
• A segment of program whose execution time is independent

of problem size

• Example of a step
• One addition a step
• One multiplication a step
• 1000 additions a step
• 1000 multiplications a step
• r = a+b+b*c+(a+b-c)/(a+b)+4.0 a step

• The following one is NOT a step
• 𝑛 additions, where 𝑛 is the size of the input array

82

Zero-Step Program Segments

• Comments
• // this is binary search
• /* this is

* selection sort
*/

• Declarative statements of variables and functions
• int a;
• float b, c, d;
• int max(a, b);

• Brackets
• {
• }

83

Single-Step Program Segments

• Assignments and expressions
• int a = 10;
• b = 0.1;
• c = a + b * d;

• Control statements of loops
• for(int i=0; i<n; i++)
• while(j<n)
• do … while(1)

• Function independent of problem size
• a = max(b, c)

• Conditional statements
• if(a > 10)

• Unconditional branches
• goto, break, continue, return

84

Those May Depend on Problem Size

• Object/variable construction
• int *a = new int[size(input)];

• Function execution
• MatrixAdd(a, b, c); // adding two matrixes

• Parameter passing
• Passing an object whose size depends on problem size

• Statements that involve the above events
• int a = sum(a, n);

• if(search(a, x, n) == true)

85

Methods of Obtaining Step Count

• Instrumentation
• Introduce a new global variable count

• Initialize count to zero

• Add statements to increment count for each step

• Report count

• Table analysis
• List the step count of each program segment

• List the frequency of each program segment

• Summarize the total step count

86

Step Counting — Example 1

87

float sum (float *a, const int n)
{
float s = 0;
for (int i = 0; i < n; i++)

s += a[i];
return s;

}

Step Counting Using Instrumentation

88

float sum (float *a, const int n)
{
float s = 0;
count++; // count is global
for (int i = 0; i < n; i++) {
count++; // for loop
s += a[i];
count++; // assignment

}
count++; // last time of for
count++; // return
return s;

}

void sum (float *a, const int n)
{
for (int i = 0; i < n; i++) {
count+=2;

}
count+=3;
return;

}

Simplified version

Step Counting Using a Table

89

float sum (float *a, const int n) s/e freq. subtotal
{ 0
float s = 0; 1 1 1
for (int i = 0; i < n; i++) 1 n+1 n+1

s += a[i]; 1 n n
return s; 1 1 1

} 0
total: 2n+3

s/e: steps per execution

The frequency of executing
the control statement is one
time more than that of the
loop body.

Step Counting — Example 2

90

float Rsum (float *a, const int n)
{
if (n <= 0)
return 0;

else
return (Rsum(a, n-1) + a[n-1]);

}

• Recursion

Step Counting — Instrumentation

91

float Rsum (float *a, const int n)
{
count++; // if conditional
if (n <= 0) {
count++; // return statement
return 0;

} else {
count++; // return statement
return (Rsum(a, n-1) + a[n-1]);

}
}

count is a global variable and will be
incremented throughout the entire recurrent
computation.

Step Counting — Table

92

freq. subtotal
float Rsum (float *a, const int n) s/e n=0 n>0 n=0 n>0
{ 0

if (n <= 0) 1 1 1 1 1
return 0; 1 1 0 1 0

else 0
return (Rsum(a, n-1) + a[n-1]); 1+t(n-1) 0 1 0 1+t(n-1)

} 0
total 2 2+t(n-1)

s/e: steps per execution
Recurrence relations:

𝑡 𝑛 =
2 + 𝑡 𝑛 − 1 , 𝑛 > 0

2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Solving Recurrence

• Technique
• Repeatedly substituting

• 𝑡 𝑛 = 2 + 𝑡 𝑛 − 1
= 2 + 2 + 𝑡 𝑛 − 2
= 2 + 2 +⋯+ 2 + 𝑡 0
= 2𝑛 + 𝑡 0
= 2𝑛 + 2

93

Step Counting — Example 3

94

void MatAdd (int **a, int **b, int **c, int m, int n)
{
for (int i = 0; i < m; i++) {

for (int j = 0; j < n; j++) {
c[i][j] = a[i][j] + b[i][j];

}
}
return;

}

Program containing nested
loops

Step Counting — Instrumentation

95

void MatAdd (int **a, int **b, int **c, int m, int n)
{
for (int i = 0; i < m; i++) {

count++; // for loop i
for (int j = 0; j < n; j++) {
count++; // for loop j
c[i][j] = a[i][j] + b[i][j];
count++; // assignment

}
count++; // last time of for loop j

}
count++; // last time of for i
count++; // return statement
return;

}

The textbook omits the return

Step Counting — Table

96

void MatAdd (int **a, int **b, int **c, int m, int n)
s/e freq. subtotal

{ 0
for (int i = 0; i < m; i++) 1 m+1 m+1

for (int j = 0; j < n; j++) 1 m(n+1) mn+m
c[i][j] = a[i][j] + b[i][j]; 1 mn mn

return; 1 1 1
} 0

total: 2mn+2m+2
The textbook omits the return

We are allowed to use more
than one variables to describe
problem size

Step Counting — Example 4

97

void fibonacci (int n) //compute the Fibonacci number F[n]
{

if (n <= 1)
cout << n << endl; // F[0] = 0 and F[1] = 1

else { // compute F[n]
int fn; int fnm2 = 0; int fnm1 = 1;
for (int i = 2; i<=n; i++) {
fn = fnm1 + fnm2;
fnm2 = fnm1;
fnm1 = fn;

} // end of for
cout << fn << endl;

} // end of else
return;

} // end of fibonacci

// steps = 3(n-1)

// steps = n

// steps = 1

// steps = 2

// steps = 1

// steps = 1

// steps = 1

If n > 1,
t(n) = 1 + 2 + n + 3(n-1) + 1 + 1 + 1

= 4n+2
Otherwise, t(n) = 1+1+1 = 3

// steps = 1

Inexactness of Step Count

• We cannot know which following program exhibits
the shortest execution time for the same problem
size
• t1(n) = n+1

• t2(n) = n+1000

• t3(n) = 1000n

• t4(n) = 1000n+1000

• But we know the execution time of these programs
linearly increases with problem size

98

Since the notion of a step is
(deliberately) imprecise
One multiplications 1 step
100 multiplications 1 step

Motivation of Asymptotic Notation

• We also know the fifth program exhibits the shortest
execution time once the problem size, n, is large
enough
• t1(n) = n+1

• t2(n) = n+1000

• t3(n) = 1000n

• t4(n) = 1000n+1000

• t5(n) = log(n)+1

• Asymptotic Notations are introduce to emphasize
• Trend that step count increases with problem size

• Classification of problems/algorithms based on the trend

99

Linearly increase

Logarithmically increase

Asymptotic Notations (O, Ω, Θ)

• “f(n) = O(n)” reads as
• “f of n is big O of n”

• We can alternatively say
“f(n) ∈ O(n)”
• “f of n belongs to big O of n”

100

O Big O Upper bound

Θ Theta Tight bound (i.e., both an upper bound and
lower bound)

Ω Omega Lower bound

• “Big” O Upper

• “Θ” A hyphen
in the middle
 tight bound

Big O (Cont’d)

• f(n) = O(g(n)) iff
• there exist positive constants c and n0

such that f(n) ≤ c∙g(n) for all n, n≥n0

• Example
• n+1 = O(n), n+1 ≤ 2 ∙n ∀ n≥1

• n+1000 = O(n), n+1000 ≤ 1001∙n ∀ n≥1

• 1000n = O(n), 1000n ≤ 1000∙n ∀ n≥1

• 1000n+1000 = O(n), 1000n+1000 ≤ 2000∙n ∀ n≥1

• log(n)+1 = O(log(n)), log(n)+1 ≤ 2∙log(n) ∀ n≥10

101

“iff” means “if and only if” (“⟺”)

“≤” suggests that c∙g(n) is an upper bound of f(n)

“∀” means “for all”

Big O (Cont’d)

• More examples
• 2n2+3n+4 = O(n2), 2n2+3n+4 ≤ 9∙n2 ∀ n≥ 1

• 2n2+3n+4 = O(n2), 2n2+3n+4 ≤ 90∙n2 ∀ n≥ 40

• 2n2+3n+4 = O(n2.1),

• 2n2+3n+4 = O(n3),

• 2n2+3n+4 = O(n99),

• 2n2+3n+4 ≠ O(n1.9),

102

We may have an infinite number of c
and n0 satisfying the inequality.

Since by definition, Big O does not
need to be a tight bound, we may
have infinite number of g(n)
satisfying the inequality.

Big O of a Polynomial Function

• Theorem 1.2
• 𝑓(𝑛) = 𝑎𝑚𝒏

𝒎 + … + 𝑎1𝑛 + 𝑎0

⟹𝑓(𝑛) = 𝑶(𝒏𝒎)

• Proof
• 𝑓 𝑛 =

103

= 𝒏𝒎

𝑖=0

𝑚

𝑎𝑖 𝑛𝑖−𝒎

≤

𝑖=0

𝑚

𝒂𝒊 𝑛𝑖

𝑖=0

𝑚

𝑎𝑖 𝑛
𝑖

≤ 𝑛𝑚

𝑖=0

𝑚

𝑎𝑖 ,for 𝑛 ≥ 1

Big O Hierarchy

• O(n!) factorial

• O(2n) exponential

• O(nk)

• …

• O(n3) cubic

• O(n2) quadratic

• O(nlog(n)) log-linear

• O(n) linear

• O(n0.5) sub-linear

• O(log(n)) logarithm

• O(1) constant
104

n!
exp.

cubic

…
const.

quadratic

O(n2) algorithms/problems
are also O(n3) ones, and so on

• O(1) means that the execution time is
independent of problem size

• E.g., time for retrieving the kth entry
of an array (of size n) is O(1)

Many other classes are not listed here,
e.g., O(n1.5), O(loglog(n)), O(nlog2(n))…

Omega

• f(n) = Ω(g(n)) iff
• there exist positive constants c and n0

such that f(n) ≥ c∙g(n) for all n, n≥n0

• Example
• n+1 = Ω(n), n+1 ≥ 1 ∙n ∀ n≥1
• n+1000 = Ω(n), n+1000 ≥ 1∙n ∀ n≥1
• 1000n = Ω(n), 1000n ≥ 1000∙n ∀ n≥1
• 1000n+1000 = Ω(n), 1000n+1000 ≥ 1000∙n ∀ n≥1
• log(n)+1 = Ω(log(n)), log(n)+1 ≥ 1∙log(n) ∀ n≥10

105

such that f(n) c g(n) for all n, n n0

Compare with Big O

Omega (Cont’d)

• More examples
• 2n2+3n+4 = Ω(n2),

• 2n2+3n+4 = Ω(n1.9),

• 2n2+3n+4 = Ω(n),

• 2n2+3n+4 = Ω (1),

• 2n2+3n+4 ≠ Ω(n2.1),

• Theorem 1.3
• 𝑓 𝑛 = 𝑎𝑚𝒏𝒎 + … + 𝑎1𝑛 + 𝑎0 , 𝑎𝑚 > 0
⟹ 𝑓(𝑛) = 𝛀(𝒏𝒎)

106

Theta

• f(n) = Θ(g(n)) iff
• there exist positive constants c1, c2 and n0

such that c1∙g(n) ≤ f(n) ≤ c2∙g(n) for all n, n≥n0

• i.e., f(n) is O(g(n)) and Ω(g(n))

• Example
• n+1 = Θ(n), 1 ∙n ≤ n+1 ≤ 2 ∙n ∀ n≥1
• n+1000 = Θ(n), 1∙n ≤ n+1000 ≤ 1001∙n ∀ n≥1
• 1000n = Θ(n), 1000∙n ≤ 1000n ≤ 1000∙n ∀ n≥1
• 1000n+1000 = Θ(n), 1000∙n ≤ 1000n+1000 ≤ 2000∙n ∀ n≥1
• log(n)+1 = Θ(log(n)), 1∙log(n) ≤ log(n)+1 ≤ 2∙log(n) ∀ n≥10

• Theorem 1.4
• 𝑓 𝑛 = 𝑎𝑚𝒏𝒎 + … + 𝑎1𝑛 + 𝑎0 , 𝑎𝑚 > 0
⟹𝑓(𝑛) = 𝚯(𝒏𝒎)

107

Step Counting — Asymptotic Notation

108

float sum (float *a, const int n) s/e freq. subtotal
{ 0
float s = 0; 1 Θ(1) Θ(1)
for (int i = 0; i < n; i++) 1 Θ(n) Θ(n)

s += a[i]; 1 Θ(n) Θ(n)
return s; 1 Θ(1) Θ(1)

} 0
total: Θ(n)

s/e: number of steps per execution

Step Counting — Asymptotic Notation

109

(recursion of sum()) freq. subtotal
float Rsum (float *a, const int n) s/e n=0 n>0 n=0 n>0
{ 0

if (n <= 0) 1 Θ(1) Θ(1) Θ(1) Θ(1)
return 0; 1 Θ(1) 0 Θ(1) 0

else 0
return (Rsum(a, n-1) + a[n-1]); 1+t(n-1) 0 Θ(1) 0 Θ(1+t(n-1))

} 0
total Θ(1) Θ(1+t(n-1))

s/e: number of steps per execution

Step Counting — Asymptotic Notation

110

void MatAdd (int **a, int **b, int **c, int m, int n)

{
for (int i = 0; i < m; i++) Θ(m)

for (int j = 0; j < n; j++) Θ(mn)
c[i][j] = a[i][j] + b[i][j];

return;
}

total: Θ(mn)

Recursive Permutation Generator

111

void Permutations(int *a, const int k, const int m)
{
// one element between k and m means one possible permutation
if(k == m) {
for(int i=0; i<=m; i++)

cout << a[i] << " ";
cout << endl;
return;

}

for(int i=k; i<=m; i++) {
swap(a[k], a[i]);
Permutations(a, k+1, m);
swap(a[k], a[i]);

}
}

k==m
 Θ(t(k, m)) = Θ(m)

Θ(t(k, m)) =
(m-k+1)×Θ(t(k+1, m)) + Θ(1)

Θ(1) comes from the if statement

Recursive Permutation Generator

112

Solve the recurrence
Θ(t(k, m)) = (m-k+1)×Θ(t(k+1, m)) + Θ(1) Eq. (1)
Θ(t(m, m)) = Θ(m) Eq. (2)

Let k=0 and m=(n-1)
Θ(t(0, n-1)) = n × Θ(t(1, n-1)) + Θ(1)

= n × (n-1)×Θ(t(2, n-1)) + Θ(1) + Θ(1)
= …
= n × (n-1) × (n-2) … × 2 ×Θ(t(n-1, n-1)) + (n-1)×Θ(1)

= n! × Θ(t(n-1, n-1)) + Θ(n-1)
= n! × Θ(n-1) + Θ(n-1) … because of Eq. (2)
= Θ(n × n!)

n
-1

 e
q

u
at

io
n

s

n-1 terms

Binary Search

113

int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[0], … , a[n-1] for x

int left = 0, right = n-1;
while(left <= right)
{//there are more elements

int middle =(left+right)/2;
if(x<a[middle]) right=middle-1;
else if(x>a[middle]) left = middle+1;
else return middle;

}//end of while
return -1;

}

Θ(log(n))

Magic Square

114

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

= 65

= 65

= 65

= 65

= 65

= 6
5

= 6
5

= 6
5

= 6
5

= 6
5

Generate the Magic Square

115

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

Magic Square Algorithm

116

void magic (int n)
// create a magic square of size n, n is odd
{
const int MaxSize = 51; // maximum square size
int square[MaxSize][MaxSize], k, l;

// check correctness of n
if ((n > MaxSize) || (n < 1)) {
cerr << "Error!..n out of range \n";
eturn;

}else if (!(n%2)) {
cerr << "Error!..n is even \n";
return;

}
// n is odd. Coxeter's rule can be used
for (int i = 0; i < n; i++) // initialize square to 0

for (int j = 0; j < n; j++)
square[i][j] = 0;

square[0][(n-1)/2] = 1; // middle of first row
// please continue to the next slide…

Θ(1)

Θ(1)

Θ(n2)

Θ(1)

117

// i and j are current position
int key = 2; i = 0;
int j = (n-1)/2;
while (key <= n*n) {
// move up and left
if (i-1 < 0) k = n-1; else k = i-1;
if (j-1 < 0) l = n-1; else l = j-1;
if (square[k][l]) i = (i+1)%n;
else { // square[k][l] is unoccupied

i = k;
j = l;

}
square[i][j] = key;
key++;

} // end of while
// output the magic square
cout << "magic square of size " << n << endl;
for (i = 0; i < n; i++) {

for (j = 0; j < n; j++)
cout << square[i][j] << " ";

cout << endl;
}

}

Θ(1)

Θ(n2)

Θ(n2)

Θ(1)

Magic Square (Cont’d)

• We just show how can we quickly analyze the
complexity of an algorithm without knowing all the
details

• Θ(n2) is the optimal one we can achieve (in terms of
asymptotic complexity) to generate an n2 magic
square
• Since there are n2 positions the algorithm must place a

number

118

Practical Complexities

Prob. size n nlog(n) n2 n3 n4 2n

103 1 μs 10 μs 1 ms 1 s 17 min 3.2 x 10283 y

104 10 μs 130 μs 100 ms 17 m 116 d

105 0.1 ms 1.7 ms 10 s 12 d 3171 y

106 1 ms 20 ms 17 m 32 y 3 x 107 y

119

Assume a 1-billion-steps-per-second computer

Practice Complexity

120
n

t(n)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11

2n
n2

Performance Measurement

• Techniques
• Use time-related library functions

• gettimeofday()
• clock()
• time()

• Repeatedly measure a program to reduce noises
• Use randomized inputs to obtain best-case, average, and

worst-case execution time
• Prediction

• Regression (curve fitting)
• Interpolation
• Extrapolation

• Please read Section 1.7.2 for details

121

Performance Measurement

• Benefits
• Provide actual execution time

• Limitations of asymptotic analysis
• For two programs that are both O(n2) time complexity

• We cannot tell which is faster

• For one program that is O(n) and the other is O(n2)
• The O(n) one can be slower for a practical size of n

122

Alan Turing

• One of the greatest computer scientists and
computational theorists
• Complexity analysis is part of computational theory

• Often called the father of modern computing

• Some famous things
• Turing award

• Nobel Prize of computing

• Turing machine
• Theoretical computer model
• http://www.google.com/doodles/alan-turings-100th-birthday

• Turing test
• Test of a computer’s ability to exhibit behavior equivalent to

human

123

Alan Turing (Cont’d)

• The Imitation Game
• A movie about Alan Turing

trying to crack the enigma
code during World War II

• IMDB 8.2

124

Complexity of Learning DS

• Θ(1)
• Number of weeks in the semester

= 18 = Θ(1)

• Number of chapters covered in the semester
= 8 = Θ(1)

• Time(read these chapters twice)
= 2 × 8 × Timeread_one_chapter
= Θ(1)

125

