

Outline

* 1.1 Overview: System Life Cycle

* 1.2 Object-Oriented Design

* 1.3 Data Abstraction and Encapsulation

* (1.4 Basics of C++)

e 1.5 Algorithm Specification

* (1.6 Standard Template Library)

e 1.7 Performance Analysis and Measurement

System Life Cycle

* Five phases

(N

1. Requirements ReqU

. equirements
2. Analysis \ .)

3. Design Analysis
4. Refinement and coding \ ; y
5. Verification (Design)
[Refinement} 4 N

- Coding
o * :

Verification

Requirements

* Clarify problem specifications

()

* Input Requirements
* What are given \ T J
e Output (R
Analysis
 What must be produced N ;)
o . Design
* Initially vague - more precise .)
[Refinement} r g)\
— Coding
o * :
Verification

Analysis

* Break the problem down
* Into manageable pieces

 Also known as divide and
conquer

* Two approaches

1. Bottom-up (not good)
2. Top-down (better)

[Refinement}

(N

Requirements
N ;)
Analysis
v

Design

N
J

Coding
!

Verification

\ J/

Bottom-up Analysis

* |ssues
* Too early emphasis on implementing fine points
e Lack of prior planning and a big picture

e Risks and difficulties

- Resulting system can have many loosely connected and
error-ridden segments ®

- Unpractical for tackling large-scale, complex problem

Top-down Analysis

* Strategies

 Start from a high-level plan
* Breaking a problem down into manageable pieces

e Subsequently refining the plan
e Gradually taking into account low-level details

* Advantages
—>Necessary for tackling large-scale, complex problem

Risks of Bottom-Up

Difficulties of Bottom-Up

* Please imagine analyzing a smartphone
bottom-up

* Things become complicated

b Source

Substrate P

Benefits of Top-Down

* Now let’s alternatively analyze a smartphone top-
down

Case Processor

10

Design

* |dentify
* Data objects . §
* Operations pgrformed on.the qata types Requirements
«Implementation (Not decided in this phase) N ;
* Produce implementation-independent results (,
* Abstract data types \ Analysis)
e Algorithm specifications (v .
e Design
- Scheduling system for NTHU) ’
e Data objects [Refinement} r)
e Students T \ Coding |
 Name, ID, major, and phone # . ! .
: gssfgss?si)rs Verification

* Operations
* Inserting, removing, and searching

Coding and Refinement

* Decide implementation
* Representations for objects
* Algorithms for operations

(N

Requirements
. * J

Analysis

* Algorithm and object \ :)
representations affect the (Dot)
efficiency of each other et

* Design the algorithms that are [. J
. : : Refinement|)
independent of data objects first o Coding
_ * :
* Good design can absorb changes Verification

found in this stage easily \)

Verification

* Three techniques

1.
2.
3.

Correctness proofs
Testing
Debugging

Vs

~

Requirements
. J

v

Analysis

v

Design

A\ 4 \ 4

|

|

Correctness Testin .
Proofs g iInement
Debugging J

A 4

N

Coding

v

S

\

Verification

13

Verification (Cont'd)

e Correctness proofs
* Formal method
* Typically required for individual algorithm
* Not easily achievable for the whole program

Verification (Cont'd)

* Testing

* Run a program against possible inputs
* Check correctness
e Check performance (e.g., execution time)
* Coverage — a metric for assessing the completeness of
testing

e Testing inputs should be developed to cover as many
percentages of codes as possible

* E.g., all the cases within a switch statement should at least be
touched

* Debugging
e Removal of errors found

* Well-documented and well-structured program eases
debugging

15

Outline

* 1.1 Overview: System Life Cycle

* 1.2 Object-Oriented Design

* 1.3 Data Abstraction and Encapsulation

* (1.4 Basics of C++)

e 1.5 Algorithm Specification

* (1.6 Standard Template Library)

e 1.7 Performance Analysis and Measurement

16

Programming Paradigms

* Non-structured
e Structured

* Object-oriented

A 4

More disciplines are
imposed on programmers

Non-Structured Programming

e Characteristics
* Sequentially ordered commands
* Lines are numbered or labeled
* Unrestricted jump/branch to any line

* Pros

* Extremely skillful programmers can find tricky methods
to produce high performance or compact code

* Cons
* Encourage spaghetti codes
* Poor maintainability
 Difficult in building large programs (poor scalability)

Spaghetti Code

11014011
EA L LR 1]

expression was
negative, zero, or

positive.

RLTINR [VTRY]
fggiodod

C—w_ll
11 SUM99=SUMIB+TERM(N)
SUM100=SUM99+TERM (N+1)
_IF (SUM98-3.141592) 14 23,73
C+14 IF (SUM99-3.141592) 23,23,15
15 IF (SUM100-3.141592) 16,23,23
(416 AV89=(SUMIB+SUMI9) /2.
AV90=(SUMI9+SUM100) /2.
COMANS=(AV89+AV90) /2.
_—IF (COMANS-3.1415920) g“ig 1o
519 IF (COMANS-3.1415930) ;0 ;1 21
20 WRITE(%,26) — J
G007
{521 WRITE(%,27) CoMANS
22 STOP
WRITE (,25)
GO TO 22
25 FORMAT('ERROR IN MAGNITUDE OF SUM')
26 FORMAT('PROBLEM SOLVED')
27 FORMAT('PROBLEM UNSOLVED', F14.6)
FORMAT (I3, F14.6)
END

11910011
410107110
146011007
40018161

PROGRAM PI From Computer Desktop Encyclopedia :) — i
DIMENSION TERM(le@) @ 1992 The Computer Language Co. Inc. i FO.RTRAN. s three Way i

N=1 . arithmetic IF :

3 TERM(N)=((=1)%x(N+1))*(4./(2.%N-1.)) i !
Qﬂﬂ‘—’g i Jump to one of three
= = L ik \ locations in the ;
»7 SUMI8 = SUMIB+TERM(N) . program depending on |
WRITE (, , TERM(N Sl : :
N=N+1(* = i : the whether !

AT ETTTRR
riodadia

11310011
1010114
100110u1
LI NI |

10011091
oooidida1

a0 TO

11010011
olaioiin
11001
10101 <0

https://craftofcoding.wordpress.com/2013/10/07/what-is-spaghetti-code/ 19
http://www.quora.com/What-does-spaghetti-code-actually-look-like

Spaghetti Circuit

< Spaghetti circuit

J’ Clean circuit

AR B R TR ey & s [

T 3

s "
IS AT (R
? 2 "' ﬁx@

? What do you think the possible ;
) function of these circuits is?

http://www.quora.com/What-does-spaghetti-code-actually-look-like

ASDA
LONG LIFE

20

Structured Programming

e Basic structures

] N
(Statement ‘i TrIse Fa
: G I AE
1| Statement True

' : [Statement(s)] [Statement(s)] [Statement(s)]
| Statement |; | ['
LT I.______:_: |
Sequence Selection (or choice) Repetition (or looping)
If(condition) {...} else {...} While(condition) {...}

e All programs can be equivalently transformed to that
use only the above three structures without using goto

Structured Programming (Cont’d)

* Pros
e Easy to understand
* Easy to maintain
e Easy to analyze

* Pure structured languages strictly dis-allow
* goto
* break
* continue

Structured Programming (Cont’d)

 Compared with non-structured programming

* Structured programming restricts programmers'
freedom

e Structured programming prevent spaghetti codes

e Structured programming does not change
programmability

* What problem non-structured programming can solve can also
be done using structured programming (and vice versa)

Structured Programming (Cont’d)

e C and C++ are structured
languages but NOT pure
ones

e goto, break, continue
statements are allowed

* goto statement is
notorious but not always
bad

* See the example on the
right

Efor(x= ; X< ; X+)
for(y=0; y<1000; y++){
for(z=0; z< ; 2++){

if(g(x,y,2) >0\
cout << x<<“”
<ky<<“ <<z
goto END;

__

Code snippet for searching an integer
solution of g(x, vy, z)>0 in a brute force
way. In this example, it is convenient
to use goto to leave the nested loops.

Object-Oriented Programming

* Philosophy of divide-and-conquer is the same as
structured programming

* How a project should be decomposed is changed

* Decomposition methods

1. Algorithmic (functional) decomposition is used for the
structured programming method

2. Object-oriented decomposition is used for the object-
oriented programming method

Algorithmic/Functional
Decomposition

* Used by structured programming
* View software as a process

* Decompose software into modules that represent
steps of the process
* In C, the modules are implemented by functions

* Compute-centric perspective
e Data structures are a secondary concern

Object-Oriented (OO) Decomposition

* Used by object-oriented programming

* View software as a set of well-defined objects

* Objects model entities in the application domain

e e.g., students, courses, and teachers in a course scheduling
system

* Objects interact with one another

* Algorithmic or functional decomposition is
addressed after the system has been decomposed
into objects

OO Decomposition (cont'd)

* Pros

* Encourage the reuse of software

e Software becomes more flexible that can evolve as
requirements change

* More intuitive because objects naturally model entities
in the application domain

Definitions

* Object
* Entity that has a local state and performs computations
* i.e., a combination of data and operations

* Object-oriented programming
* Method of implementation in which ...

* Objects are the fundamental building blocks
* Each object is an instance of some type (or class)
* Classes are related to each other by inheritance relationships

Definitions

* A language is said to be an object-oriented
language if
* |t supports objects
* It requires objects to belong to a class
* |t support inheritance

* A language is said to be merely an object-based
language if it supports the first two features but
does not support inheritance

Evolution of Programming

* Four generations of higher level languages
* FORTRAN, etc.
 Salient feature of evaluating mathematical expression

e C, Pascal, etc.
* Emphasis on effectively expressing algorithm

 Modula, etc.
* Introduce of the concept of abstract data types (ADT)

* Smalltalk, Objective C, C++, etc.
* Emphasis on inheritance between ADTs

Outline

* 1.1 Overview: System Life Cycle

* 1.2 Object-Oriented Design

* 1.3 Data Abstraction and Encapsulation

* (1.4 Basics of C++)

e 1.5 Algorithm Specification

* (1.6 Standard Template Library)

* 1.7 Performance Analysis and Measurement

32

Definition

» Data Encapsulation (or Information Hiding) (7<)

* Conceal the implementation details of a data object
form the outside world

» Data Abstraction (12 1E)

» Separation between the specification of a data object
and its implementation

33

DVD Player Analogy

* Encapsulation —the
buttons and remote
control

* The only interfaces exposed
to users

* Hide and protect internal
(vulnerable, dangerous, and

proprietary) design from
users

e Abstraction — the user
manual

* Only specify what the
function of each button is

* How the player achieve the
function is not mentioned
nor restricted

34

Definition

* Data Type

* objects
+
operations on the objects

e Abstract Data Type (ADT)

4 A\
* Object Specification
* Operation Specification

. Representation

Implementation

35

Data Types in C++

* Predefined (built-in) * Derived types

types * Pointer (*)
e Reference (&)

 Fundamental types
* Aggregate types

e char
. int * Arrays
. float struct
. double * class
* Modifiers * User-defined types
e short e struct
* long * class
* signed

* unsigned

ADT Example: NaturalNumber

ADT NaturalNumber is
objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on
the computer.

functions:

for all x, y € NaturalNumber; true, false € Boolean

and where +, -, <, ==, = are the usual integer operations

Zero (): NaturalNumber =0

IsZero (x): Boolean .= if (x ==0) IsZero = true
else IsZero = false

Add (x, y): NaturalNumber = if (x+y <= MAXINT) Add =x +vy
else Add = MAXINT

Equal (x, y): Boolean .= if (x ==vy) Equal = true

else Equal = false

Successor (x): NaturalNumber .= if (x == MAXINT) Successor = x
else Successor = x +1

Substract (x, y): NaturalNumber = if (x<vy) Substract =0
else Substract =x—y

end NaturalNumber

ADT Example: NaturalNumber

objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on

the computer.

functions specification:

Zero ()

IsZero (x)

Add (x, y)

Equal (x,)

Successor (x)

Substract (x, y)

NaturalNumber

Boolean

NaturalNumber

Boolean

NaturalNumber

NaturalNumber

0
if (x==0)

return true
else
return false

if (x+y <= MAXINT) return x +y
else return MAXINT

if (x ==y) return true
else return false

if (x == MAXINT) return x
else return (x+1)

if (x<vy) return 0
else return (x-y)

Advantages of Encapsulation and
Abstraction

1. Simplify software development

s W N

Ease testing and debugging
Enable reusability

Support modifications to the representation of a
data type

39

Comparing Two Scenarios

* Consider developing a course scheduling program
for NTHU

* One can either adopt ADTs or directly dive into coding

ADTs are identified VS. A monolithic program

) h

ADT Teachers

Searching a course
Deleting a course

Adding a course

Glue

L Y

ADT Courses ADT Students

Simplify Software Development

* With encapsulation and abstraction
* If we have four programmers)

* They can parallelly workon T, S, C, and T ‘ S
Glue

* No one need to know how another one
implement their portion of code

* More concentration and less
interference (especially when the
project is large)

* |f we have only one programmer
e FocusonT,S, C, and Glue one at a time
* Less things need to be kept in mind

Glue

J

Testing and Debugging

* With encapsulation and abstraction

* T, S, C, and Glue can be individually
tested and debugged
» Testing efforts are T(T) + T(S) + T(C) +
T(Glue) < T(T+S+C+Glue)
 Assume we are confident that some
portions, e.g., T, S, and C, are good,
but a bug exists...
= The remainder, i.e., Glue, has the bug

* Assume we notice the bug is related
to a specific operation on a data type,
say mistakenly deleting a course...

* - The bug resides in the corresponding
objects and operations

Reusability

 When we (or other people) develop
* Textbook ordering program

* Dorm allocation program

* NTHU-NCTU tournament program

s
X

4)

\. Glue)

-

s
N

_ Glue

v

Glue

il

J

-~

/

N

2}
i

Glue

s
2

~
/

Modifications

* ADTs lead to information hiding
* Implementation of a data type is

invisible to users and the rest of '
the program

* Ease changing (e.g., upgrade) a
data type without rewriting the

entire program or affecting any
users

e Allow us to start from a quick
implementation then
progressively refine the program

e Even if we need to modify the
interface of a data type
* We can systematically identify

the required modifications to the
other parts

Overhead of Adopting ADT

e Execution time overhead
* Accessing data through interfacing operations is potentially
slower than directly accessing them
* Memory space overhead
* Every object maintains a table specifying its operations

* Coding is more tedious

* Therefore, C (not C++) is still widely used for
programming the following things
* Operating systems
* Performance sensitive systems
* Resource constrained systems

Outline

e 1.1 Overview: System Life Cycle

* 1.2 Object-Oriented Design

e 1.3 Data Abstraction and Encapsulation

* (1.4 Basics of C++)

* 1.5 Algorithm Specification

* (1.6 Standard Template Library)

* 1.7 Performance Analysis and Measurement

46

Algorithm

* Criteria of an algorithm

* Exampling algorithms
* Selection sort
* Binary search

e Recursion
e Selection sort

* Binary search
* Permutation

47

Algorithm (Definition)

* A finite set of instructions with the following properites
* [nput
* Read zero or more quantities
Output
* Produce one or more quantities
Correctness
* Accomplishes a particular task for all possible inputs
Definiteness
e Each instruction is unambiguous

Effectiveness
* Each instruction is basic enough

Finiteness
e Terminates after a finite number steps for all possible inputs

Algorithms vs. Programs

* (From computational theorists’ perspective)

* Unlike an algorithm, a program needs not always
satisfy “finiteness”

* Kernel of an operating system is an infinite loop
e Continuously wait until more tasks are entered
* Continuously dispatch available tasks

49

Algorithms vs. Programs (Cont’d)

)) Which program(s) can always terminate in a finite |

' number of steps? '

. Testing whether any given number is a prime

. Calculating 10000! (i.e, factorial(10000))

. Displaying all prime numbers |

Deciphering an RSA-encoded message without knowing

the private key

5. Testing whether an arbitrary program terminates in a
finite number of steps

> W NP

__

Algorithms vs. Programs (Cont’d)

* Primality test

* Even with the brutal force method, it can terminate in a
finite number step

 Calculating factorial(10000)

* Factorial(10000) is an astronomical figure (AX EF)
though, it involves a finite number of digits. So the
program can terminate in a finite number step

* Displaying all prime numbers

* Since there are infinitely many primes, this program
never terminates

10000 Factorial

10000 factorial is 35,659 digits long. Here it is:

2846259680917054518906413212119868890148051401702799230794179994274411
3400037644437729907867577847758158840621423175288300423399401535187390
5242116138271617481982419982759241828925978789812425312059465996259867
0656016157203603239792632873671705574197596209947972034615369811989709
2611277500484198845410475544642442136573303076703628825803548967461117
0973695786036701910715127305872810411586405612811653853259684258259955
8468814643042558983664931705925171720427659740744613340005419405246230
3436869154059404066227828248371512038322178644627183822923899638992827
2218797024593876938030946273322925705554596900278752822425443480211275
5901916942542902891690721909708369053987374745248337289952180236328274
1217040268086769210451555840567172555372015852132829034279989818449313
6106403814893044996215999993596708929801903369984844046654192362584249
4716317896119204123310826865107135451684554093603300960721034694437798
2349430780626069422302681885227592057029230843126188497606560742586279
4488271559568315334405344254466484168945804257094616736131876052349822
8632645292152942347987060334429073715868849917893258069148316885425195
6006172372636323974420786924642956012306288720122652952964091508301336
6309827338063539729015065818225742954758943997651138655412081257886837
0423920876448476156900126488927159070630640966162803878404448519164379
0807186112370622133415415065991843875961023926713276546986163657706626

http://gimbo.org.uk/texts/ten_thousand factorial.txt

http://gimbo.org.uk/texts/ten_thousand_factorial.txt

Algorithms vs. Programs (Cont’d)

?) * Breaking RSA

* This problem corresponds to factorization (& K &7 ##)
* Factorization is feasible in a finite number of steps

* RSA is based on the belief (not proof) that factoring large

integers (particularly that with exactly two huge prime factors)
is difficult (i.e., takes unreasonably long time)

* E.g., thousands of years with a GHz computer
e Conspiracy theory (PF2:E @)

* Since the proof is unavailable nowadays, some people oppositely
believe that some countries have efficient ways to do factorization!!

* Interested students may want to take a Cryptography
class

Algorithms vs. Programs (Cont’d)

2 - Testing whether an arbitrary program (with an
input) terminates in a finite number of steps

* Very useful tool to check whether our program contain
bugs that lead to infinite looping

* Discussions on this problem is out of the scope of this
course

* Interested students may want to
* Google “halting problem”
* Take a Computational Theory class

Halting Problem Explanations

* Barber paradox (F2EEM|Z)

* A barber shaves all, and only, people who do not shave
themselves

* Who shaves the barber?

* Halting problem paradox

* Program has difficulty in testing whether another
program derived from itself terminates or not

Halting Problem Explanations

e Suppose someone claims
* Terminate(program, input) = true if the program(input) terminates
* Terminate(program, input) = false if the program(input) does not
terminate

* You can develop a counterexample program

void f(program)
{
if(Terminate(program, program) == true)
for(;;); // do not terminate
else
return;

¥

* What is the answer of Terminate(f, f)
* Terminate(f, f)=true > f(f) should terminate, but actually it doesn't

. 'é'erminate(f, f)=false = f(f) should not terminate, but it actually
oes

Describing Algorithms

* Many allowable ways
* Programming languages (e.g., C++)
* Natural languages
* Must assure definiteness and effectiveness
* Pseudocode (e.g., combining C, C++, and English)

* Less language-dependent
* More flexibility

* Graphic representations (i.e., flowcharts)
* Typically for small and simple algorithms only

Algorithm Specification

* Examples
* Selection sort
* Binary search
* Permutation generator

* Focuses
* Inputs and outputs
e Clear and basic-enough instructions
* Finiteness and correctness proofs

Selection Sort (Algorithm)

* Input
* A collection of n integers, n=1

* Output
e A collection of n integers

* Instructions (in pseudocode)

void SelectionSort(int *a, const int n)
{ //Sort the n integers a[@] to a[n-1] into non-decreasing order.
for(int i=0; i<n; i++) {
exam a[i] to a[n-1] and suppose the smallest one is at a[j];
interchange a[i] and a[j];

59

Selection Sort — C++

void SelectionSort(int *a, const int n)
{ // Sort the n integers a[@] to a[n-1] into
// non-decreasing order.
for(int i=0; i<n; i++)

{
int j=i;
//find the smallest integer in a[i] to a[n-1]
for(int k = i+1; k<n; k++)
if(a[k] < a[j]) 7 = k;
swap(al[i], a[3]); |
} void swap(int & i, int & j)

} { '
int temp = i; Passed by
i=7; reference
J = temp;

Illustration

Selection Sort — Proof

* At the end of loop q (i=q)

alg]<alr],g+1 <r<n-1. 'void SelectionSort(int a[], const int
* When i becomes greater than q, :{ // Sort the n integers into
al0] ... a[q] is unchanged. /] non-decreasing order.
* Hence, after the lines are executed | for(int i=0; in; i+)
for n-1times (i.e,0<i<n-2),the | {
following n-1 inequalities hold g Int j=1; | |
« a[0]<a[r], 1<r<n-1 | //find the smallest integer in
. : for(int k = i+1; k<n; k++)
 a[n-3]<alr], n-2<r<n-1 i if(alk] < a[3]) J = k;
 a[n-2]<alr], n-1<r<n-1 \ swap(a[i], a[3]);

* a[0] ... a[n-1] is unchanged for the i}
last iteration (i.e., i = n-1) =

 Combining these inequalities leads
to a[0]<a[l]< ... £a[n-2]<a[n-1]

Binary Search

* Input

* n=1 distinct integers that are already sorted and stored
in the array a[0] ... a[n-1]

* Integer x

* Output
* If xis present in the array, produce j such that x == a[j]
* Otherwise, produce -1

Binary Search — Pseudocode

void BinarySearch(int *a, const int x, const int n)
{ // Search the sorted array a[@], .. , a[n-1] for x
// Lleft and right are set to the two ends of al[]

while(there’re elements between the two ends)

{
Let middle be the middle element;
if(x < a[middle]) set right to middle-1;
else if(x > a[middle]) set Lleft to middle+1;
else return middle;

}

Not found;

}

64

Binary Search — C++

int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[@]..a[n-1] for x
int left = @, right = n-1;
while(left <= right)
{//there are more elements
int middle =(left+right)/2;

if(x < a[middle]) right=middle-1;
else if(x > a[middle]) left = middle+1;
else return middle;

}//end of while
return -1;

65

Binary Search — lllustration

Search a number,

25, in a sorted array of boxes

37

20

T

o[

Left ®Right
66

Recursion

e Definition
* Functions that invoke (F0U ~ £ /) themselves
* Directly or Indirectly through other functions

e Recursion is powerful
e Divide and conquer
e Method of induction (B8 41;%)

e Can simplify the expression of an otherwise complex
process

Recursion (Cont’d)

e Recursion is particular useful for
e Factorial (P& 3F)
* Binomial coefficients
* Binary search
* Problems that are recursively defined

e Recursion is not limited to the above tasks

* Recursion can simulate looping
(Looping can simulate recursion, too)

e Recursion tends to be (B%&E{E[o) - {EAZ4EEY) slower than
looping
* Because function invocation typically incurs longer latency
than loop branches

Develop Recursion

* Key components

* Driver
* Invoke the first workhorse

* Workhorse(s)

* Self-similar piece of the
algorithm

e Termination condition(s)

* Determine whether no more
progress needs be made

* If a workhorse fails to check
termination conditions, the
program can never end

* Make some progress

* |f nothing changes before the
workhorse is again invoked,
the program can never end

Driver()

{

workhorse();

}

many

lonce

workhorse()
{
if(termination conditions) {
return void or something;

} else {
Make some progress; j
invoke child workhorse(s); =
(Make more progress;)

}

Recursive Selection Sort

e Thisis an exampling

void SelectionSort(int a[], const int n) recursive algorithm

{ . derived from an non-
{/ l-entry array does not need sorting e are. [T
if(n==1) return; . " example, recursion is

Termination condition :
. . easier to understand
int j=0;

but likely performs
slower than the non-
recursive one.

/* find the smallest in the received
array and place it at the first */
for(int k = 9; k<n; k++)

if(alk] < a[j]) 3 = k;

swap(a[@], a[j]);
Create a new workhorse

to sort the remaining n-1
} elements

SelectionSort(a+l, n-1); //recursion

70

Recursive Binary Search

int BinarySearch(int a[], const int x, const int left, const int right)

{
// no entries to search T inati diti
if(left>right) return -1; ermination condition

int middle = (left+right)/2;

if(x<a[middle]) return BinarySearch(a, x, left, middle-1);
else if(x>a[middle]) return BinarySearch(a, x, middle+1l, right);

else return middle;
} N

Create a new workhorse to
search the half that possibly

contain the target

71

Permutation Generator

* Input
 Aset of n>1 elements

* Output
* Print all n! possible permutations of this set

* Example

* Permutations of (a, b, c)
* (a, b,), (a,cb),
(b, a, c), (b, ¢, a),
(c,a, b), (c, b, a)

Permutation Generator
— Observation

* Permutations of (a, b, ¢, d) can be constructed by
» ‘a’ followed by all permutations of (b, c, d)
* ‘b’ followed by all permutations of (a, c, d)
« ‘¢’ followed by all permutations of (a, b, d)

e ‘d’ followed by all permutations of (a, b, c)

* Clue to adopt recursion

* Solve an n-element problem based on the results of an (n-1)-
element problem

Recursive Permutation Generator

void Permutations(int a[], const int k, const int m)

{ if(k == m) { zTermination condition

for(int i=0; i<=m; i++) cout << a[i] << " ";
cout << endl;
return;

} Note that this loop can invoke
Permutatinos() multiple times

for(int i=k; i<=m; i++) {
swap(a[k], a[i]); //enumerate all possible elements at a[k]
Permutations(a, k+1, m); // a workhorse to handle the rest
swap(a[k], a[i]); //restore the element

}
}

It is a bit hard (but still feasible) to transform
this algorithm into an non-recursion version |

74

Outline

e 1.1 Overview: System Life Cycle

* 1.2 Object-Oriented Design

* 1.3 Data Abstraction and Encapsulation

* (1.4 Basics of C++)

e 1.5 Algorithm Specification

* (1.6 Standard Template Library)

e 1.7 Performance Analysis and Measurement

75

Complexity

* Time complexity
 Amount of execution time a program needs to solve a
problem
* Space complexity

 Amount of memory space a program needs to solve a
problem

* We want to find complexity as a function of
problem size

* Problem size = the total amount of input information

Space Complexity

* Memory space breakdown
* Problem size-dependent part
 Variables whose size/number depends on problem size
* Fixed part
e Space for storing the program
* Fixed amount of variables during computation

* Read-only space for Inputs
* Write-only space for outputs

 We shall concentrate on the Problem size-
dependent part

Space Complexity (Cont’d)

float abc (float a, float b, float c)
{

}

return a+b+b*c+(a+b-c)/(a+b);

 a,b,and careread-only
inputs

* A fixed amount of space
is required to do the

L computation

T — Problem size-dependent

partis O

float sum (float *a, const int n)
{
float s = 0;
for (int i = 0; i < n; i++)
s += a[i];
return s;

}

™, amount of space

e a[0]...a[n-1] are read-
only inputs

* Float * a, const int n,
float s, inti, etc.

consume a fixed

-

™. = Problem size-dependent
 partis 0

L g

Space Complexity ~ |* allelntlerereadonly

inputs
/¢ float *aandintn (and
' other variables local to

float Rsum (float *a, const int n)

{ , Rsum()) consume a fixed
if (n <=0)
amount of space for each
return O;)
else execution of Rsum though,

Rsum is called n+1 times.

return (Rsum(a, n-1) + a[n-1]); * Variable part is c¢(n+1)

} where c is a constant, say
c=4
a[ol]nf:[ts_l] Rsum(a, 90){ / Rsum(a, 89){ / Rsum(a, O){
| Rsum(a,89); Rsum(a,88); |
output «— } } \ }
R R R
al(n||.]]. al(n||..[[.. al(n||..]].
\ ~ /

Variables whose number depends on the problem size

Time Complexity

* Time consumption breakdown
* Execution time
* Compile time

* Execution time is important
* Problem size, n,T = execution time, tp(n), ™

* Compile time is less important
* Independent of problem size, n
* Only present for the first execution

Methods to Derive Execution Time

e Derive the exact formula
e tp(n) = c,ADD(n) + c.SUB(n) + ¢, MUL(n) + ---

* Almost impossible to obtain such a formula
* Step counts

* Asymptotic notation (E#T3<7~)%) of step counts

* Real system measurement

Step Count

* Definition of a step

* A segment of program whose execution time is independent
of problem size

* Example of a step

* One addition - a step
* One multiplication - a step
« 1000 additions - a step
* 1000 multiplications - a step

r=a+b+b*c+(a+b-c)/(a+b)+4.0 > astep

* The following one is NOT a step
* n additions, where n is the size of the input array

Zero-Step Program Segments

* Comments
* // this is binary search
o /*thisis
* selection sort
*/
* Declarative statements of variables and functions
* int a;
 float b, c, d;
* int max(a, b);

 Brackets
* {
* }

Single-Step Program Segments

e Assignments and expressions
* inta=10;
e b=0.1;
e c=a+b*d;
Control statements of loops
e for(int i=0; i<n; i++)
* while(j<n)
e do ... while(1)

Function independent of problem size
* a=max(b, c)

Conditional statements
 if(a>10)

Unconditional branches
* goto, break, continue, return

Those May Depend on Problem Size

* Object/variable construction
* int *a = new int[size(input)];
* Function execution
e MatrixAdd(a, b, c); // adding two matrixes

* Parameter passing

e Passing an object whose size depends on problem size
e Statements that involve the above events

* int a =sum(a, n);

e if(search(a, x, n) == true)

Methods of Obtaining Step Count

* Instrumentation
* Introduce a new global variable count
* Initialize count to zero
* Add statements to increment count for each step
* Report count

e Table analysis
* List the step count of each program segment
* List the frequency of each program segment
 Summarize the total step count

Step Counting — Example 1

float sum (float *a, const int n)
{
float s = 0O;
for (int 1 = 0; i < n; i++)
s += a[i];
return s;

}

Step Counting Using Instrumentation

float sum (float *a, const int n)

{

float s = 9O;
count++; // count 1s global
for (int 1 =0; 1 < n; i++) {
count++; // for loop
s += a[i];
count++; // assignment
}
count++; // last time of for
count++; // return
return s;

—\Simpliﬁed version

void sum (float *a, const int n)

{

for (int i =
count+=2;

}

count+=3;

return;

O; 1 < n; i++) {

38

Step Counting Using a Table

float sum (float *a, const int n)
{
float s = 0;
for (int 1 = 0; 1 < n; i++)
s += a[i];

return s;

s/fe freq. subtotal

0)
1 1 1
1 n+l n+l
1 n n
1 1 1
0)
total: 2n+3

s/e: steps per execution

T
21
-
-7 1
g
_d
=
g
-

.............

The frequency of executing
the control statement is one
time more than that of the
loop body.

Step Counting — Example 2

float Rsum
{
if (n <=
return
else
return

(float *a, const int n)

0)
0;

(Rsum(a, n-1) + a[n-1]);

e Recursion

Step Counting — Instrumentation

float Rsum (float *a, const int n)
{
count++; // if conditional
if (n <= 0) {
count++; // return statement
return 0;
} else {
count++; // return statement
return (Rsum(a, n-1) + a[n-1]);
}
}

| count is a global variable and will be

~—-4 incremented throughout the entire recurrent
™ computation.

91

Step Counting — Table

freq. subtotal
float Rsum (float *a, const int n) s/e n=0 n>0 n=0 n>0
{ 0
if (n <= 0) 1 1 1 1 1
return O; 1 1 0 1 0
else 0
return (Rsum(a, n-1) + a[n-1]); 1+t(n-1) O 1 0 1+t(n-1)
} 0

s/e: steps per execution A N
Recurrence relations:

_12+th—-1),n>0
A= { 2,0therwise

Solving Recurrence

* Technique
e Repeatedly substituting

ctin) =2+tn—-1)
=24+2+tn—2)
=24+2+-+2+t(0)
= 2n+ t(0)
=2n + 2

Step Counting — Example 3

void MatAdd (int **a, int **b, int **c, int m, int n)

{

for (int 1 = 0; 1 < m; i++) { o
for (int j = @; j < n; j++) { ™ Program containing nested
c[i][3]1 = a[il[3] + b[il[3]; |loops
} |
}
return;

Step Counting — Instrumentation

void MatAdd (int **a, int **b, int **c, int m, int n)
{
for (int 1 =0; 1 < m; i++) {
count++; // for loop i
for (int j = 0; j < n; j++) {
count++; // for loop j
c[i][j] = a[i][j] + b[i][]];
count++; // assignment

}

count++; // last time of for loop j

}

count++; // last time of for 1
count++; // return statement

return;

~
LN
~~
~
) ~~o
~-
~~
~
~

............

The textbook omits the return

95

Step Counting — Table

void MatAdd (int **a, int **b, int **c, int m, int n)

s/e freq. subtotal
{ 0
for (inti=0;i<m; i++) 1 m+1 m+1
for (int j=0;j<n;j++) 1 m(n+1) mn+m
clillj] = alillj] + b[i]lj]; 1 mn mn
return; 1 1 1
} . 0

total: 2mn+2m+2

— The textbook omits the return

~,
.,
~
~
~
~
S
(P ———

We are allowed to use more
than one variables to describe
problem size

Step Counting — Example 4

void fibonacci (int n) //compute the Fibonacci number F[n]

{
if (n <= 1) //steps=1

cout << n << endl; // F[@] = 0@ and F[1] =1 //steps=1

else { // compute F[n]
int fn; int fnm2 = @; int fnml = 1; // steps =2
for (int i = 2; i<=n; i++) { //Stepszn
fn = fnml + fnm2;

fnm2 = fnml; // steps = 3(n-1)
fnml = fn;
} // end of for // steps =1

cout << fn << endl; //steps=1
} // end of else

return; // steps =1 Ifn>1
} // end of fibonacci ’

=4n+2
Otherwise, t(n) = 1+1+1 =3

tin) =1+2+n+3(n-1)+1+1+1

Inexactness of Step Count

* We cannot know which following program exhibits
the shortest execution time for the same problem

size
. tl(n) - n+1 Smc_e the notlc?n of a_step is
\ (deliberately) imprecise
* t,(n) =n+1000 One multiplications = 1 step
N t3(n) = 1000n 100 multiplications = 1 step

* t,(n) = 1000n+1000

~
DO
N, SS
~.
~d)

* But we know the execution time of these programs
linearly increases with problem size

Motivation of Asymptotic Notation

* We also know the fifth program exhibits the shortest
execution time once the problem size, n, is large
enough

* t,(n) =n+l N

* t,(n) = n+1000 | |

. t3(n) =1000n > Llnearly INncrease

* t,(n) =1000n+1000)

* t5(n) = log(n)+1 } Logarithmically increase

* Asymptotic Notations are introduce to emphasize
* Trend that step count increases with problem size
* Classification of problems/algorithms based on the trend

Asymptotic Notations (O, Q, O)

O BigO Upper bound

©® Theta Tight bound (i.e., both an upper bound and
lower bound)

QQ Omega Lower bound

* “f(n) = O(n)” reads as + “Big” O > Upper
* “fof nis big O of n” . “@” > A hyphen
* We can alternatively say in the middle
“f(n) € O(n)” - tight bound

e “f of n belongs to big O of n”

Big O (Cont’d)

° f(n) = O(g(n)) Iff _.r_—_—_-::::::_‘_’_': “iff” means “if and only if” (“&”)

* there exist positive constants c and n,
such that f(n) < c-g(n) for all n, n=n,

-~
~~o
~~
~~
S~
~~o
~~o
~~o,

...................

“<” suggests that c-g(n) is an upper bound of f(n)

“V” means “for all”

* Example | |
* n+l =0(n), n+l1<2-n Vn=1
* n+1000 =0(n), n+1000 < 1001:n V n=1
* 1000n =0(n), 1000n < 1000-n Vn=l1
+ 1000n+1000 = O(n), 1000n+1000 < 2000-n V n>1

* log(n)+1 = O(log(n)), log(n)+1 < 2-log(n) vV n=10

Big O (Cont’d)

* More examples
* 2n%+3n+4 = 0(n?), 2n%+3n+4 < 9:-n? Vn=>1
2n%+3n+4 = 0(n?), 2n%+3n+4 < 90 n? VY n= 40

We may have an infinite number of ¢
and nO satisfying the inequality.

* 2n’+3n+4 =0(n*?), o ' Since by definition, Big O does not
* 2n?+3n+4 =0(n3), » ™y . need to be a tight bound, we may
e 2n2+3n+4 = 0(n%), : ' have infinite number of g(n)

| satisfying the inequality.

2n%+3n+4 #+ 0(n*?),

Big O of a Polynomial Function

* Theorem 1.2

* f(n) =a,n™ + ... + an + a,
= f(n) = 0(n™)

Big O Hierarchy exp.

cubic
e O(n!) factorial
 O(2") exponential
e O(nk) .
guadratic
) _ const.
* O(n3) cubic 7 %
o O(nZ) quadratic O(n?) algorithms/problems
are also O(n3) ones, and so on

* O(nlog(n)) log-linear

e

. el Many other classes are not listed here,
° O(n) linear e.g., O(n'>), O(loglog(n)), O(nlog?(n))...

° 0.5 _h
O(n) sub-linear * 0(1) means that the execution time is

. O(Iog(n)) logarithm independent of problem size
,,,,,,,,,, * E.g., time for retrieving the k" entry
° 0(1) constant ‘ of an array (of size n) is O(1)

Omega
+ f(n) = Q(g(n)) iff

* there exist positive constants c and n,
such that f(n) = ¢-g(n) for all n, n=n,

I Compare with Big O

* Example
* n+l =Q(n), n+l>1-n V n=1
* n+1000 = Q(n), n+1000 > 1-n vV n>1
« 1000n = Q(n), 1000n > 1000-n vV n>1
* 1000n+1000 = Q(n), 1000n+1000 > 1000-n V n>1

log(n)+1 =Q(log(n)), log(n)+1 = 1-log(n) V n>10

Omega (Cont’d)

* More examples

e 2n2+3n+4 =Q(n?),

e 2n2+3n+4 = Q(n?),
* 2n2+3n+4 = Q(n),

e 2n2+3n+4 =Q(1),

e 2n24+3n+4 + Q(n21),

* Theorem 1.3

e f(m) =amn™ + ..+ an + a,, a,;, >0
= f(n) = Q™)

Theta
 f(n) = O(g(n)) iff

* there exist positive constants c,, ¢, and n,
such that ¢;-g(n) < f(n) < ¢,-g(n) for all n, n=n,

 i.e., f(n)is O(g(n)) and Q(g(n))

 Example
° n+l =0(n), l-n<ntl<2:-n Vn=1
* n+1000 =0(n), 1-n < n+1000 < 1001-n Vn=1
* 1000n = 0(n), 1000-n < 1000n < 1000-n V n>1
 1000n+1000 =6©(n), 1000-n < 1000n+1000 < 2000-n V n>1
* log(n)+1 = 0(log(n)), 1-log(n) < log(n)+1 < 2-log(n) vV n=10

e Theorem 1.4

s fn)=amn™ + ..+ an + q,, a >0
= f(n) = o(n™

Step Counting — Asymptotic Notation

float sum (float *a, const int n)
{
float s = 0;
for (inti=0;i<n;i++)
s += ali];
return s;

}

s/e freq. subtotal
0
1 ©O(1) 06(1)
1 ©(n) ©(n)
1 ©(n) ©(n)
1 ©O(1) 06(1)
0
total: O(n)

s/e: number of steps per execution

Step Counting — Asymptotic Notation

(recursion of sum()) freq. subtotal
float Rsum (float *a, const int n) s/e n=0 n>0 n=0 n>0
{ 0
if (n <=0) 1 ©(1) 6(1) 0o(1) o(1)
return O; 1 ©(1) O ©(1) O
else 0
return (Rsum(a, n-1) + a[n-1]); 1+t(n-1) O ©(1) O O(1+t(n-1))
} 0
total 0O(1) O(1+t(n-1))

s/e: number of steps per execution

Step Counting — Asymptotic Notation

void MatAdd (int **a, int **b, int **c, int m, int n)

{
for (inti=0;i<m;i++) ©(m)
for(int j=0;j<n;j++) T ©(mn)
clilljl = alillj] + blilljl;
return;

}
total: ©(mn)

Recursive Permutation Generator

void Permutations(int *a, const int k, const int m)

{

// one element between k and m means one possible permutation

if(k ==m) { N
for(int i=0; i<=m; i++)
cout << a[i] << " "; > ==m
cout << endl; -2 O(t(k, m)) = ©(m)
return;
} J

for(int i=k; i<=m; i++) { h
swap(a[k], a[il); : O(t(k, m)) =
Permutations(a, k+1, m); _
swap(alk], a[i]): (m-k+1)xO(t(k+1, m)) + O(1)

} J
} ©(1) comes from the if statement

111

Recursive Permutation Generator

Solve the recurrence

O(t(k, m)) = (m-k+1)xO(t(k+1, m)) + ©(1) Eq. (1)
O(t(m, m)) = ©(m) Eq. (2)
Let k=0 and m=(n-1) ~

O(t(0, n-1)) = n X O(t(1, n-1)) + ©(1)
=n X (n-1)X0(t(2, n-1)) + ©(1) + ©(1)

= n>< (n-1) X (n-2) ... X 2 XO(t(n-1, n-1)) + (n-1)><G)(1)/

Y

Y
n-1 equations

n-1 terms
=n! X O(t(n-1, n-1)) + ©(n-1)
=n! X O(n-1) + ©(n-1) ... because of Eqg. (2)

= 0O(n X nl!)

Binary Search

int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[@0], ..

int left = 0, right = n-1;

while(left <= right)

{//there are more elements

if(x<a[middle])

else return middle;
}//end of while
return -1;

int middle =(left+right)/2;

right=middle-1;

else if(x>a[middle]) left = middle+1;

, a[n-1] for x

N

- ©(log(n))

113

Magic Square

15 3 1 24 | 17
16 | 14 7 5 23
22 | 20 | 13 6 4
3 21 | 19 | 12 | 10
9 2 25 | 18 | 11

59

59

59

59

59

114

Generate the Magic Square

. NN
N S~
15 | 8 1 24\ 17\
™ AN
\\ l \\ ! N \
16 |14 | 7 5 23\
\\ AN \\l N
22 | 20 |13 | 6 4
AN AN N
IR
3 |21 (1719 | 12 | 10
NN N |\\
NN !
9 2 | 25 |18 1
NN
O N\

115

Magic Square Algorithm

void magic (int n)

// create a magic square of size n, n is odd

{
const int MaxSize = 51; // maximum square size o(1)
int square[MaxSize][MaxSize], k, 1;

// check correctness of n
if ((n > MaxSize) || (n < 1)) {
cerr << "Error!..n out of range \n";
eturn; > 0(1)
}else if (! (n%2)) {

cerr << "Error!..n is even \n";
return; ~

¥

// n is odd. Coxeter's rule can be used
for (int 1 = 0; i < n; i++) // initialize square to ©
for (int j = 0; j < n; j++)
square[i][]] = ©;
square[@][(n-1)/2] = 1; // middle of first row - @(1)
// please continue to the next slide..

} O(n?)

// 1 and j are current position

int key = 2; 1 = 0; }9(1)
int j = (n-1)/2;
while (key <= n*n) { h

// move up and left

if (i-1 < 9) k = n-1; else k = i-1;
if (j-1 <9) 1 =n-1; else 1l = j-1;
if (square[k][1]) 1 = (i+1)%n;
else { // square[k][1l] is unoccupied
i = k;
j = 1;

> 0O(n?)

}

square[i][]j] = key;

key++;

} // end of while J

// output the magic square

cout << "magic square of size " << n << endl; j> O(1)

for (1 =0; 1< n; i++) { B

for (j =0; j < n; j++)
cout << square[i][j] << " "; > O(n?)

cout << endl;

Magic Square (Cont’d)

* We just show how can we quickly analyze the
complexity of an algorithm without knowing all the
details

* O(n?) is the optimal one we can achieve (in terms of
asymptotic complexity) to generate an n? magic
square

* Since there are n? positions the algorithm must place a
number

Practical Complexities

Prob.size n nlog(n) n? n3 n* 2"
103 Ips 10ps 1ms 1s 17 min 3.2 x 10283y
104 10pus 130us 100ms 17 m 116 d

10° 0.lms 1.7ms 10s 12 d 3171y

106 Ims 20ms 17m 32y 3x107y

Assume a 1-billion-steps-per-second computer

Practice Complexity

1 2 3 4 5 6 7 8 9 10 11

120

Performance Measurement

* Techniques

e Use time-related library functions
» gettimeofday()
* clock()
* time()
* Repeatedly measure a program to reduce noises

e Use randomized inputs to obtain best-case, average, and
worst-case execution time
* Prediction
* Regression (curve fitting)
* Interpolation
* Extrapolation

e Please read Section 1.7.2 for details

Performance Measurement

e Benefits
* Provide actual execution time

* Limitations of asymptotic analysis
* For two programs that are both O(n?) time complexity
e We cannot tell which is faster

* For one program that is O(n) and the other is O(n?)
 The O(n) one can be slower for a practical size of n

Alan Turing

* One of the greatest computer scientists and
computational theorists

* Complexity analysis is part of computational theory
e Often called the father of modern computing
* Some famous things

Google ™™=
* Turing award { 111700 J
* Nobel Prize of computing »
* Turing machine /'

* Theoretical computer model
* http://www.google.com/doodles/alan-turings-100th-birthday
* Turing test

* Test of a computer’s ability to exhibit behavior equivalent to
human

123

Alan Turing (Cont’d)

S o
* The Imitation Game
* A movie about Alan Turing m**
trying to crack the enigma oo

EXCEPCIONAL.

code during World War Il KA KKK

ek kk

KEIRA,
CUMBERBATCH KNIGHTLEY

THE BENEDICT
* IMDB 8.2 IMITATION GAME

(DESCIFRANDO ENIG

User Reviews

Compelling and Enthralling from start to finish.
16 October 2014 | by fruitbat00 (United Kingdom) - See all my reviews

Truly excellent film and definitely Ocsar worthy matenal for both the film and the actors. The
entire cast are amazing.

124

Complexity of Learning DS

* O(1)
* Number of weeks in the semester
=18 =0(1)
* Number of chapters covered in the semester
=8 =0(1)
* Time(read these chapters twice)

=2 X8 X Time
= 0(1)

read_one_chapter

