
EECS2040 Data Structure Hw #6 (Chapter 7 Sorting, Chapter 8 Hashing)
due date 6/20/2021
Format: Use a text editor to type your answers to the homework problem. You need to submit your HW in an HTML file or a DOC file named as Hw6-SNo.doc or Hw6-SNo.html, where SNo is your student number. Submit the Hw6-SNo.doc or Hw6-SNo.html file via eLearnl. Inside the file, you need to put the header and your student number, name (e.g., EECS2040 Data Structure Hw #6 (Chapter 7, 8) due date 6/20/2021 by SNo, name) first, and then the problem itself followed by your answer to that problem, one by one. The grading will be based on the correctness of your answers to the problems, and the format. Fail to comply with the aforementioned format (file name, header, problem, answer, problem, answer,…), will certainly degrade your score. If you have any questions, please feel free to ask me.

Part 1
1. (50%) The list L: (12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18) is to be sorted by various sorting algorithm.
(a) Write the status of the list at the end of each iteration of the for loop of InsertionSort (Program 7.5). Trace the program; understand it. Put your answer in the following table. (add necessary rows for your answer)

	j
	[1]
	[2]
	[3]
	[4]
	[5]
	[6]
	[7]
	[8]
	[9]
	[10]
	[11]

	-
	12
	2
	16
	30
	8
	28
	4
	10
	20
	6
	18

	2
	
	
	
	
	
	
	
	
	
	
	

	..
	
	
	
	
	
	
	
	
	
	
	

	11
	
	
	
	
	
	
	
	
	
	
	

Sol:
[image:]
(b) Trace Program 7.6 QuickSort, use it on the list L, and draw a figure similar to Figure 7.1 Quick Sort example starting with the list L. Put your answer in the following table. (add necessary rows for your answer)

	R1
	R2
	R3
	R4
	R5
	R6
	R7
	R8
	R9
	R10
	R11
	left
	right

	[12
	2
	16
	30
	8
	28
	4
	10
	20
	6
	18]
	1
	11

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

Sol:

(c) Write the status of the list L at the end of each ph[image:]ase of MergeSort (Program 7.9), i.e., draw the Merge tree (similar to Figure 7.4 in textbook) of this problem.

[bookmark: _heading=h.gjdgxs]Sol:
[image:]

(d) Write the status of the list L at the end of the first for loop as well as at the end of the second for loop of HeapSort (Program 7.14), i.e., you need to draw the following trees for: 1) input array, 2) initial heap, and 9 more trees with heap size from 10 down to 2 with corresponding sorted array as shown in Figure 7.8 in textbook.
Sol:
[image:]
[image:]
[image:]
[image:]

(e) Write the status of the list L at the end of each pass of RadixSort (Program 7.15), using r = 10. That is fill the missing parts (the boxes with numbers between e[j] and f[j] enclosed by red dashed rectangle in the (b) and (c) part of the following figure, and the missing numbers in the resulting chain (red boxes) in (b).)

[bookmark: _heading=h.30j0zll]
Sol:

[image:]

2. (10%) QuickSort (Program 7.6) is an unstable sorting method. Give an example of an input list in which the order of records with equal keys is not preserved.
Sol:
The list (2,2,3,4), by Quicksort ,it will becomes (2,2,3,4)
therefore, the order of records with equal keys is not preserved.

3. (10%) Show that MergeSort (Program 7.9) is stable
Sol:
When we merge lists A and B, the order of records with equal keys in A is preserved in the resulting list, C, since we put a series of records with equal keys in A into C sequentially. Similarly, the order of records with equal keys in B is preserved in the resulting list, C. In addition, if the record in A has the same key as the record in B, we put the one in A into C first and put the one in B into C later. Thus, the order of records with equal keys is preserved in C after merging, so MergeSort is stable.

4. (10%) If we have n records with integer keys in the range [0,n2),then they can be sorted in O(nlogn) time using Heap Sort or Merge Sort. Radix Sort on a single key (i.e., d = 1 and r = n2) takes O(n2) time. Show how to interpret the keys as two subkeys so that Radix Sort will take only O(n) time to sort n records. (Hint: Each key, Ki, may be written as Ki = Ki1*n + Ki2 with Ki1 and Ki2 integers in the range [0,n).)
Sol:
Let Ki1 = Ki/n and Ki2= Ki%n, Then clearly Ki = Ki1*n + Ki2 with Ki1 and Ki2 integers in the range [0,n). Consider Ki2 as the least significant digit and Ki1 as the most significant digit. Then radix sort will sort records in the following way:
for (int i = 2; i; i--)
do a stable sort on records by Ki.

The complexity of radix sort is O(d(n+r)), where n is the number of records, r is the radix, and d is the number of passes. Here, d = 2, n = n and r = n, so the complexity is O(n).

5. (10%) Show that the hash function h(k) = k%17 does not satisfy the one-way property, weak collision resistance, or strong collision resistance.
Sol:
One-way property: given c, it’s hard to find k such that h(k) = c.
 For h(k) = k%17, given c, then it is easy to know that k must be of the form c+17*m. So h(k) does not satisfy one-way property.

Weak collision resistance: known h and M, hard to find synonym M’ such that h(M) = h(M’)
 Since h(k) = k%17, and given k and h(k), It’s easy to know that k’ = k + 17*m for any m integer, h(k’) = h(k). So h(k) does not satisfy weak collision resistance.

Strong collision resistance: hard to find a pair (x,y) such that h(x) = h(y)
 Given h(k) = k%17, so it’s easy to find a pair (x,y), y = x + 17*m for any integer m, such that h(x) = h(y). So h(k) does not satisfy strong collision resistance.

6. (10%) The probability P(u) that an arbitrary query made after u updates results in a filter error is given by . By differentiating P(u) with respect to h, show that P(u) is minimized when h = (loge2)m/u.
Sol:

image1.emf
12 2 18

20 10 4 28 8 30

16

6

image10.png
g0 21 Bl [4 [5] [6] [7] [8 [9] [10] [11]
1272 16 30 8 22 4 10 20 6 18
2/ 2 12 16 30 8 28 4 10 20 6 18
3/ 2 12 16 30 8 28 4 10 20 6 18
40 2 12 16 30 8 28 4 10 20 6 18
502 8 12 16 30 28 4 10 20 6 18
6/ 2 8 12 16 28 30 4 10 20 6 18
7|2 4 8 12 16 28 30 10 20 6 18
8 2 4 8 10 12 16 28 30 20 6 18
9 2 4 8 10 12 16 20 28 30 6 18
0] 2 4 6 8 10 12 16 20 28 30 18
11/ 2 4 6 8 10 12 16 18 20 28 30

image3.png
R’

Ry

2
2
4
4
4
4
4
4
4
4

R

Ry Ry

Ry

—

=00 = =] e

=l

[
[l =R e L B

=

image9.png
12 2 16 30 8 28 | 4 10 20 6 18
', , \ N ', /
LY Y Y ¢ ¥ ¥
2 12 16 30 8 28 | 4 10 6 20 18
- - N, ~
- -~ \ - _\ -
™ e L
2 12 16 30 4 8 10 28 6 18 20
2 4 8 10 12 16 28 30 6 18 20
2 4 6 8 10 12 16 18 20 28 30

image7.png
Lo

/
(2] O (3] .

w@mowéﬂb

BHEO®

81 91

[1op [i1j

(a) Input array

[111 30
/ \
N c
[4] 51 (18) 161 (16
/
W () () ()

(81 (91 [} [i1]

(b) Initial heap

image5.png
[.
12] . ['*]

% 25 a8

(81 91 [10]

(c) Heap size =10
Sorted = [30]

m
/ \
[2] . 3]

o 5 S e

(0 (2
81 9]

(d) Heap size =9
Sorted = [28,30]

image6.png
({18

/ \
21 (12 3] @
4 (10) [5}9 o1 (8
@

(8]
(e) Heap size =8
Sorted = [20,28.30]

(1]

2] [’;] y

& D S e

(f) Heap size =7
Sorted = [18,20,28,30]

image8.png
(B

/ \
121 131 @

Nofopiol

(g) Heap size=6
Sorted =[16,18,20,28,30]

o
/ \
o &S D)

(i) Heap size=4
Sorted =[10,12,16,18,20,28.30]

w ()

/ \
2] @ 131

[41(4 [51

(h) Heap size=35
Sorted = [12.16,18,20,28.30]

[U@ [H@
ooy cl

(j) Heap size =3 (k) Heap size=2
Sorted = [8,10,12,16,18.28.30] Sorted = [6.8,10,12,16,18,28,30]

image4.png
e[0] e[1] e[2] e[3] e[4] €[5] e[6] e[7] e[8] e[9]

20 18

10 2 6 28

30 12 4 16 3

01 1] 121 f13] 4] 1151 116] fn 18] 1191

30 10 20 = 12 2 = 4 = 16 = 6 8 28 18
(b) First-pass queues and resulting chain

el0] e[1] el2] e[3] e[4] e[5] e[6] e[7] e[8] e[9]

8 18

6 16

4 12 28

2 10 20 30

0] 1] 2] f13] 4] fI5] 116] 71 f18] 1191

2 4 6 =1 8 = 10 = 12 = 16 = 18 20 28 30

(c) Third-pass queues and resulting chain

Microsoft_Visio_2003-2010_Drawing1.vsd
12

2

18

20

10

4

28

8

30

16

6

image2.emf
12 6 20 10 4 28 8 30 16 2

a [1]

a [10] a [9] a [8] a [7] a [6]

a [5] a [4] a [3] a [2]

(a) Initial input

e [8] e [7] e [6] e [5]

e [4] e [3] e [2] e [1] e [9] e [0]

f [8] f [7] f [6] f [5]

f [4] f [3] f [2] f [1] f [9] f [0]

30 10

(b) First pass queues & resulting chain

e [8] e [7] e [6] e [5]

e [4] e [3] e [2] e [1] e [9] e [0]

f [8] f [7] f [6] f [5]

f [4] f [3] f [2] f [1] f [9] f [0]

2 28 20 18 16 12 10 8 6 4

(c) Second pass queues & resulting chain

18

a [11]

30

Microsoft_Visio_2003-2010_Drawing2.vsd
12

6

20

10

4

28

8

30

16

2

a [1]

a [10]

a [9]

a [8]

a [7]

a [6]

a [5]

a [4]

a [3]

a [2]

(a) Initial input

e [8]

e [7]

e [6]

e [5]

e [4]

e [3]

e [2]

e [1]

e [9]

e [0]

f [8]

f [7]

f [6]

f [5]

f [4]

f [3]

f [2]

f [1]

f [9]

f [0]

30

10

(b) First pass queues & resulting chain

e [8]

e [7]

e [6]

e [5]

e [4]

e [3]

e [2]

e [1]

e [9]

e [0]

f [8]

f [7]

f [6]

f [5]

f [4]

f [3]

f [2]

f [1]

f [9]

f [0]

(c) Second pass queues & resulting chain

2

28

20

18

16

12

10

8

6

4

18

a [11]

