
EECS2040 Data Structure Hw #4 (Chapter 5 Tree)
due date 5/30/2021, 23:59
Format: Use a text editor to type your answers to the homework problem. You need to submit your HW in an HTML file or a DOCX file named as Hw4-SNo.docx or Hw4-SNo.html, where SNo is your student number. Submit the Hw4-SNo.docx or Hw4-SNo.html file via eLearn. Inside the file, you need to put the header and your student number, name (e.g., EECS2040 Data Structure Hw #4 (Chapter 5 of textbook) due date 5/30/2021 by SNo, name) first, and then the problem itself followed by your answer to that problem, one by one. The grading will be based on the correctness of your answers to the problems, and the format. Fail to comply with the aforementioned format (file name, header, problem, answer, problem, answer,…), will certainly degrade your score. If you have any questions, please feel free to ask me.

Part 1
1. (8%) What is the maximum number of nodes in a k-ary tree of height h? Prove your answer.
Sol:
Proof: h=1: n=1, h=2: n=1+k, h=3: n=1+k+k2 ⇒
2. (12%) For a simple tree shown below,
(a) Draw a list representation of this tree using a node structure with three fields: tag, data/down, and next. (For convenience, you can omit the tag field.)
(b) Write down a generalized list expression form for this tree.
(c) Convert the tree into a left-child and right-sibling tree representation
(d) Draw a corresponding binary tree for this tree based on (c).

Sol:

(b) 🡪 (A (B(…), C(…), D(…))) 🡪 (A (B(E(…), F), C(G), D(H(…), I, J)))
🡪 (A (B(E(K, L), F), C(G), D(H(M), I, J)))
(c)

(d)

3. (10%) Draw the internal memory representation of the binary tree below using (a) sequential and (b) linked representations.

Sol:
(a) Sequential representation: tree[]: (height=4⇒at most 24 -1 = 15 nodes ⇒ tree[16])

	-
	A
	B
	
	C
	D
	
	
	E
	

 subscript 0 1 2 3 4 5 6 7 8 9

(b) linked representation:

4. (4%) Extend the array representation of a complete binary tree to the case of complete trees whose degree is d, d > 1. Develop formulas for the parent and children of the node stored in position i of the array.
Sol: A complete d-ary tree with height h would have at most (dh – 1)/(d-1) nodes.
Number the nodes from 1 ~ n (corresponding to array position) where n is the number of nodes of the tree and n ≤ (dh – 1)/(d-1).
It’s easy to show that for a node i, its children starts from di-(d-2), …, di, di+1.So its leftist child would be at di-(d-2), and its rightist child is at di + 1, if di-(d-2), …,di, di+1 ≤ n. Otherwise the corresponding child does not exist.
For node i, its parent would be at
[bookmark: _heading=h.gjdgxs](check d = 2)
5. (16%) Write out the inorder, preorder, postorder, and levelorder traversals for the following binary trees.

Sol: (a) inorder: A–B*C*D+E
		Preorder: +**-ABCDE
		Postorder: AB-C*D*E+
		Level order: +*E*D-CAB
(b) inorder: HDJBEAFCG
		Preorder: ABDHJECFG
		Postorder: HJDEBFGCA
		Level order: ABCDEFGHJ

6. (30%) Given a sequence of 11 integer number: 50, 5, 30, 40, 80, 35, 2, 20, 15, 60, 70.
(a) Assume a Max heap tree is initialize with these 11 numbers placed into nodes of the tree according to node numbering of complete binary tree. Please draw the final Max heap tree after initialization process.
(b) Repeat (a) for Min Heap.
(c) Using the BST Insert function, (manually) insert the 11 number sequentially to construct a binary search tree. Draw the final 11-node BST.
Sol:
(a)

Original initial binary tree 							corresponding max heap
(b)

	 Corresponding min heap
(c)

		Constructed binary search tree using a series of 11 Insert()
7. (20%) An 8-run with total of 25 numbers are to be merged using Winner tree and Loser tree. The numbers of the 8 runs are shown below. The first numbers form each of the 8 runs have been placed in the leaf nodes of the tree as shown. Then these eight numbers enter the tournament to get the overall winner.

(a) Draw the winner tree and indicate the overall winner of this tournament.
(b) Draw the loser tree and indicate (draw) the overall winner of this tournament.
Sol:
(a)

(b)

Part 2 Coding
You should submit:
(a) All your source codes (C++ file).
(b) Show the execution trace of your program.

1. (30%) Develop a complete C++ template class for binary trees shown in ADT 5.1. You must include a constructor, copy constructor, destructor, the four traversal methods together with forward iterators for each, functions in ADT 5.1, … as shown below.
void Inorder()
void Preorder()
void Postorder()
void LevelOrder()
void NonrecInorder()
void NoStackInorder()
class InorderIterator
class PreorderIterator
class PostorderIterator
class LevelOrderIterator
bool operator == (const BinaryTree& t) const

Write 2 setup functions to establish 2 example binary trees (e.g., the trees in Part 1 Question 5). Then demonstrate the functions you wrote.

ADT 5.1 BinaryTree
template<class T>
class BinaryTree
{ // objects: A finite set of nodes either empty or consisting
 // of a root node, left BinaryTree and right BinaryTree
public:
 BinaryTree(); // constructor for an empty binary tree
 bool IsEmpty(); // return true iff the binary tree is empty
 BinaryTree(BinaryTree<T>& bt1, T& item, BinaryTree<T>& bt2);
 // constructor given the root item and left subtrees bt1 and right subtree bt2
	BinaryTree<T> LeftSubtree(); // return the left subtree
 BinaryTree<T> RightSubtree();// return the right subtree
 T RootData(); // return the data in the root node of *this
};

2. (35%) (a) Write a C++ class MaxHeap that derives from the abstract base class in ADT 5.2 MaxPQ and implement all the virtual functions of MaxPQ.
ADT 5.2 MaxPQ
template <class T>
class MaxPQ {
public:
 virtual ~MaxPQ() {} // virtual destructor
 virtual bool IsEmpty() const = 0; //return true iff empty
 virtual const T& Top() const = 0; //return reference to the max
 virtual void Push(const T&) = 0;
 virtual void Pop() = 0;
};
(b) Write a C++ abstract class similar to ADT 5.2 for the ADT MinPQ, which defines a min priority queue. Then write a C++ class MinHeap that derives from this abstract class and implement all the virtual functions of MinPQ.
Use Part1 Q6 example to demonstrate your program.

3. (35%) A Dictionary abstract class is shown in ADT5.3 Dictionary. Write a C++ class BST that derives from Dictionary and implement all the virtual functions. In addition, also implement
pair<K, E>* RankGet(int r),
void Insert(int r, pair<K,E>& thePair)
void Delete(int r),
void Split(const K& k, BST<K, E>& small, pair<K, E>*& mid, BST<K, E>& big)

ADT5.3 Dictionary
template <class K, class E>
class Dictionary {
public:
 virtual bool IsEmptay() const = 0; // return true if dictionary is empty
 virtual pair <K, E>* Get(const K&) const = 0;
 // return pointer to the pair w. specified key
 virtual void Insert(const pair <K, E>&) = 0;
 // insert the given pair; if key ia a duplicate, update associate element
 virtual void Delete(const K&) = 0; // delete pair w. specified key
};

Generate at least two sets of 20 (key, value) pairs each to construct the BST. Demonstrate your functions using these two sets of records.
image1.emf
ABCDEFGHIJKLMlevel1234

Microsoft_Visio_2003-2010_Drawing4.vsd
A

B

C

D

E

image7.emf
ABCD0E000root(b)00

Microsoft_Visio_2003-2010_Drawing7.vsd
A

B

0

C

D

0

E

0

0

root

(b)

0

0

image6.emf
AEDCBFGHJ(a)(b)DE**-A+CB

Microsoft_Visio_2003-2010_Drawing6.vsd
A

E

D

C

B

F

G

H

J

(a)

(b)

D

E

*

*

-

A

+

C

B

image9.emf
50804030535220156070

Microsoft_Visio_2003-2010_Drawing9.vsd
50

80

40

30

5

35

2

20

15

60

70

image8.emf
80604035703022015505

Microsoft_Visio_2003-2010_Drawing8.vsd
80

60

40

35

70

30

2

20

15

50

5

image12.emf
26015305355020408070

Microsoft_Visio_2003-2010_Drawing1.vsd
A

B

C

D

E

F

G

H

I

J

K

L

M

level

1

2

3

4

Microsoft_Visio_2003-2010_Drawing12.vsd
2

60

15

30

5

35

50

20

40

80

70

image10.emf
50302805607015352040

Microsoft_Visio_2003-2010_Drawing10.vsd
50

30

2

80

5

60

70

15

35

20

40

image11.emf
1516203820301525281550111695992820109206899017Run 1Run 2Run 3Run 4Run 5Run 6Run 7Run 8123456781191012131415

Microsoft_Visio_2003-2010_Drawing11.vsd
9

15

16

20

image13.emf
615162038203015252815501116959928206891096206889179017Run 1Run 2Run 3Run 4Run 5Run 6Run 7Run 8123456781191012131415Overall winner

Microsoft_Visio_2003-2010_Drawing13.vsd
6

6

8

9

9

15

16

20

image14.emf
815162038203015252815501116959928209171010920206989909017Run 1Run 2Run 3Run 4Run 5Run 6Run 7Run 812345678119101213141560Overall winner

Microsoft_Visio_2003-2010_Drawing14.vsd
8

9

17

9

10

15

16

20

image3.emf
BCG0IDEKHM00AJ0F0L0Tag field omittedftag

Microsoft_Visio_2003-2010_Drawing3.vsd
�

A

0

F

C

G

D

I

J

B

E

K

L

H

M

0

0

0

0

0

Tag field omitted

f�

tag

image2.emf
A

CB

GHJI

K

L

D

E

F

M

Microsoft_Visio_2003-2010_Drawing2.vsd
A

C

B

G

H

J

I

K

L

D

E

F

M

image5.emf
A

C

B

G

H

J

I

K

L

E

F

D

M

Microsoft_Visio_2003-2010_Drawing5.vsd
A

C

B

G

H

J

I

K

L

M

D

E

F

image4.emf
A

B

C

D

E

