EECS2040 Data Structure Hw #2 (Chapter 3 Stack/Queue) due date 4/17/2021

Format: Use a text editor to type your answers to the homework problem. You need to submit your HW in an HTML file or a DOCX, pdf file named as **Hw2-SNo.docx**, **Hw2-SNo.pdf** or **Hw2-SNo.html**, where SNo is your student number. Send the **Hw2-SNo.doc or Hw2-SNo.html** file in eLearn. Inside the file, you need to put the **header and your student number, name (e.g., EE2410 Data Structure Hw #2 (Chapter 3 of textbook) due date 4/17/2021 by SNo, name)** first, and then the **problem** itself followed by your **answer** to that problem, one by one. The grading will be based on the correctness of your answers to the problems, and the **format**. Fail to comply with the aforementioned format (file name, header, problem, answer, problem, answer,...), will certainly degrade your score. If you have any questions, please feel free to ask me.

Part 1 (50%)

- 1. (30%) A linear list is being maintained circularly in an array with front and rear set up as for circular queues.
 - (a) Obtain a formula in terms of the array capacity, front, and rear, for the number of elements in the list.

Ans: (rear - front +capacity)%capacity

(b) Assume the kth element in the list is to be deleted, the elements after it should be moved up one position. Give a formula describing the positions of those elements to be moved up one position, i.e., from ??? to ???.

Ans: from (front+k+1)% capacity to rear

(c) Assume that we want to insert an element y immediately after the kth element and array doubling is needed (as **Program 3.11** shows or pptx page 83 **void Queue**<**T**>::Push(**const T&** x) shows), please explain the code using a graphical illustration and explanation.

Ans:

※將 circular queue 畫成直的方便觀察

- 2. (20%) Using the operator priorities of Figure 3.15 (or pptx page 130 Parentheses Handling) together with those for '(' and '#' to answer the following:
 - (a) In function Postfix (Program 3.19, pptx **Infix to Postfix Algorithm**), what is the maximum number of elements that can be on the stack at any time if the

input expression has n operators and delimiters?

Ans:

$$(\frac{n}{9})*8 + (n\%9)$$
, if n%9< 7
 $(\frac{n}{9})*8 + 7$, if n%9 $\geq 7 \ll \max$

(b) What is the answer to (a) if the input expression e has n operators and the depth of nesting of parentheses is at most 6?

Ans: n+6 ,n<49 55 ,n=49 <= max

- 3. (50%) Write the postfix form and prefix form of the following infix expressions:
 - (a) -A + B C + D
 - (b) A * -B + C
 - (c) (A + B) * D + E / (F + A * D) + C
 - (d) A && B || C || !(E > F)
 - (e) !(A && !((B < C) || (C > D))) || (C < E)

Ans:

	postfix	prefix
(a)	A -B+C-D+	+-+-ABCD
(b)	AB-*C+	+*A-BC
(c)	AB+D*EFAD*+/+C+	++*+ABD/E+F*ADC
(d)	AB&&C EF>!	&&ABC!>EF
(e)	ABC <cd> !&&!CE< </cd>	!&&A! <bc>CD<ce< td=""></ce<></bc>