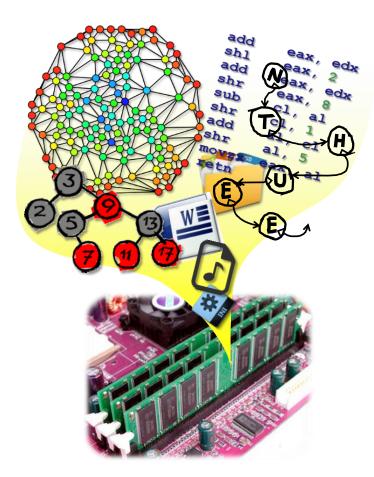
Data Structures

CH1 Basic Concepts

Prof. Ren-Shuo Liu NTHU EE Spring 2018



Outline

- 1.1 Overview: System Life Cycle
- 1.2 Object-Oriented Design
- 1.3 Data Abstraction and Encapsulation
- (1.4 Basics of C++)
- 1.5 Algorithm Specification
- (1.6 Standard Template Library)
- 1.7 Performance Analysis and Measurement

System Life Cycle

• Five phases

2. Analysis

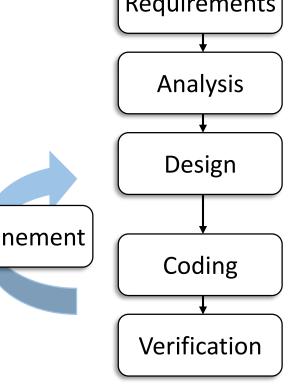
Design

5. Verification

1.

3.

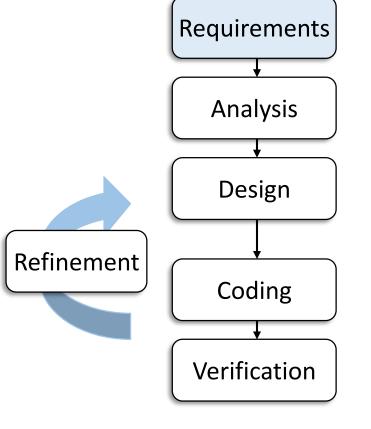
Requirements Requirements Analysis 4. Refinement and coding Design Refinement Coding



4

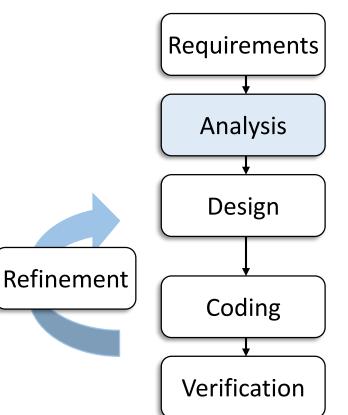
Requirements

- Clarify problem specifications
 - Input
 - What are given
 - Output
 - What must be produced
- Initially vague \rightarrow more precise



Analysis

- Break down the problem
 - Into manageable pieces
 - Also known as divide and conquer
- Two approaches
 - 1. Bottom-up (not good)
 - 2. Top-down (better)



Bottom-up Analysis

Issues

- Too early emphasis on low-level details
- Lack of prior planning and a big picture
- Risks and difficulties
 - →Resulting system can have many loosely connected and error-ridden segments ⊗
 - \rightarrow Unpractical for tackling large-scale, complex problem

Top-down Analysis

- Strategies
 - Start from a high-level plan
 - Breaking a problem down into manageable pieces
 - Subsequently refining the plan
 - Gradually taking into account low-level details
- Advantages

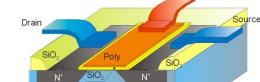
→Necessary for tackling large-scale, complex problem

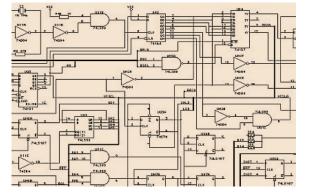
Risks of Bottom-Up

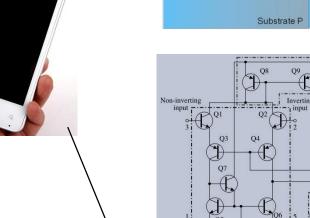
Difficulties of Bottom-Up

- Please imagine analyzing a smartphone bottom-up
 - Things become complicated

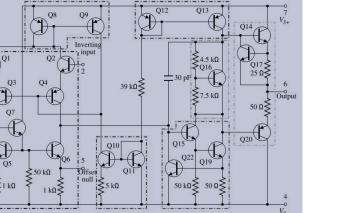
Gate

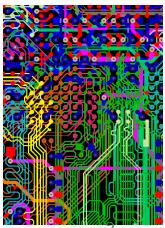






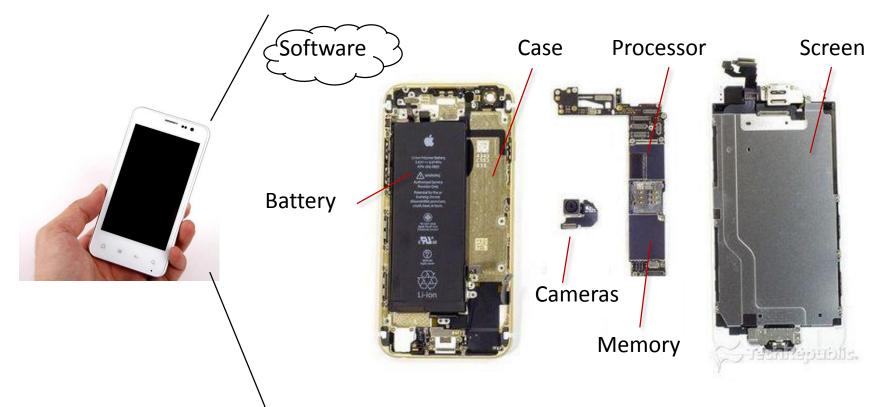
Offset null





Benefits of Top-Down

 Now let's alternatively analyze a smartphone topdown

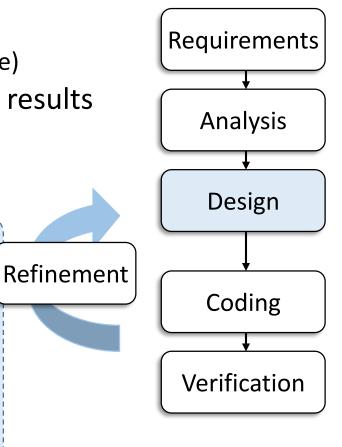


Design

- Identify
 - Data objects
 - Operations performed on the data types
 - Implementation (Not decided in this phase)
- Produce implementation-independent results
 - Abstract data types
 - Algorithm specifications

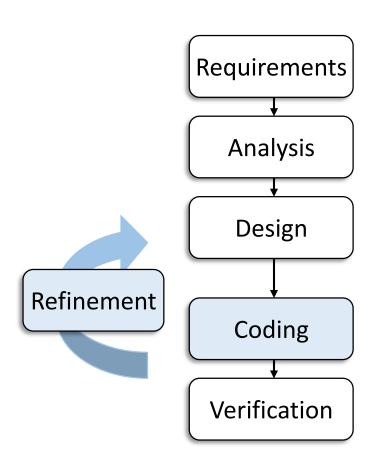
Scheduling system for NTHU

- Data objects
 - Students
 - Name, ID, major, and phone #
 - Courses
 - Professors
- Operations
 - Inserting, removing, and searching



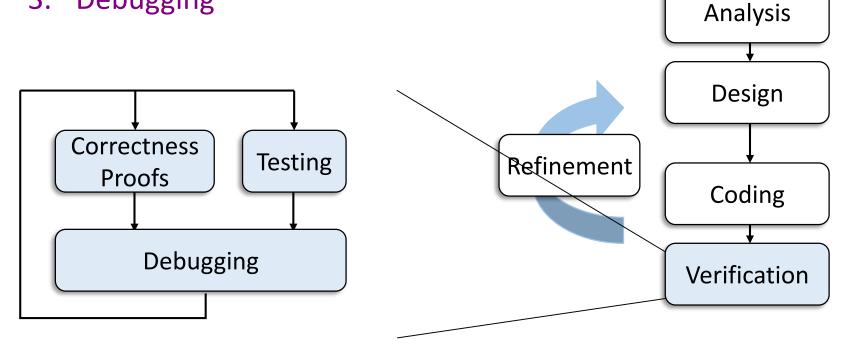
Coding and Refinement

- Decide implementation
 - Representations for objects
 - Algorithms for operations
- Algorithm and object representations affect the efficiency of each other
 - Design the algorithms that are independent of data objects first
- Good design can absorb changes found in this stage easily



Verification

- Three techniques
 - 1. Correctness proofs
 - 2. Testing
 - Debugging 3.



Requirements

Verification (Cont'd)

- Correctness proofs
 - Formal method
 - Typically required for individual algorithm
 - Not easily achievable for the whole program

Verification (Cont'd)

• Testing

- Run a program against possible inputs
 - Check correctness
 - Check performance (e.g., execution time)
- Coverage a metric for assessing the completeness of testing
 - Testing inputs should be developed to cover as many percentages of codes as possible
 - E.g., all the cases within a switch statement should at least be touched

Debugging

- Removal of errors found
- Well-documented and well-structured program eases debugging

Outline

- 1.1 Overview: System Life Cycle
- 1.2 Object-Oriented Design
- 1.3 Data Abstraction and Encapsulation
- (1.4 Basics of C++)
- 1.5 Algorithm Specification
- (1.6 Standard Template Library)
- 1.7 Performance Analysis and Measurement

Programming Paradigms

- Non-structured
- Structured
- Object-oriented

More disciplines are imposed on programmers

Non-Structured Programming

- Characteristics
 - Sequentially ordered commands
 - Lines are numbered or labeled
 - Unrestricted jump/branch to any line
- Pros
 - Extremely skillful programmers can find tricky methods to produce high performance or compact code
- Cons
 - Encourage spaghetti codes
 - Poor maintainability
 - Difficult in building large programs (poor scalability)

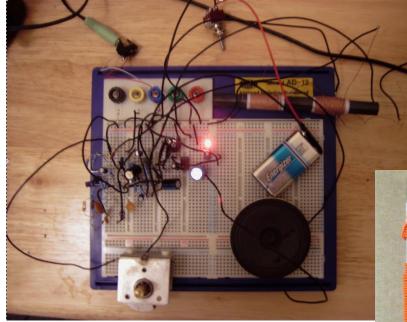
Spaghetti Code

PROGRAM PI From Computer Desktop Encyclopedia I 1998 The Computer Language Co. Inc. DIMENSION TERM(100) N=1 TERM(N) = ((-1)**(N+1))*(4./(2.*N-1.))-3 N=N+1IF (N-101) 3,6,6 66 N=1-7 SUM98 = SUM98 + TERM(N)11010011 01010110 WRITE(*,28) N, TERM(N) 10011001 00010101 N=N+1110100**11** 010101**1**0 IF (N-99) 7, 11, 11 11 SUM99=SUM98+TERM(N) 10011001 00010101 SUM100=SUM99+TERM(N+1) 11010D11 IF (SUM98-3,141592) 14,23,23 81010110 10011001 -14 IF (SUM99-3.141592) 23,23,15 00010101 ဓ IF (SUM100-3.141592) 16,23,23 (16 AV89=(SUM98+SUM99)/2. ó 11010011 01010110 AV90=(SUM99+SUM100)/2. 11010011 10011001 01010110 DDD10101 COMANS = (AV89 + AV90)/2. 10011001 00010101 IF (COMANS-3.1415920) 21,19,19 GO TO 19 IF (COMANS-3.1415930) 20,21,21 11010011 20 WRITE(*, 26) 01010110 10011001 GO TO 22 . GO TO 00010101 21 WRITE(*,27) COMANS ₹22 STOP #23 WRITE(*,25) GO TO 22 25 FORMAT('ERROR IN MAGNITUDE OF SUM') 26 FORMAT('PROBLEM SOLVED') GO TO -27 FORMAT('PROBLEM UNSOLVED', F14.6) 28 FORMAT(I3, F14.6) END

FORTRAN's three-way arithmetic IF Jump to one of three locations in the program depending on the whether expression was negative, zero, or positive.

https://craftofcoding.wordpress.com/2013/10/07/what-is-spaghetti-code/ http://www.quora.com/What-does-spaghetti-code-actually-look-like

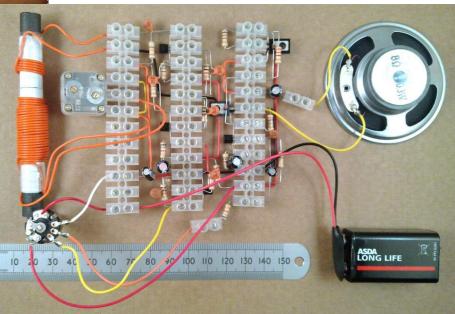
Spaghetti Circuit



What do you think the possible function of these circuits is?

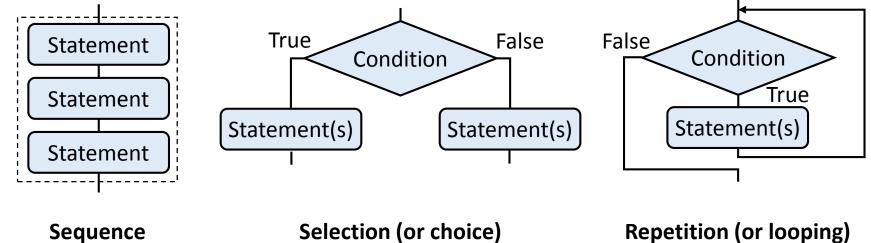
← Spaghetti circuit

\downarrow Clean circuit



Structured Programming

Basic structures



Selection (or choice) If(condition) {...} else {...} **Repetition (or looping)** While(condition) {...}

 All programs can be equivalently transformed to that use only the above three structures

Structured Programming (Cont'd)

- Pros
 - Easy to understand
 - Easy to maintain
 - Easy to analyze
- Pure structured languages strictly disallow C/C++'s
 - goto
 - break
 - continue

Structured Programming (Cont'd)

- Compared with non-structured programming
 - Structured programming restricts programmers' freedom
 - Structured programming prevents spaghetti codes
 - Structured programming does not change programmability
 - What problem non-structured programming can solve can also be done using structured programming (and vice versa)

Structured Programming (Cont'd)

- C and C++ are structured languages but NOT pure ones
 - goto, break, continue statements are allowed
- goto statement is notorious but not always bad
 - See the example on the right

Code snippet for searching an integer solution of g(x, y, z)>0 in a brute force way. In this example, it is convenient to use goto to leave the nested loops.

Object-Oriented Programming

- Philosophy of divide-and-conquer is the same as structured programming
- How a project should be decomposed is changed
- Decomposition methods
 - 1. Algorithmic (functional) decomposition is used for the structured programming method
 - 2. Object-oriented decomposition is used for the objectoriented programming method

Algorithmic/Functional Decomposition

- Used by structured programming
- View software as a process
- Decompose software into modules that represent steps of the process
 - In C, the modules are functions
- Compute-centric perspective
- Data structures are a secondary concern

Object-Oriented (OO) Decomposition

- Used by object-oriented programming
- View software as a set of well-defined objects
 - Objects model entities in the application domain
 - e.g., students, courses, and teachers in a course scheduling system
 - Objects interact with one another
- Algorithmic or functional decomposition is addressed after the system has been decomposed into objects

OO Decomposition (cont'd)

- Pros
 - Encourage the reuse of software
 - Software becomes more flexible that can evolve as requirements change
 - More intuitive because objects naturally model entities in the application domain

Definitions

- Object
 - Entity that has a local state and performs computations
 - i.e., a combination of data and operations
- Object-oriented programming
 - Method of implementation in which ...
 - Objects are the fundamental building blocks
 - Each object is an instance of some type (or class)
 - Classes are related to each other by inheritance relationships

Definitions

- A language is said to be an object-oriented language if
 - It supports objects
 - It requires objects to belong to a class
 - It support inheritance
- A language is said to be merely an object-based language if it supports the first two features but does not support inheritance

Evolution of Programming

- Four generations of higher level languages
 - FORTRAN, etc.
 - Salient feature of evaluating mathematical expression
 - C, Pascal, etc.
 - Emphasis on effectively expressing algorithm
 - Modula, etc.
 - Introduce of the concept of abstract data types (ADT)
 - Smalltalk, Objective C, C++, etc.
 - Emphasis on inheritance between ADTs

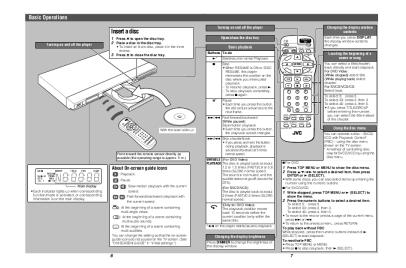
Outline

- 1.1 Overview: System Life Cycle
- 1.2 Object-Oriented Design
- 1.3 Data Abstraction and Encapsulation
- (1.4 Basics of C++)
- 1.5 Algorithm Specification
- (1.6 Standard Template Library)
- 1.7 Performance Analysis and Measurement

Definition

- Data Encapsulation (or Information Hiding) (封裝)
 - Conceal the implementation details of a data object form the outside world
- Data Abstraction (抽象化)
 - Separation between the specification of a data object and its implementation

DVD Player Analogy



- Encapsulation the buttons and remote control
 - The only interfaces exposed to users
 - Hide and protect internal (vulnerable, dangerous, and proprietary) design from users
- Abstraction the user manual
 - Only specify what the function of each button is
 - How the player achieve the function is not mentioned nor restricted

35

Definition

- Abstract Data Type (ADT)
 Object Specification Representation
 Operation Specification Implementation
- objects + operations on the objects
- Data Type

Data Types in C++

- Predefined (built-in) types
 - Fundamental types
 - char
 - int
 - float
 - double
 - Modifiers
 - short
 - long
 - signed
 - unsigned

- Derived types
 - Pointer (*)
 - Reference (&)
- Aggregate types
 - Arrays
 - struct
 - class
- User-defined types
 - struct
 - class

ADT Example: NaturalNumber

ADT NaturalNumber is

objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on the computer.

functions:

for all x, $y \in NaturalNumber$; **true**, **false** \in *Boolean* and where +, -, <, ==, = are the usual integer operations

Zero (): NaturalNumber	::=	0
IsZero (x): Boolean	::=	if (x == 0) <i>IsZero</i> = true else <i>IsZero</i> = false
Add (x, y): NaturalNumber	::=	if (x+y <= MAXINT) <i>Add</i> = x + y else <i>Add</i> = MAXINT
Equal (x, y): Boolean	::=	if (x == y) <i>Equal</i> = true else <i>Equal</i> = false
Successor (x): NaturalNumber	::=	<pre>if (x == MAXINT) Successor = x else Successor = x +1</pre>
Substract (x, y): NaturalNumber	::=	if (x < y) Substract = 0 else Substract = x — y

end NaturalNumber

ADT Example: NaturalNumber

objects:

An ordered subrange of the integers starting at zero and ending at MAXINT on the computer.

functions specification:

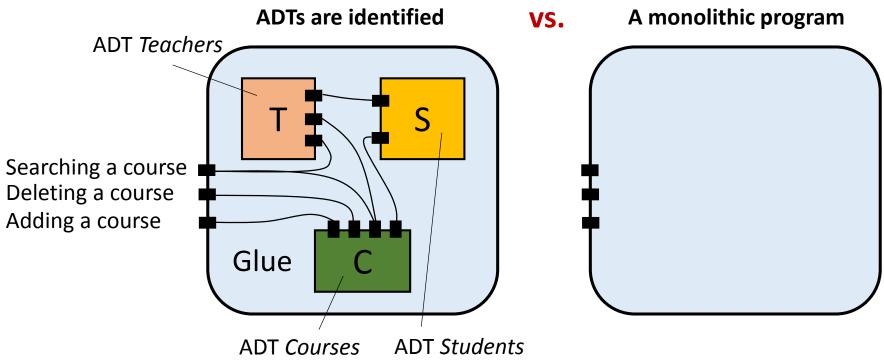
Format	Return Type	Behavior
Zero ()	NaturalNumber	0
IsZero (x)	Boolean	<i>if</i> (x == 0) <i>return true</i> <i>else</i> <i>return false</i>
<i>Add</i> (x, y)	NaturalNumber	<i>if</i> (x+y <= MAXINT) <i>return</i> x + y <i>else return</i> MAXINT
Equal (x, y)	Boolean	if (x == y) <i>return true</i> <i>else return false</i>
Successor (x)	NaturalNumber	<pre>if (x == MAXINT) return x else return (x+1)</pre>
Substract (x, y)	NaturalNumber	<i>if</i> (x < γ) <i>return</i> 0 <i>else return</i> (x-γ)

Advantages of Encapsulation and Abstraction

- 2. Ease testing and debugging
- 3. Enable reusability
- 4. Support modifications to the representation of a data type

Comparing Two Scenarios

- Consider developing a course scheduling program for NTHU
 - One can either adopt ADTs or directly dive into coding



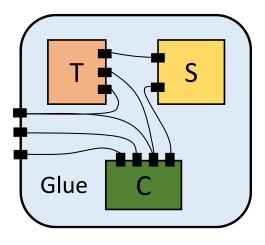
Simplify Software Development

- With encapsulation and abstraction
 - If we have four programmers
 - They can parallelly work on A, B, C, and Glue
 - No one need to know how another one implement their portion of code
 - More concentration and less interference (especially when the project is large)
 - If we have only one programmer
 - Focus on A, B, C, and Glue one at a time
 - Less things need to be kept in mind

Т		
Glue	C	

Testing and Debugging

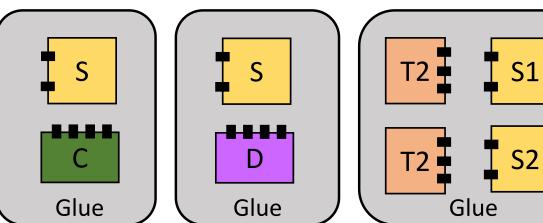
- With encapsulation and abstraction
 - A, B, C, and Glue can be individually tested and debugged
 - Testing efforts are T(A) + T(B) + T(C) + T(Glue) ≤ T(A+B+C+Glue)
 - Assume we are confident that some portions, say A, B, and C, are clear, but a bug still exists...
 - \rightarrow The remainder, say Glue, has the bug
 - Assume we notice the bug is related to a specific operation on a data type, say mistakenly deleting a course...
 - → The bug resides in the corresponding objects and operations

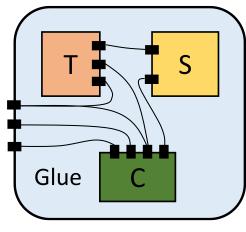


43

Reusability

- When we (or other people) develop
 - Textbook ordering program
 - Dorm allocation program
 - NTHU-NCTU tournament program
 - ..

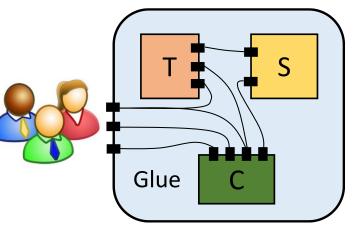


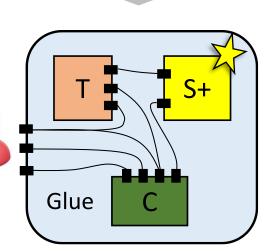


44

Modifications

- ADTs lead to information hiding
 - Implementation of a data type is invisible to users and the rest of the program
 - Ease changing (e.g., upgrade) a data type without rewriting the entire program or affecting any users
 - Allow us to start from a quick implementation then progressively refine the program
 - Even if we need to modify the interface of a data type
 - We can systematically identify the required modifications to the other parts





Overhead of Adopting ADT

- Execution time overhead
 - Accessing data through interfacing operations is potentially slower than directly accessing them
- Memory space overhead
 - Every object maintains a table specifying its operations
- Coding is more tedious
- Therefore, C (not C++) is still widely used for programming the following things
 - Operating systems
 - Performance sensitive systems
 - Resource constrained systems

Outline

- 1.1 Overview: System Life Cycle
- 1.2 Object-Oriented Design
- 1.3 Data Abstraction and Encapsulation
- (1.4 Basics of C++)
- 1.5 Algorithm Specification
- (1.6 Standard Template Library)
- 1.7 Performance Analysis and Measurement

Algorithm

- Criteria of an algorithm
- Exampling algorithms
 - Selection sort
 - Binary search
- Recursion
 - Selection sort
 - Binary search
 - Permutation

Algorithm (Definition)

- A finite set of instructions
 - Input
 - Read zero or more quantities
 - Output
 - Produce one or more quantities
 - Correctness
 - Accomplishes a particular task for all possible inputs
 - Definiteness
 - Each instruction is unambiguous
 - Effectiveness
 - Each instruction is basic enough
 - Finiteness
 - Terminates after a finite number steps for all possible inputs

Algorithms vs. Programs

- (From computational theorists' perspective)
- Unlike an algorithm, a program needs not always satisfy "finiteness"
 - Kernel of an operating system is an infinite loop
 - Continuously wait until more tasks are entered
 - Continuously dispatch available tasks

Algorithms vs. Programs (Cont'd)

Which program(s) can always terminate in a finite number of steps?

- 1. Testing whether any given number is a prime
- 2. Calculating 10000! (i.e, factorial(10000))
- 3. Displaying all prime numbers
- 4. Deciphering an RSA-encoded message without knowing the private key

Algorithms vs. Programs (Cont'd)

- Primality test
 - Even with the brutal force method, it can terminate in a finite number step
- Calculating factorial(10000)
 - Factorial(10000) is an astronomical figure (天文數字) though, it involves a finite number of digits. So the program can terminate in a finite number step
- Displaying all prime numbers
 - Since there are infinitely many primes, this program never terminates

10000 Factorial

10000 factorial is 35,659 digits long. Here it is:

Algorithms vs. Programs (Cont'd)

Breaking RSA

- This problem corresponds to factorization (質因數分解)
 - Factorization as well as breaking RSA is feasible in a finite number of steps
- RSA is based on the belief (not a proof) that factoring large integers (particularly that with exactly two huge prime factors) is difficult
 - E.g., cost thousands of years with a GHz computer
- Conspiracy theory (陰謀論)
 - Since the proof is unknown nowadays, some people oppositely believe that some countries have efficient ways to do factorization!!
- Interested students may want to take a Cryptography class

Describing Algorithms

- Many allowable ways
 - Programming languages (e.g., C++)
 - Natural languages
 - Must assure definiteness and effectiveness
 - Pseudocode (e.g., combining C, C++, and English)
 - Less language-dependent
 - More flexibility
 - Graphic representations (i.e., flowcharts)
 - Typically for small and simple algorithms only

Algorithm Specification

- Examples
 - Selection sort
 - Binary search
 - Permutation generator
- Focuses
 - Inputs and outputs
 - Clear and basic-enough instructions
 - Finiteness and correctness proofs

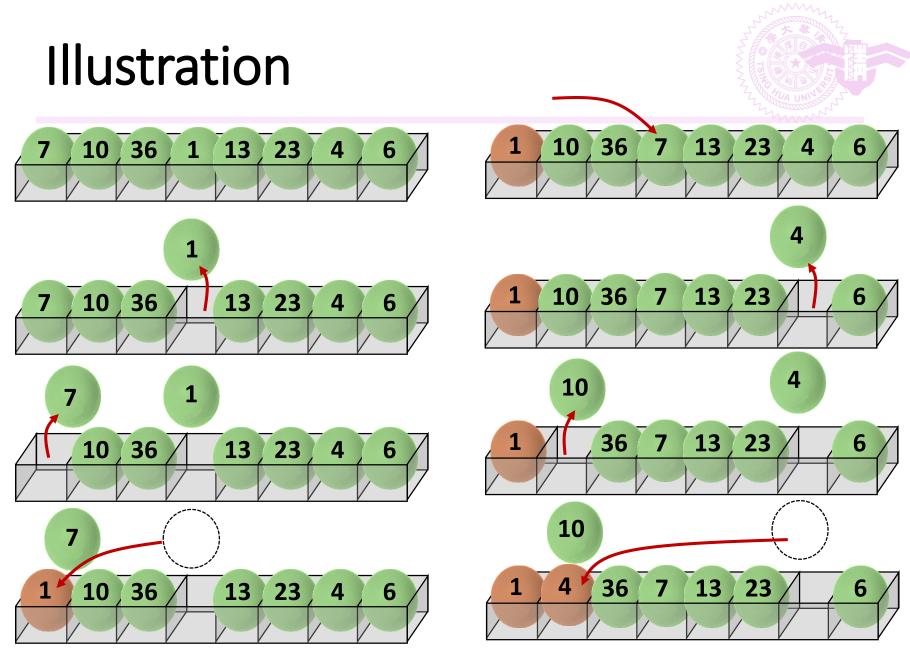
Selection Sort

- Input
 - A collection of n integers, $n \ge 1$
- Output
 - A collection of n integers
- Instructions

```
void SelectionSort(int *a, const int n)
{ //Sort the n integers a[0] to a[n-1] into non-decreasing order.
    for(int i=0; i<n; i++) {
        exam a[i] to a[n-1] and suppose the smallest one is at a[j];
        interchange a[i] and a[j];
    }
}</pre>
```

Selection Sort — C++


```
void SelectionSort(int *a, const int n)
{ // Sort the n integers a[0] to a[n-1] into
  // non-decreasing order.
    for(int i=0; i<n; i++)</pre>
        int j=i;
        //find the smallest integer in a[i] to a[n-1]
        for(int k = i+1; k<n; k++)</pre>
             if(a[k] < a[j]) j = k;
        swap(a[i], a[j]);
                                 void swap(int & i, int & j)
                                 ł
                                     int temp = i;
                                                         Passed by
                                                         reference
                                     i = j;
                                     j = temp;
```



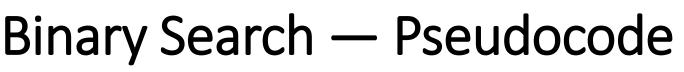
Selection Sort — Proof

- For any i = q, following the execution of the shaded lines, it is the case that a[q]≤a[r], q+1 ≤ r ≤ n-1.
- When i becomes greater than q, a[0] ... a[q] is unchanged.
- Hence, after the lines are executed for n-1 times (i.e., 0 ≤ i ≤ n-2), the following n-1 inequalities hold
 - $a[0] \le a[r], \quad 1 \le r \le n-1$
 - ..
 - $a[n-3] \le a[r]$, $n-2 \le r \le n-1$
 - $a[n-2] \le a[r]$, $n-1 \le r \le n-1$
- a[0] ... a[n-1] is unchanged for the last iteration (i.e., i = n-1)
- Combining these inequalities leads to a[0]≤a[1]≤ ... ≤ a[n-1]

```
void SelectionSort(int a[], const int
{ // Sort the n integers into
   // non-decreasing order.
   for(int i=0; i<n; i++)
   {
      int j=i;
      //find the smallest integer in
      for(int k = i+1; k<n; k++)
           if(a[k] < a[j]) j = k;
      swap(a[i], a[j]);
   }
}</pre>
```

Binary Search

- Input
 - n≥1 distinct integers that are already sorted and stored in the array a[0] ... a[n-1]
 - Integer x
- Output
 - If x is present in the array, produce j such that x == a[j]
 - Otherwise, produce -1



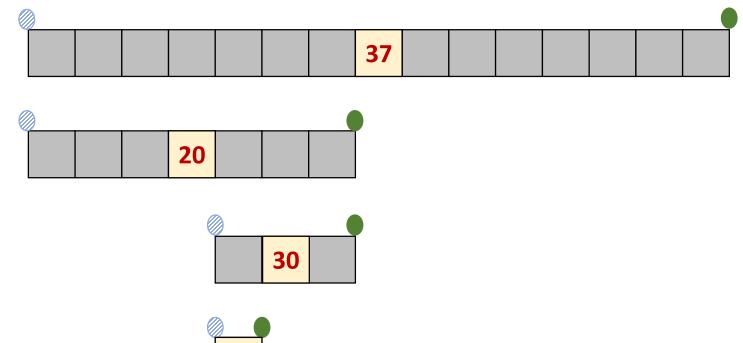

```
void BinarySearch(int *a, const int x, const int n)
{ // Search the sorted array a[0], ..., a[n-1] for x
  // Left and right are set to the two ends of a[]
 while(there're elements between the two ends)
  ł
     Let middle be the middle element;
      if(x < a[middle]) set right to middle-1;</pre>
      else if(x > a[middle]) set left to middle+1;
      else
                            return middle;
  Not found;
```



```
int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[0]...a[n-1] for x
    int left = 0, right = n-1;
    while(left <= right)</pre>
    {//there are more elements
        int middle =(left+right)/2;
        if(x < a[middle]) right=middle-1;</pre>
        else if(x > a[middle]) left = middle+1;
        else
                              return middle;
    }//end of while
    return -1;
```

Binary Search — Illustration

Search a number, 25, in a sorted array of boxes



Recursion

Definition

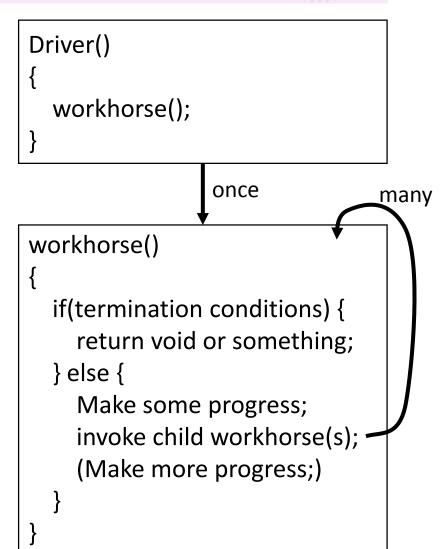
- Functions that invoke themselves
 - Directly or Indirectly through other functions
- Recursion is powerful
 - Divide and conquer
 - Method of induction (歸納法)
 - Can simplify the expression of an otherwise complex process

Recursion (Cont'd)

- Recursion is particular useful for
 - Factorial (階乘)
 - Binomial coefficients
 - Binary search
 - Problems that are recursively defined
- Recursion is not limited to the above tasks
 - Recursion can simulate looping (Looping can simulate recursion, too)
- Recursion tends to be (i.e., 有這個傾向,但不是絕對) slower than looping
 - Because function calls typically incur more latency than loop branches

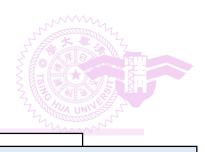
Develop Recursion

- Key components
 - Driver
 - Invoke the first workhorse
 - Workhorse(s)
 - Self-similar piece of the algorithm
 - Termination condition(s)
 - Determine whether no more progress needs be made
 - If a workhorse fails to check termination conditions, the program can never end
 - Make some progress
 - If nothing changes before the workhorse is again invoked, the program can never end



Recursive Selection Sort

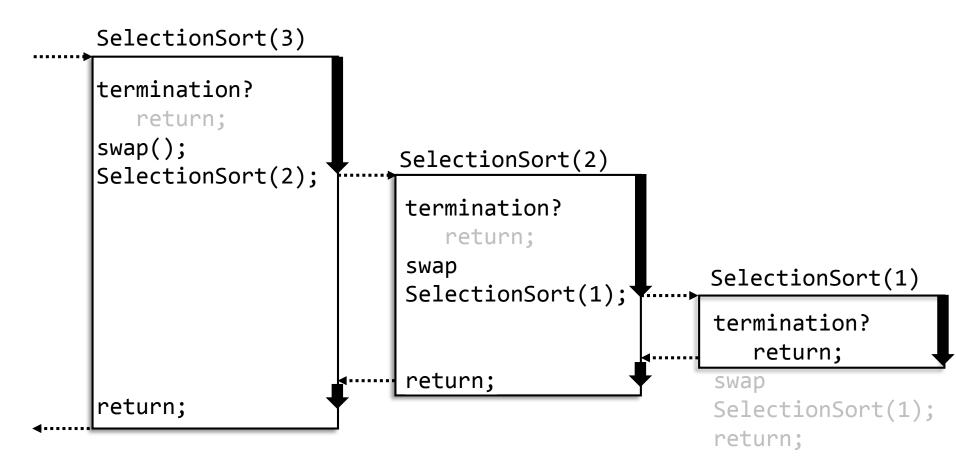
```
This is an exampling
                                                            recursive algorithm
void SelectionSort(int a[], const int n)
                                                            derived from an non-
{
                                                            recursive one. In this
    // 1-entry array does not need sorting
                                                            example, recursion is
    if(n==1) return; ____
                               Termination condition
                                                            easier to understand
                                                            but likely performs
    int j=0;
                                                            slower than its non-
    /* find the smallest in the received
                                                            recursive counterpart.
          array and place it at the first */
    for(int k = 0; k<n; k++)</pre>
         if(a[k] < a[j]) j = k;
    swap(a[0], a[j]);
                                                    Create a new workhorse
    SelectionSort(a+1, n-1); //recursion -
                                                    to sort the remaining n-1
                                                    elements
```



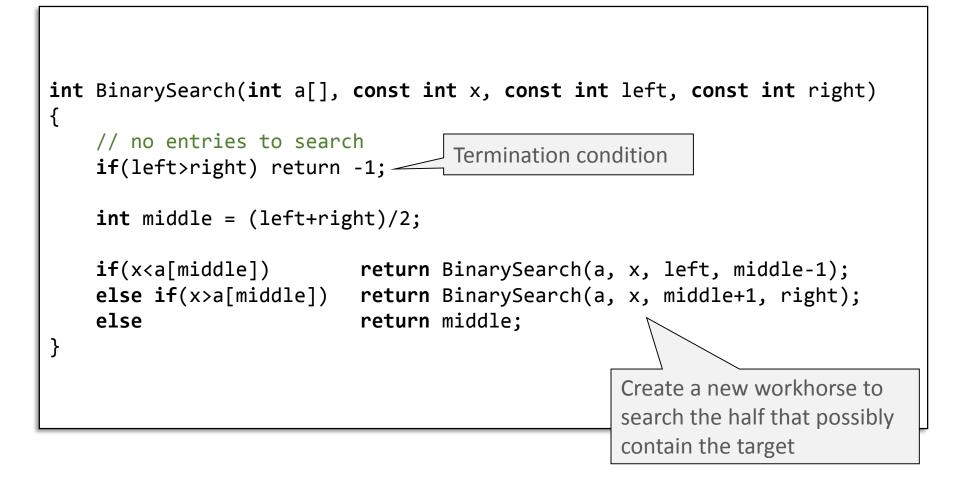
67

Recursive Selection Sort

• Sort 3 elements



Recursive Binary Search



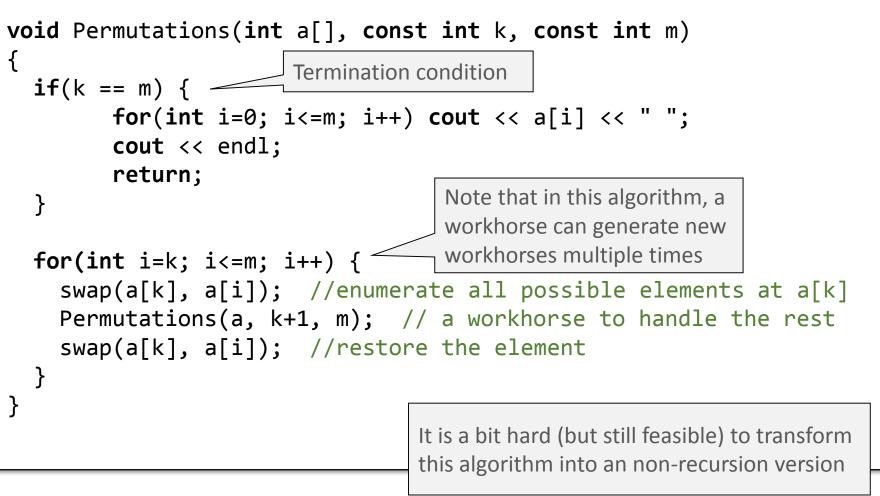
Permutation Generator

- Input
 - A set of $n \ge 1$ elements
- Output
 - Print all n! possible permutations of this set
- Example
 - Permutations of (a, b, c)
 - (a, b, c), (a, c, b),
 (b, a, c), (b, c, a),
 (c, a, b), (c, b, a)

Permutation Generator — Observation

- Permutations of (a, b, c, d) can be constructed by
 - 'a' followed by all permutations of (b, c, d)
 - 'b' followed by all permutations of (a, c, d)
 - 'c' followed by all permutations of (a, b, d)
 - 'd' followed by all permutations of (a, b, c)
- Clue to recursion
 - Solve an n-element problem based on the results of an (n-1)element problem

Recursive Permutation Generator



Outline

- 1.1 Overview: System Life Cycle
- 1.2 Object-Oriented Design
- 1.3 Data Abstraction and Encapsulation
- (1.4 Basics of C++)
- 1.5 Algorithm Specification
- (1.6 Standard Template Library)
- 1.7 Performance Analysis and Measurement

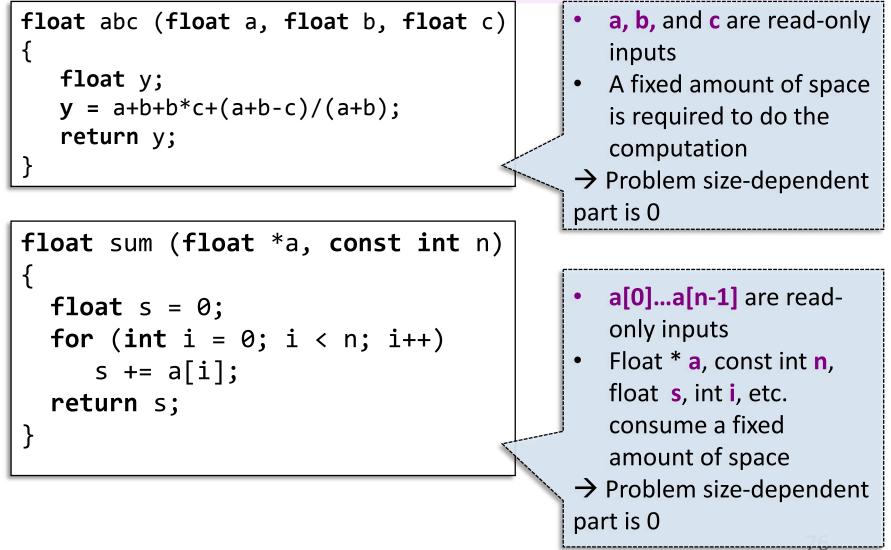
Complexity

- Time complexity
 - Amount of execution time a program needs to solve a problem
- Space complexity
 - Amount of memory space a program needs to solve a problem
- We want to find complexity as a function of problem size
 - Problem size \equiv the total amount of input information

Space Complexity

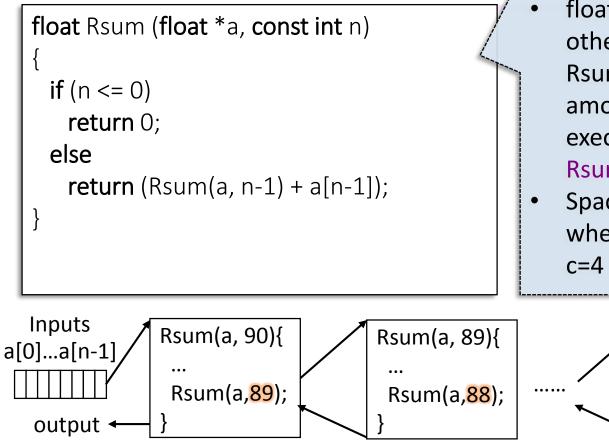
- Breakdown
 - Problem size-dependent part
 - Variables whose size/number depends on problem size
 - Fixed part
 - Space for storing the program
 - Fixed amount of variables during computation
 - Read-only space for Inputs
 - Write-only space for outputs
- We shall focus on the problem size-dependent part

Space Complexity (Cont'd)



Space Complexity

а



- **a[0]...a[n-1]** are read-only inputs
- float * **a** and int **n** (and other variables local to Rsum()) consume a fixed amount of space for each execution of Rsum though, Rsum is called n+1 times.
- Space complexity = c(n+1), where c is a constant, say c=4

Rsum(a, 0){

Variables whose number depends on the problem size

n

Time Complexity

- Breakdown
 - Execution time
 - Compile time (fixed part)
- Execution time is important
 - Problem size, $n, \uparrow \Rightarrow$ execution time, $t_P(n)$, may \uparrow
- Compile time is less important
 - Independent of problem size, *n*
 - Only present for the first execution

Methods to Derive Execution Time

- 1. Derive the exact formula
 - $t_P(n) = c_a ADD(n) + c_s SUB(n) + c_m MUL(n) + \cdots$
 - However, it is almost impossible to obtain such a formula in real world
- 2. Step counts
- 3. Asymptotic notation (漸近表示法) of step counts
- 4. Real system measurement

Step Count

- Definition of a step
 - A segment of program whose execution time is independent of problem size
- Example of a step
 - One addition \rightarrow a step
 - One multiplication \rightarrow a step
 - 1000 additions → a step
 - 1000 multiplications → a step
 - $r = a+b+b*c+(a+b-c)/(a+b)+4.0 \rightarrow a step$
- The following one is NOT a step
 - *n* additions, where *n* is the size of the input array

Zero-Step Program Segments

- Comments
 - // this is binary search
 - /* this is

 * selection sort
 */
- Declarative statements of variables and functions
 - int a;
 - float b, c, d;
 - int max(a, b);
- Brackets, line labels, and the else keyword
 - {
 - }
 - } else {
 - END:

Single-Step Program Segments

- Assignments and expressions
 - int a = 10;
 - b = 0.1;
 - c = a + b * d;
- Looping statements (single-step per loop iteration)
 - for(int i=0; i<n; i+=3)
 - while(j<n²)
 - do ... while(n>10)
- Functions that independent of problem size
 - a = max(b, c)
- Conditional statements
 - if(a > 10)
- Unconditional branches
 - goto, break, continue, return

Those May Depend on Problem Size

- Object/variable construction
 - int *a = new int[size(input)];
- Function execution
 - MatrixAdd(a, b, c); // adding two matrixes
- Parameter passing
 - Passing an object whose size depends on problem size
- Statements that involve the above events
 - int a = sum(a, n);
 - if(search(a, x, n) == true)

Methods of Obtaining Step Count

- Instrumentation (實際測量)
 - Introduce a new global variable: *count*
 - Initialize *count* to zero
 - Add statements to increment *count* for each step
 - Report *count*
- Table analysis (紙筆分析)
 - List the step count of each program segment
 - List the frequency of each program segment
 - Summarize the total step count

Step Counting — Example 1

```
float sum (float *a, const int n)
ſ
  float s = 0;
  for (int i = 0; i < n; i++)</pre>
     s += a[i];
  return s;
}
```

Step Counting Using Instrumentation

```
float sum (float *a, const int n)
                                         Simplified version
  float s = 0;
  count++; // count is global
  for (int i = 0; i < n; i++) {</pre>
    count++; // for loop
                                    void sum (float *a, const int n)
    s += a[i];
                                    {
    count++; // assignment
                                      for (int i = 0; i < n; i++) {</pre>
  }
                                        count+=2;
  count++; // last time of for
  count++; // return
                                      count+=3;
  return s;
                                      return;
}
```

Step Counting Using a Table

<pre>float sum (float *a, const int n)</pre>	s/e	freq.	subtotal
{	0		
<pre>float s = 0;</pre>	1	1	1
<pre>for (int i = 0; i < n; i++)</pre>	1	n+1	n+1
s += a[i];	1	n	n
return s;	1	1	1
}	0		
		total:	2n+3

s/e: steps per execution

The frequency of executing the control statement is one time more than that of the loop body.

Step Counting — Example 2

```
float Rsum (float *a, const int n)
ł
  if (n <= 0)
    return 0;
  else
    return (Rsum(a, n-1) + a[n-1]);
}
```

```
    Recursion
```


Step Counting — Instrumentation

```
float Rsum (float *a, const int n)
  count++; // if conditional
  if (n <= 0) {
    count++; // return statement
    return 0;
  } else {
    count++; // return statement
    return (Rsum(a, n-1) + a[n-1]);
}
                          count is a global variable and will be
                          incremented throughout the entire recurrent
                          computation.
```

Step Counting — Table

		freq.		subtotal	
float Rsum (float *a, const int n)	s/e	n=0	n>0	n=l	0 n>0
{	0				
if (n <= 0)	1	1	1 0	1	1
return 0;	1	1	0	1	0
else	0				
return (Rsum(a, n-1) + a[n-1]);	1+t(n-1)	0	1	0	1+t(n-1)
}	0				
			total	2	2+t(n-1)
					\frown
s/e: steps per execution	(· · · · · · · · · · · · · · · · · · ·
• • •	Recurrence relations:				
	+(-	-) -	$\int 2 + t(r)$	ı — 1	L), $n > 0$
		i = i	2,0	ther	l), n > 0 wise

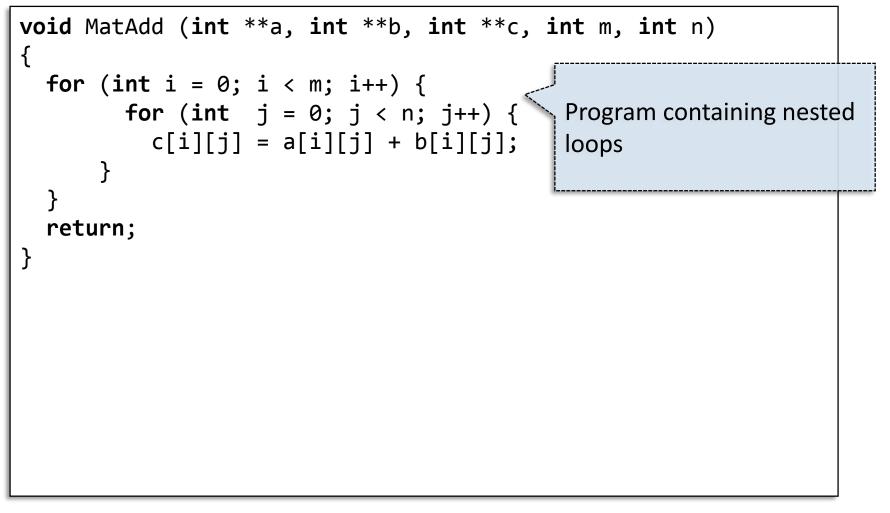
Solving Recurrence

- Technique
 - Repeatedly substituting

•
$$t(n) = 2 + \frac{t(n-1)}{2}$$

= $2 + \frac{2 + t(n-2)}{2 + 2 + \cdots + 2}$
= $2 + 2 + \cdots + 2 + t(0)$
= $2n + t(0)$
= $2n + 2$

Step Counting — Example 3



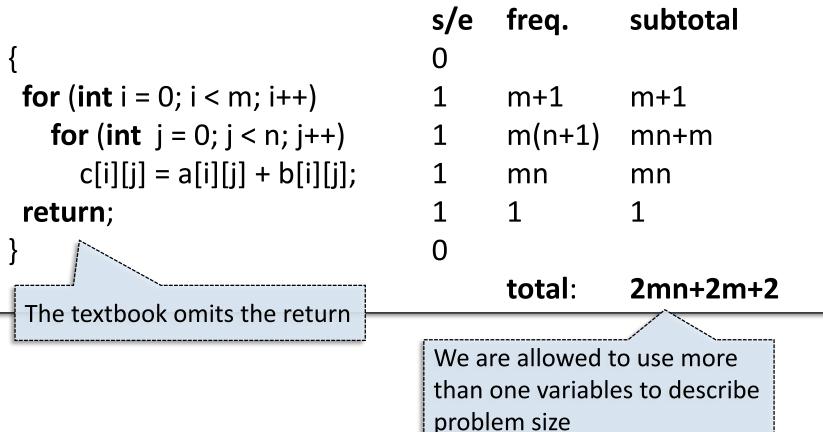
Step Counting — Instrumentation

```
void MatAdd (int **a, int **b, int **c, int m, int n)
  for (int i = 0; i < m; i++) {</pre>
        count++; // for loop i
        for (int j = 0; j < n; j++) {</pre>
          count++; // for loop j
          c[i][j] = a[i][j] + b[i][j];
          count++; // assignment
      }
      count++; // last time of the for loop j
  }
  count++; // last time of the for loop i
  count++; // return statement
  return;
```

The textbook omits the return

Step Counting — Table

void MatAdd (int **a, int **b, int **c, int m, int n)



Step Counting — Example 4


```
void fibonacci (int n) //compute the Fibonacci number F[n]
   if (n <= 1) // steps = 1
       cout << n << endl; // F[0] = 0 and F[1] = 1 // steps = 1
   else { // compute F[n]
       int fn; int fnm2 = 0; int fnm1 = 1; // steps = 2
       for (int i = 2; i<=n; i++) { // steps = n</pre>
        fn = fnm1 + fnm2;
                                 // steps = 3(n-1)
        fnm2 = fnm1;
        fnm1 = fn;
      } // end of for
       cout << fn << endl; // steps = 1</pre>
   } // end of else
   return; // steps = 1
                                    If n > 1,
} // end of fibonacci
                                    t(n) = 1 + 2 + n + 3(n-1) + 1 + 1
                                         = 4n+1
                                    Otherwise, t(n) = 1 + 1 + 1 = 3
```

Inexactness of Step Count

- We cannot know which following step count number represents the shortest execution time, where n stands for the problem size
 - Step(Alg1) = n+1
 - Step(Alg2) = n+1000
 - Step(Alg3) = 1000n
 - Step(Alg4) = 1000n+1000

Since the notion of a step is (deliberately) imprecise. 1 step can be 1 multiplication or

- multiple multiplications
- But we know the execution time of these programs linearly increases with problem size

Motivation of Asymptotic Notation

- We also know the fifth algorithm exhibits the shortest execution time once the problem size, n, is large enough
 - Step(Alg1) = n+1
 - Step(Alg2) = n+1000
 - Step(Alg3) = 1000n
 - Step(Alg4) = 1000n+1000
 - Step(Alg5) = $\log_2(n)+1000$

Linearly increase

Logarithmically increase

- Asymptotic Notations are introduced to describe/emphasize
 - Trend that an algorithm's step count increases with problem size
 - Classification of problems/algorithms based on the trend

Asymptotic Notations (O, Ω , Θ)

0	Big O	Upper bound
Θ	Theta	Tight bound
Ω	Omega	Lower bound

- "f(n) = O(n)" read as
 - "f of n is big O of n"
- We can alternatively say " $f(n) \in O(n)$ "
 - "f of n belongs to big O of n"

- Upper-bound (O) descriptions of the time complexity (i.e., in step counts)
 - Alg1 : n+1 = **O**(n)
 - Alg2 : n+1000 = **O**(n)
 - Alg3 : 1000n = **O**(n)
 - Alg4 : 1000n+1000 = **O**(n)
 - Alg5 : $\log_2(n)+1 = O(n)$
- Meanings
 - Their time complexity is no more than n
- n denotes the problem size and we focus on large problem size for asymptotic notations

- Following upper-bound statements are both true
 - Alg5 : $\log_2(n)+1 = O(n)$
 - Alg5 : $\log_2(n)+1 = O(\log_2(n))$
- Meanings
 - The time complexity of Alg5 is no more than log(n)

- Tight-bound (O) descriptions
 - Alg1 : n+1 = Θ(n)
 - Alg2 : n+1000 = **O**(n)
 - Alg3 : 1000n = Θ(n)
 - Alg4 : 1000n+1000 = Θ(n)
 - Alg5 : $\log_2(n)+1 = \Theta(\log_2(n))$
- Meanings
 - The time complexity of Alg1~4 is equal to n
 - The time complexity of Alg5 is equal to log(n)

- Lower-bound (Ω) descriptions
 - Alg1 : n+1 = **Ω**(n)
 - Alg2 : n+1000 = **Ω**(n)
 - Alg3 : 1000n = **Ω**(n)
 - Alg4 : 1000n+1000 = **Ω**(n)
 - Alg5 : $\log_2(n)+1 = \Omega(\log_2(n))$
- Meanings
 - The time complexity of Alg1~4 is no less than n
 - The time complexity of Alg5 is no less than log(n)

- These lower-bound (Ω) descriptions are true of course
 - Alg1 : n+1 = **Ω**
 - Alg2 : n+1000
 - Alg3 : 1000n
 - Alg4 : 1000n+1000
- $= \mathbf{\Omega}(\log_2(n))$ $= \mathbf{\Omega}(\log_2(n))$
- $= \Omega(\log_2(n))$
- = **Ω**(log₂(n))

- Meanings
 - The time complexity of Alg1~4 is no less than log(n)

0	Big O	Upper bound
Θ	Theta	Tight bound (i.e., both an upper bound and lower bound)
Ω	Omega	Lower bound

- "f(n) = O(n)" read as
 - "f of n is big O of n"
- We can alternatively say "f(n) ∈ O(n)"
 - "f of n belongs to big O of n"

- "Big" O → Upper
- "O" → A hyphen
 in the middle
 → tight bound

Big O Definitions

- f(n) = O(g(n)) iff ______ "iff" means "if and only if" (" \Leftrightarrow ")
 - there exist positive constants c and n_0 such that $f(n) \le c \cdot g(n)$ for all $n, n \ge n_0$

" \leq " suggests that c·g(n) is an upper bound of f(n)

- Example
 - $\underline{n+1} = O(\underline{n}),$
 - $\underline{n+1000} = O(\underline{n}),$
 - <u>1000n</u> = $O(\underline{n})$,
 - 1000n+1000 = O(n),
 - $\underline{\log(n)+1} = O(\underline{\log(n)}),$

	Lanna
<u>n+1</u> ≤ 2 · <u>n</u>	∀ n≥ 1
<u>n+1000</u> ≤ 1001 ⋅ <u>n</u>	∀ n≥ <mark>1</mark>
<u>1000n</u> ≤ <mark>1000</mark> · <u>n</u>	∀ n≥ <mark>1</mark>
<u>1000n+1000</u> ≤ <mark>2000</mark> ⋅ <u>n</u>	∀ n≥ <mark>1</mark>
$log(n)+1 \le 2 \cdot log(n)$	∀ n≥ <mark>10</mark>

"∀" means "for all"

Big O Definitions (Cont'd)

 $= O(n^{2.1}),$

 $= O(n^3),$

= O(<u>n⁹⁹</u>),

- More examples
 - $2n^2 + 3n + 4 = O(n^2),$
 - $2n^2 + 3n + 4 = O(n^2),$

 $\begin{array}{ll} \underline{2n^2+3n+4} \leq 9 \cdot \underline{n^2} & \forall n \geq 1 \\ \underline{2n^2+3n+4} \leq 90 \cdot \underline{n^2} & \forall n \geq 40 \end{array}$ We may have an infinite number of c and n0 satisfying the inequality.

- <u>2n²+3n+4</u>
- <u>2n²+3n+4</u>
- $2n^2 + 3n + 4$

• $2n^2 + 3n + 4 \neq O(n^{1.9}),$

Since by definition, Big O does not need to be a tight bound, we may have infinite number of g(n) satisfying the inequality.

Big O of a Polynomial Function

• Theorem 1.2

- $f(n) = \sum_{i=0}^{m} a_i n^i = a_m n^m + \dots + a_1 n + a_0$ $\Rightarrow f(n) = O(n^m)$
- Proof

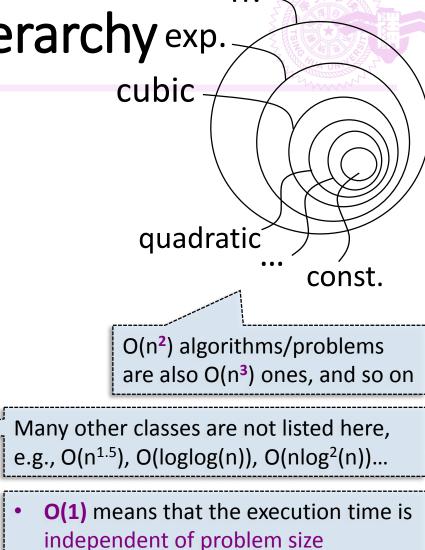
•
$$f(n) = \sum_{i=0}^{m} a_i n^i \leq \sum_{i=0}^{m} |a_i| n^i$$

$$= \mathbf{n}^{\mathbf{m}} \sum_{i=0}^{m} |a_i| \, n^{i-\mathbf{m}}$$

$$\leq n^m \sum_{i=0}^m |a_i|$$
 , for $n \geq 1$

Common Big O Hierarchy exp.

- O(n!) factorial
- O(2ⁿ) exponential
- O(**n**^k)
- ...
- O(**n**³) cubic
- O(**n**²) quadratic
- O(nlog(n)) log-linear
- O(**n**) linear
- O(n^{0.x}) sub-linear
- O(log(n)) logarithm
- O(1) constant



• E.g., time for retrieving the kth entry of an array (of size n) is O(1)

Omega Definitions

- $f(n) = \Omega(g(n))$ iff
 - there exist positive constants c and n₀ such that $f(n) \ge c \cdot g(n)$ for all $n, n \ge n_0$

Compare with Big O

such that $f(n) \leq c g(n)$ for all $n, n \geq n_0$

Example

•	<u>n+1</u>	= Ω(<u>n</u>),
•	n+1000	= O(n)

- 1000n
- 1000n+1000
- log(n)+1

=	Ω(<u>n</u>),
_	O(n)

- $= \Omega(n),$
- $= \Omega(n),$
- $= \Omega(\log(n)),$

<u>n+1</u> ≥ 1 · <u>n</u>	∀ n≥ <mark>1</mark>
<u>n+1000</u> ≥ 1 ∙ <u>n</u>	∀ n≥ <mark>1</mark>
<u>1000n</u> ≥ 1000 ∙n	∀ n≥ <mark>1</mark>
1000n+1000 ≥ 1000 •n	∀ n≥ <mark>1</mark>
$\log(n)+1 \ge 1 \cdot \log(n)$	∀ n≥ <mark>10</mark>

Omega Definitions (Cont'd)

- More examples
 - $2n^2 + 3n + 4 = \Omega(n^2),$
 - $2n^2+3n+4 = \Omega(n^{1.9}),$
 - $2n^2 + 3n + 4 = \Omega(\underline{n}),$
 - $2n^2 + 3n + 4 = \Omega(1)$,
 - $2n^2 + 3n + 4 \neq \Omega(n^{2.1}),$
- Theorem 1.3

•
$$f(n) = a_m n^m + \dots + a_1 n + a_0$$
, $a_m > 0$
 $\Rightarrow f(n) = \Omega(n^m)$

Theta **Definitions**

- $f(n) = \Theta(g(n))$ iff
 - there exist positive constants c_1 , c_2 and n_0 such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n, n \ge n_0$
 - i.e., f(n) is O(g(n)) and $\Omega(g(n))$
- Example

• <u>n+1</u>	= Θ(<u>n</u>),	1 ⋅ <u>n</u> ≤ <u>n+1</u> ≤ 2 ⋅ <u>n</u>	∀ n≥ 1
• <u>n+1000</u>	= Θ(<u>n</u>),	1 · <u>n</u> ≤ <u>n+1000</u> ≤ 1001 · <u>n</u>	∀ n≥ 1
• <u>1000n</u>	= Θ(<u>n</u>),	<u>1000·n</u> ≤ <u>1000n</u> ≤ <u>1000·n</u>	∀ n≥ 1
• <u>1000n+1000</u>	= Θ(<u>n</u>),	$1000 \cdot \underline{n} \le 1000n + 1000 \le 2000 \cdot \underline{n}$	∀ n≥ 1
• <u>log(n)+1</u>	= 0(<u>log(</u> r	$1), 1 \cdot \log(n) \leq \log(n) + 1 \leq 2 \cdot \log(n)$	∀ n≥ <mark>10</mark>

• Theorem 1.4

•
$$f(n) = a_m \mathbf{n}^m + \dots + a_1 n + a_0$$
, $a_m > 0$
 $\Rightarrow f(n) = \Theta(\mathbf{n}^m)$

Step Counting — Asymptotic Notation

float sum (float *a, const int n)	s/e	freq.	subtotal
{	0		
float s = 0;	1	Θ(1)	Θ(1)
for (int i = 0; i < n; i++)	1	Θ(n)	Θ(n)
s += a[i];	1	Θ(n)	Θ(n)
return s;	1	Θ(1)	Θ(1)
}	0		
	overall:		Θ(n)

s/e: number of steps per execution

Step Counting — Asymptotic Notation

(recursion of sum())		freq.	•	subto	otal
float Rsum (float *a, const int n)	s/e	n=0 n>	>0 I	n=0	n>0
{	0				
if (n <= 0)	1	Θ(1) Θ	(1) (Θ(1)	Θ(1)
return 0;	1	Θ(1) 0	(Θ(1)	0
else	0				
return (Rsum(a, n-1) + a[n-1]);	1+t(n-1)	0 Θ)(1) (0	Θ(1+t(n-1))
}	0				
		overall:		Θ(1)	Θ(1+t(n-1))

s/e: number of steps per execution

Step Counting — Asymptotic Notation

```
void MatAdd (int **a, int **b, int **c, int m, int n)
```

Recursive Permutation Generator

```
void Permutations(int *a, const int k, const int m)
ł
  // one element between k and m means one possible permutation
  if(k == m) {
     for(int i=0; i<=m; i++)</pre>
                                          k = = m
       cout << a[i] << " ";</pre>
                                          \rightarrow \Theta(t(k, m)) = \Theta(m)
     cout << endl;</pre>
     return;
  }
  for(int i=k; i<=m; i++) {</pre>
                                          \Theta(t(k, m)) =
     swap(a[k], a[i]);
    Permutations(a, k+1, m);
                                          (m-k+1)\times\Theta(t(k+1, m)) + \Theta(1)
     swap(a[k], a[i]);
                                          \Theta(1) comes from the if statement
```

Recursive Permutation Generator

Solve the recurrence

```
\Theta(t(k, m)) = (m-k+1) \times \Theta(t(k+1, m)) + \Theta(1) Eq. (1)
\Theta(t(m, m)) = \Theta(m) Eq. (2)
```

```
Let k=0 and m=(n-1)

\Theta(t(0, n-1)) = n \times \Theta(t(1, n-1)) + \Theta(1)

= n \times (n-1) \times \Theta(t(2, n-1)) + \Theta(1) + \Theta(1)

= ...

= n \times (n-1) \times (n-2) ... \times 2 \times \Theta(t(n-1, n-1)) + (n-1) \times \Theta(1)

n-1 terms

= n! \times \Theta(t(n-1, n-1)) + \Theta(n-1)

= n! \times \Theta(n-1) + \Theta(n-1) ... because of Eq. (2)

= \Theta(n \times n!)
```

n-1 equations

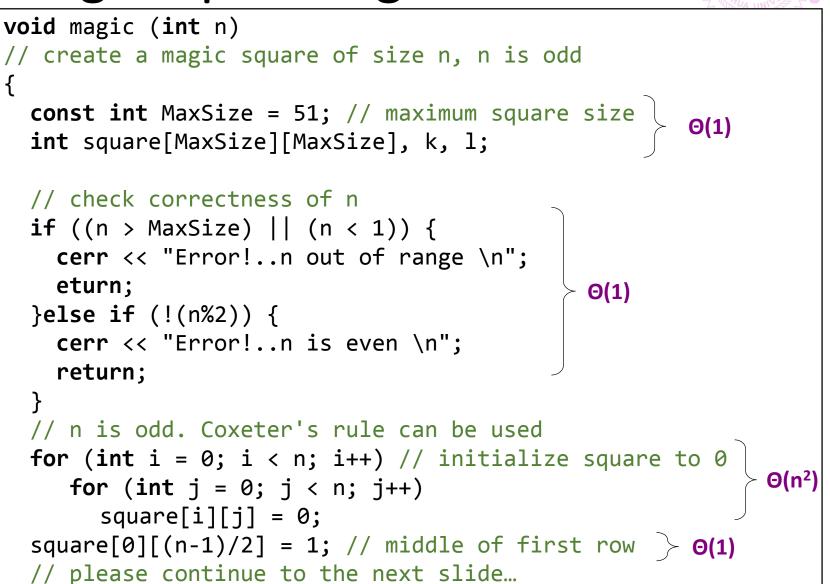
Binary Search


```
int BinarySearch(int *a, const int x, const int n)
{ //Search the sorted array a[0], ..., a[n-1] for x
    int left = 0, right = n-1;
    while(left <= right)</pre>
    {//there are more elements
        int middle =(left+right)/2;
        if(x<a[middle]) right=middle-1;</pre>
                                                   \Theta(\log(h))
        else if(x>a[middle]) left = middle+1;
        else return middle;
    }//end of while
    return -1;
```

Magic Square

_						1
	15	8	1	24	17	= 65
	16	14	7	5	23	= 65
	22	20	13	6	4	= 65
	3	21	19	12	10	= 65
	9	2	25	18	11	= 65
L	= 65	= 65	= 65	= 65	= 65	ీర్య

Magic Square Algorithm



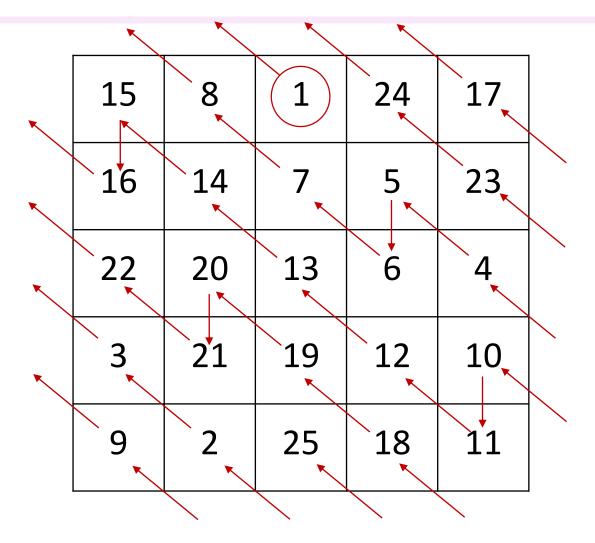
```
MMM
```

```
// i and j are current position
int key = 2; i = 0;
                                                 Θ(1)
int j = (n-1)/2;
while (key <= n*n) {</pre>
// move up and left
   if (i-1 < 0) k = n-1; else k = i-1;
   if (j-1 < 0) l = n-1; else l = j-1;
   if (square[k][1]) i = (i+1)%n;
   else { // square[k][1] is unoccupied
                                                 Θ(n<sup>2</sup>)
      i = k;
     j = 1;
   }
   square[i][j] = key;
   key++;
} // end of while
// output the magic square
cout << "magic square of size " << n << endl; > \Theta(1)
for ( i = 0; i < n; i++) {</pre>
   for ( j = 0; j < n; j++)
      cout << square[i][j] << " ";</pre>
                                                        Θ(n<sup>2</sup>)
   cout << endl;</pre>
```

Magic Square (Cont'd)

- We just show how can we quickly analyze the complexity of an algorithm without knowing all the details
- Θ(n²) is the optimal one we can achieve (in terms of asymptotic complexity) to generate an n² magic square
 - Since there are n² positions the algorithm must place a number

Magic Square Underlying Concept

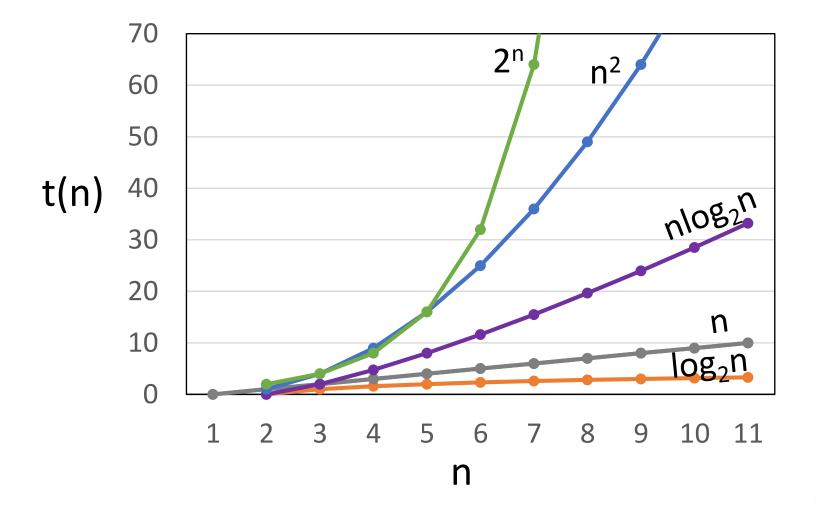


Practical Complexities

Prob. size	n	nlog(n)	n²	n ³	n ⁴	2 ⁿ
10 ³	1 µs	10 µs	1 ms	1 s	17 min	3.2 x 10 ²⁸³ y
104	10 µs	130 µs	100 ms	17 m	116 d	
10 ⁵	0.1 ms	1.7 ms	10 s	12 d	3171 y	
10 ⁶	1 ms	20 ms	17 m	32 y	3 x 10 ⁷ y	

Assume a computer that performs 1 billion steps per second

Practice Complexity



Performance Measurement

- Techniques
 - Use time-related library functions
 - gettimeofday()
 - clock()
 - time()
 - Repeatedly measure a program to reduce noises
 - Use randomized inputs to obtain best-case, average, and worst-case execution time
 - Predict the execution time of a problem with different input size
 - Regression (curve fitting)
 - Interpolation
 - Extrapolation
- Please read Section 1.7.2 for details

Performance Measurement

- Limitations of asymptotic analysis
 - For two programs that are both O(n²) time complexity
 - We cannot tell which is faster
 - For one program that is O(n) and the other is O(n²)
 - Sometimes the problem size is not very large, and the O(n²) one actually is faster than the O(n) one
- Performance measurement provide actual execution time

Alan Turing

- One of the greatest computer scientists and computational theorists
 - Complexity analysis is part of computational theory
- Often called the father of modern computing
- Some famous things
 - Turing award (圖靈獎)
 - Nobel Prize of computing
 - Turing machine (圖靈機)
 - Theoretical computer model
 - http://www.google.com/doodles/alan-turings-100th-birthday
 - Turing test (圖靈測試)
 - Test of a computer's ability to exhibit behavior equivalent to human



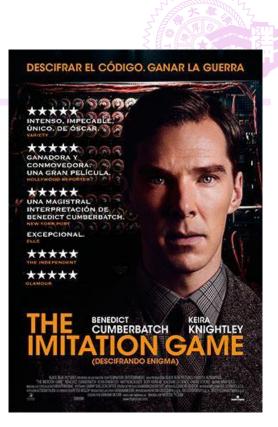
Alan Turing (Cont'd)

- The Imitation Game
 - A movie about Alan Turing trying to crack the Enigma code during World War II
 - In Taiwan's theaters recently!!
 - IMDB 8.2

User Reviews

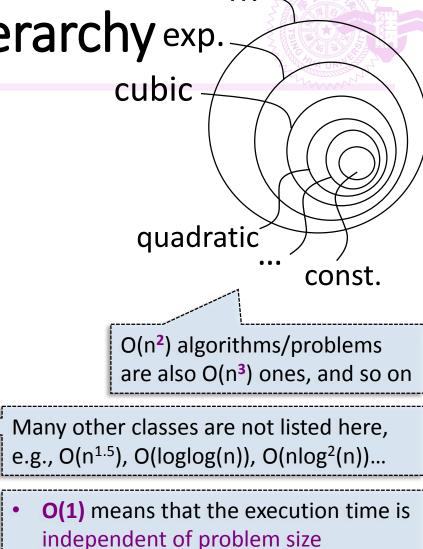
Compelling and Enthralling from start to finish. 16 October 2014 | by fruitbat00 (United Kingdom) – See all my reviews

Truly excellent film and definitely Ocsar worthy material for both the film and the actors. The entire cast are amazing.



Common Big O Hierarchy exp.

- O(n!) factorial
- O(2ⁿ) exponential
- O(**n**^k)
- ...
- O(**n**³) cubic
- O(**n**²) quadratic
- O(nlog(n)) log-linear
- O(**n**) linear
- O(n^{0.x}) sub-linear
- O(log(n)) logarithm
- O(1) constant



• E.g., time for retrieving the kth entry of an array (of size n) is O(1)

Time Complexity of Learning DS

- $\Theta(1)$
 - Number of weeks in the semester
 = 18 = Θ(1)
 - Number of chapters covered in the semester
 = 8 = Θ(1)
 - Time(read these chapters twice)
 - = $2 \times 8 \times \text{Time}_{\text{read}_{one}_{chapter}}$
 - = Θ(1)

