N

D

|

= b0 S
) = 0

c
© 9% ¢ 3
tUHnEm
- c -
atoo.Umo

T ©° E 5
DSC E =z A

Outline

* 8.1 Introduction

* (8.2 Static hashing)

* (8.3 Dynamic hashing)
* 8.4 Bloom filters

Registration Division Example

as A XK [a)aE i
S22 8 RAE

ASES PN

Division of Registration

BROO
800
Z00
MOO
+00

31300 / chen@nthu...
31301 / kuo@nthu...
31302 / li@nthu...
31303 / lin@nthu..

31304 / wang@nthu...

3

Registration Division Example

TRZEEF]ESE -
HemailzasE—1I

OO 31300 / chen@nthu...

sf00 31301 / kuo@nthu...
Z00 31302 / li@nthu...
#OO 31303 / lin@nthu..

+00 31304 / wang@nthu...

4

Hash Concepts

 Hash function

* Any deterministic function that can map data of
arbitrary size (original keys) to data of a desired fixed
size (hashed keys)

Keys Has!1 Hashed Keys Values
Function
(e.g., names) (e.g., 0~4)
A
0 [ROO 31300
n % ?*: f'g% n] 2 —
1 200 31301
"Donald Trump" —— f() 3 2 Z00 31302
S 4 FOO 31304

Hash Concepts

 Hash function

* |t shuffles the order of mapping

e Butitis deterministic

Keys Has.h Hashed Keys
Function
(e.g., names) (e.g., 0~4)
] H‘? 7*‘ f’Frbn]] 2
"Donald Trump" —— f() 3
"k - P 0

A wWw N B O

Values
fROO 31300
sf00 31301
200 31302
OO 31303

+00

31304

Hash in Cooking

* Hash: "chop and mix foods"

« Example: hash browns (& 4#)

McDonald
Function

Hash in Chinese Decomposition

 Decompose Chinese characters into keyboard strokes

* Facilitate Chinese input

* Example: the Boshiamy (®& 5 5}) decomposition scheme

2 » Boshiamy

Function

"

OAO

YYY

TOTO

Hash in a Storing Data

* Example: Storing students' grades according to
their name initial letters

A | (Alice, 100)

Name » A
initial J | John, 95) | (Jane, 100)

Advantages of Hashing

* Inserting, deleting, and
searching can be ~O(1) time

* Hash function computation is
designed in O(1)

* Indexing the corresponding
bucket in the table is O(1)

e Searching all slots in a bucket
for a key is also O(1)

* The number of slots is
independent of the number of
pairs stored in the table

(Alice, 100)

(Bob, 80)

(Ben, 70)

(Irene, 85)

(John, 95)

(Jane, 100)

(Ken, 75)

(Zoe, 80)

Hashing

* A pair with a key k is stored
in a hash table ht

* Key parameters Slots
* b bucketsin ht) - B
e h(k) is the home bucket of a A | (Alice, 100)
key k B | (Bob, 80) | (Ben, 70)

* sslots per bucket

* T possible different keys é | | (Irene, 85)

* n stored pairsin ht é) J | John, 95) | (Jane, 100)
K| (Ken, 75)
Z | (Zoe, 80)

Hash Function

E =1 {Ei%
\%"—ul ;\\‘ . 7 = ;l\‘
L%éfﬁ@ﬁd\ Hash Function BRERBIRAN
, O \\\\\ ;E,_ll%_'ll/\z\g \n57¥€|._ll
N O—, BEAE —HZZ"
—
@)
O

Hash Function

e Good hash functions reduce
the chance of collisions

* Enlarging hash table size can

also reduce collisions
e At the cost of memory size

e |deal hash functions
 Uniform hash function

* Easy to compute

Slots

AN

/

(Alice, 100)

(Bob, 80)

(Ben, 70)

(Irene, 85)

Buckets
A

(John, 95)

(Jane, 100)

(Ken, 75)

(Zoe, 80)

Hash Functions

* Classical examples
* Modulo (division)
* Mid-square
* Folding
* String-to-integer conversion

* We can design our own hash functions

Modulo (Division)

* Most widely used hash function in practice

* Procedure
* h(k)=k% D

e Selection of D
e D < the number of buckets

* D would better be an odd number
* Even divisor D always maps even keys to even buckets and odd

keys to odd buckets
* Real-world data tend to have a bias toward either odd or even

keys
* It would be even desirable if D can be a prime number
or a number having no prime factors smaller than 20

Mid-Square

* h(k) = some middle r bits of the square of k
 The number of bucket is equal to 2"

* Example

k K2 h(k)
0 0 0000 0000 0
1 | 1 | 00000001 0
2 | 4 | 00000100 1
3 9 0000 1001 2
4 | 16 | 00010000 | 4
5 | 25 | 00011001 6
6 | 36 | 00100100 | 9
7 | 49 | 00110001 | 12

k k2 h(k)
8 | 64 | 01000000 | O
9 | 81 | 01010001 | 4
10 | 100 | 01100100 | 9
11 | 121 | 01111001 | 14
12 | 144 | 10010000 | 4
13 | 169 | 10101001 | 10
14 | 196 | 11000100 | 1
15 | 225 | 11100001 | 8

16

Folding

 Partition the key into several parts and add them

together

* Two strategies: shift folding and folding at the boundary

* Example

 k=12320324111220 =

 Shift folding

h(k) =X,

h(k) =X,

123 | 203 | 241 | 112 20
=T
123 | 203 | 241 | 112 20 |=699 Il‘
* Folding at the boundary &
v vV v vV P_
123 | 302 | 241 | 211 20 |=897 I—

String-to-Integer Conversion

* Useful when keys are strings

* Procedure

* Treat every n character as an 8n-bit integer
* ASCII represents a character using 8 bits

Characters: h O p e

ASCII Values: 104 111 112 101

Binary Values: 01101000 01101111 01110000 01100101

* Add all integers together to obtain the overall value

* Adopt the aforementioned hash functions (modulo,
folding...)

Design Our Own Hash

e Recall that

* Hash function is any deterministic function that can map
data of arbitrary size (original keys) to data of a desired
fixed size (hashed keys)

* So of course we can design a hash like this

Original Folding +Trump s|| Mid- [Modulo , Hashed
Keys Birthday Square Keys

 Consideration:

* We need to argue the advantages of our hash compared
with the commonly used ones

Chain-Based Hash Table

e Each bucket is a chain

* Chain nodes are typically
unordered

* We typically expect the
hash function spreads
records uniformly
enough

* Thus each chain does not
contain too many nodes
* Linearly traversing a
chain is required for
inserting, finding, and
removing a key

\ 4

(Alice, 100)

A 4

(Bob, 80)

A 4

(Ben, 70)

A 4

(Irene, 85)

\ 4

(John, 95)

\ 4

(Jane, 100)

\ 4

(Ken, 75)

\ 4

(Kevin, 70)

A 4

(Linda, 90)

A 4

(Mary, 85)

A 4

(Zoe, 80)

20

Outline

* 8.1 Introduction

* (8.2 Static hashing)

* (8.3 Dynamic hashing)
8.4 Bloom filters

21

Bloom Filter Concepts

* Proposed by Burton Howard Bloom in 1970

* A probabilistic data structure

. Frc])r constructing a set and then determining whether some keys is in
the set

Traditional set data Bloom filters
structures, e.g., a BST

False positive

(It could be wrong when it X O (HHER)
says "Yes")

False negative

(It could be wrong when it X X

says "No")

Easy insertion @) @)

Easy deletion 0 X (SEE)
Memory space efficiency Low High ({Z%h)

22

Grocery Shop Example

e Suppose we own a grocery
shop

e Customers occasionally ask
for an item that we are not
sure about the availability

* We spend significant time
looking for an item before

realizing that the item is
unavailable

23

Grocery Shop Example

* Bloom filter can help

e Determine the availability of
an requested item

e Some false positive are
acceptable

* j.e., the data structure tells that
an item is available, but the fact
is otherwise

* No false negative

* We do not want to mistakenly
turn down a customer's request

24

Bloom Filter

* Components
* A bit vector
e Multiple hash functions

* Example
e Atable with 26 entries, A~ Z

* Three hash functions for a string
 First character
e Second character
e Third character

< r@r- R « — I O m m OO @ >

N < X g < c 4w = p © 0 2

Bloom Filter

* Example

* Register string "Coke" into the Bloom
filter to indicate that our grocery sells
Coke

* Set the bit vector according to the three
hash values, C, O, and K

"Coke"
IICII

IIOII

IIKII

0ot

T O m m O O W >

— —

< - R

Available items

- —-_—
- - o

~
~
=~ -

N
0] 1
1 P
Q
R
S
T
U
Vv
W
1 X
Y
Z

Available items

- —-_—
- - o

Bloom Filter

e Asimpletest T - -

* If a customer request for "Coke" afterward A N
* Bit vector is examined according to the B ol 1
three hash values
* Bloom filter determines that cokeis cl 1 P
available because the corresponding bits D Q
have been set
E R
"Coke" F S
~ _’®_’ oy T
<) uon/ H U
I Vv
K 1 X
L Y
M Z

Available items

——— -
- - o

Bloom Filter

* Asimpletest e

* If a customer request for "orange juice"

afterward

* Bloom filter determines that orange
juice is unavailable because at least one

corresponding bit is not set

"Tea" @ - x

N < X g < c 4w = p © 0 2

Available items

Bloom Filter

* We register more strings into the

: Al 1 N| 1
Bloom filter
B O 1
¢ 1 " !
vg D Q
% agi " "
Fanta” > FAN i g
F| 1 S 1
"Sprite" > SPR ° -
H U
| 1| 1 V| 1
-5 ! "
wxa "Vitali" 2> VIT K| 1 X
‘ L I_ Y
M Z

Bloom Filter

* Test again
* Bloom filter still works

v

"Coke" =2 COK

s/

Y "Tea" > TEA

Y

"Fanta" 2 FAN

T O m m O O W™ >

—_— -

< - R

Available items

1 N 1
0] 1
1 P 1
Q
R 1
1 S 1
T 1
U
1 V 1
W
1 X
Y
Z

Advantages

e "Coca Cola

* "Fanta"
e "Sprite"

* "Vitali

Only 26 bits

< r@r- R « — I O m m OO @ >

N < X g < c 4w = p © 0 2

Available items

Disadvantages -

* Bloom filter exhibits false positive

* When Bloom filter says "yes", it is not AL Np 1
100% true B O 1
e But, when Bloom filter says "no", it is cC| 1 P| 1

always true D Q
» "Coffee" is a false positive in our e R 1
example ‘/‘/‘/ e 1 s | 1
G T 1

& Coffee" > COF

- H U
Our grocery does not sell I 1 Vv 1

coffee actually!] W

K| 1 X

L Y

M Z

Bloom Filter Analysis

* Key factors of a bloom filter
* Number of hash functions, k
* Number of bits in the bit vector, m
 Number of items expected to be stored, n
* Uniformity of the hash functions

* False positive analysis
* Bit vector is set nk times after n items are stored
* Each time, the probability that a particular bit is set is (1/m)
* Assume true uniformity of hash functions
* The probability that a bit is setis (1 - (1 - 1/m)"¥) after n items
are stored
* The probability of a false positive is (1 - (1 - 1/m)"k)k

* We can carefully select m, n, and k to achieve our
acceptable false positive rate, e.g., 1%

