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Important Uses of Sorting

• Aid searching in a list
• O(n) time for an unordered list (with sequential search) 

• O(log(n)) time for a sorted list (with binary search) 

• Aid matching two lists
• O(nm) time for unordered lists (with sequential search)

• O(n+m) time for sorted lists
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Classification of Sorting

• Complexity
• Time complexity

• Space complexity

• Stability
• A sort is called stable iff it 

maintains the relative order 
of records with equal keys

• Internal vs. external
• An internal sort requires its inputs to be small enough so 

that the entire sort can be carried out in main memory
• Examples: Selection Sort, Insertion Sort, Quick Sort, Heap Sort

• An external sort has no abovementioned requirement
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non-stable sort example



Insertion Sort Concept

• array[0] is used as temporary 
space

• array[1] is the initial sorted 
sublist

• Insertion pass
• Place the element next to the 

sublist to the temporary space 
• Insert the element to the sublist

• Insertion passes are continued 
until the sublist contains all 
records

• Insertion Sort is a stable sort
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How Fast is Insertion Sort?

• Worst-case time complexity
• When input is in a reversed order

• Each insertion pass involves i
comparisons, i = 1..n

• 1+2+…+n = O(n2)

• Average time complexity
• It has been shown that Insertion 

Sort is O(n2) on average 
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Insertion Sort Algorithm
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template <class T>
void InsertionSort(T *a, const int n)
{ // sort a[1..n]

for (int j = 2; j <= n ; j++){
a[0] = a[j];
for (int i = j - 1; a[i] > a[0]; i--) {

a[i + 1] = a [i];
}
a[i + 1] = a[0];  

}  
}



Variations of Insertion Sort

• Binary Insertion Sort
• Use binary search rather than sequential search for 

insertion passes

• Complexity does not change because the number of 
record moves remains unchanged

• Linked Insertion Sort
• The records to be sorted are stored in a linked list rather 

than an array

• The number of record moves becomes zero

• Complexity does not change because sequential search 
is required for insertion
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6 3 7 1 8 4 5 2Quick Sort Concept

• Divide-and-conquer

• Division passes
• Pick the first element of a 

list as the pivot
• Make elements whose key ≤

the pivot be the left sublist
• Make elements whose key > 

the pivot be the right sublist

• Division passes are 
continued until all sublists
are of size ≤1

• Basically, Quick Sort is non-
stable
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Quick Sort Concept

• Steps for generating sublists
• Linear searching from the 

both the ends

• Find candidates to swap

• Perform swapping 
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How Fast is Quick Sort?

• Worst-case time complexity
• Each division pass involves n comparisons and end up 

with sublists with 1 and n-1 records

• T(n) = O(n) + T(n-1) = O(n2)

• Average time complexity
• It has been shown that Quick Sort is O(n∙log(n)) on 

average 
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Quick Sort Algorithm
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template <class T>
void QuickSort(T *a, const int left, const int right)
{ // sort a[left..right]

if (left < right) {
int & pivot = a[left];
int i = left;
int j = right + 1;
do {

do j--; while (a[j] > pivot);  //find a key ≤pivot
do { i++; //find a key >pivot
} while (i < j && a[i] <= pivot); 
if (i < j) swap (a[i], a[j]);

} while (i < j);
swap (pivot, a[j]); //place the pivot between 2 lists
QuickSort(a, left, j - 1);  // recursion
QuickSort(a, j + 1, right); // recursion

}
}



Variations of Quick Sort

• Median-of-three strategy
• Ordered lists are worst-case inputs for Quick Sort

• Pivot are always the smallest or largest key within a sublist

• Ordered lists are not rare in real life

• Choosing the pivot using the median of the first, middle, 
and last key can address this issue
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How Fast Can We Sort?

• A sorting algorithm can be represented as a binary 
decision tree
• Non-leaf node represents a comparison between two keys

• Leaf nodes are the sorting results
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How Fast Can We Sort?

• Sorting n records
• Number of leaf nodes is at least n!
• Tree height is at least (log2(n!) + 1) = Ω(n∙log(n))

Sorting with worst time complexity < n∙log(n) is impossible

• Average root-to-leaf path length is Ω(n∙log(n)) 
 Sorting with average time complexity < n∙log(n) is impossible
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Merge Sort

• Interpret the unsorted list 
as n sorted sublists, each of 
size 1

• These lists are merged by 
pairs in each pass

• Merge passes are 
continued until there is 
only one sublist remained

• Merge Sort is stable
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How Fast is Merge Sort ?

• Both worst and average cases
• log(n) merge passes are performed

• Each merge pass is O(n)

• Time complexity is O(n∙log(n))
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Merge Sort Algorithm

(to be continued)
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template <class T>
void MergeSort(T *a, const int n)
{ // sort a[1:n] into non-decreasing order

T *tempList = new T[n+1];

// s is the length of the currently merged sublist
for (int s = 1; s < n; s *= 2)
{

MergePass(a, tempList, n, s);

s *= 2;
MergePass(tempList, a, n, s); 

}
delete [] tempList;

}



Merge Sort Algorithm

(to be continued)
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template <class T>
void MergePass(T *a, T *b, const int n, const int s)
{

for (int i = 1; 
i <= n-(2*s)+1; 
i+ = 2*s) {
Merge(a, b, i, i+s-1, i+(2*s)-1);

}

// merge remaining lists
if ((i + s-1) < n)  // one full and one partial lists

Merge(a, b, i, i+s-1, n);
else                // only one partial lists remained

copy(a+i, b+n+1, b+i);
}



Merge Sort Algorithm
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template <class T>
void Merge(T *a, T *b, const int k, const int m, const int n)
{
for (int i1 = k, i2 = m+1, i3 = k;  

i1 <= m && i2 <= n; 
i3++) {

if (a[i1] <= a [i2]) {
b [i3] = a [i1];
i1++;

} else {
b [i3] = a [i2];
i2++;

}
// copy remaining records, if any, of 1st sublist
copy (a+i1, a+m+1, b+i3);

// copy remaining records, if any, of 2nd sublist
copy (a+i2, a+n+1, b+i3);

}
}

merge

a

b

i1 i2

i3



Variations of Merge Sort

• Natural Merge Sort
• Interpreting the initial list as multiple sorted sublists, 

each can contain more than one records
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Heap Sort Concept

• Interpret the input list as a 
tree

• Heapify the tree to form a 
max heap

• Popping pass
• Pop the top (maximum) record

• Heap size shrinks by one
• Space next to the heap 

becomes unused
• Place the popped record at the 

space 

• Popping passes are continued 
until the heap becomes 
empty

• Heap Sort is non-stable
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Heap Sort Detail Steps
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Heap Sort Detail Steps
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Heap Sort Detail Steps
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Heap Sort Detail Steps
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Heap Sort Detail Steps

27

1 2 3 4 5

6 5 4 3 1 2 7 8

6 7 8

6

5 4

3 1 2 7

1

2 3

4 5 6 7

8
8

heap

1 2 3 4 5

2 5 4 3 1 6 7 8

6 7 8

2

5 4

3 1 6 7

1

2 3

4 5 6 7

8
8

~heap



Heap Sort Algorithm

(to be continued)
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template <class T>
void HeapSort(T *a, const int n)
{// sort a[1..n] into non-decreasing order

// a[n/2] is the parent of the last node, a[n]
for (int i = n/2; i >= 1; i--) // buttom-up heapification

Adjust(a, i, n);  // make the tree rooted at i be a max heap

for (int i = n-1; i >= 1; i--) {
swap(a[1], a[i+1]); // move one record from heap to list
Adjust(a, 1, i);  // heapify

}
}



Heap Sort Algorithm
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template <class T>
void Adjust(T *a, const int root, const int n)
{

// two subtrees are max heaps already
// same procedure as the trickling-down procedure
T e = a[root];
//2*root is root's left child
for (int j = 2*root; j <= n; j *=2) {

if (j < n && a[j] < a[j+1]) // j and j+1 are siblings
j++; // make j be the max child

if (e >= a[j]) 
break; 

a[j / 2] = a[j]; // move jth record up the path
}
a[j / 2] = e;

}



How Fast is Heap Sort?

• Both worst and average cases
• Heapifying the tree

• n/2 adjust()'s are invoked, each is at most O(log(n))

• Converting the max heap to the list
• n pop()'s are invoked, each is O(log(n))

• Overall, the time complexity is O(n∙log(n))
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Summary
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Worst Average

Insertion Sort n2 n2

• Fastest method when n is small (e.g., 
n<100)

• O(1) space
• Stable

Quick Sort n2 nlogn

• Fastest method in practice
• Require O(n2) time in the worst case
• Require O(log(n)) space  
• Non-stable

Merge Sort n∙log(n) n∙log(n)
• Require additional O(n) space
• Stable

Heap Sort n∙log(n) n∙log(n)
• Require additional O(1) space
• Non-stable



Summary
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Sorting on Several Keys

• Sorting a deck of cards 
• Sort on two keys

• Suits (most-significant digit, MSD) :       <       <      < 

• Face values (least-significant digit, LSD) : 2 < 3 <… < Q < K < A

• Two popular sorting strategies
• MSD first sort

• LSD first sort
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Radix Sort

• Decompose each key into several keys using some 
radix
• e.g., 365 is decomposed into 3, 6, and 5 with a radix = 10

• Common practices 
• LSD-first sort is commonly chosen for computer sorting

• MSD-first sort tends to incur much overhead because of 
the need to independently sort multiple groups
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LSD-First Radix Sort Example
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Summary

• Every sorting algorithm has its pros and cons
• No one size fit all solution

• C++'s sort methods
• sort()

• Quick Sort that reverts to Heap Sort when the recursion depth 
exceeds some threshold and to Insertion Sort when the 
segment size becomes small

• stable_sort()
• Merge Sort that revers to Insertion Sort when the segment size 

becomes small

• partial_sort()
• Heap Sort that has ability to stop when only the first k 

elements need to be sorted
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