
Data
Structures

Prof. Ren-Shuo Liu

NTHU EE

Spring 2018

CH7 Sorting

Outline

• 7.1 Introduction

• 7.2 Insertion Sort

• 7.3 Quick Sort

• 7.4 How fast we can sort

• 7.5 Merge sort

• 7.6 Heap sort

• 7.7 Radix sort

• 7.8 (List and table sorts)

• 7.9 Summary of internal sorting

2

Important Uses of Sorting

• Aid searching in a list
• O(n) time for an unordered list (with sequential search)

• O(log(n)) time for a sorted list (with binary search)

• Aid matching two lists
• O(nm) time for unordered lists (with sequential search)

• O(n+m) time for sorted lists

3

Classification of Sorting

• Complexity
• Time complexity

• Space complexity

• Stability
• A sort is called stable iff it

maintains the relative order
of records with equal keys

• Internal vs. external
• An internal sort requires its inputs to be small enough so

that the entire sort can be carried out in main memory
• Examples: Selection Sort, Insertion Sort, Quick Sort, Heap Sort

• An external sort has no abovementioned requirement

4

Score Name

100 Alice

90 Bob

100 David

90 Emily

Score Name

100 Alice

100 David

90 Emily

90 Bob

non-stable sort example

Insertion Sort Concept

• array[0] is used as temporary
space

• array[1] is the initial sorted
sublist

• Insertion pass
• Place the element next to the

sublist to the temporary space
• Insert the element to the sublist

• Insertion passes are continued
until the sublist contains all
records

• Insertion Sort is a stable sort

5

0 1 2 3 4 5

5 3 4 1 2

53 4 1 2

53 4 1 2

534 1 2

53 4 1 2

53 41 2

53 41 2

53 412

53 41 2

How Fast is Insertion Sort?

• Worst-case time complexity
• When input is in a reversed order

• Each insertion pass involves i
comparisons, i = 1..n

• 1+2+…+n = O(n2)

• Average time complexity
• It has been shown that Insertion

Sort is O(n2) on average

6

5 3 4 1 2

53 4 1 2

53 4 1 2

534 1 2

53 4 1 2

53 41 2

53 41 2

53 412

53 41 2

Insertion Sort Algorithm

7

template <class T>
void InsertionSort(T *a, const int n)
{ // sort a[1..n]

for (int j = 2; j <= n ; j++){
a[0] = a[j];
for (int i = j - 1; a[i] > a[0]; i--) {

a[i + 1] = a [i];
}
a[i + 1] = a[0];

}
}

Variations of Insertion Sort

• Binary Insertion Sort
• Use binary search rather than sequential search for

insertion passes

• Complexity does not change because the number of
record moves remains unchanged

• Linked Insertion Sort
• The records to be sorted are stored in a linked list rather

than an array

• The number of record moves becomes zero

• Complexity does not change because sequential search
is required for insertion

8

6 3 7 1 8 4 5 2Quick Sort Concept

• Divide-and-conquer

• Division passes
• Pick the first element of a

list as the pivot
• Make elements whose key ≤

the pivot be the left sublist
• Make elements whose key >

the pivot be the right sublist

• Division passes are
continued until all sublists
are of size ≤1

• Basically, Quick Sort is non-
stable

4 3 2 1 5 6 8 7

sublist (≤ 6)

1 2 3 4 5 6 7 8

4 3 2 1 5 6 8 7

1 3 2 4 5 6 7 8

1 3 2 4 5 6 7 8

1 2 3 4 5 6 7 8

sublist

1 3 2 4 5 6 7 8

1 3 2 4 5 6 7 8

^

^ ^ ^

^ ^ ^^

^ ^ ^^ ^

pivot

Quick Sort Concept

• Steps for generating sublists
• Linear searching from the

both the ends

• Find candidates to swap

• Perform swapping

10

6 3 2 1 8 4 5 7

6 3 2 1 5 4 8 7

4 3 2 1 5 6 8 7

sublist sublist^pivot

6 3 7 1 8 4 5 2

1 2 3 4 5 6 7 8

find a key >pivot find a key ≤pivot

find find

findfind

swap

last swap place the pivot
between the two sublists

swap

How Fast is Quick Sort?

• Worst-case time complexity
• Each division pass involves n comparisons and end up

with sublists with 1 and n-1 records

• T(n) = O(n) + T(n-1) = O(n2)

• Average time complexity
• It has been shown that Quick Sort is O(n∙log(n)) on

average

11

Quick Sort Algorithm

12

template <class T>
void QuickSort(T *a, const int left, const int right)
{ // sort a[left..right]

if (left < right) {
int & pivot = a[left];
int i = left;
int j = right + 1;
do {

do j--; while (a[j] > pivot); //find a key ≤pivot
do { i++; //find a key >pivot
} while (i < j && a[i] <= pivot);
if (i < j) swap (a[i], a[j]);

} while (i < j);
swap (pivot, a[j]); //place the pivot between 2 lists
QuickSort(a, left, j - 1); // recursion
QuickSort(a, j + 1, right); // recursion

}
}

Variations of Quick Sort

• Median-of-three strategy
• Ordered lists are worst-case inputs for Quick Sort

• Pivot are always the smallest or largest key within a sublist

• Ordered lists are not rare in real life

• Choosing the pivot using the median of the first, middle,
and last key can address this issue

13

How Fast Can We Sort?

• A sorting algorithm can be represented as a binary
decision tree
• Non-leaf node represents a comparison between two keys

• Leaf nodes are the sorting results

14

a ≤ b

b ≤ c a ≤ c

[a, b, c] a ≤ c

[a, c, b] [c, a, b]

[b, a, c] b ≤ c

[b, c, a] [c, b, a]

[a, b, c]

Y

Y

Y

Y

Y

N

NN

N N

How Fast Can We Sort?

• Sorting n records
• Number of leaf nodes is at least n!
• Tree height is at least (log2(n!) + 1) = Ω(n∙log(n))

Sorting with worst time complexity < n∙log(n) is impossible

• Average root-to-leaf path length is Ω(n∙log(n))
 Sorting with average time complexity < n∙log(n) is impossible

15

a ≤ b

b ≤ c a ≤ c

[a, b, c] a ≤ c

[a, c, b] [c, a, b]

[b, a, c] b ≤ c

[b, c, a] [c, b, a]

Y

Y

Y

Y

Y

N

NN

N N

[a, b, c]

Merge Sort

• Interpret the unsorted list
as n sorted sublists, each of
size 1

• These lists are merged by
pairs in each pass

• Merge passes are
continued until there is
only one sublist remained

• Merge Sort is stable

16

1 2 3 4 5

5 2 6 1 4 3

6

2 5 1 6 3 4

1 2 5 6 3 4

1 2 3 4 5 6

5 2 6 1 4 3

= interpreted as
n sublists

merge
by pairs

merge
by pairs

merge
by pairs

How Fast is Merge Sort ?

• Both worst and average cases
• log(n) merge passes are performed

• Each merge pass is O(n)

• Time complexity is O(n∙log(n))

17

Merge Sort Algorithm

(to be continued)
18

template <class T>
void MergeSort(T *a, const int n)
{ // sort a[1:n] into non-decreasing order

T *tempList = new T[n+1];

// s is the length of the currently merged sublist
for (int s = 1; s < n; s *= 2)
{

MergePass(a, tempList, n, s);

s *= 2;
MergePass(tempList, a, n, s);

}
delete [] tempList;

}

Merge Sort Algorithm

(to be continued)
19

template <class T>
void MergePass(T *a, T *b, const int n, const int s)
{

for (int i = 1;
i <= n-(2*s)+1;
i+ = 2*s) {
Merge(a, b, i, i+s-1, i+(2*s)-1);

}

// merge remaining lists
if ((i + s-1) < n) // one full and one partial lists

Merge(a, b, i, i+s-1, n);
else // only one partial lists remained

copy(a+i, b+n+1, b+i);
}

Merge Sort Algorithm

20

template <class T>
void Merge(T *a, T *b, const int k, const int m, const int n)
{
for (int i1 = k, i2 = m+1, i3 = k;

i1 <= m && i2 <= n;
i3++) {

if (a[i1] <= a [i2]) {
b [i3] = a [i1];
i1++;

} else {
b [i3] = a [i2];
i2++;

}
// copy remaining records, if any, of 1st sublist
copy (a+i1, a+m+1, b+i3);

// copy remaining records, if any, of 2nd sublist
copy (a+i2, a+n+1, b+i3);

}
}

merge

a

b

i1 i2

i3

Variations of Merge Sort

• Natural Merge Sort
• Interpreting the initial list as multiple sorted sublists,

each can contain more than one records

21

1 2 3 4 5

5 2 6 1 4 3

6

5 2 6 1 4 3

=

1 2 3 4 5

5 2 6 1 4 3

6

5 2 6 1 4 3

=

Original Implementation Natural Merge Sort

Heap Sort Concept

• Interpret the input list as a
tree

• Heapify the tree to form a
max heap

• Popping pass
• Pop the top (maximum) record

• Heap size shrinks by one
• Space next to the heap

becomes unused
• Place the popped record at the

space

• Popping passes are continued
until the heap becomes
empty

• Heap Sort is non-stable

22

1 2 3 4 5

6 3 8 1 5 4 2 7

6 7 8

6

3 8

1 5 4 2

1

2 3

4 5 6 7

7
8

8

7 6

3 5 4 2

1

2 3

4 5 6 7

1
8

1 2 3 4 5 6 7 8

=

heapify the tree to
form a max heap

convert the heap
back to a list

interpreted as
a tree

Heap Sort Detail Steps

23

1 2 3 4 5

6 3 8 1 5 4 2 7

6 7 8

6

3 8

1 5 4 2

1

2 3

4 5 6 7

7
8

=

interpreted as
a tree

1 2 3 4 5

6 3 8 7 5 4 2 1

6 7 8

6

3 8

7 5 4 2

1

2 3

4 5 6 7

1
8

heapify

heapify

User
文字框
heapify：從小的三角形-->大的三角形檢查

Heap Sort Detail Steps

24

1 2 3 4 5

6 3 8 7 5 4 2 1

6 7 8

6

3 8

7 5 4 2

1

2 3

4 5 6 7

1
8

1 2 3 4 5

6 7 8 3 5 4 2 1

6 7 8

6

7 8

3 5 4 2

1

2 3

4 5 6 7

1
8

heapify heapify

Heap Sort Detail Steps

25

1 2 3 4 5

8 7 6 3 5 4 2 1

6 7 8

8

7 6

3 5 4 2

1

2 3

4 5 6 7

1
8

1 2 3 4 5

1 7 6 3 5 4 2 8

6 7 8

1

7 6

3 5 4 2

1

2 3

4 5 6 7

8
8

heap ~ heap

heapify
(trickling

down)

Heap Sort Detail Steps

26

1 2 3 4 5

7 5 6 3 1 4 2 8

6 7 8

7

5 6

3 1 4 2

1

2 3

4 5 6 7

8
8

heap

1 2 3 4 5

2 5 6 3 1 4 7 8

6 7 8

2

5 6

3 1 4 7

1

2 3

4 5 6 7

8
8

~ heap

heapify
(trickling

down)

Heap Sort Detail Steps

27

1 2 3 4 5

6 5 4 3 1 2 7 8

6 7 8

6

5 4

3 1 2 7

1

2 3

4 5 6 7

8
8

heap

1 2 3 4 5

2 5 4 3 1 6 7 8

6 7 8

2

5 4

3 1 6 7

1

2 3

4 5 6 7

8
8

~heap

Heap Sort Algorithm

(to be continued)

28

template <class T>
void HeapSort(T *a, const int n)
{// sort a[1..n] into non-decreasing order

// a[n/2] is the parent of the last node, a[n]
for (int i = n/2; i >= 1; i--) // buttom-up heapification

Adjust(a, i, n); // make the tree rooted at i be a max heap

for (int i = n-1; i >= 1; i--) {
swap(a[1], a[i+1]); // move one record from heap to list
Adjust(a, 1, i); // heapify

}
}

Heap Sort Algorithm

29

template <class T>
void Adjust(T *a, const int root, const int n)
{

// two subtrees are max heaps already
// same procedure as the trickling-down procedure
T e = a[root];
//2*root is root's left child
for (int j = 2*root; j <= n; j *=2) {

if (j < n && a[j] < a[j+1]) // j and j+1 are siblings
j++; // make j be the max child

if (e >= a[j])
break;

a[j / 2] = a[j]; // move jth record up the path
}
a[j / 2] = e;

}

How Fast is Heap Sort?

• Both worst and average cases
• Heapifying the tree

• n/2 adjust()'s are invoked, each is at most O(log(n))

• Converting the max heap to the list
• n pop()'s are invoked, each is O(log(n))

• Overall, the time complexity is O(n∙log(n))

30

Summary

31

Worst Average

Insertion Sort n2 n2

• Fastest method when n is small (e.g.,
n<100)

• O(1) space
• Stable

Quick Sort n2 nlogn

• Fastest method in practice
• Require O(n2) time in the worst case
• Require O(log(n)) space
• Non-stable

Merge Sort n∙log(n) n∙log(n)
• Require additional O(n) space
• Stable

Heap Sort n∙log(n) n∙log(n)
• Require additional O(1) space
• Non-stable

Summary

32

Ti
m

e

Number of elements to be sorted

0

1

2

3

4

5

0 1000 2000 3000 4000 5000

Insertion Sort

Heap Sort

Merge Sort

Quick Sort

500

Outline

• 7.1 Introduction

• 7.2 Insertion Sort

• 7.3 Quick Sort

• 7.4 How fast we can sort

• 7.5 Merge sort

• 7.6 Heap sort

• 7.7 Radix sort

• 7.8 List and table sorts

• 7.9 Summary of internal sorting

33

Sorting on Several Keys

• Sorting a deck of cards
• Sort on two keys

• Suits (most-significant digit, MSD) : < < <

• Face values (least-significant digit, LSD) : 2 < 3 <… < Q < K < A

• Two popular sorting strategies
• MSD first sort

• LSD first sort

34

Radix Sort

• Decompose each key into several keys using some
radix
• e.g., 365 is decomposed into 3, 6, and 5 with a radix = 10

• Common practices
• LSD-first sort is commonly chosen for computer sorting

• MSD-first sort tends to incur much overhead because of
the need to independently sort multiple groups

35

LSD-First Radix Sort Example

36

105

342

555

290

540

193

105

342

555

290

540

193

105

342

555

290

540

193

105

342

555

290

540

193

Sort Stable sort Stable sort

Summary

• Every sorting algorithm has its pros and cons
• No one size fit all solution

• C++'s sort methods
• sort()

• Quick Sort that reverts to Heap Sort when the recursion depth
exceeds some threshold and to Insertion Sort when the
segment size becomes small

• stable_sort()
• Merge Sort that revers to Insertion Sort when the segment size

becomes small

• partial_sort()
• Heap Sort that has ability to stop when only the first k

elements need to be sorted

37

