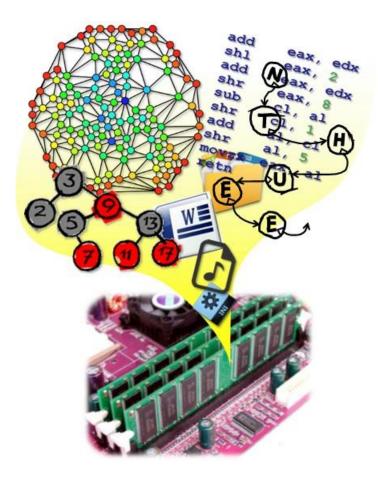
Data Structures CH7 Sorting

Prof. Ren-Shuo Liu NTHU EE Spring 2018



2

Outline

- 7.1 Introduction
- 7.2 Insertion Sort
- 7.3 Quick Sort
- 7.4 How fast we can sort
- 7.5 Merge sort
- 7.6 Heap sort
- 7.7 Radix sort
- 7.8 (List and table sorts)
- 7.9 Summary of internal sorting

Important Uses of Sorting

- Aid searching in a list
 - O(n) time for an unordered list (with sequential search)
 - O(log(n)) time for a sorted list (with binary search)
- Aid matching two lists
 - O(nm) time for unordered lists (with sequential search)
 - O(n+m) time for sorted lists

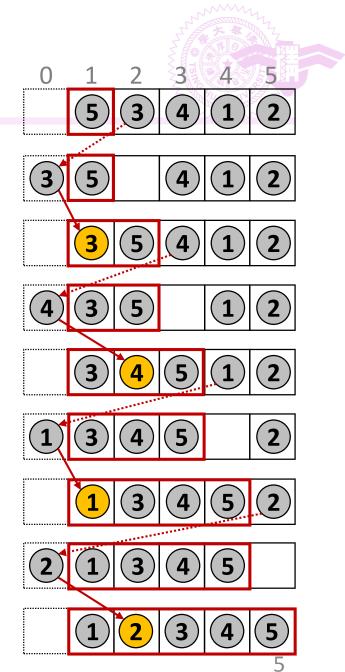
Classification of Sorting

- Complexity
 - Time complexity
 - Space complexity
- Stability
 - A sort is called stable *iff* it maintains the relative order of records with equal keys
- Internal vs. external
 - An internal sort requires its inputs to be small enough so that the entire sort can be carried out in main memory
 - Examples: Selection Sort, Insertion Sort, Quick Sort, Heap Sort
 - An external sort has no abovementioned requirement

Score	Name		Score	Name	
100	Alice		100	Alice	
90	Bob		100	David	
100	David		90	Emily	
90	Emily		90	Bob	
non-stable sort example					

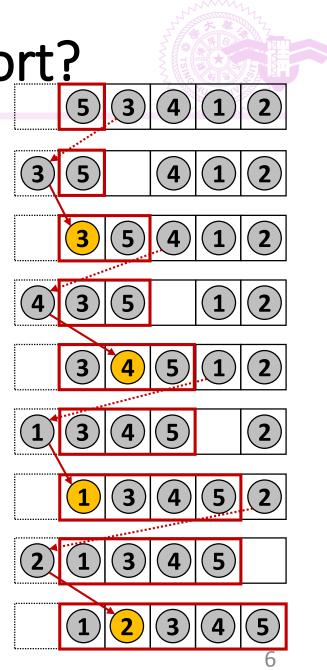
Insertion Sort Concept

- array[0] is used as temporary space
- array[1] is the initial sorted sublist
- Insertion pass
 - Place the element next to the sublist to the temporary space
 - Insert the element to the sublist
- Insertion passes are continued until the sublist contains all records
- Insertion Sort is a stable sort



How Fast is Insertion Sort?

- Worst-case time complexity
 - When input is in a reversed order
 - Each insertion pass involves i comparisons, i = 1..n
 - 1+2+...+n = O(n²)
- Average time complexity
 - It has been shown that Insertion Sort is O(n²) on average



Insertion Sort Algorithm

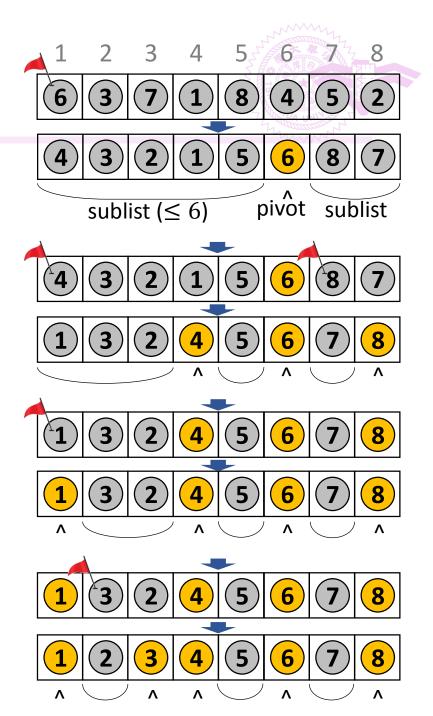

```
template <class T>
void InsertionSort(T *a, const int n)
{ // sort a[1..n]
    for (int j = 2; j <= n ; j++){</pre>
       a[0] = a[j];
       for (int i = j - 1; a[i] > a[0]; i--) {
           a[i + 1] = a [i];
       a[i + 1] = a[0];
}
```

Variations of Insertion Sort

- Binary Insertion Sort
 - Use binary search rather than sequential search for insertion passes
 - Complexity does not change because the number of record moves remains unchanged
- Linked Insertion Sort
 - The records to be sorted are stored in a linked list rather than an array
 - The number of record moves becomes zero
 - Complexity does not change because sequential search is required for insertion

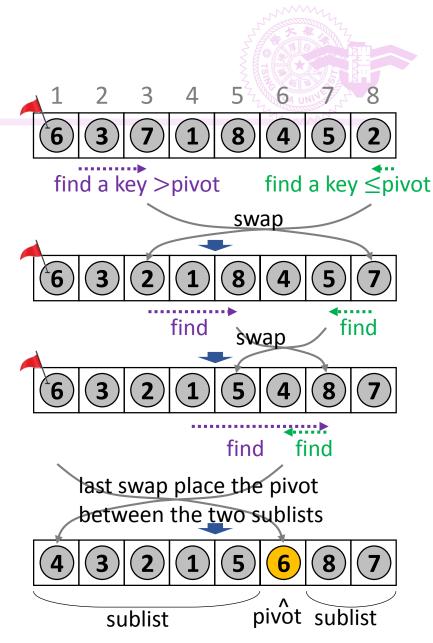
Quick Sort Concept

- Divide-and-conquer
- Division passes
 - Pick the first element of a list as the pivot
 - Make elements whose key ≤ the pivot be the left sublist
 - Make elements whose key > the pivot be the right sublist
- Division passes are continued until all sublists are of size ≤1
- Basically, Quick Sort is nonstable



Quick Sort Concept

- Steps for generating sublists
 - Linear searching from the both the ends
 - Find candidates to swap
 - Perform swapping



How Fast is Quick Sort?

- Worst-case time complexity
 - Each division pass involves n comparisons and end up with sublists with 1 and n-1 records
 - $T(n) = O(n) + T(n-1) = O(n^2)$
- Average time complexity
 - It has been shown that Quick Sort is O(n·log(n)) on average

Quick Sort Algorithm

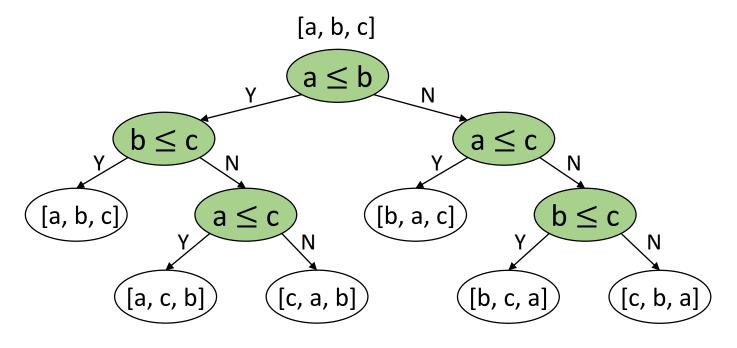

```
template <class T>
void QuickSort(T *a, const int left, const int right)
{ // sort a[left..right]
    if (left < right) {</pre>
        int & pivot = a[left];
        int i = left;
        int j = right + 1;
        do {
           do j--; while (a[j] > pivot); //find a key ≤pivot
           do { i++;
                                          //find a key >pivot
           } while (i < j && a[i] <= pivot);</pre>
           if (i < j) swap (a[i], a[j]);
        } while (i < j);</pre>
        swap (pivot, a[j]); //place the pivot between 2 lists
        QuickSort(a, left, j - 1); // recursion
        QuickSort(a, j + 1, right); // recursion
```

Variations of Quick Sort

- Median-of-three strategy
 - Ordered lists are worst-case inputs for Quick Sort
 - Pivot are always the smallest or largest key within a sublist
 - Ordered lists are not rare in real life
 - Choosing the pivot using the median of the first, middle, and last key can address this issue

How Fast Can We Sort?

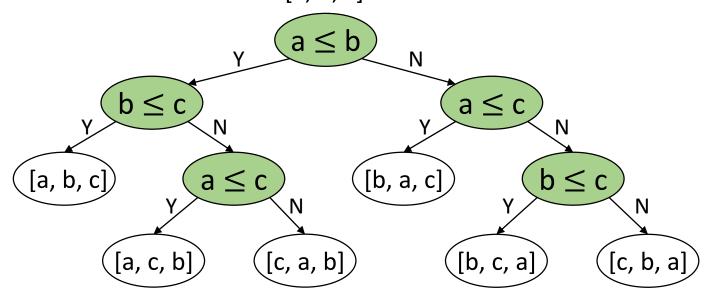
- A sorting algorithm can be represented as a binary decision tree
 - Non-leaf node represents a comparison between two keys
 - Leaf nodes are the sorting results



How Fast Can We Sort?

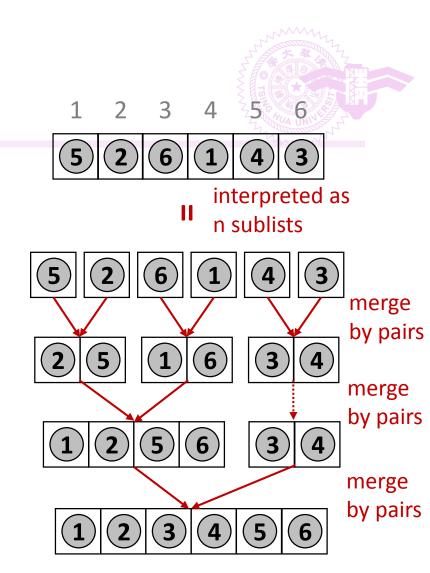
- Sorting n records
 - Number of leaf nodes is at least n!
 - Tree height is at least (log₂(n!) + 1) = Ω(n·log(n))
 →Sorting with worst time complexity < n·log(n) is impossible
 - Average root-to-leaf path length is $\Omega(n \cdot \log(n))$
 - \rightarrow Sorting with average time complexity < n·log(n) is impossible

[a, b, c]



Merge Sort

- Interpret the unsorted list as n sorted sublists, each of size 1
- These lists are merged by pairs in each pass
- Merge passes are continued until there is only one sublist remained
- Merge Sort is stable



How Fast is Merge Sort?

- Both worst and average cases
 - log(n) merge passes are performed
 - Each merge pass is O(n)
 - Time complexity is O(n·log(n))

Merge Sort Algorithm


```
template <class T>
void MergeSort(T *a, const int n)
{ // sort a[1:n] into non-decreasing order
    T *tempList = new T[n+1];
    // s is the length of the currently merged sublist
    for (int s = 1; s < n; s *= 2)</pre>
        MergePass(a, tempList, n, s);
        s *= 2;
        MergePass(tempList, a, n, s);
    }
    delete [] tempList;
}
```

(to be continued)

Merge Sort Algorithm


```
template <class T>
void MergePass(T *a, T *b, const int n, const int s)
{
    for (int i = 1;
         i <= n-(2*s)+1;
         i + = 2*s {
         Merge(a, b, i, i+s-1, i+(2*s)-1);
    // merge remaining lists
    if ((i + s-1) < n) // one full and one partial lists
        Merge(a, b, i, i+s-1, n);
    else
                        // only one partial lists remained
        copy(a+i, b+n+1, b+i);
}
```

(to be continued)

Merge Sort Algorithm

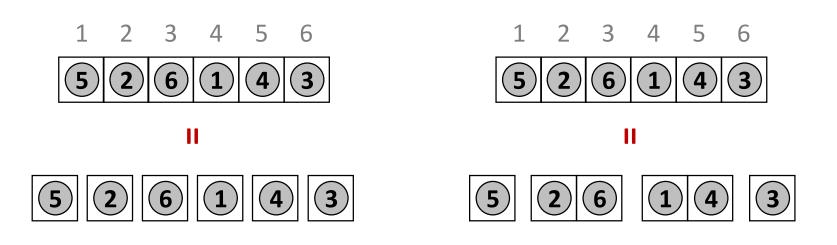

```
template <class T>
void Merge(T *a, T *b, const int k, const int m, const int n)
{
                                                         i1
                                                                i2
  for (int i1 = k, i2 = m+1, i3 = k;
      i1 <= m && i2 <= n;
                                                    а
      i3++) {
                                                                   merge
          if (a[i1] <= a [i2]) {
                                                         i3
              b [i3] = a [i1];
                                                    b
              i1++;
          } else {
              b [i3] = a [i2];
              i2++;
         // copy remaining records, if any, of 1<sup>st</sup> sublist
         copy (a+i1, a+m+1, b+i3);
         // copy remaining records, if any, of 2<sup>nd</sup> sublist
         copy (a+i2, a+n+1, b+i3);
```

Variations of Merge Sort

Natural Merge Sort

Original Implementation

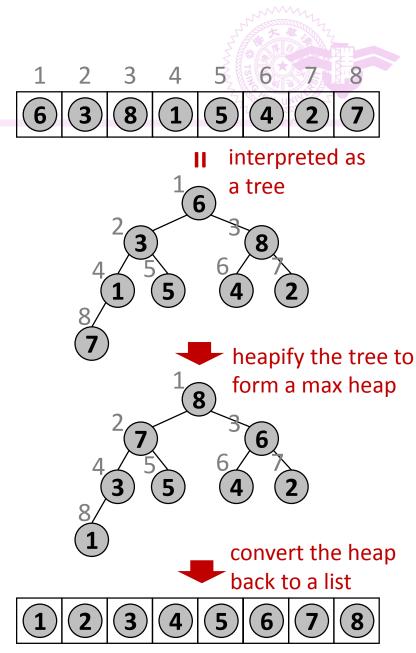
• Interpreting the initial list as multiple sorted sublists, each can contain more than one records



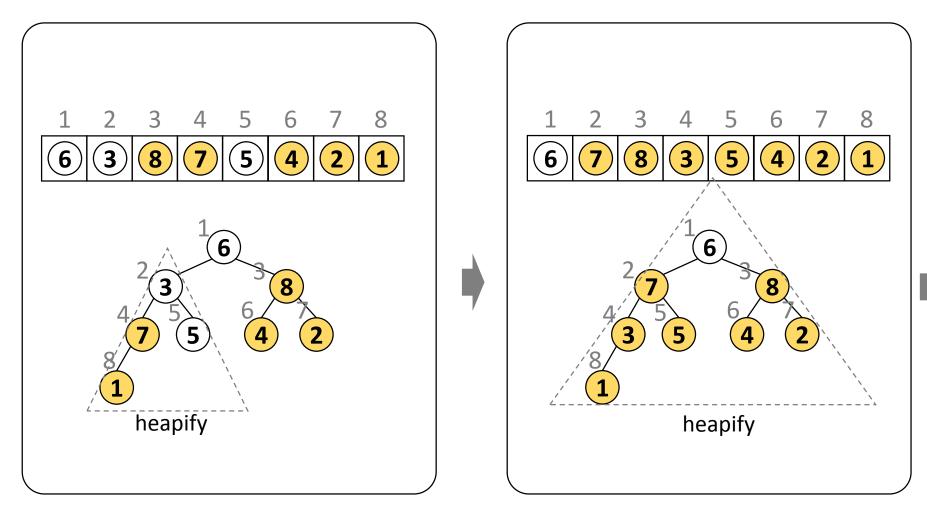
Natural Merge Sort

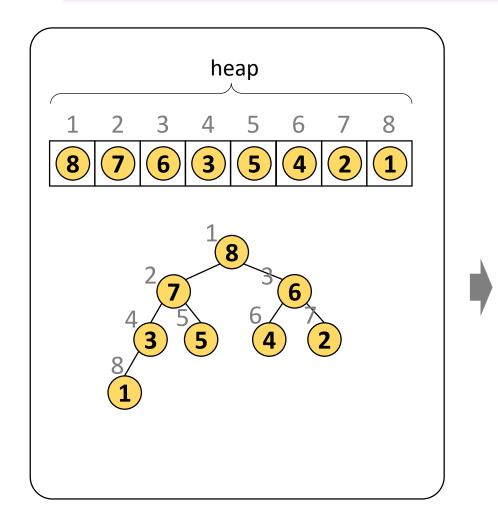
Heap Sort Concept

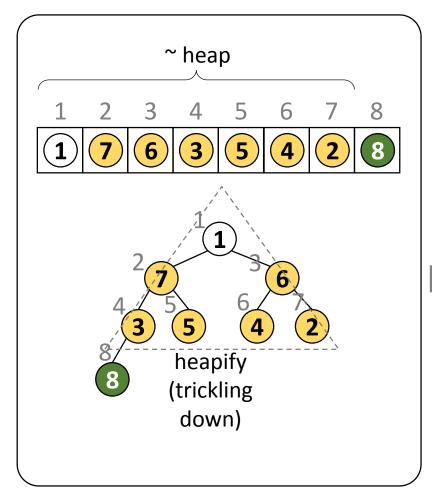
- Interpret the input list as a tree
- Heapify the tree to form a max heap
- Popping pass
 - Pop the top (maximum) record
 - Heap size shrinks by one
 - Space next to the heap becomes unused
 - Place the popped record at the space
- Popping passes are continued until the heap becomes empty
- Heap Sort is non-stable

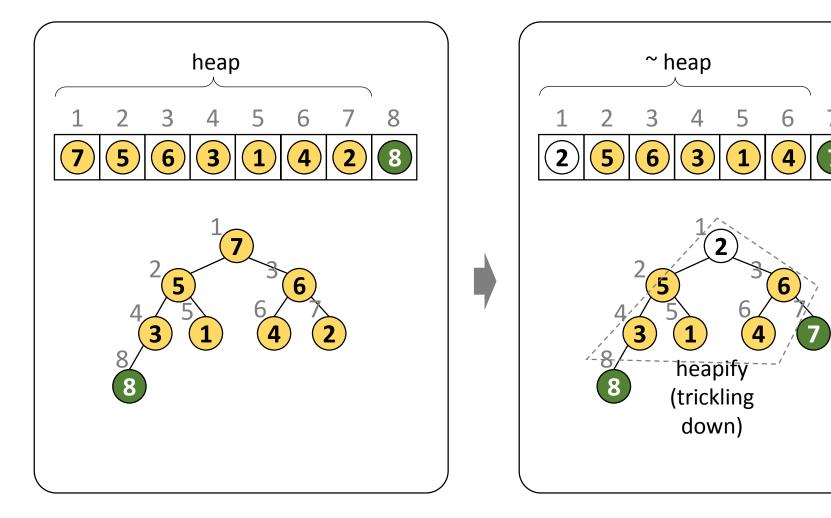


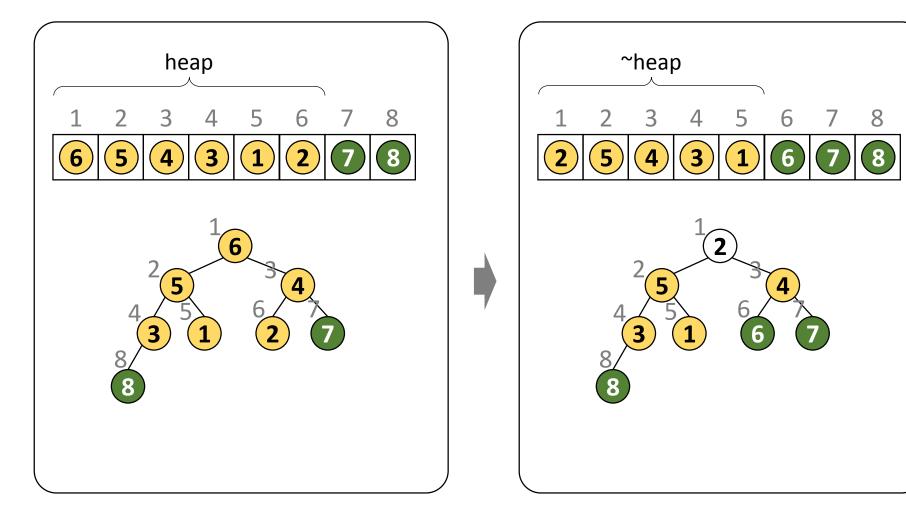












Heap Sort Algorithm


```
template <class T>
void HeapSort(T *a, const int n)
{// sort a[1..n] into non-decreasing order
    // a[n/2] is the parent of the last node, a[n]
    for (int i = n/2; i >= 1; i--) // buttom-up heapification
       Adjust(a, i, n); // make the tree rooted at i be a max heap
    for (int i = n-1; i >= 1; i--) {
        swap(a[1], a[i+1]); // move one record from heap to list
        Adjust(a, 1, i); // heapify
    }
}
```

Heap Sort Algorithm


```
template <class T>
void Adjust(T *a, const int root, const int n)
{
    // two subtrees are max heaps already
    // same procedure as the trickling-down procedure
    T = a[root];
    //2*root is root's left child
    for (int j = 2*root; j <= n; j *=2) {</pre>
        if (j < n && a[j] < a[j+1]) // j and j+1 are siblings
            j++; // make j be the max child
        if (e >= a[j])
            break;
        a[j / 2] = a[j]; // move jth record up the path
    a[j / 2] = e;
}
```

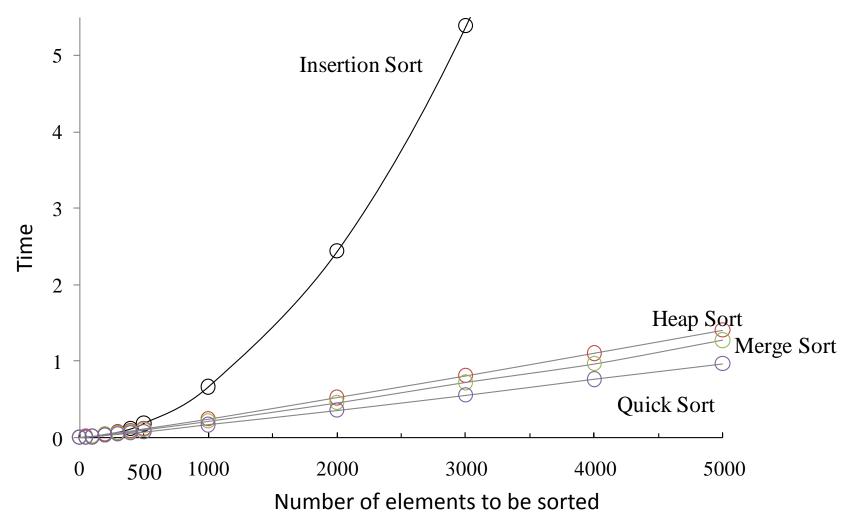
How Fast is Heap Sort?

- Both worst and average cases
 - Heapifying the tree
 - n/2 adjust()'s are invoked, each is at most O(log(n))
 - Converting the max heap to the list
 - n pop()'s are invoked, each is O(log(n))
 - Overall, the time complexity is O(n·log(n))

Summary

	Worst	Average	
Insertion Sort	n²	n²	 Fastest method when n is small (e.g., n<100) O(1) space Stable
Quick Sort	n²	nlogn	 Fastest method in practice Require O(n²) time in the worst case Require O(log(n)) space Non-stable
Merge Sort	n∙log(n)	n∙log(n)	 Require additional O(n) space Stable
Heap Sort	n∙log(n)	n∙log(n)	 Require additional O(1) space Non-stable

Summary



33

Outline

- 7.1 Introduction
- 7.2 Insertion Sort
- 7.3 Quick Sort
- 7.4 How fast we can sort
- 7.5 Merge sort
- 7.6 Heap sort
- 7.7 Radix sort
- 7.8 List and table sorts
- 7.9 Summary of internal sorting

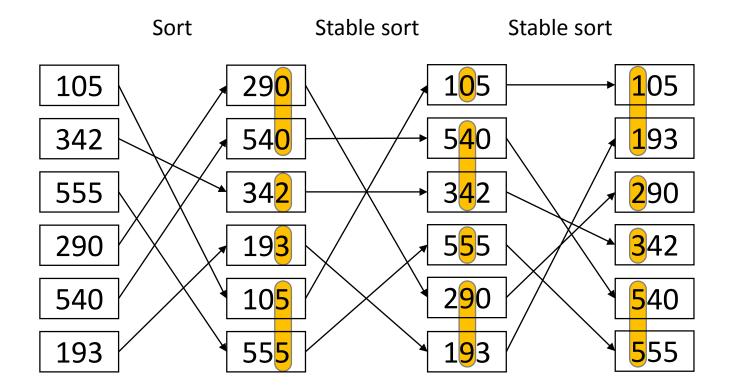
Sorting on Several Keys

- Sorting a deck of cards
 - Sort on two keys
 - Suits (most-significant digit, MSD) : ♣ < ♦ < ♥ < ♠
 - Face values (least-significant digit, LSD) : 2 < 3 < ... < Q < K < A
- Two popular sorting strategies
 - MSD first sort
 - LSD first sort

Radix Sort

- Decompose each key into several keys using some radix
 - e.g., 365 is decomposed into 3, 6, and 5 with a radix = 10
- Common practices
 - LSD-first sort is commonly chosen for computer sorting
 - MSD-first sort tends to incur much overhead because of the need to independently sort multiple groups

LSD-First Radix Sort Example



Summary

- Every sorting algorithm has its pros and cons
 - No one size fit all solution
- C++'s sort methods
 - sort()
 - Quick Sort that reverts to Heap Sort when the recursion depth exceeds some threshold and to Insertion Sort when the segment size becomes small
 - stable_sort()
 - Merge Sort that revers to Insertion Sort when the segment size becomes small
 - partial_sort()
 - Heap Sort that has ability to stop when only the first k elements need to be sorted