

Outline

* 7.1 Introduction

* 7.2 Insertion Sort

e 7.3 Quick Sort

e 7.4 How fast we can sort

* /.5 Merge sort

* /.6 Heap sort

e 7.7 Radix sort

» 7.8 (List and table sorts)

e 7.9 Summary of internal sorting

Important Uses of Sorting

e Aid searching in a list
* O(n) time for an unordered list (with sequential search)
* O(log(n)) time for a sorted list (with binary search)

* Aid matching two lists
* O(nm) time for unordered lists (with sequential search)
* O(n+m) time for sorted lists

Classification of Sorting

* COI’T\plEXIty Score | Name Score | Name
* Time complexity 100 | Alice 100 | Alice
* Space complexity 90 Bob » 100 | David
* Stability 100 | David >< 90 Emily
. e : B
* Asortis called stable iff it 0 | Emily %0 ob

maintains the relative order non-stable sort example

of records with equal keys

* Internal vs. external

* An internal sort requires its inputs to be small enough so
that the entire sort can be carried out in main memory

 Examples: Selection Sort, Insertion Sort, Quick Sort, Heap Sort
* An external sort has no abovementioned requirement

Insertion Sort Concept o

 array[0] is used as temporary
space

e array[1] is the initial sorted
sublist

* Insertion pass

* Place the element next to the
sublist to the temporary space

* Insert the element to the sublist

* Insertion passes are continued
until the sublist contains all
records

* Insertion Sort is a stable sort

@~

o
-
o
o
o

3
[
.

.
Pl

rvg
)
Y

® ® B ® ©-

s

e

® @ ® © ® © ©-

@

® @ @

A@

How Fast is Insertion Sort?

* Worst-case time complexity
* When input is in a reversed order

* Each insertion pass involves i
comparisons, i=1..n

¢ 1+2+...+n = O(n?)

* Average time complexity

* |t has been shown that Insertion
Sort is O(n?) on average

o

o
-
o
o
o

3
[
.

rvg
)
Y

® ® © e ©

s

e

ORCICRCICORCRC

@

® @ @

@

Insertion Sort Algorithm

template <class T>
void InsertionSort(T *a, const int n)
{ // sort a[l..n]
for (int j = 2; j <= n ; j++){
a[e] = a[]];
for (int 1 = j - 1; a[i] > a[@]; i--) {
a[i + 1] = a [i];
}
a[i + 1] = a[9];

}

Variations of Insertion Sort

* Binary Insertion Sort

* Use binary search rather than sequential search for
insertion passes

* Complexity does not change because the number of
record moves remains unchanged

e Linked Insertion Sort

* The records to be sorted are stored in a linked list rather
than an array

e The number of record moves becomes zero

 Complexity does not change because sequential search
is required for insertion

Quick Sort Concept

* Divide-and-conquer

* Division passes
* Pick the first element of a
list as the pivot

* Make elements whose key <
the pivot be the left sublist

 Make elements whose key >
the pivot be the right sublist

* Division passes are
continued until all sublists
are of size <1

 Basically, Quick Sort is non-
stable

¥

D

U

~

®||@
@ |®|~
® |~

@@

S ®)

@ |® >
®| @

/

%)
C
S
n

St

IA
)

(2

P

A
Ivot sublist

>

)

@@
@ |®

®||®

|

>

®,
@@

@ @
@ | @

©®

® ®

@

i

®le
' (ole

||| @

-]

®
@

¢

@] [®
1®

@] |®

@
®

ele (9@ (@
@ |®

@] |@
| @] @

Quick Sort Concept

 Steps for generating sublists

* Linear searching from the
both the ends

* Find candidates to swap
* Perform swapping

[GEPECCOE

find a key >pivot

€
find a key <pivot
swa

©600®®6@

leEEERE

----------------i h
find find

Wvot
ween the twosublists
@0006®e®

\

" A .
sublist pivot sublist

10

How Fast is Quick Sort?

* Worst-case time complexity

e Each division pass involves n comparisons and end up
with sublists with 1 and n-1 records

* T(n) =0(n) + T(n-1) = O(n?)

* Average time complexity

* It has been shown that Quick Sort is O(n:log(n)) on
average

Quick Sort Algorithm

template <class T>
void QuickSort(T *a, const int left, const int right)
{ // sort a[left..right]
if (left < right) {
int & pivot = a[left];
int i = left;
int j = right + 1;
do {

} while (i < j && a[i] <= pivot);

if (1 < J) swap (a[i], a[]]);
} while (i < j);

QuickSort(a, left, j - 1); // recursion
QuickSort(a, j + 1, right); // recursion

do j--; while (a[j] > pivot); //find a key <pivot
do { i++; //find a key »>pivot

swap (pivot, a[j]); //place the pivot between 2 lists

Variations of Quick Sort

* Median-of-three strategy

* Ordered lists are worst-case inputs for Quick Sort
* Pivot are always the smallest or largest key within a sublist
* Ordered lists are not rare in real life

* Choosing the pivot using the median of the first, middle,
and last key can address this issue

How Fast Can We Sort?

* A sorting algorithm can be represented as a binary
decision tree

* Non-leaf node represents a comparison between two keys
* Leaf nodes are the sorting results

[a, b,]

, Gasb)
N

N
n Y N H Y

How Fast Can We Sort?

* Sorting n records
* Number of leaf nodes is at least n!
* Tree height is at least (log,(n!) + 1) = Q(n-log(n))
- Sorting with worst time complexity < n-log(n) is impossible

* Average root-to-leaf path length is Q(n-log(n))

—> Sorting with average time complexity < n-log(n) is impossible
[a, b,]

, Gasb)
N

N
n Y N H Y

Merge Sort A

4 5 6

* Interpret the unsorted list ®@® %tgrg e
as n sorted sublists, each of 1 sublists

size 1 0@]®|®|@)|®

* These lists are merged by N/ by ooirs

pairs in each pass @|6)| |@|6)| |3®@

* Merge passes are \(by oai
®®@

by pairs
continued until there is

only one sublist remained \'/ L“yegifrs
* Merge Sort is stable @@®®E®

How Fast is Merge Sort ?

* Both worst and average cases
* log(n) merge passes are performed
* Each merge pass is O(n)
* Time complexity is O(n-log(n))

Merge Sort Algorithm

template <class T>

void MergeSort(T *a, const int n)

{ // sort a[l:n] into non-decreasing order
T *tempList = new T[n+1];

// s 1is the length of the currently merged sublist
for (int s = 1; s < n; s *= 2)

{
MergePass(a, templList, n, s);
s *= 2;
MergePass(tempList, a, n, s);
}

delete [] templList;
}

(to be continued)

18

Merge Sort Algorithm

template <class T>
void MergePass(T *a, T *b, const int n, const int s)
{
for (int 1 = 1;
i <= n-(2*s)+1;
i+ = 2*s) {
Merge(a, b, i, i+s-1, i+(2*s)-1);

}

// merge remaining lists

if ((i + s-1) < n) // one full and one partial lists
Merge(a, b, i, i+s-1, n);

else // only one partial lists remained
copy(a+i, b+n+l, b+i);

}

(to be continued)

19

Merge Sort Algorithm

template <class T>
void Merge(T *a, T *b, const int k, const int m, const int n)

{
for (int i1 = k, i2 = m+1, i3 = k; 11 i2
il <= m && 12 <= n; a

i3++) {
if (a[il] <= a [i2]) { i3 ‘\\f/4£erge
b [i3] = a [il1];

il++;
} else {

b [1i3]

i2++;

a [i2];

}

// copy remaining records, if any, of 1°t sublist
copy (a+il, a+m+l, b+i3);

// copy remaining records, if any, of 2" sublist
copy (a+i2, a+n+l, b+i3);

Variations of Merge Sort

* Natural Merge Sort

* Interpreting the initial list as multiple sorted sublists,
each can contain more than one records

1 2

3

4

5

6

G@

®

@

@®

1

2

3

4

5 6

®

@

®

@@

®

@

®

@

@

®

Original Implementation

@

®

@

@ |®

Natural Merge Sort

Heap Sort Concept

* Interpret the input list as a
tree

* Heapify the tree to form a
max heap

* Popping pass
* Pop the top (maximum) record
* Heap size shrinks by one

e Space next to the heap
becomes unused

* Place the popped record at the
space

. PopFing passes are continued
until the heap becomes
empty

* Heap Sort is non-stable

0@

Il interpreted as

convert the heap
back to a list

@EE®D®

22

Heap Sort Detail Steps

heapify * i} oz &3> % hz k5t d

4)

5 6 7 8 1

©®E®WG@@®@ ®

Il interpreted as

23

User
文字框
heapify：從小的三角形-->大的三角形檢查

Heap Sort Detail Steps

24

Heap Sort Detail Steps

(trickling
down)

25

Heap Sort Detail Steps

(trickling
down)

26

Heap Sort Detail Steps

1 2 3 4 5 6 7 8

@0®6 000

1 2 3 4 5 6 7 8

©60®G 0200

27

Heap Sort Algorithm

template <class T>
void HeapSort(T *a, const int n)
{// sort a[l..n] into non-decreasing order
// a[n/2] is the parent of the last node, a[n]
for (int i = n/2; i >= 1; i--) // buttom-up heapification
Adjust(a, i, n); // make the tree rooted at i be a max heap

for (int i = n-1; i >=1; i--) {
swap(a[1], a[i+1]); // move one record from heap to list
Adjust(a, 1, i); // heapify

(to be continued)

28

Heap Sort Algorithm

template <class T>
void Adjust(T *a, const int root, const int n)

{

// two subtrees are max heaps already

// same procedure as the trickling-down procedure

T e = a[root];

//2*root is root's left child

for (int j = 2*root; j <= n; j *=2) {

if (j < n & a[j] < a[j+1]) // j and j+1 are siblings
j++; // make j be the max child

if (e >= a[j])
break;

alj / 2] = a[j]; // move jth record up the path

}
alj / 2] = e;

29

How Fast is Heap Sort?

* Both worst and average cases
* Heapifying the tree
* n/2 adjust()'s are invoked, each is at most O(log(n))

e Converting the max heap to the list
* npop()'s are invoked, each is O(log(n))

e Overall, the time complexity is O(n-log(n))

Summary

Worst | Average
Fastest method when nis small (e.g.,
Insertion Sort n? n?2 n<100)
O(1) space
Stable
Fastest method in practice
i Require O(n?) time in the worst case
2
Quick Sort " nlogn Require O(log(n)) space
Non-stable
Require additional O(n) space
Merge Sort n-log(n) | n-log(n) Stable
Requi itional O(1
Heap Sort nlog(n) | n-log(n) equire additional O(1) space

Non-stable

31

Summary

Time

Insertion Sort

Quick Sort

0 500 1000

2000 3000 4000 5000
Number of elements to be sorted
32

Outline

e 7.1 Introduction

* 7.2 Insertion Sort

e 7.3 Quick Sort

e 7.4 How fast we can sort

* /.5 Merge sort

* /.6 Heap sort

e 7.7 Radix sort

e 7.8 List and table sorts

e 7.9 Summary of internal sorting

33

Sorting on Several Keys

 Sorting a deck of cards

* Sort on two keys
 Suits (most-significant digit, MSD) : o<V -0
* Face values (least-significant digit, LSD) : 2<3<..<Q<K<A

* Two popular sorting strategies
 MSD first sort
* LSD first sort

Radix Sort

 Decompose each key into several keys using some
radix

e e.g., 365 is decomposed into 3, 6, and 5 with a radix =10

* Common practices

* LSD-first sort is commonly chosen for computer sorting

e MSD-first sort tends to incur much overhead because of
the need to independently sort multiple groups

LSD-First Radix Sort Example

Sort Stable sort Stable sort

[HY
(=)
o

105
342
555
290
540
193

U

v »
|-
>

RN || U] | W
OO (D) (B
WO

Summary

e Every sorting algorithm has its pros and cons
* No one size fit all solution

e C++'s sort methods

 sort()

* Quick Sort that reverts to Heap Sort when the recursion depth
exceeds some threshold and to Insertion Sort when the
segment size becomes small

* stable_sort()

* Merge Sort that revers to Insertion Sort when the segment size
becomes small

 partial _sort()

* Heap Sort that has ability to stop when only the first k
elements need to be sorted

