


Outline

* 6.1 Introduction and the graph abstract data type
* 6.2 Elementary graph operations

* 6.3 Minimum-cost spanning trees

* 6.4 Shortest paths (and transitive closure)

* (6.5 Activity networks)



Konigsberg Bridge Problem

Py

e Also knownas"— %

R 25" or " “#T%;FF %8

* Four land areas are
interconnected by
seven bridges

* |s it possible to walk
across seven bridges
exactly once in
returning to the starting
place?

ﬂn




HL

e Also known as " — %A

R 25" or " “ikf%ﬁ: %8

* Four land areas are | i
interconnected by s [/ 1 @ﬁo,;gsbergcmedrg'
. 4 &by /| acheapansHbinicobop

seven bridges

* |s it possible to walk
across seven bridges
exactly once in
returning to the starting
place?

- "

-l e ‘ ““ m()l\l
- d .

Google Map 54.706 N, 20.510E 4



Konigsberg Bridge Problem

e MO 's }”L A/ » yf“\‘-'

S Kaliningradsk
akhudozhestvenna

* Euler solved the problem 'J‘”' Ry I ,. ,gmomemw
by representing the land @ ¥ 2y T
areas as vertices and the
bridges as edges (1736) "= 8/ PSR g

* First recorded evidence of [N S |
the use of graphs

* Since then, graphs have
been used in a wide
variety of applications

* Analysis of circuits,
genetics, social & w
networks... [l g atonasi=

Google Map 54.706 N, 20.510 E 5



Graphs

e Definition : A graph, G, consists of two sets, Vand E
e G=(V, E)

* \/is a finite, nonempty set of vertices

* E is a set of pairs of vertices, called edges
* Undirected graphs (£ = [&])
* Pair of vertices representing any edge is unordered
* (u,v) and (v, u) represent the same edge

* Directed graphs (digraphs) (3 + &)
* Each edge is represented by a directed pair <u, v>
* uis the tail and v the head of the edge



V(G,) =10, 1, 2, 3}

E(Gl) = {(Or 1)1 (O, 2)1 (O, 3)1 (11 2)1 (11 3)1 (21 3)}
V(G,)=1{0,1, 2, 3,4,5, 6}

E(GZ) = {(Or 1)1 (O, 2)1 (11 3)1 (11 4)1 (21 5)1 (21 6)}
V(G;) =10, 1, 2}

E(G;) = {<0, 1>, <1, 0>, <1, 2>}

H O



Simple Graphs (Strict Graphs)

* This book only considers simple graphs (strict graphs)

* The followings are not allowed in simple graphs

* Self edges / self loops * Multiple occurrences of the
* (v, v) same edge
¢ <V, V>

©

(O—(1
€
9' 2

* Therefore, the max number of edges of an n-vertex simple graph
* n(n-1)/2 for an undirected graph
* n(n-1) for an directed graph




Terminologies

* Complete graphs (also called as cliques (&]) )

* A graph having the max possible number of edges
* n(n-1)/2 for an undirected graph
* n(n-1) for an directed graph

* Adjacency and incidence
e uandv are adjacent if (u, v) €EG
* (u,v)isincident on (% ¥%) u and also v

* A subgraph of G is a graph G' such that
* V(G") € V(G)
* E(G') S E(G)



Terminologies

* Apath fromutovinagraphGis
* a sequence of vertices: u, iy, iy, ..., I, V
* (u,iy), (i, iy), ..., (i, v) € E(G), G is undirected
¢ <u, i;>, <iy, i,>, .., <i, v> € E(G), Gis directed
* Asimple path is

* a path in which all vertices except possibly the first and
last are distinct

* Acycleis
e a simple path in which the first and last are the same



Connectivity

* In an undirected graph, vertices u and v are
connected iff there is a path fromutov

* An undirected graph is connected iff every pair of
distinct vertices u and v in V(G) is connected

e Atreeis a connected acyclic graph



Connected Components

e A connected component (or component for short),
H, of an undirected graph is
* the maximal connected subgraph

* By maximal, we mean that G contains no other subgraph
that is both connected and properly contains H

G, Some connected components of G,




Strongly Connected Graphs

* A digraph G is said to be strongly connected iff for
every pair of distinct vertices u and v in V(G) there
is a directed path from u to v and also from v to u

e A strongly connected component is a maximal
subgraph that is strongly connected

(O
o @

H O-C) ©

Strongly connected components of G,



Degree

* The degree of a vertex is the number of edges
incident to that vertex

* For digraph

* The out-degree of a vertex v is the number of edges for
which v is the tail

* The in-degree of a vertex v is the number of edges for
which v is the head

O
e in-degree=1

out-degree=2




Graph ADT

class Graph

{
public:
virtual ~Graph() {} // virtual destructor
bool IsEmpty() const {return n ==
int NumberOfVertices() const {return n};
int NumberOfEdges() const {return e};
virtual int Degree(int u) const
virtual bool ExistsEdge(int u, int v) const
virtual void InsertVertex(int v)
virtual void InsertEdge(int u, int v)
virtual void DeleteVertex(int v)
virtual void DeleteEdge(int u, int v)
private:
int n; // number of vertices
int e; // number of edges

s

0};

oo

e \woe

oo

oo

I
OO OO0
o

oo




Inheritance vs. Template

* Key question: do types affect the behaviors of a class
according to your expectation?

* Inheritance: types may affect behaviors
e Rectangle and Circle can calculate their areas but have
different calculating mechanisms

* According to this expectation, we design a base class, Shape,
with a virtual GetArea() method and let specific shape classes

to inherit

* Template: types do not affect behaviors
e Stack exhibits a last-in-first-out behavior
* Both Stack of Rectangle and Stack of Circle do so

* According to this expectation, we design a template stack
instead of a base stack and different inherited classes



Non-Virtual vs Virtual Functions

 Non-virtual

 Static-binding (at compile time) according to the type of a object
pointer or reference

e Virtual

* Dynamic-binding (resolved at run time) according to hidden
information in each object

* Polymorphism: derived classes exhibit their specific behavior even
if they are referred to using the base class pointer/reference

int main()
{

Rectangle r;

Circle c;

cout << AreaRatio(r, c);

cout << AreaRatio(c, r);
}
float AreaRatio(Shape& sl1l, Shape& s2)
{

return sl.GetArea() / s2.GetArea();
}




Pure Virtual Functions

* Sometimes we want derived classes NOT to inherit
the implementation of a virtual function by default

* Implementation of GetArea()

* Maybe impractical to have one method to calculate the area of
both Rectangle and Circle

* Maybe error-prone if someone inherits from Shape another
specific shape, say Star, without redefining Star's GetArea

18



Graph Representations

* Three categories of most commonly used
representations
* Adjacency matrices
* Adjacency lists
e Adjacency multi-lists

* The choice of a particular representation depends
upon the application one has in mind and the
functions one expects to perform on the graph

19



Adjacency Matrices

* The adjacency matrix of an n-vertex graph, G, is a 2D nxn
array, say array A

e Alu][v] =1 iff(u, v) (or <u, v>)isin E(G)
 Aflu][v]=0 otherwise

* Adjacency matrices of undirected graphs are always
symmetric

* This allows optimization that halves the space requirement
. Adjacency{]matrlces are wasteful of space for sparse graphs

(i.e., graphs with only few edges)
O 01 2 3 0 1 2
0/0°1 00 ) olo1 0
(L (2) 1/1. 0 0 1 o 111 0 1
© 20 0 01 > >lo 0 o
3]0 1 1.0 | ] ]




Adjacency Matrix Operations

Degree (int u) Return 2 a[u][i]; O(n)
Out-degree(int u) Return 2 a[u][i]; O(n)
In-degree(int u) Return 2 al[i][u]; O(n)
ExistsEdge(int u, int v) Return afu][v]; O(1)
InsertEdge(int u, int v) Set a[u][v] = 1; O(1)
DeleteEdge(int u, int v) Set a[u][v] =0; O(1)
IsConnectedGraph() O(n?)

21




(Linked) Adjacency Lists

* The adjacency list of an n-vertex, e-edge graph, G

e Contains an n-element array, n chains, and 2e chain
nodes
* Nodesin chainirepresent the vertices adjacent from vertex i
* Nodes in each chain are not required to be ordered

* (Recall the equivalence class problem)

v v v v
W] W =

>

o 0|0 O L0

© ;
©




(Linked) Adjacency List Operations

Degree (int u) Count the # of nodes in chain u; O(e)
Out-degree(int u) Count the # of nodes in chain u; O(e)
In-degree(int u) Count the # of u's in all the chains; O(n+e)
ExistsEdge(int u, int v) Look for v in chain u; O(e)

* Check the existence of vin chainu | O(e)
InsertEdge(int u, int v) (and uinv);

e Push vontochainu(anduontov); |O(1)

 Findvinchainu (anduinv); O(e)
DeleteEdge(int u, int v)  Remove v from chain u (and u from | O(1)

v);

IsConnectedGraph() O(n+e)

Facebook would need to scan its billions of users to calculate how many

people follows your page if Facebook uses the simple Adjacency List

representation




Sequential Adjacency Lists

* Sequential adjacency list of an n-vertex, e-edge
graph, G
e Contains an (n+2e+1)-element array
* n+1 for indexing the list of each vertex
e 2e for adjacency information

starting/ending indices set to (n+2e+1)

Q of the lists of n vertices
e - ~
0 9 0 1 2 3 4 5 6 7 8 9 10

-
-
-
-
~ -
- - -
~ - - - —
- - -~ -
- - ~—— ——
- —— ——— ————

~~
~~~~~~
S=——a .



Sequential Adjacency List Operations

Return the index difference between u

Degree (int u) and U+l O(1)
Out-degree(int u) gﬁ’;ul:rliche index difference between u o(1)
In-degree(int u) Count the # of u's in the entire graph; | O(n+e)
ExistsEdge(int u, int v) Look for v in list u; O(e)
InsertEdge(int u, int v) Make space and insert the edge O(n+e)
DeleteEdge(int u, int v) Delete the edge and compact the array | O(n+e)

IsConnectedGraph()

O(n+e)




Inverse Adjacency Lists

* Ease repeatedly accessing all vertices adjacent to
and from another vertex in a digraph
* E.g., in-degree and out-degree
e Keep an additional inverse adjacency list
e Lististores edges of the form <x, i>

* An alternative is to use orthogonal adjacency lists

0 » 1|0 0lo

1 " 3 210 1 010

2 » 3|0 2 1 » 310
3 » 2|0 3 2 1 (0

26



Orthogonal Adjacency List

e Use an nxn orthogonal (= %) list to store the adjacency
information

* Terms correspond to edges, (u, v) or <u, v>

* (Recall p.218 sparse matrices)
header nodes shown twice

Q 0 1 2 3

o
=

N

WN RO
|

4
\ 4
o|lw o|lw

w
N

=1\ 2
array of n
header nodes




Orthogonal Adjacency List Operations

Out-degree(int u) Count the # of nodes in chain u O(e)
In-degree(int u) Count the # of nodes in chain u O(e)
ExistsEdge(int u, int v) Look for vin chainu; O(e)
e Check the existence of vin chain u O(e)
_ , (and u in v);
InsertEdge(int u, int v) * Insert (instead of push or append)v | O(e)
into chain u (and u into v);
* Locatevin chainu (and uin v); O(e)
DeleteEdge(int u, int v)  Remove v from chain u (and u from | O(1)
v);
IsConnectedGraph() O(n+e)

28




Adjacency Multi-Lists

* Multi-lists
* One node can be shared among multiple lists
* Adjacency multi-lists
* An edge is represented by a node
e Support accessing all edges incident on a vertex in undirected

graphs
NO N1 NO
011
N4 N5

W N PO
|

pa
o
pa
o=

N

N

,\l?ls
[oTs3 1] 3

w

(@)
\ 4
o
\ 4
(@)




Discussion:
Adjacency Matrices vs Adjacency Lists

Which performs

Operation
P better

Determining if (u, v) is an edge in G
Degree of vertex u

Determining if there is a path fromutov
Adding an edge to G

Space to store a dense graph

Space to store a sparse graph

Konigsberg Bridge Problem




Outline

* 6.1 The graph abstract data type

* 6.2 Elementary graph operations

* 6.3 Minimum-cost spanning trees

* 6.4 Shortest paths and transitive closure
* 6.5 Activity networks

31



Elementary Graph Operations

* Depth-first search (DFS)

* Breadth-first search (BFS)
* Connected components

* Spanning trees

e Biconnected components



Concept of Search

* Suppose we want to systematically traverse a city with
a subway map in hand
* Depth-first style
* Following a subway path and visiting the places one after one
e Breadth-first style
* Visiting all places within a certain traveling distance




Depth-First Search (DFS)

* Begin by visiting the start vertex v

* Next an unvisited vertex w
adjacent to v is selected

* A depth-first search from w is
initiated
* Recursion

e Backtrack if no unvisited vertices
are reachable

DFS



Depth-First Search (DFS)

virtual void Graph::DFS() // Driver

{
visited = new bool[n];
fill (visited, visited + n, false);
DFS(@); // start search at vertex o
delete [] visited;

}

virtual void Graph::DFS(const int v)
{
visited[v] = true;
for (each vertex w adjacent to v)
if (!visited[w])
DFS(w);

DFS



Breadth-First Search

* Begin by visiting the start vertex v

 All unvisited vertices adjacent to v
are visited

* Unvisited vertices adjacent to
these newly visited vertices are
then visited, and so on

BFS



Breadth-First Search

virtual void Graph::BFS(int v)
{
visited = new bool [n];
fill (visited, visited + n, false);
visited[v] = true;
Queue<int> q;
g.Push (v);
while (!q.IsEmpty ()) {
v = q.Front ();
q.Pop ();
for (all vertices w adjacent to v)
if (!visited [w]) {
g.Push (w);
visited[w] = true;
}

}
delete [] visited;

BFS



Concept of Connect Component

* Determine whether a graph is connected

* Call DFS of BFS and then determine if there is any
unvisited vertex

* Find connected components in a graph

* Make repeated calls to either DFS(v) or BFS(v)
* where v is a vertex that has not yet been visited



Connect Components

virtual void Graph: :Components()

{

visited = new bool [n];
fill (visited, visited + n, false);
for (i =0 ; 1 < n ; i++){
if (!visited[i]) {
DFS(i); // find the component containing 1
OutputNewComponent ();
}
}
delete [] visited;




Concept of Spanning Tree

* Any tree consisting solely of edges in G and
including all vertices in G is called a spanning tree

* Tree is a connected graph without loops
e Graph has multiple spanning trees

* Traversing a graph can produce a spanning tree
* Depth-first spanning trees or breadth-first spanning trees

DGO

DFS(0) BFS(0) BFS(7)
G Some spanning trees of G



Spanning Tree = Independent Cycles

* Introducing a nontree edge (v, w) into a spanning tree
produces a cycle

* These cycles are independent

* Each introduced nontree edge is not contained in any other
cycle

* We cannot obtain any of these cycles by taking a linear
combination of the remaining cycles

* (# of independent cycles) = (# edges) - (# vertices - 1)

DFS(0) + (0, 2) DFS(0) + (1, 4) DFS(0) + (6, 7)



Spanning Tree = Independent Cycles

* Producing independent Kirchhoff's voltage
equations of an electrical circuit network

: ®) @) © ®
"G ® B /
CT) G—© (F)—@:
Circuit Graph BFS(A) ----------

Equations:
* VictVeetVeg =0
* VaptVeptVpgtVertVea= 0



Biconnected Components

* A vertex v of undirected, connected graph G is an
articulation (% &) point iff
* Deleting v and all edges incident to v makes G
disconnected

* A biconnected graph is a connected graph with no
articulation points

* No single point of failure
* A desired property for, say, a communication network

* A biconnected component is a maximal
binconected subgraph
43



Biconnected Components

Vertices 1, 3, 5, 7 are
articulation points

Biconnected Non-biconnected

® £ 7o © 7 L
@ @t@ ®_® 6‘ 7D @ component because
O &

@ it is not maximal

Biconnected components



Biconnected Components

* A binnected graph has just one biconnected
component: the whole graph

* Two biconnected components of the same graph can
have at most one common vertex

* Therefore, no edges can be in two or more biconnected
components

* Biconnected components of G partition the edges of G

@:‘; @13 @ %

Biconnected components



Find Biconnected Components

e Depth-first spanning tree can be used to find
articulation points, which indicate biconnected
components

© 8 (9
(1) (7) )
2 61
4 (&)
Graph DFS(3) spanning tree

(shaded vertices are articulation points)
(We can pick any vertex as the root and
find the same articulation points)

46



Depth-First Spanning Trees of Graphs

* Nontree edges
* Back edge

* A nontree edge (u, v) in which either u is
an ancestor of v or v an ancestor of u

e Cross edge bap'i:
* A nontree edge that is not a back edge |

_____
-
-
=

* From the definition of DFS, a graph
has no cross edges with respect to its
depth-first spanning trees

* Depth-first number, dfn,

* The sequence in which the vertices
are visited during the DFS




ldentifying Articulation Points

* Analyzing any depth-first spanning
tree of the graph

e Leaf
* Cannot be an articulation point

* Root
* Is an articulation point iff it has = 2
children

* since there are no cross edges among the
root's subtrees

e Other (non-root ,non-leaf) vertex, u

* Is an articulation point iff u's ancestors
lacks a non-tree edge to any of u's
subtrees

* Without the non-tree edge, u separates
the ancestors from the subtrees




Algorithm

e Technique

* Find the lowest reachable
ancestor through descendants
and one back edge

* Define f(w) for a vertex w as the
minimum of the following values
. dfn(w)
e dfn(x | (w,x)is a nontree edge)
* flw's children)

* flw)
« FHroot 13w BRBEKEHE
AR E

o & Aw)=din(w) KREZEE




Algorithm

* u has any child w such that

flw) = dfn(u) e
+ SEroot HEHEW LB TN
2 BAEZMH non-tree edge P
* - uis an articulation point 13 ] 6 7
QO /O
* In the textbook, f{() is called as ol 64/%
low() 1010 )\909
//O O
dfn()

50



Computing dfn, low, and Outputing
Biconnected Components

virtual void Graph::Biconnected()

{

num = 1; // num is an int data member of Graph
dfn = new int[n]; // dfn is declared as int* in Graph
low = new int[n]; // low is declared as int* in Graph
fill(dfn, dfn + n, 0);

fill(low, low + n, O);

rBiconnected(0, -1);

delete [] dfn;

delete [] low;

51




Computing dfn, low, and Outputing

Biconnected Components

void Graph::rBiconnected (const int u, const int v)
{
dfn[u] = low[u] = num++;
for (each vertex w adjacent from u){ // (u, w)
if ((v !'= w) && (dfn[w] < dfn[u]))
add (u, w) into stack s;
if (dfn[w] ==0) { // w is an unvisited vertex, a child
rBiconnected(w, u);
low[u] = min(low[u], low[w]);

cout << “New Biconnected Component:” << endl;
do {

delete an edge from the stack s;

let this edge be (x, y);

cout << x << “,” << y << endl;

}
}
else if (w != v)
low[u] = min(low[u], dfn[w]); // back edge

if (low[w] >= dfn[u]) { // u is an articulation point

} while ( (x, y) and (u, w) are not the same edge)

O
u
WW




Outline

* 6.1 The graph abstract data type

* 6.2 Elementary graph operations

* 6.3 Minimum-cost spanning trees (MSTs)
* 6.4 Shortest paths and transitive closure

* 6.5 Activity networks

53



Minimum-Cost Spanning Trees (MSTs)

* An graph can have many spanning
trees

* For a weighted, connected, and
undirected graph

* We define the cost of a spanning tree
is the sum of the weights of the edges
in the spanning tree

* We may want to minimize the cost

e Possible applications: road
construction, circuit layout, internet

routing




Minimum-Cost Spanning Trees

* Three greedy methods
e Kruskal's
* Prim's
* Sollin's
* In a greedy method, we construct an
optimal solution in stages

* At each stage, we make the best
decision possible at the time

* (e.g., the least-cost edge is chosen for
building a minimum-cost spanning tree

 We do not change this decision later

* Greedy strategy can lead to MST
construction




Kruskal's Algorithm

e Create an empty graph, T
* Sort edges according to weights

 Add edges to T one at a time
* The least-cost edge that does not form a cycle with T's
edges
* Exactly n-1 edges are added, where n is the number
of vertices



Kruskal's Example




Kruskal's Algorithm

T =0;
while ( ( T contains less than n-1 edges) &&
(E is not empty) ) {
choose an edge (v, w) from E of lowest cost;
delete (v, w) from E;
if ( v and w belong to diff. sets){ // no loop
add (v, w) to T;
merge v's and w's sets;
telse{
discard (v, w);

}
}

if ( T contains fewer than n-1 edges)
cout << "no spanning tree" << endl;




Prim's Algorithm

* Begin with an empty tree, T
* Sort edges according to weights
* Add to T any vertex of the graph

* Add vertices to T one at a time
* The vertex is adjacent to avertexin T
* The vertex corresponds to the least-cost edge



Prim's Example




Prim's Algorithm

if (G has at least one vertex)
cout << "no spanning tree" << endl;

TV = {0}; // start with vertex © and no edges
for (T = O0:; T contains less than n-1 edges:; add (u, v) to T)

{
Let (u, v) be a least-cost edge with u in TV & & v not in TV;
if (there is no such edge)
break;
add v to TV;
}

if ( T contains fewer than n-1 edges)
cout << "no spanning tree" << endl;




Sollin's Algorithm

* Create n subgraphs, each subgraph having a single
vertex

* Sort edges according to weights

* Add edges to each subgraph one at a time

* The least-cost edge that does not form a cycle with each
subgraph 's edges

* Duplicate edges are discarded

A total of exactly n-1 edges are added, where n is
the number of vertices



Sollin's Example




Outline

* 6.1 The graph abstract data type

* 6.2 Elementary graph operations

* 6.3 Minimum-cost spanning trees

* 6.4 Shortest paths and transitive closure
* 6.5 Activity networks

67



Shortest Path Problem

* Let's consider a GPS device using
graph data structures to represent
the highway structures of a state

* Vertices representing cities

* Edges representing sections of
highway

* Edge weights representing lengths of
the highway sections

* Important questions
* |s there a path from Ato B
* What is the shortest path from Ato B

68



Various Flavors of Path Problems

* Edge costs

* Non-negative costs (e.g., traveling distance, spent time)
* General costs (e.g., spent/obtained fuels)

* Number of sources and destinations
 Single source single destination
 Single source all destinations
* All sources single destination
 All pairs

 Textbook covers

* Single source all destinations}x Non-negative costs
e All pairs General costs



Comparisons

* Prim's (for MST)
- Strategy: greedy
* Dijkstra's (for shortest paths)

* Bellman-Ford (for shortest paths)
, Strategy: table
* All pairs (for shortest paths)



Prim's Example




Dijastra's Example




Single Source, All Destinations, and

Nonnegative Costs

* Input
* Adirected graph G =(V, E)
e Length(i, j) for the edges of G
* A source vertex v

* Qutput

* Determine a shortest path from v to each of the remaining
vertices of G in non-decreasing length order

Path Length
o0
0,3 10 £
0
» 034 25 v
@
0,3,4,1 45 =
C
0,2 45 S

All-destinations
shortest path from 0




Dijkstra's Algorithm Example

Path Length
0,3 10

Vertex 3 has the least-cost dist, i.e., 10.
So, output the 0-3 path.

Path Length

0,3 10
0,34 25

Include 3 in to S and update
vertices adjacent from 3. Output the 0-4 path.

Vertex 4 has least-cost dist , i.e., 25.
74



Dijkstra's Algorithm Example

Path Length

0,3 10
0,3,4 25
0,3,4,145
Include 4 in to S and update Both vertices 1 and 2 have the least-
vertices adjacent from 4. cost dist. Output one of them, e.g., 1.

Path Length

0,3 10
0,3,4 25
0,3,4,1 45
0,2 45
Include 1 in to S and update Include 1 in to S and update e

vertices adjacent from 1. vertices adjacent from 1.



Dijkstra’s Algorithm

Edsger W. Dijkstra

 Dutch computer scientist
 Turing award recipient
"Dijkstra" pronounces similar
to /dye-k-stla/

 S: Aset of vertices to which the shortest paths have
already been found

 S={v}inthe beginning

e dist[u]: Shortest distance from v, through vertices in S, to a
vertex u notin S

* <V, U> exists 2 dist[u] = edge weight
e <y, u>doesn't exist 2 dist[u] =
e dist[v] is considered as 0



Dijkstra’s Algorithm

wW

—-—
~~o
S
~,

TS e,
;e AN :
'/' 1‘ y
‘\\\ //’ V u
V. e o o * Let u be the
............... 0 destination of a next

shortest path

. ' =
When S contains n=>1 - Assume said path

vertices contains an
* A next shortest path must mter[cn_edslate vertex
contain only vertices in S whnotin
: : * The length of the v-
p|US the dEStInathn W path IS NO greater
* There may be multiple than the v-u path
equal-length shortest path. * ushould not be the

: destination of a next
At least one of them is so shortest path (=><)



Dijkstra’s Algorithm

dist[u]: Shortest distance from
dist v, through vertices in S, to a
vertexunotin$S

* Greedy: among vertices not in S, find a vertex u with the
lowest dist[]

* U becomes a new member of S

e Keep dist[] updated

* u may lower dist[] of vertices that are not in S and adjacent from u

* The algorithm stops when S contains all n vertices



Quick Questions

* Given a graph with non-negative weights, we want
to find shortest paths starting from A.

~~~~~

- .
N
AY

79



Quick Questions

* A-D must be a shortest path. Why can we be so
sure?

80



Quick Questions

* A-D-G must be a shortest path. Why can we be so
sure?

31



Quick Questions

* Whether A- F A-D-E are shortest paths depends on

82



Quick Questions

e Shortest paths from A to B, C, D, G are known, but

83



Quick Questions

* If the following table lists all the shortest paths

B 30
C 30
D 20
E 35
F 40
G 30
H 50
I 50

84



Dijkstra's Algorithm

void MatrixWDigraph: :ShortestPath(const int n, const int v)

{

for (int 1 =0; i < n ; i++) { // initialization
s[i] = false; // the set, S
dist[i] = length[v][i]; // dist[]

}
s[v] = true;
dist[v] = ©;

for (i =0; 1 < n-1; i++) { // n-1 shortest paths from v
choose u that is not in S and has smallest dist[u];
s[u] = true; // u becomes a member of S
for (each <u, w> in the graph) // update dist[w]
if (!s[w] && (dist[u] + length[u][w]) < dist[w])
dist[w] = dist[u] + length[u][w];

"choosing the smallest dist[u]" is typically in O(n).
So, the overall complexity is O(n?)




Single Source, All Destinations, and

General Costs

* All edge costs (positive,
negative, zero) are permitted

A more general (also more
difficult) problem

* Dijkstra's greedy strategy does
not work here

* Offsetting all edge costs does
not help

e Paths consist of different
number of edges

 Different offset amounts
change the length order of
paths

~,
________

~,
________

wW

20 -
s ~ /“shortes 15
z" > ".

10

offset by 20

.40 5
{ S L shortest

30

u

u



Single Source, All Destinations, and
General Costs

* Cycles with negative length are not b
permitted 5 -20

* Otherwise, a cycle produces a path
with —oo cost

* e.g., ..a-b-c-a-b-c-..

* A shortest path must exist and has
at most n-1 edges (i.e., n vertices)
* Paths with more than n vertices must
contain a cycle
* Cycles do not lead to shorter paths

* With at most n vertices, there are a
finite number of possible paths

* The shortest one must exist



Bellman-Ford Algorithm Concept

dist![u]

P 1

P12

123

B #&n-1

shortest path with #edge =1

T {7 ¥ jiledge cost® & ¥ 4T

shortest path with #edge <2

shortest path with #edge <3

NSNS

shortest path with #edge <n-1

SRRy

NV

#tedge >n-1 7 path cost I 7

s

38



Bellman-Ford Algorithm

® 0
Z
VvV
o

y co

dist![u]

« dist{[u]: Length of a shortest path from v to u with the
number of edges £ 1

o dist![u]
e =edge weight if <v, i> exists
e =00 if <v, i> doesn't exist

e dist™1[u] for all u is our needed results



Bellman-Ford Algorithm

dist?[u]  diStIX] =

o dist![x]
o dist!]
o dist!]
o dist!]...

min of

] + cost(y, x)
] + cost(z, x)

] + cost(..., x)

 Calculate distX[u] from distc1[u], k = 2~(n-1)
e v-u shortest path with at most k edges, k>1,

dist[u] is the minimum of
o distk1[u]

o (dist“![i] + length(<i, u>)) for all <i, u>

90



Bellman-Ford Example

dist¥[ ]

ol dh | WIN|R|=x
R R | R(Rr | Ww|o |-
mnlulun|lvuluvulv|w
olo|lo|lNm|lun |8 | s

N I NG I NG O N N B SO T,

* Optimization
* Updating dist[] in-place
* Use only one array for dist![], dist?[] ...




Bellman-Ford Algorithm

void MatrixWDigraph::BellmanFord(const int v)
{ // n is the number of vertices

// in-place update for dist[] is used

for (int i = 0; 1 < n ; i++)

for (each u, u !=v)
for (each <i, u> in the graph)
if (dist[u] > dist[i] + length[i][u])
dist[u] = dist[i] + length[i][u];

* '"for(each u)" and "for (each <i, u>)" together is O(n?) for
an adjacency matrix and is O(e) for an adjacency list.

* The overall complexity is O(n3) for an adjacency matrix
and is O(ne) for an adjacency list.

for (int k = 2; i <= n-1 ; k++) // dist? ~ dist(™1)

~

dist[i] = length[v][i]; // dist'[] initialization

~




All Pairs and General Costs

* Viable approaches

* Perform n Bellman-Ford algorithms
* O(n%) if an adjacency matrix is used
* O(n2%e) if an adjacency list is used

* There is an O(n3) all pair shortest path algorithm
 Suitable for a dense graph with e being several folds of n



All-Pair Shortest Path Algorithm
Concept

* For each (i, j) pair
e Shortest path without an intermediate vertex

@® (D
e Shortest path with some restricted intermediate vertices
AN
o) 5 0
X<k
* Shortest path with any intermediate vertices
SO
w
m=n




All-Pair Shortest Path Algorithm

 Define AX[i][j]
* length of the shortest path from i to j going through no
intermediate vertex of index greater than k

* A[i][j] is just the length of the edge <i, j>

* A™1[i][j] is our needed results 0o, 0123
4 /
o o Al 3/2/ /'/://>
e Calculate AX[i][j] based on Ak1[i][j] o ST
 AK[i][j] is the minimum of the following A / / >
* A S

o ARL[i][K] + AFL[K][]] aiS




All-Pair Shortest Path Algorithm

* Given
shortest
* ShortestPathCost(u, k) -
* ShortestPathCost(k, v) |
* If kiis on a shortest path Shorg k%
St shorte

fromutov
— ShortestPathCost(u, v)
= ShortestPathCost(u, k) + ShortestPathCost(k, v)

* Proof: If there were another path, (u, k, v)', with an even
lower cost
e Either Cost((u, k)') is < ShortestPath(u, k)

or Cost((k, v)') is < ShortestPath(k, v),
a contradiction



All-Pair Shortest Path Algorithm

void MatrixWDigraph::AllLengths(const int n)
{

for (int i = 9; i<n; i++)
for (int j = @; j<n; j++)
a[i][j]= length[i][]];

for (int k= 0; k<n; k++)
for (int i= 0; i<n; i++)
for (int j= 9; j<n; j++)
if(a[i][3] > (a[il[k] + a[k][3i]))
ali][j] = a[il[k] + a[k][]];




Concept of Transitive Closure

* Transition matrix, T
e State change after a step

e Closure, C

* The steady state after many steps
e (CXT)=C

* (Here we use AND for scalar
multiplication and OR for scalar
addition in the above example)

A W N - O

A W N - O

98




Transitive Closure of a Graph

* Given a graph with unweighted edges

* Transitive closure matrix, A*
* A*[i][j] =1 if there is a path of positive length from i to j
* A*[i][j] = 0 otherwise

» Reflexive transitive closure matrix, A
« A'[i][j] = 1if there is a path of non-negative length fromi to j
« A'[i][j] = 0 otherwise

* The only difference between two (given unweighted edges)
 A*[i][i]=0
o A'[i][i] = 1, as the name "reflexive" suggests

* Meanings of '+' and '*'
* '+' means "one or more" in regular expression
e "*"'means "zero or more" in regular expression

99



Transitive Closure Algorithm

e For a directed graph (with unweighted edges)
e Perform all-pair shortest path algorithms
* O(n3) time complexity
* Perform n independent Dijkstra algorithms
* O(n%e) time complexity

* For an undirected graph (with unweighted edges)

* Perform connect component algorithm using searches
(e.g., DFS or BFS)

* O(n?) time complexity



Outline

* 6.1 The graph abstract data type

* 6.2 Elementary graph operations

* 6.3 Minimum-cost spanning trees

* 6.4 Shortest paths and transitive closure
* 6.5 Activity networks

101



Outline

* 6.1 The graph abstract data type

* 6.2 Elementary graph operations

* 6.3 Minimum-cost spanning trees

* 6.4 Shortest paths and transitive closure
* 6.5 Activity networks

102



Activity-on-Vertex (AoV) Networks

* Directed graphs
 Vertices represent tasks (i.e., activities)
* Edges represent precedence relations
* Vertex iis a predecessor (successor) of vertex j iff there's
a path fromitoj(jtoi)
* Vertex iis an immediate predecessor (successor) of
vertex j iff there's an edge fromitoj (j to i)



Activity-on-Vertex (AoV) Networks

Operating
Systems
Assembly
Programming Language
»C11
Discrete
Mathematics

Calculus | Calculus 1l

@) ————@s




Topological Order

* Alinear order of the vertices of a graph such that

* for any two vertices i and j, if i is a predecessor of j in the
graph, then i precedes jin the linear ordering

Operating
Systems Note:

* Transitivity among >2
vertices

* Topology order
between two vertices
does not always imply
their precedence in

Assembly
Programming o

Calculus | Calculus lI
N ‘ the graph
@

* Two valid topological orderings (there are many of
them)
- C1,C2, C4, C5,C3, C6, C8, C7, C10, C13, C12, C14, C15, C11, C9
« (4, C5,C2, C1,C6, €3, C8, C15, C7, C9, C10, C11, C12, C13, C14



Topological Sorting Algorithm (Draft)

for (int i = 0; i<n; i++) {
if (every vertex has a predecessor){

// network has a cycle and thus is infeasible
return;

}

if (vertex v has no predecessors) {
cout << v;

remove v and all edges leading out of v;
}
}

* Graph representation considerations for the above
algorithm
 How can we remove all edges leading out of a vertex?

* How can we determine whether a vertex has a
predecessor?




Graph Representation Choice

0
© @"e
o

indegree[] Adjacency list

01| O o 1 > 2 » 3 |0
111 4 10

2 |1 » 4 5 [0

3 |11 4 510

4 | 3 0

5 | 2 0

107



Topological Sorting Algorithm

void LinkDigraph::TopologicalOrder()
{
Stack s; // A stack holds ©-indegree vertices
// Any container is good for this algorithm
for (int 1 = 0; i<n; i++)
if (indegree[i] == ©) s.push(i);

for (i = @; i< n; i++) {
if (s.isEmpty() ) throw “Network has a cycle.”;
int j = s.top(); s.pop();
cout << j <<endl;
Chain<int>::ChainIterator ji = adjLists[j].begin();
while (ji) {
indegree[*ji]--;
if (indegree[*ji] == @) s.push(*ji);
Ji++;




Topological Sorting Example

Lol 8o o AZM
Cos| [#o< o0l =

o [ g 0o
‘ex"e »1 »*

3 2 0O 3 2 5 0O 3 2 5 1

N

[N




Activity-on-Edge (AoE) Networks

* Directed graph
* Edges represent tasks (activities) to be performed
* \Vertices represent events

* Edge cost of each activity is the time needed to perform
the activity

Event vertex signals the completion of all activities edges
entering the vertex

Edges leaving a vertex cannot be started until the event
at the vertex has



Activity-on-Edge Network

* Events

e,: start of the project
e,: completion of activity a,
e,: completion of activities a, and a.

: finish of the project

m .

€ 111



Some Important Concepts

* Critical path

* The longest path from the start vertex to the finish
vertex

* Earliest time
* The earliest time an activity (event) can start (occur)

e Latest time

* The latest time an activity (event) must start (occur) so
as not to delay the project

e Critical activities

 All activities for which the earliest time equals the latest

time
112



#critical path_+ » node+lastest time = earliest time

Critical Path VOE

* The longest path from the start vertex to the finish
vertex

ag =2
 The above network has two critical paths
* Length(0, 1, 4,6, 8) =18
e Length(0, 1,4,7,8)=18

113


User
高亮

User
高亮

User
高亮

User
高亮

User
高亮

User
高亮

User
文字框
VoE

User
文字框
在critical path上，node的lastest time = earliest time


Earliest Event/Activity Time

* The length of the longest path from the start vertex
to a vertex

agic i F 4

ag =2
1B i B A A

* Earliest event time(e,)=7=6+1 l
* Earliest activity time(a,) = Earliest activity time(ag) = 7
 Earliest event time(finish) = 18|=6 + 1 + 11(9+2 or 7+4)

114


User
文字框
= 6 + 1

User
高亮

User
高亮

User
高亮

User
文字框
= 6 + 1 + 11(9+2 or 7+4)

User
標注
a8這件事情最早可以什麼時候開始做


Latest Event/Activity Time

 Earliest time of the finish vertex - the length of the
longest path a vertex to the finish

 Earliest event time(finish) = 18
* longest path length(e,, finish) = 11
* latest event time(e,) = 7


User
高亮

User
高亮

User
高亮


Critical Activities

* The difference between the earliest time and the
latest time, i.e., the slack (& 42), is a measure of
the criticality of an activity

* The time by which an activity may be delayed or slowed
without delaying the finish of the project

* Activities having no slack are called critical activities

116



Critical Path Analysis

* Purpose
* Speed up things, e.g., a project or a circuit

* Steps
 Compute earliest time and latest time
* |dentify critical activities

* Find paths in the graph with noncritical activities
removed

* Notes

* Speeding up noncritical activities or single critical

activity not on all critical paths will not reduce the
overall duration

e Critical paths can change after speeding up an activity
117



Critical Path Analysis

a/, a8, a9, alo are
critical. However,
speeding up one of

start
them cannot @
reduce overall
duration

After a, is speeded
up from 6 to 3 d,

units, critical paths
change start (e,

3, = 118



Calculating Earliest and Latest Times

<a, b>
start finish

e Earliest activity time(<a, b>)
e = Earliest event time(a)
* = Longest path(start, a)
e Latest activity time(<a, b>)
e = Latest event time(b) - Edge cost(<a, b>)

* Latest event time(b)
» = Earliest event time(finish) - Longest path(b, finish)

* The above calculation can be performed in two passes
based on topological sorting

e Detailed in the textbook



Critical Path Analysis in Circuit Design

e (Supplement materials)

 CAD (computer-aided design) algorithms
* |dentify critical paths in circuits
* Push the limits for the paths to meet timing constraints

* The following circuit example is an adder
e Add three bits and produce two resulting bits
* Red parts are typical critical paths

finish

120





