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Konigsberg Bridge Problem

• Also known as "一筆畫
問題" or "七橋問題"
• Four land areas are 

interconnected by 
seven bridges

• Is it possible to walk 
across seven bridges 
exactly once in 
returning to the starting 
place?
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Konigsberg Bridge Problem

• Euler solved the problem 
by representing the land 
areas as vertices and the 
bridges as edges (1736)
• First recorded evidence of 

the use of graphs

• Since then, graphs have 
been used in a wide 
variety of applications
• Analysis of circuits, 

genetics, social 
networks…
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Graphs

• Definition : A graph, G, consists of two sets, V and E
• G = (V, E)

• V is a finite, nonempty set of vertices

• E is a set of pairs of vertices, called edges
• Undirected graphs (無向圖) 

• Pair of vertices representing any edge is unordered

• (u, v)  and (v, u) represent the same edge

• Directed graphs (digraphs) (有向圖)
• Each edge is represented by a directed pair <u, v>

• u is the tail and v the head of the edge
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Graphs
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V(G1) = {0, 1, 2, 3}
E(G1) = {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
V(G2) = {0, 1, 2, 3, 4, 5, 6}
E(G2) = {(0, 1), (0, 2), (1, 3), (1, 4), (2, 5), (2, 6)}
V(G3) = {0, 1, 2}
E(G3) = {<0, 1>, <1, 0>, <1, 2>}



Simple Graphs (Strict Graphs)

• This book only considers simple graphs (strict graphs)

• The followings are not allowed in simple graphs
• Self edges / self loops

• (v, v)
• <v, v>
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• Multiple occurrences of the 
same edge

• Therefore, the max number of edges of an n-vertex simple graph 
• n(n-1)/2 for an undirected graph
• n(n-1) for an directed graph



Terminologies

• Complete graphs (also called as cliques (團) )
• A graph having the max possible number of edges

• n(n-1)/2 for an undirected graph

• n(n-1) for an directed graph

• Adjacency and incidence
• u and v are adjacent if (u, v) ∈ G

• (u, v) is incident on (關聯) u and also v

• A subgraph of G is a graph G' such that 
• V(G') ⊆ V(G)

• E(G') ⊆ E(G)
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Terminologies

• A path from u to v in a graph G is 
• a sequence of vertices: u, i1, i2, …, ik, v

• (u, i1), (i1, i2), …, (ik, v) ∈ E(G), G is undirected

• <u, i1>, <i1, i2>, …, <ik, v> ∈ E(G), G is directed

• A simple path is
• a path in which all vertices except possibly the first and 

last are distinct

• A cycle is
• a simple path in which the first and last are the same
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Connectivity

• In an undirected graph, vertices u and v are 
connected iff there is a path from u to v

• An undirected graph is connected iff every pair of 
distinct vertices u and v in V(G) is connected
• A tree is a connected acyclic graph
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Connected Components

• A connected component (or component for short), 
H, of an undirected graph is
• the maximal connected subgraph

• By maximal, we mean that G contains no other subgraph 
that is both connected and properly contains H
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Strongly Connected Graphs

• A digraph G is said to be strongly connected iff for 
every pair of distinct vertices u and v in V(G) there 
is a directed path from u to v and also from v to u

• A strongly connected component is a maximal 
subgraph that is strongly connected
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Degree

• The degree of a vertex is the number of edges 
incident to that vertex

• For digraph
• The out-degree of a vertex v is the number of edges for 

which v is the tail
• The in-degree of a vertex v is the number of edges for 

which v is the head
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Graph ADT
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class Graph
{
public:

virtual ~Graph() {} // virtual destructor
bool IsEmpty() const {return n == 0};
int NumberOfVertices() const {return n};
int NumberOfEdges() const {return e};

virtual int Degree(int u) const = 0;
virtual bool ExistsEdge(int u, int v) const = 0;
virtual void InsertVertex(int v) = 0;
virtual void InsertEdge(int u, int v) = 0;
virtual void DeleteVertex(int v)            = 0;
virtual void DeleteEdge(int u, int v) = 0;

private:
int n; // number of vertices
int e; // number of edges

};



Inheritance vs. Template

• Key question: do types affect the behaviors of a class 
according to your expectation?

• Inheritance: types may affect behaviors
• Rectangle and Circle can calculate their areas but have 

different calculating mechanisms
• According to this expectation, we design a base class, Shape, 

with a virtual GetArea() method and let specific shape classes 
to inherit 

• Template: types do not affect behaviors
• Stack exhibits a last-in-first-out behavior

• Both Stack of Rectangle and Stack of Circle do so

• According to this expectation, we design a template stack 
instead of a base stack and different inherited classes
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Non-Virtual vs Virtual Functions

• Non-virtual
• Static-binding (at compile time) according to the type of a object 

pointer or reference

• Virtual
• Dynamic-binding (resolved at run time) according to hidden 

information in each object
• Polymorphism: derived classes exhibit their specific behavior even 

if they are referred to using the base class pointer/reference 
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int main()
{

Rectangle r;
Circle c;
cout << AreaRatio(r, c);
cout << AreaRatio(c, r);

}
float AreaRatio(Shape& s1, Shape& s2)  
{

return s1.GetArea() / s2.GetArea();
}



Pure Virtual Functions

• Sometimes we want derived classes NOT to inherit
the implementation of a virtual function by default
• Implementation of GetArea()

• Maybe impractical to have one method to calculate the area of 
both Rectangle and Circle

• Maybe error-prone if someone inherits from Shape another 
specific shape, say Star, without redefining Star's GetArea
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Graph Representations

• Three categories of most commonly used 
representations
• Adjacency matrices

• Adjacency lists

• Adjacency multi-lists

• The choice of a particular representation depends 
upon the application one has in mind and the 
functions one expects to perform on the graph
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Adjacency Matrices

• The adjacency matrix of an n-vertex graph, G,  is a 2D n×n
array, say array A
• A[u][v] = 1   iff (u, v) (or <u, v>) is in E(G)
• A[u][v] = 0   otherwise

• Adjacency matrices of undirected graphs are always 
symmetric
• This allows optimization that halves the space requirement

• Adjacency matrices are wasteful of space for sparse graphs 
(i.e., graphs with only few edges)
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Adjacency Matrix Operations

Degree (int u) Return Σ a[u][i]; O(n)

Out-degree(int u) Return Σ a[u][i]; O(n)

In-degree(int u) Return Σ a[i][u]; O(n)

ExistsEdge(int u, int v) Return a[u][v]; O(1)

InsertEdge(int u, int v) Set a[u][v] = 1; O(1)

DeleteEdge(int u, int v) Set a[u][v] = 0; O(1)

IsConnectedGraph() O(n2)
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(Linked) Adjacency Lists
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• The adjacency list of an n-vertex, e-edge graph, G  
• Contains an n-element array, n chains, and 2e chain 

nodes
• Nodes in chain i represent the vertices adjacent from vertex i
• Nodes in each chain are not required to be ordered

• (Recall the equivalence class problem)



(Linked) Adjacency List Operations
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Degree (int u) Count the # of nodes in chain u; O(e)

Out-degree(int u) Count the # of nodes in chain u; O(e)

In-degree(int u) Count the # of u's in all the chains; O(n+e)

ExistsEdge(int u, int v) Look for v in chain u; O(e)

InsertEdge(int u, int v)
• Check the existence of v in chain u

(and u in v);
• Push v onto chain u (and u onto v);

O(e)

O(1)

DeleteEdge(int u, int v)
• Find v in chain u (and u in v);
• Remove v from chain u (and u from

v);

O(e)
O(1)

IsConnectedGraph() O(n+e)

Facebook would need to scan its billions of users to calculate how many 
people follows your page if Facebook uses the simple Adjacency List 
representation 



Sequential Adjacency Lists
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• Sequential adjacency list of an n-vertex, e-edge 
graph, G  
• Contains an (n+2e+1)-element array

• n+1 for indexing the list of each vertex

• 2e for adjacency information

5 6 8 9 11 1 3 0 3 1 2
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starting/ending indices 
of the lists of n vertices 

set to (n+2e+1)



Sequential Adjacency List Operations
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Degree (int u)
Return the index difference between u 
and u+1

O(1)

Out-degree(int u) 
Return the index difference between u 
and u+1

O(1)

In-degree(int u) Count the # of u's in the entire graph; O(n+e)

ExistsEdge(int u, int v) Look for v in list u; O(e)

InsertEdge(int u, int v) Make space and insert the edge O(n+e)

DeleteEdge(int u, int v) Delete the edge and compact the array O(n+e)

IsConnectedGraph() O(n+e)



Inverse Adjacency Lists
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Orthogonal Adjacency List
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Orthogonal Adjacency List Operations
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Out-degree(int u) Count the # of nodes in chain u O(e)

In-degree(int u) Count the # of nodes in chain u O(e)

ExistsEdge(int u, int v) Look for v in chain u ; O(e)

InsertEdge(int u, int v)

• Check the existence of v in chain u
(and u in v);

• Insert (instead of push or append) v 
into chain u (and u into v);

O(e)

O(e)

DeleteEdge(int u, int v)
• Locate v in chain u (and u in v);
• Remove v from chain u (and u from

v);

O(e)
O(1)

IsConnectedGraph() O(n+e)



Adjacency Multi-Lists

• Multi-lists
• One node can be shared among multiple lists

• Adjacency multi-lists 
• An edge is represented by a node
• Support accessing all edges incident on a vertex in undirected 

graphs
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Discussion: 
Adjacency Matrices vs Adjacency Lists

Operation
Which performs 
better

Determining if (u, v) is an edge in G

Degree of vertex u

Determining if there is a path from u to v

Adding an edge to G

Space to store a dense graph

Space to store a sparse graph

Konigsberg Bridge Problem
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Elementary Graph Operations

• Depth-first search (DFS)

• Breadth-first search (BFS)

• Connected components

• Spanning trees

• Biconnected components

32



Concept of Search

• Suppose we want to systematically traverse a city with 
a subway map in hand
• Depth-first style

• Following a subway path and visiting the places one after one

• Breadth-first style
• Visiting all places within a certain traveling distance

33



Depth-First Search (DFS)

• Begin by visiting the start vertex v

• Next an unvisited vertex w 
adjacent to v is selected

• A depth-first search from w is 
initiated
• Recursion

• Backtrack if no unvisited vertices 
are reachable
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Depth-First Search (DFS)
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virtual void Graph::DFS() // Driver
{
visited = new bool[n];
fill (visited, visited + n, false);
DFS(0); // start search at vertex 0
delete [] visited;

}
virtual void Graph::DFS(const int v)
{ 
visited[v] = true;
for (each vertex w adjacent to v)
if (!visited[w]) 

DFS(w);
}

DFS
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Breadth-First Search

• Begin by visiting the start vertex v

• All unvisited vertices adjacent to v 
are visited

• Unvisited vertices adjacent to 
these newly visited vertices are 
then visited, and so on

36
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Breadth-First Search
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virtual void Graph::BFS(int v)
{
visited = new bool [n];
fill (visited, visited + n, false);
visited[v] = true;
Queue<int> q;
q.Push (v);
while (!q.IsEmpty ()) {
v = q.Front ();
q.Pop ();
for (all vertices w adjacent to v)

if (!visited [w]) {
q.Push (w);
visited[w] = true;

}
}  
delete [] visited;

}



Concept of Connect Component

• Determine whether a graph is connected
• Call DFS of BFS and then determine if there is any 

unvisited vertex

• Find connected components in a graph
• Make repeated calls to either DFS(v) or BFS(v) 

• where v is a vertex that has not yet been visited
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Connect Components
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virtual void Graph::Components()
{

visited = new bool [n];
fill (visited, visited + n, false);
for (i = 0 ; i < n ; i++){

if (!visited[i]) {
DFS(i); // find the component containing i
OutputNewComponent ();

}
}
delete [] visited;

}



Concept of Spanning Tree

• Any tree consisting solely of edges in G and 
including all vertices in G is called a spanning tree
• Tree is a connected graph without loops
• Graph has multiple spanning trees
• Traversing a graph can produce a spanning tree

• Depth-first spanning trees or breadth-first spanning trees
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Spanning Tree  Independent Cycles

• Introducing a nontree edge (v, w) into a spanning tree 
produces a cycle 

• These cycles are independent
• Each introduced nontree edge is not contained in any other 

cycle
• We cannot obtain any of these cycles by taking a linear 

combination of the remaining cycles
• (# of independent cycles) = (# edges) - (# vertices - 1)
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Spanning Tree  Independent Cycles

• Producing independent Kirchhoff's voltage 
equations of an electrical circuit network
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Biconnected Components

• A vertex v of undirected, connected graph G is an 
articulation (關節) point iff
• Deleting v and all edges incident to v makes G 

disconnected

• A biconnected graph is a connected graph with no 
articulation points
• No single point of failure

• A desired property for, say, a communication network

• A biconnected component is a maximal
binconected subgraph
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Biconnected Components
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Biconnected Components

• A binnected graph has just one biconnected
component: the whole graph

• Two biconnected components of the same graph can 
have at most one common vertex 
• Therefore, no edges can be in two or more biconnected

components

• Biconnected components of G partition the edges of G
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Find Biconnected Components

• Depth-first spanning tree can be used to find 
articulation points, which indicate biconnected
components
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Depth-First Spanning Trees of Graphs

• Nontree edges
• Back edge 

• A nontree edge (u, v) in which either u is 
an ancestor of v or v an ancestor of u

• Cross edge 
• A nontree edge that is not a back edge

• From the definition of DFS, a graph  
has no cross edges with respect to its 
depth-first spanning trees

• Depth-first number, dfn, 
• The sequence in which the vertices 

are visited during the DFS
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Identifying Articulation Points

• Analyzing any depth-first spanning 
tree of the graph
• Leaf 

• Cannot be an articulation point

• Root 
• Is an articulation point iff it has ≥ 2

children 
• since there are no cross edges among the 

root's subtrees

• Other (non-root ,non-leaf) vertex, u
• Is an articulation point iff u's ancestors 

lacks a non-tree edge to any of u's 
subtrees

• Without the non-tree edge, u separates 
the ancestors from the subtrees
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Algorithm

• Technique
• Find the lowest reachable 

ancestor through descendants 
and one back edge 

• Define f(w) for a vertex w as the 
minimum of the following values
• dfn(w)

• dfn(x | (w,x) is a nontree edge)

• f(w's children)

• f(w)
• 由 root 出發到 w，替代路徑出發
點的深度

• 若 f(w)=dfn(w) 代表無替代路徑
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Algorithm

• u has any child w such that 
f(w) ≥ dfn(u)
• 由 root 出發到達 w 必經過 u，
沒有替代的 non-tree edge 

•  u is an articulation point

• In the textbook, f() is called as 
low()
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Computing dfn, low, and Outputing
Biconnected Components

51

virtual void Graph::Biconnected()
{

num = 1; // num is an int data member of Graph
dfn = new int[n]; // dfn is declared as int* in Graph
low = new int[n]; // low is declared as int* in Graph
fill(dfn, dfn + n, 0);
fill(low, low + n, 0);
rBiconnected(0, -1); 
delete [] dfn;
delete [] low;

}



Computing dfn, low, and Outputing
Biconnected Components

52

void Graph::rBiconnected (const int u, const int v)
{

dfn[u] = low[u] = num++;
for (each vertex w adjacent from u){  // (u, w)

if ((v != w) && (dfn[w] < dfn[u])) 
add (u, w) into stack s;

if (dfn[w] == 0) { // w is an unvisited vertex, a child
rBiconnected(w, u);
low[u] = min(low[u], low[w]);
if (low[w] >= dfn[u]) { // u is an articulation point

cout << “New Biconnected Component:” << endl;
do {

delete an edge from the stack s;
let this edge be (x, y);
cout << x << “,” << y << endl;

} while ( (x, y) and (u, w) are not the same edge)
}

}
else if (w != v) 

low[u] = min(low[u], dfn[w]); // back edge
}

}

v

u

w w
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Minimum-Cost Spanning Trees (MSTs)

• An graph can have many spanning 
trees

• For a weighted, connected, and 
undirected graph
• We define the cost of a spanning tree 

is the sum of the weights of the edges 
in the spanning tree

• We may want to minimize the cost
• Possible applications: road 

construction, circuit layout, internet 
routing
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Minimum-Cost Spanning Trees

• Three greedy methods 
• Kruskal's
• Prim's
• Sollin's

• In a greedy method, we construct an 
optimal solution in stages
• At each stage, we make the best 

decision possible at the time
• (e.g., the least-cost edge is chosen for 

building a minimum-cost spanning tree

• We do not change this decision later 

• Greedy strategy can lead to MST
construction
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Kruskal's Algorithm

• Create an empty graph, T

• Sort edges according to weights

• Add edges to T one at a time
• The least-cost edge that does not form a cycle with T's 

edges

• Exactly n-1 edges are added, where n is the number 
of vertices
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Kruskal's Example
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Kruskal's Algorithm

61

T = Φ;
while ( ( T contains less than n–1 edges) && 

(E is not empty) ) {
choose an edge (v, w) from E of lowest cost; 
delete (v, w) from E;                       
if ( v and w belong to diff. sets){ // no loop
add (v, w) to T;
merge v's and w's sets;

}else{
discard (v, w);

}
}
if ( T contains fewer than n–1 edges) 

cout << "no spanning tree" << endl;



Prim's Algorithm

• Begin with an empty tree, T

• Sort edges according to weights

• Add to T any vertex of the graph

• Add vertices to T one at a time
• The vertex is adjacent to a vertex in T 

• The vertex corresponds to the least-cost edge 

62



Prim's Example
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Prim's Algorithm
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if (G has at least one vertex)
cout << "no spanning tree" << endl;

TV = {0}; // start with vertex 0 and no edges
for (T = Φ；T contains less than n–1 edges；add (u, v) to T)
{

Let (u, v) be a least-cost edge with u in TV && v not in TV;
if (there is no such edge) 

break;
add v to TV;

}

if ( T contains fewer than n-1 edges) 
cout << "no spanning tree" << endl;



Sollin's Algorithm

• Create n subgraphs, each subgraph having a single 
vertex

• Sort edges according to weights

• Add edges to each subgraph one at a time
• The least-cost edge that does not form a cycle with each 

subgraph 's edges

• Duplicate edges are discarded

• A total of exactly n-1 edges are added, where n is 
the number of vertices
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Sollin's Example
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Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks
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Shortest Path Problem

• Let's consider a GPS device using 
graph data structures to represent 
the highway structures of a state 
• Vertices representing cities

• Edges representing sections of 
highway 

• Edge weights representing lengths of 
the highway sections

• Important questions
• Is there a path from A to B 

• What is the shortest path from A to B

68



Various Flavors of Path Problems

• Edge costs 
• Non-negative costs (e.g., traveling distance, spent time)

• General costs (e.g., spent/obtained fuels)

• Number of sources and destinations
• Single source single destination

• Single source all destinations

• All sources single destination

• All pairs

• Textbook covers
• Single source all destinations Non-negative costs 

• All pairs General costs

69
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Comparisons

• Prim's (for MST)

• Dijkstra's (for shortest paths)

• Bellman-Ford (for shortest paths)

• All pairs (for shortest paths)

70

Strategy: greedy 

Strategy: table 



Prim's Example

71

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18



Dijastra's Example

72

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18

3

0 1

2

4

5 6

10

28

1614

2425

22

12
18



Single Source, All Destinations, and 
Nonnegative Costs
• Input

• A directed graph G = (V, E)
• Length(i, j) for the edges of G
• A source vertex v

• Output
• Determine a shortest path from v to each of the remaining 

vertices of G in non-decreasing length order
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S

Dijkstra's Algorithm Example
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Dijkstra's Algorithm Example
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S

Dijkstra’s Algorithm

76

v

• S: A set of vertices to which the shortest paths have 
already been found
• S = {v} in the beginning

• dist[u]:  Shortest distance from v, through vertices in S, to a 
vertex u not in S
• <v, u> exists  dist[u] = edge weight
• <v, u> doesn‘t exist  dist[u] = ∞ in the beginning
• dist[v] is considered as 0

∞

∞

∞

∞

∞

∞

𝑥

𝑦

𝑧

dist
Edsger W. Dijkstra
• Dutch computer scientist
• Turing award recipient
"Dijkstra" pronounces similar 
to /dye-k-stla/



• When S contains n≥1 
vertices

• A next shortest path must 
contain only vertices in S 
plus the destination 
• There may be multiple 

equal-length shortest path.  
At least one of them is so

S

Dijkstra’s Algorithm

77

v • Let u be the 
destination of a next 
shortest path

• Assume said path 
contains another 
intermediate vertex 
w not in S
• The length of the v-

w path is no greater 
than the v-u path

• u should not be the 
destination of a next 
shortest path (→←)

v u

w



Dijkstra’s Algorithm
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v

• Greedy:  among vertices not in S, find a vertex u with the 
lowest dist[]
• u becomes a new member of S

• Keep dist[] updated
• u may lower dist[] of vertices that are not in S and adjacent from u

• The algorithm stops when S contains all n vertices

uSa

b
c

d
e

f
g

dist
dist[u]:  Shortest distance from 
v, through vertices in S, to a 
vertex u not in S



Quick Questions

• Given a graph with non-negative weights, we want 
to find shortest paths starting from A.
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Quick Questions

• A-D must be a shortest path.  Why can we be so 
sure?
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Quick Questions

• A-D-G must be a shortest path. Why can we be so 
sure?
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Quick Questions

• Whether A-F, A-D-E are shortest paths depends on 
the edges with unknown cost.  Why?
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Quick Questions

• Shortest paths from A to B, C, D, G are known, but 
that to others are unknown.  Why?
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Quick Questions

• If the following table lists all the shortest paths 
from.  A-D edge cost must be 20.  Why?
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Destination Cost

B 30

C 30

D 20

E 35

F 40

G 30

H 50

I 50



Dijkstra's Algorithm
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void MatrixWDigraph::ShortestPath(const int n, const int v)
{   

for (int i = 0; i < n ; i++) { // initialization
s[i] = false; // the set, S
dist[i] = length[v][i];    // dist[]

} 
s[v] = true;
dist[v] = 0;
for (i = 0; i < n−1 ; i++) { // n-1 shortest paths from v

choose u that is not in S and has smallest dist[u];
s[u] = true;  // u becomes a member of S
for (each <u, w> in the graph) // update dist[w]

if (!s[w] && (dist[u] + length[u][w]) < dist[w])
dist[w] = dist[u] + length[u][w];

} 
}

"choosing the smallest dist[u]" is typically in O(n).
So, the overall complexity is O(n2)



S

S

Single Source, All Destinations, and 
General Costs
• All edge costs (positive, 

negative, zero) are permitted
• A more general (also more 

difficult) problem
• Dijkstra's greedy strategy does 

not work here

• Offsetting all edge costs does 
not help
• Paths consist of different 

number of edges
• Different offset amounts 

change the length order of 
paths

86
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Single Source, All Destinations, and 
General Costs
• Graphs with negative cycles are 

not valid for such algorithms
• Otherwise, a cycle produces a path 

with −∞ cost
• e.g., … a-b-c - a-b-c- …

• A shortest path must exist and has 
at most n-1 edges (i.e., n vertices)
• Paths with more than n vertices must 

contain a cycle 
• Cycles do not lead to shorter paths

• With at most n vertices, there are a 
finite number of possible paths 
• The shortest one must exist
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Bellman-Ford Algorithm Concept

88

目標1 目標2 目標3 目標n-1

shortest path with #edge =1

…

shortest path with #edge ≦2

shortest path with #edge ≦3

shortest path with #edge ≦n-1

這行可從edge cost直接得知

這行是我們要的結果

#edge >n-1 的 path cost 並不會更低

dist𝒍[u]



Bellman-Ford Algorithm
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v

• dist𝒍[u]:  Length of a shortest path from v to u with the 
number of edges ≦ 𝒍
• dist1[u] 

• = edge weight if <v, i> exists 
• = ∞ if <v, i> doesn't exist 

• distn-1[u] for all u is our needed results

∞

∞𝑦

𝑧

𝑥
dist1[u]



Bellman-Ford Algorithm

90

• Calculate distk[u] from distk-1[u], k = 2~(n-1)
• v-u shortest path with at most k edges, k>1, 

distk[u] is the minimum of  

• distk-1[u]

• (distk-1[i] + length(<i, u>)) for all <i, u>

v
𝑦

𝑧

dist2[u]
𝑥

dist2[x] = min of
• dist1[x]
• dist1[y] + cost(y, x)
• dist1[z] + cost(z, x)
• dist1[…] + cost(…, x)



Bellman-Ford Example

k

distk[ ]

0 1 2 3 4 5 6

1 0 6 5 5 ∞ ∞ ∞

2 0 3 3 5 5 4 ∞

3 0 1 3 5 2 4 7

4 0 1 3 5 0 4 5

5 0 1 3 5 0 4 3

6 0 1 3 5 0 4 3
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• Optimization
• Updating dist[] in-place

• Use only one array for dist1[], dist2[] …

-2 -2

-2



Bellman-Ford Algorithm
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void MatrixWDigraph::BellmanFord(const int v)
{ // n is the number of vertices

// in-place update for dist[] is used 
for (int i = 0; i < n ; i++) 

dist[i] = length[v][i]; // dist1[] initialization

for (int k = 2; i <= n−1 ; k++) // dist2 ~ dist(n-1)

for (each u, u != v)  
for (each <i, u> in the graph)
if (dist[u] > dist[i] + length[i][u]) 

dist[u] = dist[i] + length[i][u];
}

• "for(each u)" and "for (each <i, u>)" together is O(n2) for 
an adjacency matrix and is O(e) for an adjacency list.  

• The overall complexity is O(n3) for an adjacency matrix 
and is O(ne) for an adjacency list.



All Pairs and General Costs

• Viable approaches
• Perform n times of Bellman-Ford algorithm

• O(n4) if an adjacency matrix is used

• O(n2e) if an adjacency list is used

• There is an O(n3) all pair shortest path algorithm
• Suitable for a dense graph with e being several folds of n
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All-Pair Shortest Path Algorithm 
Concept
• For each (i, j) pair

• Shortest path without any intermediate vertex

• Shortest path with some restricted intermediate vertices

• Shortest path with any intermediate vertices
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• Define Ak[i][j] 
• length of the shortest path from i to j going through no 

intermediate vertex of index greater than k

• A-1[i][j] is just the length of the edge <i, j> 

• An-1[i][j] is our needed results

• Calculate Ak[i][j] based on Ak-1[i][j] 
• Ak[i][j] is the minimum of the following

• Ak-1[i][j] 

• Ak-1[i][k] + Ak-1[k][j] 

All-Pair Shortest Path Algorithm
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Floyd-Warshall Algorithm

• Given
• ShortestPathCost(u, k) 

• ShortestPathCost(k, v)

• If k is on a shortest path 
from u to v 
 ShortestPathCost(u, v) 
= ShortestPathCost(u, k) + ShortestPathCost(k, v)  
• Proof: If there were another path, (u, k, v)', with an even 

lower cost 
• Either Cost((u, k)') is < ShortestPath(u, k) 

or Cost((k, v)') is < ShortestPath(k, v), 
a contradiction

96

u v
k

shortest



Floyd-Warshall Algorithm
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void MatrixWDigraph::AllLengths(const int n)
{

for (int i = 0; i<n; i++)
for (int j = 0; j<n; j++)

a[i][j]= length[i][j];   

for (int k= 0; k<n; k++) 
for (int i= 0; i<n; i++) 

for (int j= 0; j<n; j++)
if(a[i][j] > (a[i][k] + a[k][j]))

a[i][j] = a[i][k] + a[k][j];
}



Floyd-Warshall Example
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source: https://commons.wikimedia.org/wiki/File:Floyd-Warshall_example.svg
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Dijkstra’s Algorithm
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S

已知shortest 
path的集合

再加一段
edge的點

再加更多
edge的點

cost = a

cost = b

cost = c

cost = d

cost = ∞

∞

∞

∞

∞

∞



Bellman-Ford Algorithm
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起點 終點

A

B

C

k 步內到所有 node最小cost

起點終點, k+1步內最小cost = 

(起點終點, k步內)
(起點A, k步內) + (A終點, 1 步)
(起點B, k步內) + (B終點, 1 步)
(起點C, k步內) + (C終點, 1 步)
….
選最小的



Floyd-Warshall Algorithm

•任兩點(i, j)間一定存在某條 shortest path

• Shortest path 是由片段 shortest path構成
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i 6 1 3 8 j

i 6 1 3 8 j

i 6 1 3 8 j

i 6 1 3 8 j

i 6 1 3 8 j

檢查中繼點 1

檢查中繼點 3

…
…

檢查中繼點 6

…

檢查中繼點 8

…
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1. Dijkstra

2. Bellman 3. Floyd



Concept of Transitive Closure

• Transition matrix, T
• State change after a step 

• Closure, C
• The steady state after many steps

• (C × T) = C
• (Here we use AND for scalar 

multiplication and OR for scalar 
addition in the above example)
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0 1 1 1

1 1 1

2 1 1 1

3 1 1
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0 1 2 3 4
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4 1

C =



Transitive Closure of a Graph

• Given a graph with unweighted edges
• Transitive closure matrix, A+

• A+[i][j] = 1 if there is a path of positive length from i to j

• A+[i][j] = 0 otherwise

• Reflexive transitive closure matrix, A*

• A*[i][j] = 1 if there is a path of non-negative length from i to j

• A*[i][j] = 0 otherwise

• The only difference between two (given unweighted edges)
• A+[i][i] = 0

• A*[i][i] = 1, as the name "reflexive" suggests

• Meanings of '+' and '*'
• '+' means "one or more" in regular expression

• '*' means "zero or more" in regular expression
104



Transitive Closure Algorithm

• For a directed graph (with unweighted edges)
• Perform all-pair shortest path algorithms

• O(n3) time complexity

• Perform n independent Dijkstra algorithms
• O(n2e) time complexity

• For an undirected graph (with unweighted edges)
• Perform connect component algorithm using searches 

(e.g., DFS or BFS)
• O(n2) time complexity
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Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks

106



Outline

• 6.1 The graph abstract data type

• 6.2 Elementary graph operations

• 6.3 Minimum-cost spanning trees

• 6.4 Shortest paths and transitive closure

• 6.5 Activity networks
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Activity-on-Vertex (AoV) Networks

• Directed graphs
• Vertices represent tasks (i.e., activities) 

• Edges represent precedence relations 

• Vertex i is a predecessor (successor) of vertex j iff there's 
a path from i to j (j to i)

• Vertex i is an immediate predecessor (successor) of 
vertex j iff there's an edge from i to j (j to i)



Activity-on-Vertex (AoV) Networks
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Topological Order

• A linear order of the vertices of a graph such that
• for any two vertices i and j, if i is a predecessor of j in the 

graph, then i precedes j in the linear ordering

• Two valid topological orderings (there are many of 
them)
• C1, C2, C4, C5, C3, C6, C8, C7, C10, C13, C12, C14, C15, C11, C9
• C4, C5, C2, C1, C6, C3, C8, C15, C7, C9, C10, C11, C12, C13, C14 110
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Note:
• Transitivity among >2 

vertices
• Topology order 

between two vertices 
does not always imply 
their precedence in 
the graph



Topological Sorting Algorithm (Draft)

• Graph representation considerations for the above 
algorithm
• How can we remove all edges leading out of a vertex?

• How can we determine whether a vertex has a 
predecessor?

111

for (int i = 0; i<n; i++) {
if (every vertex has a predecessor){
// network has a cycle and thus is infeasible
return;

}
if (vertex v has no predecessors) {
cout << v;
remove v and all edges leading out of v;

} 
}



Graph Representation Choice
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Topological Sorting Algorithm
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void LinkDigraph::TopologicalOrder()
{

Stack s; // A stack holds 0-indegree vertices
// Any container is good for this algorithm

for (int i = 0; i<n; i++)   
if (indegree[i] == 0) s.push(i);

for (i = 0; i< n; i++) {
if (s.isEmpty() ) throw “Network has a cycle.”;
int j = s.top(); s.pop();  
cout << j <<endl;
Chain<int>::ChainIterator ji = adjLists[j].begin();
while (ji) { 

indegree[*ji]--;
if (indegree[*ji] == 0) s.push(*ji);
ji++;

} 
}

}



Topological Sorting Example
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• Directed graph
• Edges represent tasks (activities) to be performed

• Vertices represent events

• Edge cost of each activity is the time needed to perform 
the activity

• Event vertex signals the completion of all activities edges 
entering the vertex

• Edges leaving a vertex cannot be started until the event 
at the vertex has 

Activity-on-Edge (AoE) Networks
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• Events
• e0: start of the project
• e1: completion of activity a1
• e4: completion of activities a4 and a5
• …
• e8: finish of the project

e1

e2

e3

Activity-on-Edge Network
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Some Important Concepts

• Critical path
• The longest path from the start vertex to the finish

vertex

• Earliest time 
• The earliest time an activity (event) can start (occur)

• Latest time
• The latest time an activity (event) must start (occur) so 

as not to delay the project

• Critical activities 
• All activities for which the earliest time equals the latest 

time 
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• The longest path from the start vertex to the finish
vertex

• The above network has two critical paths
• Length(0, 1, 4, 6, 8) = 18
• Length(0, 1, 4, 7, 8) = 18

Critical Path
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Earliest Event/Activity Time 

• The length of the longest path from the start vertex 
to a vertex

• Earliest event time(e4) = 7

• Earliest activity time(a7) = Earliest activity time(a8) = 7

• Earliest event time(finish) =  18
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Latest Event/Activity Time 

• Earliest time of the finish vertex - the length of the 
longest path a vertex to the finish 

• Earliest event time(finish) = 18

• longest path length(e4, finish) = 11

• latest event time(e4) =  7
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Critical Activities

• The difference between the earliest time and the 
latest time, i.e., the slack (寬裕), is a measure of 
the criticality of an activity
• The time by which an activity may be delayed or slowed 

without delaying the finish of the project

• Activities having no slack are called critical activities
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Critical Path Analysis

• Purpose
• Speed up things, e.g., a project or a circuit

• Steps
• Compute earliest time and latest time
• Identify critical activities
• Find paths in the graph with noncritical activities 

removed

• Notes 
• Speeding up noncritical activities or single critical 

activity not on all critical paths will not reduce the 
overall duration

• Critical paths can change after speeding up an activity
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Critical Path Analysis
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• a7, a8, a9, a10 are 
critical.  However, 
speeding up one of 
them cannot 
reduce overall 
duration

• After a1 is speeded 
up from 6 to 3 
units, critical paths 
change



Calculating Earliest and Latest Times

• Earliest activity time(<a, b>) 
• = Earliest event time(a)
• = Longest path(start, a)

• Latest activity time(<a, b>) 
• = Latest event time(b) - Edge cost(<a, b>)

• Latest event time(b)
• = Earliest event time(finish) - Longest path(b, finish)

• The above calculation can be performed in two passes 
based on topological sorting  
• Detailed in the textbook
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Critical Path Analysis in Circuit Design

• (Supplement materials)

• CAD (computer-aided design) algorithms 
• Identify critical paths in circuits
• Push the limits for the paths to meet timing constraints

• The following circuit example is an adder
• Add three bits and produce two resulting bits
• Red parts are typical critical paths
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