Data Structures

CH5 Trees

Prof. Ren-Shuo Liu NTHU EE Spring 2018

為什麼要各種 data structures

- 舉例:儲存全台灣學生的學號、姓名
 - Array
 - 最節省空間
 - Linked list
 - 新增(insert)、刪除(delete) 速度快
 - Tree
 - 搜尋(search) 速度快
 - Graph
 - 表達學生間的關聯性

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
- 5.6 Heaps
- 5.7 Binary search trees
- 5.8 Selection trees
- 5.9 Forests
- (5.10 Disjoint sets)
- (5.11 Counting binary trees)

Tree-Type Charts

Tree

- Definition: a finite set of one or more nodes such that
 - There is a specially designated node called the root
 - The remaining nodes are partitioned into $n \ge 0$ disjoint sets, T_1 , ..., T_n , where each of these sets is a tree (i.e., subtree).

Terminologies

- The number of subtrees of a node is called the node's degree
- Nodes that have degree zero are called leaf or terminal nodes
- The root of the subtrees of a node X are the children of X, and X is the parent of its children
- Children of the same parent are siblings (兄弟姊妹)
- The degree of a tree is the maximum of the degree of the nodes in a tree
- The ancestors of a node are all the nodes along the path from the root to that node
- The level of a node is defined by letting the root be at level one. If a node is at level i, then its children are at level i+1

List Representation

- \rightarrow (A (B(...), C(...), D(...))
- \rightarrow (A (B(E(...), F), C(G), D(H(...), I, J)))
- \rightarrow (A (B(E(K, L), F), C(G), D(H(M), I, J)))

List Representation

Left Child-Right Sibling Representation

Left Child-Right Sibling Representation

Degree-Two Tree Representation

We can represent any tree as a degree-two tree

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
 - 5.2 Basics
 - 5.3 Traversal and iterators
 - 5.4 Additional operations
 - 5.5 Threaded binary tree

Binary Tree

 Definition: A binary tree is a finite set of nodes that either is empty or consists of a root and two disjoint binary trees called the left subtree and the right subtree

```
template < class T >
  class BinaryTree
{
  public:
    BinaryTree(); // constructor for an empty binary tree
    bool IsEmpty();
    // constructor given the root and subtrees
    BinaryTree(BinaryTree < T > & bt1, T& item, BinaryTree < T > & bt2);
    BinaryTree < T > LeftSubtree(); // return the left subtree
    BinaryTree < T > RightSubtree(); // return the right subtree
    T RootData(); // return the data in the root
};
```

Other Definitions

Order of children matters for binary trees

- Binary trees are allowed to be empty
- Skewed and complete binary tree

Maximum Number of Nodes

Properties

- Maximum number of nodes at level i of a binary tree is 2ⁱ⁻¹
- Maximum number of nodes in a binary tree of depth k is $2^{k}-1$, $k\ge 1$

Proof

- Induction base: the root is the only node at level 1
- Induction hypothesis: maximum number of nodes at level (i-1) is 2ⁱ⁻², which is true for (i-1)=1
- Induction step: Each node has at most 2 children. Therefore, the maximum number of nodes at level (i) is $2^{i-2}\times 2 = 2^{i-1}$

•
$$\sum_{i=1}^{k} 2^{i-1} = 2^k - 1$$

Leaf Nodes vs. Degree-2 Nodes

Properties

For any nonempty binary tree, T, if n₀ is the number of leaf nodes and n₂ the number of nodes of degree 2
 → n₀=n₂+1

Proof

- Let n₁ be the number of nodes of degree one and n the total number of nodes
- We have $n = n_0 + n_1 + n_2$
- Each node except the root has a branch leading into it
 - n-1 = B, where B is the number of branches
- $B = n_1 + 2n_2$
- $n = B+1 = n_1 + 2n_2 + 1 = n_0 + n_1 + n_2$

$$\rightarrow$$
 n₀=n₂+1

Full & Complete Binary Trees

- Definition: a full binary tree of depth k is a binary tree of depth k having 2^k-1 nodes, k≥0
- We number the nodes in the full binary tree level by level, left to right
- A binary tree with n nodes and depth k is complete iff
 its nodes correspond to the nodes numbered from 1 to
 n in the full binary tree of depth k

Array Representation of a Binary Tree

- 2^k-element array for a k-depth binary tree
 - Entry 0 is left unused
- Properties
 - 1. parent(i) is at $\lfloor i/2 \rfloor$
 - 2. leftChild(i) is at 2i
 - 3. rightChild(i) us at 2i + 1

_		ī
-	_	
- 1	1	
- 1	T	
_		•

[15]

Array Representation of a Binary Tree

- Proof of property 2
 - Induction base: leftChild(1) is at 2
 - Induction hypothesis: for all j, $1 \le j \le$ (i-1), leftChild(j) is at 2j
 - Induction step:
 - Two nodes immediately preceding leftChild(i) are right and left children of node i-1
 - The left child of node i-1 is at 2(i-1) according to the hypothesis
 - The right child is thus at 2(i-1)+1 = (2i-1)
 - leftChild(i) is thus at (2i-1)+1 = 2i
- Property 3 is an immediate consequence of 2
- Property 1 follows from 2 and 3

Linked Representation for a Binary Tree

- Drawbacks of the array representation
 - Good for complete/full binary tree but wasteful of space for many other trees
 - Tree manipulation can incur excessive data movement
- Linked representation tackles the problems

```
template <class T> class Tree;
template <class T>
class TreeNode {
friend class Tree <T>;
private:
    T data;
    TreeNode <T> *leftChild;
    TreeNode <T> *rightChild;
template <class T>
class Tree{
public:
        // tree operations
private:
        TreeNode <T> *root;
```

Linked Representation for a Binary Tree

(b)

root

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
 - 5.2 Basics
 - 5.3 Traversal and iterators
 - 5.4 Additional operations
 - 5.5 Threaded binary tree

Binary Tree Traversal

- Visiting each node in the tree exactly once
 - Operation can be performed on each visited node
- Full traversal produces a linear order for the nodes in a tree
 - Linearized sequence of a binary tree can be useful

(postfix)

(infix)

Level-Order Traversal


```
template <class T>
void Tree <T>::LevelOrder()
  Queue<TreeNode <T>*> q;
  TreeNode<T> *currentNode = root;
  while (currentNode) {
    Visit(currentNode);
    if (currentNode->leftChild)
      q.Push(currentNode->leftChild);
    if (currentNode->rightChild)
      q.Push(currentNode->rightChild);
    if (q.IsEmpty())
      return;
    currentNode = q.Front();
    q.Pop();
```


+ * E * D / C A B

Preorder, Inorder, and Postorder

- Let us define
 - L moving left
 - V visiting the node
 - R moving right
- Possible combinations of traversal
 - Various positions of the V with respect to the L and R

Preorder	VLR
Inorder (V is in between L and R)	LVR
Postorder	LRV

	Mirror L & R
	VRL
	RVL
*	RLV

mirrored orders are less widely used

Preorder (VLR)


```
template <class T>
void Tree<T>::Preorder()
   Tpr(root); //Traverse preorderly
template <class T>
void Tree<T>::Tpr(TreeNode<T> * p)
  // this is a recursive function
  visit(p);
  Tpr(p->leftChild); // L
  Tpr(p->rightChild); // R
template <class T>
void Tree<T>::visit(TreeNode<T> * p)
  cout << p->data;
```


+ * * / A B C D E

Inorder (LVR)


```
template <class T>
void Tree<T>::Inorder()
  Tin(root); //Traverse inorderly
template <class T>
void Tree<T>::Tin(TreeNode<T> * p)
  // this is a recursive function
 Tin(p->leftChild); // L
 visit(p);
           // **V**
  Tin(p->rightChild); // R
template <class T>
void Tree<T>::visit(TreeNode<T> * p)
 cout << p->data;
```


Postorder (LRV)


```
template <class T>
void Tree<T>::Postorder()
   Tpo(root); //Traverse postorderly
template <class T>
void Tree<T>::Tpo(TreeNode<T> * p)
  // this is a recursive function
  Tpo(p->leftChild); // L
  Tpo(p->rightChild); // R
                      // **\/**
  visit(p);
template <class T>
void Tree<T>::visit(TreeNode<T> * p)
  cout << p->data;
```


Attach a point to each node

Draw the contour of the tree

Attach a point to each node Draw the contour of the tree preorder → ABDFIGJKCEHL

- Attach a point to each node
- Draw the contour of the tree

Attach a point to each node

Draw the contour of the tree

Non-Recursive Traversal Algorithm

- Binary tree is a type of container
- We thus want to implement an iterator for a binary tree
 - We need a non-recursive traversal algorithm
 - Such an iterator USES-A stack
- Definition:
 - Type X data object USES-A data object of Type Y means that
 - Type X object employs the Type Y object in its member function to perform a task

Non-Recursive Inorder Traversal

```
template <class T>
void Tree <T>::NonrecInorder()
  Stack <TreeNode<T>*> s;
  TreeNode <T> *currentNode = root;
  while(1) {
    while (currentNode) {
      s.Push(currentNode);
      currentNode = currentNode->leftChild;
    if (s.IsEmpty())
      return;
    currentNode = s.Top();
    s.Pop();
    Visit(currentNode);
    currentNode = currentNode->rightChild;
```


Inorder Iterator

```
class InorderIterator{
public:
  InorderIterator(){ currentNode = root; }
  // Constructor
  T* Next();
private:
  T* currentNode;
  Stack<TreeNode<T>*> s;
};
T* InorderIterator::Next()
  while(currentNode){
    s.Push(currentNode);
    currNode = currNode->leftChild;
  if(s.IsEmpty()) return 0;
  currentNode = s.Top();
  s.Pop();
  T& temp = currrentNode->data;
  currentNode = currentNode->rightChild;
  return &temp;
```


Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
 - 5.2 Basics
 - 5.3 Traversal and iterators
 - 5.4 Additional operations
 - 5.4.1 Copying binary trees
 - 5.4.2 Testing equality
 - (5.4.3 The satisfiability problem)

Copying Binary Trees


```
template <class T>
void Tree <T>::Tree(const Tree<T> & s) // Driver
{ // Copy constructor
    root = Copy(s.root);
template <class T>
TreeNode<T> * Tree<T>::Copy(TreeNode<T> * p) // Workhorse
{ // Return a pointer to an exact copy of the tree rooted at p
    if (!p) // a null pointer
                                              Coping a tree =
        return 0;
                                              copying the root node
                                              + copying the left tree
    return new TreeNode<T>(p->data,
                                              + copying the right tree
                     Copy(p->leftChild),
                     Copy(p->rightChild));
                                                     Copy
```

Copying Binary Trees (Exampling Pseudo Code)


```
template <class T>
void Tree <T>::Tree(const Tree<T> & s) // Driver
{ // Copy constructor
    root = Copy(s.root);
template <class T>
TreeNode<T> * Tree<T>::Copy(TreeNode<T> * p) // Workhorse
  if p points to an empty tree
                                              Coping a tree =
    return 0;
                                              copying the root node
                                              + copying the left tree
  Let P be the node pointed by p;
                                              + copying the right tree
  Create a node N;
                                                     Copy
  data of N = data of P;
  leftChild of N = Copy(leftChild of P);
  rightChild of N = Copy(rightChild of P);
  return the address of N;
```

Testing Equality of Binary Trees

```
template <class T>
bool Tree<T>::operator == (const Tree& t) const
    return Equal(root, t.root);
template <class T>
bool Tree<T>::Equal(TreeNode<T>* a , TreeNode<T>* b) // workhorse
  if ((!a) && (!b)) // two empty trees
                                           Comparing two trees =
    return true;
                                           comparing two root data
  else if ((!a) || (!b))
                                           + comparing the two left trees
    return false;
                                           + comparing the two right trees
  return ((a->data == b->data)
                                                   Comparing
  && Equal(a->leftChild,b->leftChild)
  && Equal(a->rightChild,b->rightChild))';
```

Testing Equality of Binary Trees (Exampling Pseudo Code)


```
template <class T>
bool Tree<T>::operator == (const Tree& t) const
    return Equal(root, t.root);
template <class T>
bool Tree<T>::Equal(TreeNode<T>* a , TreeNode<T>* b) // workhorse
  if two trees are both empty
                                           Comparing two trees =
    return true;
                                           comparing two root data
  else if only one tree is empty
                                           + comparing the two left trees
    return false;
                                           + comparing the two right trees
  if the root nodes of the two trees contain the same data
    && the left subtrees of the two trees are equal
    && the right subtrees of the two trees are equal
    return true;
  else
    return false;
```

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
 - 5.2 Basics
 - 5.3 Traversal and iterators
 - 5.4 Additional operations
 - 5.5 Threaded binary trees

Motivation

- More than half of the link fields of a binary tree store Os
 - n nodes contain a total of 2n link fields
 - n nodes are pointed by a total of n-1 non-zero links

 We want to make use of these 0 links to assist inorder tree traversal

Threads

- Threads: links for inorder traversal
 - Replace a 0 leftChild link with a link to the inorder predecessor
 - Replace a 0 rightChild link with a link to the inorder successor

• Each node needs two additional Boolean fields to distinguish between threads and normal links

Threaded Binary Trees

Traverse a Threaded Binary Tree

- Thread binary tree traversal
 - No need of stacks
 - Can begin from any arbitrary node

```
T* ThreadedInorderIterator::Next()
 ThreadedNode <T> *temp
   =currentNode->rightChild;
 if(currentNode->rightThread){
   currentNode = temp;
 }else{
   while (!temp->leftThread)
      temp = temp->leftChild;
   currentNode = temp;
 if(currentNode == head)
   return 0;
 else
   return &currentNode->data;
```


Inserting a Node into a Treaded Tree

Insert a node as the right child

Case 1 right substree exists

Case 2 right substree doesn't exist

Inserting a Node into a Treaded Tree

```
template <class T>
void ThreadedTree<T>::InsertRight(ThreadedNode <T> *s,
                                  ThreadedNode <T> *r)
{// insert r as the right child of s
    r->rightChild = s->rightChild;
    r->rightThread = s->rightThread;
    r->leftChild = s;
    r->leftThread = true; //leftChild is a thread
    s->rightChild = r;
    s->rightThread = false;
    if (! r->rightThread) {
        ThreadedNode <T> *temp = InorderSucc(r);
        temp->leftChild = r;
```


Inserting a Node into a Treaded Tree

Insert a node as the left child (similar to the right case)

Case 1left substree exists

Case 2
left substree
doesn't exist

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
- 5.6 Heaps → priority queues
- 5.7 Binary search trees
- 5.8 Selection trees
- 5.9 Forests
- (5.10 Disjoint sets)
- (5.11 Counting binary trees)

Normal Queues vs. Priority Queues

- Normal queues
 - First in first out
 - Also known as first come first serve
- Priority queues
 - High priority first

• 不是只有heap才能實現priority queue,但 heap 是整體比較有效率的 data structure

Priority Queues

Max priority queue ADT

```
template <class T>
class MaxPQ {
public:
    virtual ~MaxPQ() {} // virtual destructor
    virtual bool IsEmpty() const = 0; //return true iff empty
    virtual const T& Top() const = 0; //return reference to the max
    virtual void Push(const T&) = 0;
    virtual void Pop() = 0;
};

"= 0" is a notation indicating
    pure virtual functions. It does
    not mean an assignment.
```

Exampling Use of Priority Queues

- Shortest-job-first task scheduling
 - Maintain a priority queue of all pending tasks
 - Task with the smallest time requirement is performed
- Simulating a system, e.g., a processor
 - Maintain a priority queue of concurrent events
 - E.g., multiple instructions are concurrently executed in a processor
 - Event occurs at the least time is selected to show the instruction execution sequences

Unordered List-Based Priority Queues

Concept

- Use an unordered list (array or chain) to store all elements
- Scan the entire list for determining the max priority element

Time complexity

	Unordered List
IsEmpty()	O (1)
Top()	O (n)
Push()	O (1)
Pop()	O (n)

Heap-Based Priority Queue

- Definition
 - Max (min) tree is a tree in which the key value in each node is no smaller (larger) than the key values in its children (if any)
 - Max (min) heap is a complete binary max (min) tree

Max Heap

Publicly derived from MaxPQ

```
template <class T>
class MaxHeap : public class MaxPQ<T> {
public:
    MaxHeap(int theCapacity = 10); // constructor
    bool IsEmpty() const; //return true iff empty
    const T& Top() const; //return reference to the max
    void Push(const T&);
    void Pop();
private:
    T* heap; // element array
    int heapSize; // number of elements in heap
                                                    10
    int capacity; // size of the element array
};
                                                     |14|12| 7 |10| 8
                                     element array
                               heap[0] is left unused
```

Insertion into a Max Heap

- Process
 - Enlarging the element array (if necessary)
 - Appending the element to the end
 - Bubbling up (if necessary) to maintain the max heap property
- Time complexity = O(log(n))

7/2=3...1 --> "21" 的 parent 在位置3("7")

Insertion into a Max Heap

- Process
 - Enlarging the element array (if necessary)
 - Appending the element to the end
 - Bubbling up (if necessary) to maintain the max heap property
- Time complexity = O(log(n))

Insertion into a Max Heap


```
Template <class T>
void MaxHeap<T>::Push(const T& e)
{ // add element e to max heap
    if (heapSize == capacity) { // double the capacity
        ChangeSize 1D(heap, capacity, 2*capacity);
        capacity *= 2;
    int currentNode = ++heapSize;
    while (currentNode != 1 && heap[currentNode/2] < e)</pre>
    { // bubbling up
        heap[currentNode] = heap[currentNode/2]; // move parent down
        currentNode /= 2;
    heap[currentNode] = e;
```

Deletion from a Max Heap

- Process
 - Max Heap deletion always occurs at the root
 - Move the last array element to the root position
 - Trickling down (if necessary) to maintain the max heap property

Deletion from a Max Heap


```
Template <class T>
void MaxHeap<T>::Pop()
{ // Delete max element
    if (IsEmpty ()) throw "Heap is empty. Cannot delete.";
    heap[1].~T(); // delete max element
    T lastE = heap[heapSize--]; // remove last element from heap
    // trickle down to find a position to place the last element
    int currentNode = 1; // root
    int child = 2;  // a child of current node
    while (child <= heapSize){</pre>
        // set child to larger child of currentNode
        if (child < heapSize && heap[child] < heap[child + 1]) child++;</pre>
        if (lastE >= heap[child]) break;
        heap[currentNode] = heap[child];
        currentNode = child; child *= 2;
    heap[currentNode] = lastE;
```

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
- 5.6 Heaps
- 5.7 Binary search trees → Dictionary
- 5.8 Selection trees
- 5.9 Forests
- (5.10 Disjoint sets)
- (5.11 Counting binary trees)

Dictionary

- Definition: A dictionary is
 - A collection of pairs: key and associated element (also knowns value)
 - No two pairs have the same key
- Operations
 - Test if a dictionary is empty
 - Get the pointer to the pair with a specified key
 - Insert a pair of key and element
 - If key is a duplicate, update the associated element
 - Delete a pair with a specified key
- ADT

```
template <class K, class E>
class Dictionary {
public:
    virtual bool IsEmptay() const = 0;
    virtual pair <K, E>* Get(const K&) const = 0;
    virtual void Insert(const pair <K, E>&) = 0;
    virtual void Delete(const K&) = 0;
}
"= 0" is a notation indicating pure virtual functions. It does not mean an assignment.
```

Unordered List-Based Dictionary

Concept

- Use an unordered list (array or chain) to store all elements
- Scan the entire list for Get(), Insert(), and Delete()

Time complexity

	Unordered List	Note
IsEmpty()	O (1)	
Get(key)	O (n)	
Insert(pair)	O (n)	Require scanning the list for possible duplicate key
Delete(key)	O (n)	

Binary Search Tree (BST)

- Definition: a BST is
 - A binary tree
 - May be empty
 - If a BST is not empty
 - Each element has a distinct key
 - Keys (if any) in the left subtree are smaller than the key in the root
 - Keys (if any) in the right subtree are larger than the key in the root
 - The left and right subtrees are also BSTs
- Concept
 - Root partitions all elements into two subtrees
 - Recall the binary search algorithm

Searching a Binary Search Tree (Recursive)


```
template <class K, class E>
pair<K, E>* BST<K, E> :: Get(const K& k)
{// Driver
    return rGet(root, k);
template <class K, class E>
pair<K, E>* BST<K, E> :: rGet(TreeNode <pair <K, E> >* p, const K& k)
{// Workhorse
   if (!p) return 0;
   if (k < p->data.first) return rGet(p->leftChild, k);
   if (k > p->data.first) return rGet(p->rightChild, k);
   return &p->data;
```

The two data members of an STL pair are named as "first" and "second"

It is correct to name the workhorse "Get" as the textbook does (because of function overloading). I change the name to "rGet" for clarity.

Searching a Binary Search Tree (Iterative)


```
template <class K, class E>
pair<K, E>* BST<K, E>::Get(const K& k)
   TreeNode < pair<K, E> > * currentNode = root;
   while (currentNode) {
       if (k < currentNode->data.first)
          currentNode = currentNode->leftChild;
       else if (k > currentNode->data.first)
          currentNode = currentNode->rightChild;
       else
          return & currentNode->data;
   // no matching pair
   return 0;
```

Searching a Binary Search Tree (Iterative) (Exampling Pseudo Code)

```
template <class K, class E>
pair<K, E>* BST<K, E>::Get(const K& k)
   Let currentNode be a pointer point to the root node;
   while (currentNode is not zero) {
       if (k < the key field pointed by currentNode)</pre>
          Let currentNode point to the left subtree;
       else if (k > the key field pointed by currentNode)
          Let currentNode point to the right subtree;
       else
          return the address of the data field pointed by currentNode;
   // no matching pair
   return 0;
```

BST Operations

- Searching a BST by a key
- Searching a BST by rank
- Insertion
- Deletion
- Joining BSTs
- Splitting a BST

Insertion

- Insertion involves searching for the key
 - BST cannot contain duplicate keys
 - If search succeeds, update the content of the searched node
 - If search does not succeed, insertion takes place at the point the search terminated

Insertion


```
template <class K, class E>
void BST<K, E > :: Insert(const pair<K, E >& thePair)
{ // insert thePair into the BST
   // search for the Pair. first , pp parent of p
   TreeNode < pair<K, E> > *p = root, *pp = 0;
   while (p) {
       pp = p;
       if (thePair.first < p->data.first) p = p->leftChild;
       else if (thePair.first > p->data.first) p = p->rightChild;
       else // duplicate, update associated element
          { p->data.second = thepair.second; return;}
   // perform insertion
   p = new TreeNode< pair<K, E> > (thePair);
   if (root) // tree is nonempty
       if (thePair.first < pp->data.first) pp->leftChild = p;
       else pp->rightChild = p
   else root = p;
```

Time complexity: **O**(h)

Deletion

- Insertion also involves searching for the key
- If the node to delete does not exist, nothing occurs
- Otherwise, the node to delete can have
 - no children → just delete it
 - single child → bypass the node
 - two children →
 - Replace the node with its successor (or predecessor)
 - Successor is the largest node of the left subtree
 - Handle the deletion of the successor

Time complexity: O(h)

No children

One child

Two children

Searching by Rank

- Key concepts
 - Node's rank is its inorder position
 - Each node equips an additional field: leftSize
 - One plus the number of nodes in the left subtree of the node
 - leftSize can guide the rank-based search

```
template <class K, class E> //search by rank
pair<K, E>* BST<K, E>::RankGet(int r)
{ // search the BST for the rth smallest node
  TreeNode < pair<K, E> > *currentNode = root;
 while (currentNode) {
    if (r < currentNode->leftSize)
      currentNode = currentNode->leftChild;
    'else if (r > currentNode->leftSize) {
      r -= currentNode->leftSize;
      currentNode = currentNode->rightChild;
    }else return &currentNode->data;
  return 0:
```


Searching the rank-3 node

Time complexity: **O**(h)

Joining BSTs

- Three-way joining
 - Given one key called mid
 - Given two BSTs named S and L
 - Each key in S is smaller than mid
 - Each key in L is larger than mid
- Two-way joining
 - Given two BSTs named S and L
 - All keys of S are smaller than all keys of L

Joining BSTs

- Three-way joining (easy to perform)
 - Create a root node whose key is mid
 - Let S and L be the left and right subtrees, respectively
- Two-way joining (leverage three-way joining)
 - Remove from S the node with the largest key (or from L with the smaller key)
 - Let the node be the mid
 - Perform three-way joining

- Given a BST and a key
 - Generate two BSTs, S and L
 - Each key in S is smaller than the key
 - Each key in L is larger than the key
 - Retrieve the pair if the key exists in the original BST

- Observations about splitting at a root node that have subtrees L and R
 - if (key < **r**.key)
 - Node r together with subtree R is to be in the larger BST
 - Continue to split subtree L
 - if (key > **r**.key)
 - Node r together with subtree L is to be in the smaller BST
 - Continue to split subtree R
 - if (key == **r**.key)
 - R and L are to be in the larger and smaller BSTs, respectively

• Key = 14

• 14 < 20

• 14 > 12

• 14 < 16

• 14 == 14


```
template <class K, class E>
void BST<K, E>::Split(const K& k, BST<K, E>& small, pair<K, E>*& mid,
BST<K, E>& big)
{ // Split the BST with respect to key k
    if (!root) {small.root = big.root = 0; return;} // empty tree
    // create temporary header nodes for small and big
    TreeNode<pair<K, E> > *sHead = new TreeNode<pair<K, E> >,
                          *s = sHead.
                          *bHead = new TreeNode<pair<K, E> >,
                          *b = bHead.
                          *currentNode = root;
    while (currentNode)
        if (k < currentNode->data.first){ // case 1
           b->leftChild = currentNode;
           b = currentNode; currentNode = currentNode->leftChild;
        else if (k > currentNode->data.first) { // case 2
           s->rightChild = currentNode;
           s = currentNode; currentNode = currentNode->rightChild;
```



```
else { // case 3
       s->rightChild = currentNode->leftChild;
       b->leftChild = currentNode->rightChild;
       small.root = sHead->rightChild; delete sHead;
       big.root = bHead->leftChild; delete bHead;
       mid = new pair<K, E>(currentNode->data.first,
                            currentNode->data.second);
       delete currentNode;
       return;
// no pair with key k
s->rightChild = b->leftChild = 0;
small.root = sHead->rightChild; delete sHead;
big.root = bHead->leftChild; delete bHead;
mid = 0;
return;
```

Time complexity: **O**(h)

Discussion about BST Height

- Most BST operations are of O(height) time complexity
- Consider an n-element BST
 - In the worst case, height = O(n)
 - If insertions and deletions are made at random, height = O(log(n)) on average (not guaranteed)
- Balanced search trees are search trees that can guarantee worst case height = O(log(n))
 - Including AVL trees, Red-Black trees as in Chapter 10 and 11

Operations	Complexity			
Searching by a key				
Searching by rank				
Insertion	O(height)			
Deletion				
Joining BSTs				
Splitting by a key				

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
- 5.6 Heaps
- 5.7 Binary search trees → Dictionary
- 5.8 Selection trees
- 5.9 Forests
- (5.10 Disjoint sets)
- (5.11 Counting binary trees)

Motivation

 Sometimes we need to merge k ordered sequences (called runs) with a total of n elements into a single ordered sequences

Algorithms

- Naïve algorithm
 - Perform (k-1) comparisons to find the smallest/largest element among the k top elements
 - Repeat the above steps for n-1 times
 - Time complexity = O(nk)

10	9	20	6	8	9	90	17
15	20	20	15	15	11	95	18
16	38	30	25	50	16	99	20
			28				

Algorithms

Selection tree

- Perform only O(log(k)) comparisons to find the smallest/largest element
- Time complexity = O(n log(k))
- Two implementations: winner trees and loser trees

Winner Tree

- Complete binary tree in which each node represents to the winner (e.g., the smaller in the following example) of its two children
 - Each node uses a pointer to link the record it represents

Merge Sequences

- Repeatedly performs
 - Outputting the record pointed by the root node, which represents the overall winner
 - Replaying the tournament along the path from the output node

k

Time complexity of each output: **O**(log(k))

Time complexity of the entire merge: **O**(n log(k))

Inefficiency of Winner Trees

- Tree nodes store the duplicate information
 - E.g., there are four 6's and three 8's in the following winner tree
- Need to access the both children to reconstruct a node

Loser Tree

 Non-leaf nodes represent losers, instead of winners

Index-0 node represents the overall winner

Red arrows and text are used to help understanding the loser tree only. The tree does not need to store those information.

Loser Tree

- Non-leaf nodes represent losers
- Index-0 node represents the overall winner

Time complexity of each output: **O**(log(k))

Time complexity of the entire merge: $O(n \log(k))$

Loser trees tend to outperform winner trees in speed because of the reduced constant

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
- 5.6 Heaps
- 5.7 Binary search trees → Dictionary
- 5.8 Selection trees
- 5.9 Forests
- (5.10 Disjoint sets)
- (5.11 Counting binary trees)

Outline

- 5.1 Introduction
- 5.2-5.5 Binary trees
- 5.6 Heaps
- 5.7 Binary search trees → Dictionary
- 5.8 Selection trees
- 5.9 Forests
- (5.10 Disjoint sets)
- (5.11 Counting binary trees)

Forest

- Definition
 - A forest is a set of $n \ge 0$ disjoint trees
- Removing the root of a tree produces a forest (i.e., the subtrees)
- Three-tree forest example

- Forest operations
 - Transforming a forest into a binary tree
 - Forest traversals

Forest to Binary Tree

Left-child-right-sibling approach

Recap Inorder Tree Traversal

Recursive definition

Recap Inorder Tree Traversal

Example

Inorder Forest Traversal

Recursive definition

Subtrees (i.e., a forest) of the 1st tree Root node of the 1st tree

All trees (i.e., a forest) except the 1st tree

Inorder Forest Traversal

Recursive definition

Forest Traversals (Preorder)

- Traverse F in forest preorder
 - If F is empty then return
 - Visit the root of the first tree of F
 - Traverse the subtrees of the first tree in forest preorder
 - Traverse the remaining trees of F in forest preorder

ABCDEFGHI

ABCDEFGHI

Forest Traversals (Inorder)

- Traverse F in forest inorder
 - If F is empty then return
 - Traverse the subtrees of the first tree in forest inorder
 - Visit the root of the first tree of F
 - Traverse the remaining trees of F in forest inorder

BCDAFEHIG

BCDAFEHIG

Forest Traversals (Postorder)

- Traverse F in forest postorder
 - If F is empty then return
 - Traverse the subtrees of the first tree in forest postorder
 - Traverse the remaining trees of F in forest postorder
 - Visit the root of the first tree of F

DCBFIHGEA

DCBFIHGEA

Forest Traversals (Level-Order)

- Traverse F in forest level-order
 - If F is empty then return
 - Nodes are visited by level
 - Begin the traversal from the roots of each tree in the forest
 - Within each level, nodes are visited from left to right

AEGBCDFHI

ABECFGDHI