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Tree

e Definition: a finite set of one or more nodes such

that

* There is a specially designated node called the root

* The remaining nodes are partitioned into n=0 disjoint

sets, T4, ...,

subtree).

|Proto Indo-European

|Ita|ic

T., where each of these sets is a tree (i.e.,

|He||enic Germanic
|
| | |
Osco-Umbrian |Latin| Greek North West
| | | | | | |
Oscanl |Umbrian Spanish |French| |Ita|ian| |Ice|andic |Norwegian Swedish |Low |High| Yiddish




Terminologies

 The number of subtrees of a node is called the node's degree
* Nodes that have degree zero are called leaf or terminal nodes

* The root of the subtrees of a node X are the children of X, and X is
the parent of its children

 Children of the same parent are siblings (% % 4 4%)

* The degree of a tree is the maximum of the degree of the nodes
in a tree

* The ancestors of a node are all the nodes along the path from the
root to that node

* The level of a node is defined by letting the root be at level one. If
a node is at level i, then its children are at level i+1




List Representation

- (A(B(...),Cl...), D(...))
=2 (A (B(E(...), F), C(G), D(H(...), 1, J)))
- (A (B(E(K, L), F), C(G), D(H(M), I, J)))



List Representation

/L_B = F |*_c +HG

subtree/sublist ~1E K L




Left Child-Right Sibling Representation




Left Child-Right Sibling Representation

Data

Left child

right sibling

M &
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Degree-Two Tree Representation

We can represent any tree as a degree—two tree

Any tree Degree two
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Binary Tree

e Definition: A binary tree is a finite set of nodes that
either is empty or consists of a root and two
disjoint binary trees called the left subtree and the
right subtree

template<class T>
class BinaryTree
{
public:

BinaryTree(); // constructor for an empty binary tree

bool IsEmpty();

// constructor given the root and subtrees

BinaryTree(BinaryTree<T>& btl, T& item, BinaryTree <T>& bt2);

BinaryTree<T> LeftSubtree(); // return the left subtree

BinaryTree<T> RightSubtree();// return the right subtree

T RootData(); // return the data in the root

s




Other Definitions

* Order of children matters for binary trees

o c e

* Binary trees are allowed to be empty
» Skewed and complete binary tree

Complete

Skewed



Maximum Number of Nodes

* Properties
 Maximum number of nodes at level i of a binary tree is
2i—1
* Maximum number of nodes in a binary tree of depth k is
2%-1, k=1

* Proof
* Induction base: the root is the only node at level 1
* Induction hypothesis: maximum number of nodes at
level (i-1) is 22, which is true for (i-1)=1
* Induction step: Each node has at most 2 children.

Therefore, the maximum number of nodes at level (i) is
212%2 = 21

e Y2t =2k—1



Leaf Nodes vs. Degree-2 Nodes

* Properties

* For any nonempty binary tree, T, if n, is the number of
leaf nodes and n, the number of nodes of degree 2
=2 ng=n,+1

* Proof

* Let n, be the number of nodes of degree one and n the
total number of nodes

* Wehaven=n,+n,+n,
* Each node except the root has a branch leading into it
* n-1=B, where B is the number of branches

B=n,+2n,
*n=B+l=n;+2n,+1=n,+n, +n,
=2 ng=n,+1



Full & Complete Binary Trees

* Definition: a full binary tree of depth k is a binary tree
of depth k having 2%-1 nodes, k>0

 We number the nodes in the full binary tree level by
level, left to right

* A binary tree with n nodes and depth k is complete iff
its nodes correspond to the nodes numbered from 1 to

n in the full binary tree of depth k




Array Representation of a Binary Tree

 2k-element array for a k-depth binary tree

* Entry O is left unused

* Properties

1. parent(i)isat |i/2]

2. leftChild(i) is at 2i [15]

3. rightChild(i)usat2i + 1



Array Representation of a Binary Tree

* Proof of property 2
* Induction base: leftChild(1) is at 2

* Induction hypothesis: forallj, 1 <j < (i- @ ‘
1), leftChild(j) is at 2j

* Induction step:
 Two nodes immediately preceding

leftChild(i) are right and left children of

\ y .
o da i \J leftChild(i)
* The left child of node i-1 is at 2(i-1)

according to the hypothesis
* The right child is thus at 2(i-1)+1 = (2i-1)
e |eftChild(i) is thus at (2i-1)+1 = 2i

* Property 3 is an immediate
consequence of 2

* Property 1 follows from 2 and 3




Linked Representation for a Binary

Tree

* Drawbacks of the array
representation

* Good for complete/full
binary tree but wasteful
of space for many other
trees

* Tree manipulation can
incur excessive data
movement

* Linked representation
tackles the problems

template <class T> class Tree;

template <class T>
class TreeNode {
friend class Tree <T>;
private:
T data;
TreeNode <T> *leftChild;
TreeNode <T> *rightChild;

}s

template <class T>
class Tree{
public:
// tree operations

private:
TreeNode <T> *root;

}s




Linked Representation for a Binary
Tree
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Binary Tree Traversal

* Visiting each node in the tree exactly once
e Operation can be performed on each visited node

* Full traversal produces a linear order for the nodes
In a tree

* Linearized sequence of a binary tree can be useful

0 Level-order traversal +*E*D/CAB
e Q Preorder traversal +** /ABCDE
0 G Inorder traversal A/B*C*D+E (infix)

e @ Postorder traversal AB/C*D*E+ (postfix)



Level-Order Traversal

template <class T>
void Tree <T>::LevelOrder()
{
Queue<TreeNode <T>*> q;
TreeNode<T> *currentNode = root;
while (currentNode) {
Visit(currentNode);
if (currentNode->leftChild)
g.Push(currentNode->leftChild);

if (currentNode->rightChild)
g.Push(currentNode->rightChild);

if (q.IsEmpty())
return;

currentNode = qg.Front();
q.Pop();

} +*E*D/CAB




Preorder, Inorder, and Postorder

* Let us define
* L moving left
* V visiting the node
* R moving right

* Possible combinations of traversal
 Various positions of the V with respect to the L and R

Preorder

Inorder (V is in between L and R)

Postorder

Mirror L & R
VLR VRL
LVR RVL
LRV RLV

/

mirrored orders are
less widely used

25



Preorder (VLR)

template <class T>
void Tree<T>::Preorder()

{
¥

Tpr(root); //Traverse preorderly

template <class T>
void Tree<T>::Tpr(TreeNode<T> * p)

{
// this is a recursive function
visit(p); [/ FEVE*
Tpr(p->leftChild); // L
Tpr(p->rightChild); // R

}

template <class T>
void Tree<T>::visit(TreeNode<T> * p)

{
}

cout << p->data; +**/ABCDE

26



Inorder (LVR)

template <class T>
void Tree<T>::Inorder()

{
¥

Tin(root); //Traverse inorderly

template <class T>
void Tree<T>::Tin(TreeNode<T> * p)

{

}

// this is a recursive function
Tin(p->leftChild); // L
visit(p); [[ FEYE*®
Tin(p->rightChild); // R

template <class T>
void Tree<T>::visit(TreeNode<T> * p)

{
}

cout << p->data;

A/B*C*D+E
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Postorder (LRV)

template <class T>
void Tree<T>::Postorder()

{
¥

Tpo(root); //Traverse postorderly

template <class T>

void Tree<T>::Tpo(TreeNode<T> * p)

{
// this is a recursive function
Tpo(p->leftChild); // L
Tpo(p->rightChild); // R
visit(p); [/ FXyx*

}

template <class T>
void Tree<T>::visit(TreeNode<T> * p)

{

cout << p->data;

}

AB/C*D*E+

28



Tips for Preorder, Inorder, & Postorder

e Attach a point to each node ¢ Draw the contour of the tree

]
preorderQ postorder —

inorder




Tips for Preorder, Inorder, & Postorder

e Attach a point to each node ¢ Draw the contour of the tree
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Tips for Preorder, Inorder, & Postorder

e Attach a point to each node ¢ Draw the contour of the tree
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Tips for Preorder, Inorder, & Postorder

e Attach a point to each node ¢ Draw the contour of the tree

|
O postorder —

—> |IFJKGDBLHECA




Non-Recursive Traversal Algorithm

* Binary tree is a type of container

* We thus want to implement an iterator for a binary

tree
* We need a non-recursive traversal algorithm

e Such an iterator USES-A stack

* Definition:
* Type X data object USES-A data object of Type Y means

that
* Type X object employs the Type Y object in its member function
to perform a task



Non-Recursive Inorder Traversal

template <class T>

void Tree <T>::NonrecInorder()

{
Stack <TreeNode<T>*> s;
TreeNode <T> *currentNode = root;
while(1) {

while (currentNode) {
s.Push(currentNode);
currentNode = currentNode->leftChild;

}

if (s.IsEmpty())
return;

currentNode = s.Top();

s.Pop();

Visit(currentNode);
currentNode = currentNode->rightChild;

A/B*C*D+E



Inorder Iterator

class InorderlIterator{
public:
InorderIterator(){ currentNode = root; }
// Constructor
T* Next();
private:
T* currentNode;
Stack<TreeNode<T>*> s;

}s

T* InorderIterator::Next()
{
while(currentNode){
s.Push(currentNode);
currNode = currNode->leftChild;
}
if(s.IsEmpty()) return O;
currentNode = s.Top();
s.Pop();
T& temp = currrentNode->data; A/B*C*D+E
currentNode = currentNode->rightChild;

return &temp;
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Copying Binary Trees

template <class T>
void Tree <T>::Tree(const Tree<T> & s) // Driver
{ // Copy constructor

root = Copy(s.root);

}

template <class T>

TreeNode<T> * Tree<T>::Copy(TreeNode<T> * p) // Workhorse

{ // Return a pointer to an exact copy of the tree rooted at p
if (!p) // a null pointer

Coping a tree =
return 0; P

copying the root node
+ copying the left tree

return new TreeNode<T>(p->data, . .
+ copying the right tree

Copy(p->leftChild),

) ] \ \
Copy(p->r1ghtCh11d));,’\\ Copy ,]\\
’ /
} oo v
’ \ ’
/ \\ / /|\\\
/) \ /// \\
\ \ AR
’ 7 /
/ \ PR RN
’ \ ¢, D ;W
/ \ a \ / AW
/ \ /7y \ / v




Copying Binary Trees
(Exampling Pseudo Code)

template <class T>
void Tree <T>::Tree(const Tree<T> & s) // Driver
{ // Copy constructor

root = Copy(s.root);

}

template <class T>
TreeNode<T> * Tree<T>::Copy(TreeNode<T> * p) // Workhorse
{

if p points to an empty tree

Coping a tree =
return 0O; P

copying the root node
+ copying the left tree

Let P be the node pointed by p; + copying the right tree

Create a node N;

AN Copy 1N
data of N = data of P; /) \ « —
leftChild of N = Copy(leftChild of P);’ ' Jy v~
rightChild of N = Copy(rightChild of/P); N /C(/ \EQ\
/ \ ’ \ / N\
/ \ / \ AWAY
return the address of N; K N A N AR




Testing Equality of Binary Trees

template <class T>
bool Tree<T>::operator == (const Tree& t) const

{
}

return Equal(root, t.root);

template <class T>
bool Tree<T>::Equal(TreeNode<T>* a , TreeNode<T>* b) // workhorse

{
if ((!a) & & (!b)) // two empty trees Comparing two trees =
Pet‘f"“ trl'ue; | comparing two root data
else if ((!a) || (!b)) + comparing the two left trees
return false; : .
+ comparing the two right trees

return ((a->data == b->data) /\\ Comparing ,T\
&& Equal(a->leftChild,b->leftChild) ,/ - ——
&& Equal(a->rightChild,b->rightChild))} \ P N
’ \ y \
} / ' N,
/ \ RN '\
/ /7 7 /
/ \\ a \\ / \\\\
// A //,l \ /I Y




Testing Equality of Binary Trees
(Exampling Pseudo Code)

template <class T>
bool Tree<T>::operator == (const Tree& t) const

{
}

return Equal(root, t.root);

template <class T>
bool Tree<T>::Equal(TreeNode<T>* a , TreeNode<T>* b) // workhorse

{

if two trees are both empty Comparing two trees =

"et‘."‘" true; . comparing two root data
else if only one tree is empty + comparing the two left trees

return false; + comparing the two right trees

if the root nodes of the two trees contain the same data
&& the left subtrees of the two trees are equal
&& the right subtrees of the two trees are equal
return true;

else
return false;
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Motivation

* More than half of the link fields of a binary tree store Os
* n nodes contain a total of 2n link fields
* n nodes are pointed by a total of n-1 non-zero links

e We want to make use of these 0 links to assist inorder tree
traversal

42



Threads

* Threads: links for inorder traversal
* Replace a 0 leftChild link with a link to the inorder predecessor
* Replace a 0 rightChild link with a link to the inorder successor

* Each node needs two additional Boolean fields to distinguish
between threads and normal link

\ N bool rightThread

bool leftThread
43



Threaded Binary

e Additional header node

_________

_________

Trees

head

___________________________________

44



Traverse a Threaded Binary Tree

* Thread binary tree traversal

* No need of stacks

e Can begin from any arbitrary node

T* ThreadedInorderIterator: :Next()

{

ThreadedNode <T> *temp
=currentNode->rightChild;
if(currentNode->rightThread){
currentNode = temp;

telse{
while (!temp->leftThread)

temp = temp->leftChild;

currentNode = temp;

}

if(currentNode == head)
return 0;

else
return &currentNode->data;




Inserting a Node into a Treaded Tree

* Insert a node as the right child

Casel
right substree
exists

Case 2 Q
right substree | .

doesn't exist A/G;)




Inserting a Node into a Treaded Tree

template <class T>
void ThreadedTree<T>::InsertRight(ThreadedNode <T> *s,
ThreadedNode <T> *r)
{// insert r as the right child of s
r->rightChild = s->rightChild; (1)
r->rightThread = s->rightThread;

r->leftChild = s; (D)
r->leftThread = true; //leftChild is a thread

S ———

s->rightChild = r; © ; -

s->rightThread = false;

if (! r->rightThread) { (4
ThreadedNode <T> *temp = InorderSucc(r);
temp->leftChild = r;

-----------,(:::>




Inserting a Node into a Treaded Tree

* Insert a node as the left child (similar to the right case)

Case 1
left substree
exists

Case 2
left substree
doesn't exist
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Normal Queues vs. Priority Queues

* Normal queues
e Firstin first out
* Also known as first come first serve

* Priority queues
* High priority first

3 |1 14 [2 push | priority |top, pop |11
Queue

- A2RBheapd e ERpriority queue - {H
heap 23S AT data structure



Priority Queues

* Max priority queue ADT

template <class T>
class MaxPQ {
public:

s

virtual
virtual
virtual
virtual
virtual

~MaxPQ() {} // virtual destructor

bool IsEmpty() const = 0; //return true iff empty

const T& Top() const = 0; //return reference to the max

void Push(const T&) = 0;

void Pop() = 0; "= 0" is a notation indicating
pure virtual functions. It does
not mean an assignment.




Exampling Use of Priority Queues

* Shortest-job-first task scheduling
* Maintain a priority queue of all pending tasks
e Task with the smallest time requirement is performed

e Simulating a system, e.g., a processor

* Maintain a priority queue of concurrent events

* E.g., multiple instructions are concurrently executed in a
processor

 Event occurs at the least time is selected to show the
instruction execution sequences



Unordered List-Based Priority Queues

* Concept

e Use an unordered list (array or chain) to store all
elements

e Scan the entire list for determining the max priority
element

* Time complexity

Unordered List

ISEmpty() 0(1)
Top() O(n)
Push() O(1)

Pop() O(n)




Heap-Based Priority Queue

* Definition
* Max (min) tree is a tree in which the key value in each

node is no smaller (larger) than the key values in its
children (if any)

* Max (min) heap is a complete binary max (min) tree

@QGQG (1) 9690



Max Heap

* Publicly derived from MaxPQ

template <class T>
class MaxHeap : public class MaxPQ<T> {
public:
MaxHeap(int theCapacity = 10); // constructor
bool IsEmpty() const; //return true iff empty
const T& Top() const; //return reference to the max
void Push(const T&);
void Pop(); @
private:

T* heap; // element array @ o

int heapSize; // number of elements in heap

int capacity; // size of the element array @ e o

s

elementarray | |14(12| 7 (10| 8 | 6

heap[0] is left unused

55




Insertion into a Max Heap

* Process

e Enlarging the element array (if necessary)
* Appending the element to the end

* Bubbling up (if necessary) to maintain the max heap property
* Time complexity = O(log(n))

‘ 21 ,
1} (19 9 @ 9 G 0
14/12| 7 10 21 14|12(21]10| 8 | 6
7/2=3...1 --> "21" chparent & % 3("7")



User
文字框
7/2=3...1 --> "21" 的 parent 在位置3("7")


Insertion into a Max Heap

* Process
e Enlarging the element array (if necessary)
* Appending the element to the end
* Bubbling up (if necessary) to maintain the max heap property

* Time complexity = O(log(n))

21121410/8 6|7 19‘ 21121419‘8 6(7|(10 2119‘14128 6(7|(10




Insertion into a Max Heap

Template <class T>
void MaxHeap<T>::Push(const T& e)
{ // add element e to max heap
if (heapSize == capacity) { // double the capacity
ChangeSize 1D(heap, capacity, 2*capacity);
capacity *= 2;
}
int currentNode = ++heapSize;
while (currentNode != 1 && heap[currentNode/2] < e)
{ // bubbling up
heap[currentNode] = heap[currentNode/2]; // move parent down
currentNode /= 2;

¥

heap[currentNode] = e;

58




Deletion from a Max Heap

* Process

* Max Heap deletion always occurs at the root
* Move the last array element to the root position
* Trickling down (if necessary) to maintain the max heap property

* Time compIeX|ty O(Iog(n))

6




Deletion from a Max Heap

Template <class T>

void MaxHeap<T>::Pop()

{ // Delete max element
if (IsEmpty ()) throw “Heap is empty. Cannot delete.”;
heap[1].~T(); // delete max element
T lastE = heap[heapSize--]; // remove last element from heap
// trickle down to find a position to place the last element
int currentNode = 1; // root
int child = 2; // a child of current node
while (child <= heapSize){

}

// set child to larger child of currentNode
if (child < heapSize && heap[child] < heap[child + 1]) child++;

if (lastE >= heap[child]) break;
heap[currentNode] = heap[child];
currentNode = child; child *= 2;

heap[currentNode] = lastE;
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Dictionary

e Definition: A dictionary is
* A collection of pairs: key and associated element (also knowns value)
* No two pairs have the same key

* Operations
» Test if a dictionary is empty
* Get the pointer to the pair with a specified key

* Insert a pair of key and element
* |If key is a duplicate, update the associated element

* Delete a pair with a specified key

 ADT

template <class K, class E>
class Dictionary {

public:
virtual bool IsEmptay() const = ©;
virtual pair <K, E>* Get(const K&) const = 9;
virtual void Insert(const pair <K, E>&) = 0;

"= 0" is a notation

indicating pure virtual
functions. It does not
mean an assignment.

virtual void Delete(const K&) = 0;

}s




Unordered List-Based Dictionary

* Concept

e Use an unordered list (array or chain) to store all

elements

e Scan the entire list for Get(), Insert(), and Delete()

* Time complexity
Unordered List | Note
ISEmpty() 0(1)
Get(key) O(n)
Insert(pair) O(n) Require scanning the list for possible duplicate key
Delete(key) O(n)




Binary Search Tree (BST)

* Definition: a BST is
* A binary tree
* May be empty
* If a BST is not empty

* Each element has a distinct key

e Keys (if any) in the left subtree are
smaller than the key in the root

e Keys (if any) in the right subtree are
larger than the key in the root

* The left and right subtrees are also
BSTs

* Concept

* Root partitions all elements into
two subtrees

» Recall the binary search algorithm



Searching a Binary Search Tree
(Recursive)

template <class K, class E>
pair<K, E>* BST<K, E> :: Get(const K& k)
{// Driver

return rGet(root, k);

¥

template <class K, class E>
pair<K, E>* BST<K, E> :: rGet(TreeNode <pair <K, E> >* p, const K& k)
{// Workhorse

if (!p) return 0;

if (k < p->data.first) return rGet(p->leftChild, k);

if (k > p->data.first) return rGet(p->rightChild, k);

return &p->data;

}
It is correct to name the workhorse "Get"
The two data members of an STL pair as the textbook does (because of function
are named as "first" and "second" overloading). | change the name to "rGet"

for clarity.




Searching a Binary Search Tree
(Iterative)

template <class K, class E>
pair<K, E>* BST<K, E>::Get(const K& k)
{

TreeNode < pair<K, E> > * currentNode = root;

while (currentNode) {
if (k < currentNode->data.first)
currentNode = currentNode->leftChild;
else if (k > currentNode->data.first)
currentNode = currentNode->rightChild;
else
return & currentNode->data;

}

// no matching pair
return O;




Searching a Binary Search Tree
(Iterative) (Exampling Pseudo Code)

template <class K, class E>
pair<K, E>* BST<K, E>::Get(const K& k)
{

Let currentNode be a pointer point to the root node;

while (currentNode is not zero) {
if (k < the key field pointed by currentNode)
Let currentNode point to the left subtree;
else if (k > the key field pointed by currentNode)
Let currentNode point to the right subtree;
else
return the address of the data field pointed by currentNode;

}

// no matching pair
return 0;




BST Operations

e Searching a BST by a key
e Searching a BST by rank
* |[nsertion

* Deletion

* Joining BSTs

* Splitting a BST

68



Insertion

* Insertion involves searching for the key
e BST cannot contain duplicate keys
* If search succeeds, update the content of the searched node

* If search does not succeed, insertion takes place at the point
the search terminated

root root root

16 exists

0
0 .
-----

inserting 14 insertinéu‘l‘7 inserting 16
69



Insertion

template <class K, class E>
void BST<K, E > :: Insert(const pair<K, E >& thePair)
{ // insert thePair into the BST
// search for thePair.first > pp parent of p
TreeNode < pair<K, E> > *p = root, *pp = 0;
while (p) {
PP = P;
if (thePair.first < p->data.first) p = p->leftChild;
else if (thePair.first > p->data.first) p = p->rightChild;
else // duplicate, update associated element
{ p->data.second = thepair.second; return;}
}
// perform insertion
p = new TreeNode< pair<K, E> > (thePair);
if (root) // tree is nonempty
if (thePair.first < pp->data.first) pp->leftChild = p;
else pp->rightChild = p
else root = p;

Time complexity: O(h)




Deletion

* Insertion also involves searching for the key
* If the node to delete does not exist, nothing occurs

 Otherwise, the node to delete can have
* no children—> just delete it
* single child 2 bypass the node

* two children 2
* Replace the node with its successor (or predecessor)

Successor is the largest node of the left subtree ) '
* Handle the deletion of the successor Time complexity: O(h)
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Searching by Rank

* Key concepts
* Node's rank is its inorder position

* Each node equips an additional field: leftSize
* One plus the number of nodes in the left subtree of the node

* |eftSize can guide the rank-based search

template <class K, class E> //search by rank

pair<K, E>* BST<K, E>::RankGet(int r)

{ // search the BST for the rth smallest node
TreeNode < pair<K, E> > *currentNode = root;
while (currentNode) {

if (r < currentNode->leftSize)
currentNode = currentNode->leftChild;

else if (r > currentNode->leftSize) {

r -= currentNode->leftSize;
currentNode = currentNode->rightChild;
telse return &currentNode->data;

}

return 0O;

Key
leftSize

L/ \/

(3-2) ==

Searching the
rank-3 node

Time complexity: O(h)




Joining BSTs

* Three-way joining
* Given one key called mid

* Given two BSTs named S and L
e Each key in S is smaller than mid
* Each key in L is larger than mid

* Two-way joining
* Given two BSTs named S and L
* All keys of S are smaller than all keys of L
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Joining BSTs

* Three-way joining (easy to perform)
* Create a root node whose key is mid

* Let S and L be the left and right subtrees, respectively

* Two-way joining (leverage three-way joining)
 Remove from S the node with the largest key (or from L with

the smaller key)
* Let the node be the mid
* Perform three-way joining

Time complexity: O(1)

Time complexity: O(h)




Splitting a BST by a Key

* Given a BST and a key

 Generate two BSTs, Sand L

* Each key in S is smaller than the key
* Each key in Lis larger than the key

* Retrieve the pair if the key exists in the original BST
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Splitting a BST by a Key

* Observations about splitting at a root node that have
subtrees Land R

o if (key < r.key)
* Node r together with subtree R is to be in the larger BST
e Continue to split subtree L

o if (key > r.key)
* Node r together with subtree L is to be in the smaller BST
e Continue to split subtree R

 if (key ==r.key)

* RandLaretobeinthe larger and smaller BSTs, respectively

key < r.key key > r.key key == r.key




Splitting a BST by a Key

* Key = 14 s b

root sHead é bHeadé}




Splitting a BST by a Key

* 14 <20 S

root sHead é

mid

I%Head

2y

28



Splitting a BST by a Key

e 14>12
root sHead S
1 (|

curr
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Splitting a BST by a Key

e 14 <16
root sHead S
1 (|




Splitting a BST by a Key

. 14 == 14

root

curr




Splitting a BST by a Key

template <class K, class E>
void BST<K, E>::Split(const K& k, BST<K, E>& small, pair<K, E>*& mid,
BST<K, E>& big)
{ // Split the BST with respect to key k
if (!root) {small.root = big.root = @; return;} // empty tree
// create temporary header nodes for small and big
TreeNode<pair<K, E> > *sHead = new TreeNode<pair<K, E> >,
*s = sHead,
*bHead = new TreeNode<pair<K, E> >,
*b = bHead,
*currentNode = root;
while (currentNode)
if (k < currentNode->data.first){ // case 1
b->leftChild = currentNode;
b = currentNode; currentNode = currentNode->leftChild;
}
else if (k > currentNode->data.first) { // case 2
s->rightChild = currentNode;
s = currentNode; currentNode = currentNode->rightChild;




Splitting a BST by a Key

else { // case 3
s->rightChild = currentNode->leftChild;
b->leftChild = currentNode->rightChild;
small.root = sHead->rightChild; delete sHead;
big.root = bHead->leftChild; delete bHead;
mid = new pair<K, E>(currentNode->data.first,
currentNode->data.second);
delete currentNode;
return;
}
// no pair with key k
s->rightChild = b->leftChild = ©;
small.root = sHead->rightChild; delete sHead;
big.root = bHead->leftChild; delete bHead;
mid = O;
return;

Time complexity: O(h)




Discussion about BST Height

* Most BST operations are of Operations Complexity
O(height) time complexity Searching by a key
Searching by rank
e Consider an n-element BST Insertion -
* In the worst case, height = O(n) Deletion O(height)
* If insertions and deletions are Joining BST.
made at random, hel%ht = oining 5-15
O(log(n)) on average (not Splitting by a key

guaranteed) :
worst-case scenarios

root root
e Balanced search trees are
search trees that can
guarantee worst case height =
O(log(n))
* Including AVL trees, Red-Black
trees as in Chapter 10 and 11




Outline

* 5.1 Introduction

* 5.2-5.5 Binary trees

* 5.6 Heaps

5.7 Binary search trees = Dictionary
e 5.8 Selection trees

* 5.9 Forests

* (5.10 Disjoint sets)

* (5.11 Counting binary trees)
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Motivation

* Sometimes we need to merge k ordered sequences
(called runs) with a total of n elements into a single
ordered sequences

=

Merge

- * A * T T T A

10 9 20 6 8 9 90 17
15 20 20 15 15 11 95 18
16 38 30 25 50 16 99 20
28
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Algorithms

* Naive algorithm
* Perform (k-1) comparisons to find the smallest/largest
element among the k top elements
* Repeat the above steps for n-1 times
* Time complexity = O(nk)

10 9 20 6 8 9 90 17
15 20 20 15 15 11 95 18
16 38 30 25 50 16 99 20
28




Algorithms

e Selection tree

e Perform only O(log(k)) comparisons to find the

smallest/largest element

* Time complexity = O(n log(k))
 Two implementations: winner trees and loser trees

10 9 20 6 8 9 90 17

15 20 20 15 15 11 95 18

16 38 30 25 50 16 99 20
28

38



Winner Tree

 Complete binary tree in which each node represents to
the winner (e.g., the smaller in the following example)
of its two children

* Each node uses a pointer to link the record it represents




Merge Sequences

e Repeatedly performs

. Outputtin% the record pointed by the root node, which represents

the overall winner

e Replaying the tournament along the path from the output node

~ <

Time complexity of each output: O(log(k))
Time complexity of the entire merge: O(n log(k))




Inefficiency of Winner Trees

* Tree nodes store the duplicate information
* E.g., there are four 6's and three 8's in the following winner tree

* Need to access the both children to reconstruct a node




Loser Tree

* Non-leaf nodes represent losers, Red arrows and text are
instead of winners used to help understanding
* Index-0 node represents the overall the loser tree only. The
winner index O tree does not need to store
those information.




Loser Tree

* Non-leaf nodes represent losers
* Index-0 node represents the overall winner

This node originally
represents 9

Time complexity of each output: O(log(k))
Time complexity of the entire merge: O(n log(k))
Loser trees tend to outperform winner trees in speed because of the reduced constant




Outline

* 5.1 Introduction

* 5.2-5.5 Binary trees

* 5.6 Heaps

5.7 Binary search trees = Dictionary
e 5.8 Selection trees

* 5.9 Forests

* (5.10 Disjoint sets)

* (5.11 Counting binary trees)
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Outline

* 5.1 Introduction

* 5.2-5.5 Binary trees

* 5.6 Heaps

5.7 Binary search trees = Dictionary
e 5.8 Selection trees

* 5.9 Forests

* (5.10 Disjoint sets)

* (5.11 Counting binary trees)
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Forest

* Definition
* Aforestis asetof n > 0 disjoint trees

* Removing the root of a tree produces a forest (i.e., the
subtrees)

* Three-tree forest example

* Forest operations
* Transforming a forest into a binary tree
* Forest traversals



Forest to Binary Tree

* Left-child-right-sibling approach

N

A O—@ * OO
005@8® O




Recap Inorder Tree Traversal

e Recursive definition

Tree ={ /L O R\ }
subtree Root node /Subtree
) )




Recap Inorder Tree Traversal

* Example

—{’@ ,}



Inorder Forest Traversal

e Recursive definition

(il o }

Subtrees Root node All trees (i.e., a
(i.e., a forest) of the 1 forest) except
of the 1t tree the 15t tree
tree
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Inorder Forest Traversal

e Recursive definition

— o o o o e o o

____________________

——————————

__________
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Forest Traversals (Preorder)

* Traverse F in forest preorder

* If Fis empty then return

* Visit the root of the first tree of F
Traverse the subtrees of the first tree in forest preorder
* Traverse the remaining trees of F in forest preorder

o b q %

ABCDEFGHI

ABCDEFGHI



Forest Traversals (Inorder)

* Traverse F in forest inorder

* If Fis empty then return

e Traverse the subtrees of the first tree in forest inorder
Visit the root of the first tree of F
* Traverse the remaining trees of F in forest inorder

o b q %

BCDAFEHIG

BCDAFEHIG



Forest Traversals (Postorder)

* Traverse F in forest postorder

* If Fis empty then return

* Traverse the subtrees of the first tree in forest postorder
Traverse the remaining trees of F in forest postorder
* Visit the root of the first tree of F

o b q %

DCBFIHGEA

DCBFIHGEA



Forest Traversals (Level-Order)

* Traverse F in forest level-order

* If Fis empty then return

* Nodes are visited by level
Begin the traversal from the roots of each tree in the forest
* Within each level, nodes are visited from left to right

o b q %

AEGBCDFHI

ABECFGDHI





