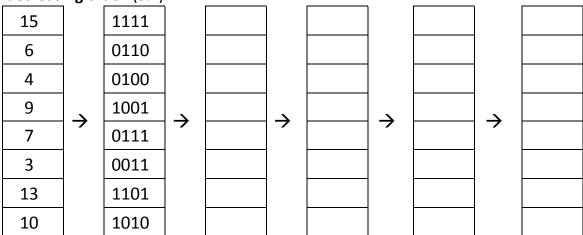
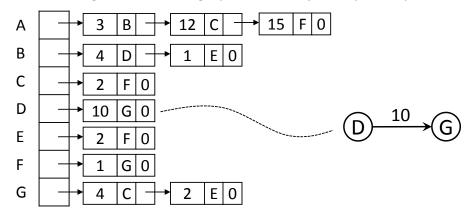
Data Structures Final Examination 3:30pm-5:20pm (110 minutes), Monday, June 22, 2015

ID	Name


- ♦ Please answer questions 1 ~ 6B on the Question Sheet. For other questions, please answer on the Answer Sheet in any order.
- ♦ There are 6 pages, 10 questions, a total of 115 points.

1.


A. Please perform least significant digit (LSD)-first radix sort (radix = 10) over the following numbers in **non-decreasing** order. (5%)

	_	 	 	
340				
135				
620				
001	\rightarrow	\rightarrow	\rightarrow	
140	7	7	7	
324				
365				
505				

B. Please perform LSD-first radix sort (radix = 2) over the following numbers in non-decreasing order. (5%)

2. Given a weighted directed graph whose adjacency list representation is as follows

A. Please complete the following table to perform single-source, all-destinations Dijkstra's algorithm starting from vertex A. Please use parenthesis to denote a dist[] value that is not touched and use "—" to denote that a vertex is already selected. (5%)

			dis	Selected	Path Cost				
Iteration	В	С	D	Е	F	G	Destination	ratii Cust	
1	3	12	∞	∞	15	∞	В	3	
2		(12)							
3									
4									
5									
6									

B. Please complete the following graph-traversal sequences of the graph. If there are multiple valid traversals, just list one of them. Mark an "X" in a field where the traversal cannot continue. (5%)

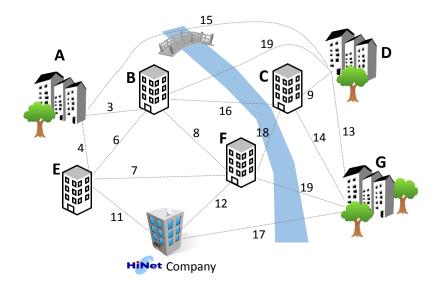
 Depth-first traversal:
 A, C, F, ___, ___, ___, ___

 Breadth-first traversal:
 A, B, F, ___, ___, ___, ___

 Topological traversal:
 A, B, D, ___, ___, ___, ___

3. Please fill in the following tables to perform Quick Sort. Table 1 shows **Basic Quick Sort** that always takes the **left-most** key of a list/sublist as the pivot (5%). Table 2 shows **Ideal Quick Sort** in which the selected pivot always ideally splits a list/sublist into equal halves, (i.e., 3, 1, and 5 are sequentially selected as pivots) (5%). Please note that common practices always use a swap to move the pivot to the left-most position if the pivot is elsewhere (e.g., the first swap in Table 2).

Table 1 Basic Quick Sort									
Pivot		Keys							
1		1	_0	6					
		1	0	4	2	3	5	6	

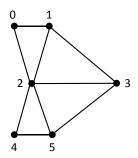

Table 2 "Ideal" Quick Sort										
Pivot			Keys							
3		1_	5	4	2	_3	0	6		
		3 ←	5	4	2	1	0	6		

- 4. Please consider inserting the keys 46, 24, 31, 10, 14, 16, 17, 88 into a hash table. The hash function h(k) = (k mod 23).
 - A. Please show the result if we use an **eight-bucket table**, **single-slot buckets**, **three least-significant bits of h(k)**, (i.e., h(k) mod 8), and **linear probing**. (5%)
 - B. Please show the result if we use an **eight-bucket table**, **three least-significant bits of h(k)**, and **chaining**. (5%)

C.						•			y-less dynamic hashing is used and nine after 88 is inserted. (5%)
	0						- 0		(2.)
	1								
	2								
	3								
	4								
	5								
	6								
	7								
	8								
	easing	-		-				-	19, 25, 15, 20, 16, 10, 30" into non- in-place heapify the array as a max
A.	Please	e list th	ne arra	ay con	tents	after h	eapifi	cation	completes if we use a binary heap,
	in whi	ch eve	ery pa	rent h	ave tw	o chil	dren.	(5%)	
В.	Please in whi			-			•		completes if we use a ternary heap ,
C.									Igorithm pops the top element from
	heap)		•	•					, .
					T				1

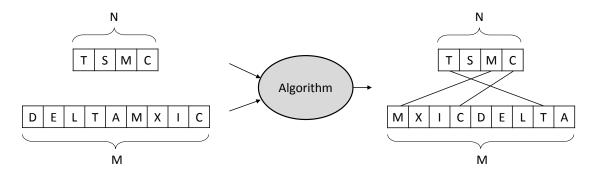
5.

6. HiNet company wants to use a fiber network to connect eight buildings, A to G, and the HiNet building, together. The candidate fiber routes and the corresponding cost (in the unit of 100,000 NT\$) are shown as follows.

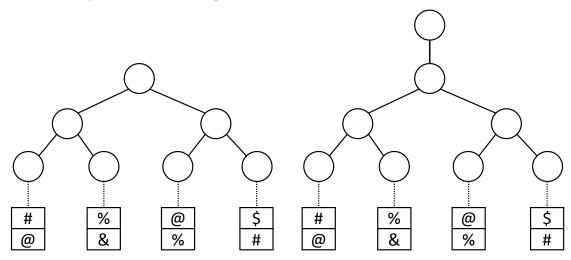


- A. Please mark the fiber network that has the minimum total cost. (5%)
- B. Please describe an algorithm that can find the network with **the second minimum** total cost (5%).

7. omited


8.

- A. Please design an algorithm (using pseudo code) that takes an undirected graph in adjacency matrix representation as input and determines whether an Eulerian path exists. An Eulerian path is a path in a graph which visits each edge exactly once. A graph has an Eulerian path if and only if the number of vertices that have odd degree is either zero or two. (5%)
- B. Please use an adjacency matrix to represent the following undirected graph. (5%)


- 9. Please perform decision tree based algorithm analyses.
 - A. Please prove that any comparison-based algorithm requires log(N!) comparisons in the worst case to sort an N-element list. (5%)
 - B. Please derive the lower bound of the worst-case number of comparisons any

comparison-based algorithm requires to pair two lists, one with N distinct keys and the other with M distinct keys (N<M). The following graph shows exampling inputs and outputs of such a pairing algorithm. (5%)

10.

A. Please complete the following winner and loser trees (5%).

- B. Please plot the result of sequentially inserting eight letters, "J U N E 2 0 1 5", into an empty, standard binary search tree. (0 < 1 < 2 < 5 < E < J < N < U) (5%)
- C. Please plot the result of sequentially inserting eight letters, "J U N E 2 0 1 5", into an empty, **red-black tree**. (0 < 1 < 2 < 5 < E < J < N < U) (Hint: Check whether two consecutive red nodes appear after insertion; if so, check whether the uncle node is red or black; perform rotation or color changes accordingly; always color the root node black.) (5%)

Thank you for your participation during the class.

Best wishes in your future studies!