
Data Structure Midterm Examination 3:30pm-5:20pm (110 minutes), Nov. 10, 2015

#: _____ Student ID: _____ Name: _____

- Please answer questions 1, 2, and 3 (and 10 if appropriate) on the question sheet. For other questions, please answer on the answer sheet in any order.
- \diamond There are 10 questions, each being 11 points.
- Please compare the asymptotic order of the following time complexity functions (in terms of the worst case) using "=", ">", or "<".

Hints:

- ♦ Substituting *N* with c^{X} can sometimes ease the comparison.
- A method to show that $c^N < (N!)$ when N is large enough is to observe that $c^N = c \cdot c \cdot ... \cdot c \quad \text{but } (N!) = N \cdot (N-1) \cdot ... \cdot c \cdot ... \cdot 1$ A similar technique may be useful when performing other comparisons.
- $\diamond \quad \log_a(a^b) = b, \quad a^{\log_a(b)} = b,$ $\log(a \cdot b) = \log(a) + \log(b), \quad \log(a^b) = b \cdot \log(a),$ $\log_a(b) = \frac{\log_c(b)}{\log_c(a)}, \quad (a^b)^c = a^{bc} = (a^c)^b$
- 2. KMP algorithm
 - a) Please analyze the failure function for the following patterns.

N	E	E	N	Ν	E	E	N	E	N	x
										if <i>x</i> == 'N'
0										if <i>x</i> == 'E'
										otherwise

b) Please design patterns that exhibit the following failure functions. Please try to compose as long a string as possible and mark an 'X' to denote the position (if any) where the failure function becomes invalid.

0	0	1	1	2	0	1	2	3	4	у
										if y == 0
										if <i>y</i> == 1
										if <i>y</i> == 2
а										if <i>y</i> == 3
										if <i>y</i> == 4
										if <i>y</i> == 5

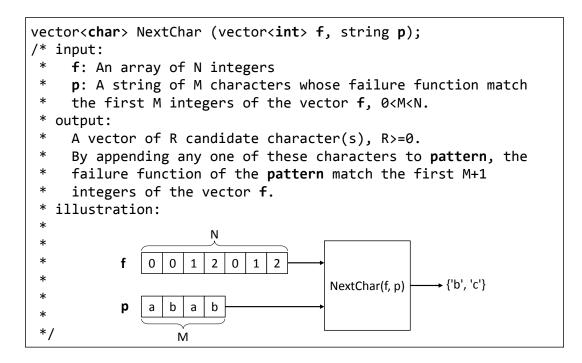
3. Please analyze the time complexity of the following algorithm

void func (int d1[M][N], int d2[N][M])	Steps per execution	Frequency
{		<u>O()</u>
for (int i =0; i <m; i++)="" td="" {<=""><td></td><td><u>O()</u></td></m;>		<u>O()</u>
Selection_sort (d1[i], N);		<u>O()</u>
}		<u>O()</u>
for (int i =0; i <m; i++)<="" td=""><td></td><td><u>O()</u></td></m;>		<u>O()</u>
for (int j=0; j <n; j++)<="" td=""><td></td><td><u>O()</u></td></n;>		<u>O()</u>
d2[j][i] = d1[i][j];		<u>O()</u>
for (int i =0; i <n; i++)="" td="" {<=""><td></td><td><u>O()</u></td></n;>		<u>O()</u>
if (d2[0] < d2[M-1])		<u>O()</u>
Selection_sort (d2[i], M);		<u>O()</u>
return;		<u>O()</u>
}		<u>O()</u>
	Overall complexity:	<u>O()</u>

4. Please prove or disprove

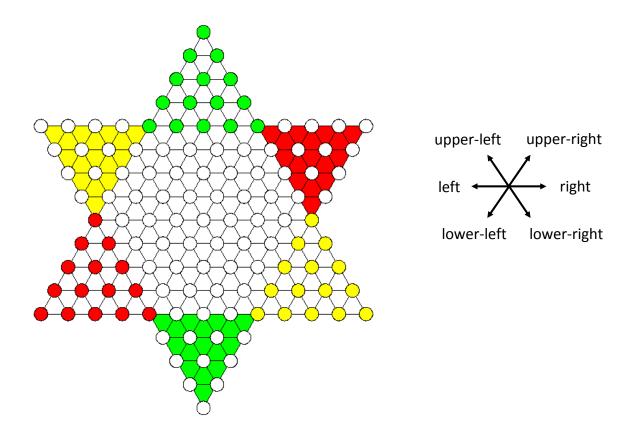
$$F(n) = \mathbf{0}(2^n)$$
 and $G(n) = \mathbf{0}(n^2) \Rightarrow log(F(n) \times G(n)) = \mathbf{0}(n \times log(n))$

- Suppose D is a three-dimensional array of one-byte characters. The index of each dimension is a non-negative integer. Suppose D[5][4][3] is at address 300 and D[6][5][1] at address 182. Please answer the following questions.
 - a) Is the array in row-major order or column-major order, or both are possible?
 - b) What are the number of elements in each dimension of D? Let us use (x, y, z) to denote that the elements of D are arranged as D[0... x-1][0... y-1][0... z-1]. If there are many possible answers, please answer like the following:
 - (x, y, z) = (10, any positive even number, 20) or (20, any positive odd number, 10)


Please make sure that the previously mentioned **D**[5][4][3] and **D**[6][5][1] are valid indices.

- c) What is the address of **D**[1][2][3]? Please give all the possible answers
- 6. Please design a program that receives a string with () [] {} and some other characters and checks the **parentheses balance** of the string, i.e., each opening parenthesis has a corresponding closing parenthesis and the pairs of parentheses are properly nested. An example string is as follows.

{[{[((a+3)*b)] equals [c / 20]}], [data structure is interesting] }


Please use a stack that supports push (adding a character to the stack), pop (removing a character from the stack), and size (reporting the number of elements in the stack) to complete this task.

- 7. The KMP algorithm describes how we can derive failure function given a pattern. Reversely, here we want to design an algorithm that can 1) produce a pattern given a specific failure function if such a pattern exist and 2) report an error if such a pattern does not exist.
 - a) Please describe your algorithm using pseudo code assuming another algorithm that can drive a character according to the given failure function as follows is available. Hint: consider using recursion to design the algorithm.

- b) Please try to realize NextChar() using pseudo code. In this stage, please **do not** focus too much on the performance of the algorithm.
- 8. Please answer the following questions about object oriented program (OOP)
 - a) How can OOP help debugging? Please give an example.
 - b) Can OOP help lowering the time complexity of an algorithm? Please give some reasons to support your answer.
 - c) Is there any drawback for adopting OOP?
- Please design a memory efficient object of Sparse Matrix of Sparse Polynomials (SMSP). By "sparse" we mean a matrix can comprise many zero terms or a polynomial can comprise many zero coefficients. You can use pseudo code to describe your design. Please focus on
 - 1) constructors,
 - 2) destructors, and
 - 3) a function **adding** two SMSPs.

- 10. Suppose we want to develop a Chinese Checkers program and need an array representation of the hexagram-shaped gameboard. Please answer the following questions. In this stage, please do not focus too much on the performance and memory efficiency of the algorithm.
 - a) What is your gameboard-array mapping, and what is the required memory space (in bytes) for your gameboard?
 - b) How can a checker move? Specifically, how can your program find the array index for a checker taking each of the six moves (upper-left, upper-right, ... etc.) and how can your program detect an invalid move exceeding the gameboard boundary?

