
Data Structure Midterm Examination (10410EE 241000)

3:30pm-5:20pm (110 minutes), Nov. 10, 2015

#: _______ Student ID: ________________ Name: _____________________

 Please answer questions 1, 2, and 3 (and 10 if appropriate) on the question sheet. For other

questions, please answer on the answer sheet in any order.

 There are 10 questions, each being 11 points.

1. Please compare the asymptotic order of the following time complexity functions (in

terms of the worst case) using “=”, “>”, or “<”.

Hints:

 Substituting N with cX can sometimes ease the comparison.

 A method to show that 𝑐𝑁 < (𝑁!) when N is large enough is to observe that

𝑐𝑁 = c ∙ c ∙ … ∙ c ∙ … ∙ c but (𝑁!) = 𝑁 ∙ (𝑁 − 1) ∙ … ∙ c ∙ … ∙ 1

A similar technique may be useful when performing other comparisons.

 𝑙𝑜𝑔𝑎(𝑎𝑏) = 𝑏, 𝑎𝑙𝑜𝑔𝑎(𝑏) = 𝑏,

𝑙𝑜𝑔(𝑎 ∙ 𝑏) = 𝑙𝑜𝑔(𝑎) + 𝑙𝑜𝑔(𝑏), 𝑙𝑜𝑔(𝑎𝑏) = 𝑏 ∙ 𝑙𝑜𝑔(𝑎),

𝑙𝑜𝑔𝑎(𝑏) =
𝑙𝑜𝑔𝑐(𝑏)

𝑙𝑜𝑔𝑐(𝑎)
, (𝑎𝑏)𝑐 = 𝑎𝑏𝑐 = (𝑎𝑐)𝑏

2. KMP algorithm

a) Please analyze the failure function for the following patterns.

N E E N N E E N E N 𝑥

0 0 0 1 1 2 3 4 2 1

__1__ if 𝑥 == ‘N’

__2__ if 𝑥 == ‘E’

__0__ otherwise

>

!

e.g.,

= < < < >

>><> <

!

b) Please design patterns that exhibit the following failure functions. Please try to

compose as long a string as possible and mark an ‘X’ to denote the position (if any)

where the failure function becomes invalid.

0 0 1 1 2 0 1 2 3 4 𝑦

a b a a b
b

c
a b a a

__c__ if 𝑦 == 0

__a__ if 𝑦 == 1

__x__ if 𝑦 == 2

__x__ if 𝑦 == 3

__x__ if 𝑦 == 4

__b__ if 𝑦 == 5

3. Please analyze the time complexity of the following algorithm

void func (int d1[M][N], int d2[N][M]) Steps per execution Frequency

{ 0 O()

 for (int i =0; i<M; i++) { 1 O(M)

 Selection_sort (d1[i], N); N2 O(M)

 } 0 O()

 for (int i =0; i<M; i++) 1 O(M)

 for (int j=0; j<N; j++) 1 O(MN)

 d2[j][i] = d1[i][j]; 1 O(MN)

 for (int i =0; i<N; i++) { 1 O(N)

 if (d2[0] < d2[M-1]) 1 O(N)

 Selection_sort (d2[i], M); } M2 O(N)

 return; 1 O(1)

} 0 O()

Overall complexity: O(MN2+NM2)

User
高亮

4. Please prove or disprove

𝐹(n) = 𝑶(2𝑛) and 𝐺(𝑛) = 𝜣(𝑛2) ⇒ 𝑙𝑜𝑔(𝐹(𝑛) × 𝐺(𝑛)) = 𝑶(𝑛 × 𝑙𝑜𝑔(𝑛))

5. Suppose D is a three-dimensional array of one-byte characters. The index of each

dimension is a non-negative integer. Suppose D[5][4][3] is at address 300 and

D[6][5][1] at address 182. Please answer the following questions.

a) Is the array in row-major order or column-major order, or both are possible?

b) What are the number of elements in each dimension of D? Let us use (x, y, z) to

denote that the elements of D are arranged as D[0… x-1][0… y-1][0… z-1]. If there

are many possible answers, please answer like the following:

 (x, y, z) = (10, any positive even number, 20) or

(20, any positive odd number, 10)

Please make sure that the previously mentioned D[5][4][3] and D[6][5][1] are valid

indices.

c) What is the address of D[1][2][3]? Please give all the possible answers

User
高亮

6. Please design a program that receives a string with () [] {} and some other characters

and checks the parentheses balance of the string, i.e., each opening parenthesis has a

corresponding closing parenthesis and the pairs of parentheses are properly nested. An

example string is as follows.

 {[{[((a+3)*b)] equals [c / 20]}], [data structure is interesting] }

Please use a stack that supports push (adding a character to the stack), pop (removing

a character from the stack), and size (reporting the number of elements in the stack) to

complete this task.

User
矩形

User
矩形

ANS:

7. The KMP algorithm describes how we can derive failure function given a pattern.

Reversely, here we want to design an algorithm that can 1) produce a pattern given a

specific failure function if such a pattern exist and 2) report an error if such a pattern

does not exist.

a) Please describe your algorithm using pseudo code assuming another algorithm that

can drive a character according to the given failure function as follows is available.

Hint: consider using recursion to design the algorithm.

#include <stack>
using namespace std;

bool ParenthesesBalance(string in)
{

stack<char> s;
for (int i=0; i<in.size(); i++){

switch (char c = in[i]){
case '(' or '[' or '{': // pseudo code

s.push(c);
break;

case ')' or ']' or '}': // pseudo code
if (s.size() == 0 || c doesn't match s.pop()) return false; // pseudo code
break;

default:
// do nothing
break;

}
}
if (s.size()==0) return true;
else return false;

}

ANS:

b) Please try to realize NextChar() using pseudo code. In this stage, please do not

focus too much on the performance of the algorithm.

vector<char> NextChar (vector<int> f, string p);
/* input:
* f: An array of N integers
* p: A string of M characters whose failure function match
* the first M integers of the vector f, 0<M<N.
* output:
* A vector of R candidate character(s), R>=0.
* By appending any one of these characters to pattern, the
* failure function of the pattern match the first M+1
* integers of the vector f.
* illustration:
*
*
*
*
*
*
*/

NextChar(f, p)

a b a bp

0 0 1 2f 0 1 2

{'b', 'c'}

N

M

void FindPatterns(vector<int> f, string & p)
{

if (f.size() == p.size()){ // a pattern is found
cout << p << endl;
return;

}

vector<char> r = NextChar(f, p); // all possible next chars

for (int i=0; i<r.size(); i++){ // for each possible next char
p.append(" ");
p[p.size()-1] = r[i]; // try the char at the end of p
FindPatterns(f, p);
p.pop_back(); // undo the append

}
return;

}

ANS:

8. Please answer the following questions about object oriented program (OOP)

a) How can OOP help debugging? Please give an example.

 Objects can be individually tested and debugged.

 Re-used objects are typically less prone to bugs, so one can focus on newly

implemented objects.

 Member functions are the only interfaces accessing private member data.

This narrows down the scope of bugs that related to private member data.

 Object inheritance reduces code redundancy and thus eases debugging.

b) Can OOP help lowering the time complexity of an algorithm? Please give some

reasons to support your answer.

 OOP cannot lower the time complexity of an algorithm because time

complexity is an inherited characteristic of an algorithm. For example,

Selection Sort has quadratic time complexity in the worst case no matter it is

in OOP or non-OOP.

 The other point of view is that any OOP program is eventually compiled into

machine code which can be equivalently described using non-OOP languages

such as the assembly language. In other words, a non-OOP language always

can achieve the same complexity that of an OOP language.

vector<char> NextChar(vector<int> f, string p)
{

vector<char> r;
int n = p.size();
if (n == 0) { // first char

r.push_back('a');
} else if (f[n] == 0) {

char c='a';
do{

c++;
r.push_back(c);

} while(c has been used in p); // pseudo code
} else if (f[n] < n) {

char c = p[f[n]-1];
invoke KMP algorithm to check if c is valid // pseudo code
if (c is valid) r.push_back();

}
return r;

}

User
高亮

User
底線

User
底線

User
底線

User
底線

User
底線

User
底線

User
底線

User
高亮

c) Is there any drawback for adopting OOP?

 Latency of accessing a private data member slightly increases because the

need to invoke member functions.

 Memory usage increases because of the member functions for accessing

private data.

9. Please design a memory efficient object of Sparse Matrix of Sparse Polynomials (SMSP).

By “sparse” we mean a matrix can comprise many zero terms or a polynomial can

comprise many zero coefficients. You can use pseudo code to describe your design.

Please focus on

1) constructors,

2) destructors, and

3) a function adding two SMSPs.

0 0 0 0 0 0 0 0 0 0

0 0 4 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 6 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

3

7

Idea:
Sparse matrix of sparse polynomials  Sparse 3D matrix

a nonzero term

row

col

exp

row = 3
col = 8
exp = 33
coef = -7

a polynomial

User
高亮

10. Suppose we want to develop a Chinese Checkers program and need an array

representation of the hexagram-shaped gameboard. Please answer the following

questions. In this stage, please do not focus too much on the performance and

memory efficiency of the algorithm.

a) What is your gameboard-array mapping, and what is the required memory space

(in bytes) for your gameboard?

b) How can a checker move? Specifically, how can your program find the array index

for a checker taking each of the six moves (upper-left, upper-right, … etc.) and how

can your program detect an invalid move exceeding the gameboard boundary?

class SMSP; // forward declaration
class Term
{

friend class SMSP;
int row, col, exp;
float coef;

};
class SMSP
{
public:

SMSP();
~SMSP();
SMSP Add(SMSP b);

private:
int compare(Term a, Term b)
Term * TermArray;
int Size;
int Capacity;

};

SMSP::SMSP()
{

TermArray = new Term[10];
Size = 0;
Capacity = 10;

}

SMSP::~SMSP()
{

delete [] TermArray;
}

int SMSP::compare(Term a, Term b)
{

if (a.row > b.row) return 1;
else if (a.row < b.row) return -1;
if (a.col > b.col) return 1;
else if (a.col < b.col) return -1;
if (a.exp > b.exp) return 1;
else if (a.exp < b.exp) return -1;
return 0;

}

SMSP SMSP::Add(SMSP b)
{

SMSP c;
int ai=0, bi=0;
while (ai<Size && bi<b.Size) {

switch (compare(TermArray[ai], b.TermArray[bi]))
{

case -1:
c.NewTerm(TermArray[ai]);
ai++;
break;

case 1:
c.NewTerm(TermArray[bi]);
bi++;
break;

case 0:
c.NewTerm(TermArray[ai] + TermArray[bi]); // pseudo code
ai++; bi++;

}
}

}

Approach 1:

upper-rightupper-left

left right

lower-rightlower-left

x

y

1

4

0 2 3 12 24

12

16

(2, 0)(-2, 0)

(1, -1)(-1, -1)

(1, -1) (1, 1)

(x, y):

Memory usage:
17 * 25 * 2 bits

Checker movement:

Boundary check:
(y<4 && x+y<12)
(y<4 && x-y>12)
….

Approach 2:

Approach 3:

x

y

4

4 12 16

12

16

8

8 (1, 0)(-1, 0)

(1, -1)(-1, -1)

(1, -1) (1, 1)

(x, y):

Memory usage:
17 * 17 * 2 bits

Checker movement:

Boundary check:
omit

x

y

8

-8

8

-8

(1, 0)(-1, 0)

(1, -1)(-1, -1)

(1, -1) (1, 1)

(x, y):

Memory usage:
17 * 17 * 2 bits

Checker movement:

Boundary check:
omit

