Problem 1 104台聯大 訊號與系統

 \equiv (10 points) Find the **Laplace transform** of $x(t) = \frac{d^2}{dt^2} (e^{-3(t-2)}u(t-2))$.

Problem 2 103台聯大 訊號與系統

 $\dot{\tau}$ \ (10%) Consider a continuous-time LTI system for which the input x(t) and output y(t) are related by the differential equation

$$\frac{d^2y(t)}{dt^2} + \frac{dy(t)}{dt} - 2y(t) = x(t).$$

Suppose the system is stable. Determine y(t) as $x(t) = \sum_{n=1}^{\infty} u(t-n)$, where u(t) denotes the unit step function.

Problem 3 102台聯大 訊號與系統

- 5. Consider a feedback system shown below, where $H(s) = \frac{s+2}{s^2+2s+4}$
 - (a) Find the smallest positive value of K for which the closed-loop impulse response doesn't exhibit any oscillatory behavior. (5%)

Problem 4 101年 台聯大 訊號與系統

- \ (5%) Please define a linear system in terms of mathematical expression.
- (10%) Please define the properties of causality and stability for a Linear Time-Invariant (LTI) System in terms of mathematical expression.
- \equiv \((10%)\) Please define an eigenfunction for an LTI system with impulse response h(t); and show its transfer function H(s) as the corresponding eigenvalue.

100年台聯大訊號與系統

3. (10%) A second-order continuous-time linear dynamic system is characterized by the following equation:

$$\ddot{y} + 2\beta \dot{y} + \omega_o^2 y = \alpha x,$$

where x(t) denotes the input, y(t) denotes the output, and let us assume that $\beta > 0$ and $\beta^2 < \omega_0^2$.

- (a) (3%) Make a sketch of the impulse response of the system.
- (b) (3%) Calculate the transfer function $H(j\omega) \triangleq \frac{Y(j\omega)}{X(j\omega)}$.
- (c) (4%) Make a sketch of the magnitude response of $H(j\omega)$. If $\beta^2 \ll \omega_0^2$, what is the approximate frequency at which the magnitude response reaches its maximum?

Problem 6 99年 台聯大 訊號與系統

四. (—)(10%) Consider a continuous-time linear time-invariant system with impulse response $h(t) = e^{-t}u(t)$. Determine the output y(t) of the system when the input is x(t) = u(t+1) - u(t-1).

99年台聯大訊號與系統

六. Given a linear time-invariant (LTI) system with system function

$$H(s) = \frac{s-1}{(s+1)(s-2)}$$
, please determine the impulse response $h(t)$ and show

its corresponding region of convergence (ROC) if

(---)(10%) the system is known to be causal;

 $(\underline{-})(10\%)$ the system is known to be stable.

98年台聯大訊號與系統

14. Determine the continuous-time signal corresponding to the following unilateral Laplace transform,

$$X(s) = s \frac{d^2}{ds^2} \left(\frac{1}{s^2 + 25} \right).$$
(10%)

98年 台聯大 訊號與系統

11. Consider a linear time-invariant system with impulse response $h(t) = e^{-t}u(t+1)$. Determine the output y(t) of the system when the input is $x(t) = \sin^2 t$.

(10%)

98年台聯大訊號與系統

10. The bilateral Laplace transform of a continuous-time signal x(t) is specified by,

$$X(s) = \frac{s+4}{(s+2)(s^2+6s+13)}$$
 with ROC: -3 < Re(s) < -2

Which of following answers is (are) correct?

(A)
$$x(t) = \frac{2}{5}e^{-2t}u(t) - \frac{2}{5}e^{-3t}\cos(2t)u(t) + \frac{3}{10}e^{-3t}\sin(2t)u(t)$$

(B)
$$x(t) = -\frac{2}{5}e^{-2t}u(-t) - \frac{2}{5}e^{-3t}\cos(2t)u(t) + \frac{3}{10}e^{-3t}\sin(2t)u(t)$$

(C)
$$x(t) = -\frac{2}{5}e^{-2t}u(-t) + \frac{2}{5}e^{-3t}\cos(2t)u(t) - \frac{3}{10}e^{-3t}\sin(2t)u(t)$$

(D)
$$x(t) = \frac{2}{5}e^{-2t}u(t) + \frac{2}{5}e^{-3t}\cos(2t)u(-t) - \frac{3}{10}e^{-3t}\sin(2t)u(-t)$$
(6%)