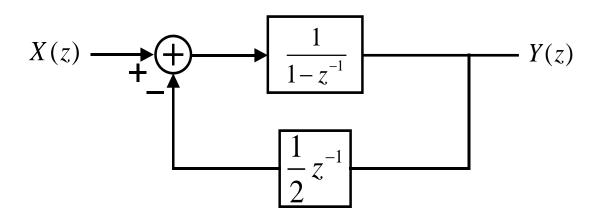

Problem 1 CT LTI Causal Feedforward and Feedback System

- (1) Please find the impulse response of the system (i.e. h(t)). (2.5%)
- (2) Please find the transfer function of the system (i.e. H(s)). (2.5%)

- (1) Please find the impulse response of the system (i.e. h(t)). (2.5%)
- (2) Please find the transfer function of the system (i.e. H(s)). (2.5%)

Problem 2 CT LTI System

Given the impulse response of an CT LTI system, $h(t) = e^{-t}u(t) + e^{-2t}u(t)$.


- (1) Please find the transfer function (i.e. H(s)). (2.5%)
- (2) Please find the differential equation. (2.5%)
- (3) Is it causal? Is it stable? (2.5%)
- (4) Please plot the pole-zero plot and find the R.O.C. (2. 5%)

Problem 3 CT LTI System

Given the transfer function of an CT LTI system, $H(s) = \frac{s-1}{(s+1)(s+2)}$.

- (1) Please find the impulse response (i.e. H[n]). (2.5%)
- (2) Please find the differential equation. (2.5%)
- (3) Please plot the pole-zero plot. (2. 5%)
- (4) If it is causal and stable, what is the R.O.C. (2. 5%)

Problem 4 DT LTI Causal Feedback System

Assuming it is a causal, please answer the following questions.

- (1) Please find the impulse response (i.e. h[n]). (2.5%)
- (2) Please find the transfer function (i.e. H(z)). (2.5%)
- (3) Plot the pole-zero plot. (2.5%)
- (4) Find the R.O.C. of H(z). (2.5%)

Problem 5 DT LTI System

Given the impulse response of an DT LTI system, $h[n] = (0.1)^n u[n] + 2(-0.9)^n u[n]$.

- (1) Please find the transfer function (i.e. H(z)). (2.5%)
- (2) Please find the difference equation. (2.5%)
- (3) Is it causal? Is it stable? (2.5%)
- (4) Please plot the pole-zero plot and find the R.O.C. (2.5%)

Problem 6 DT LTI Causal System

Problem 6-1

Given the difference equation of an DT LTI Causal system, 8y[n] - 2y[n-1] - y[n-2] = 8x[n].

- (1) Please find the transfer function (i.e. H(z)). (2.5%)
- (2)When the input is $x[n] = \delta[n] + \frac{1}{4}\delta[n-1]$, what is the output y[n]?(2.5%)

Problem 6-2

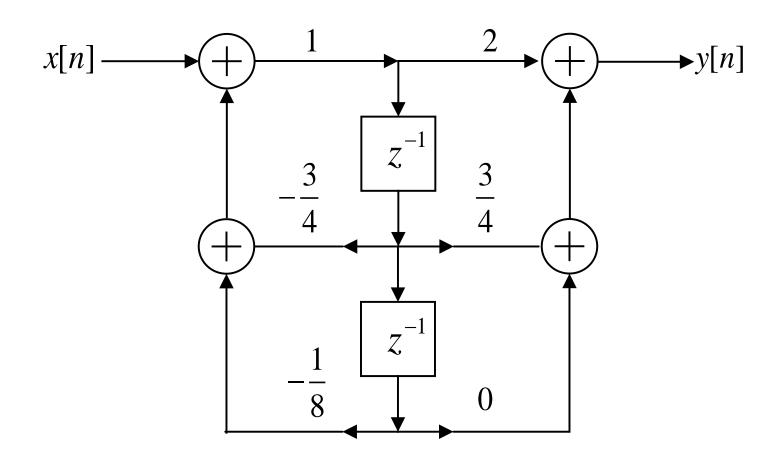
Given the difference equation of an DT LTI Causal system, y[n] = 3x[n] + 6x[n-1] + 9x[n-2].

- (1) Please find the transfer function (i.e. H(z)). (2.5%)
- (2) When the input is x[n] = u[n] u[n-1], what is the output y[n]?(2.5%)

Problem 7 DT LTI FIR System

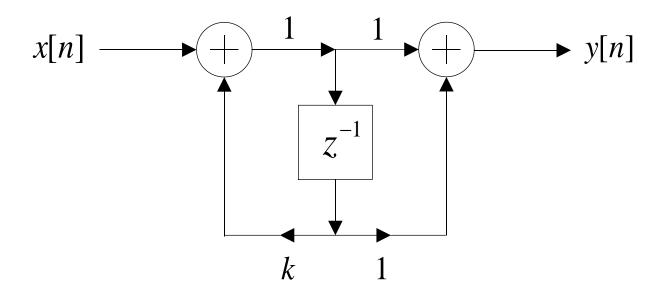
Given the difference equation of an DT LTI system, y[n] = x[n] + x[n-1] + x[n-2] + x[n-3].

- (1) Please find the impulse response (i.e. h[n]). (2.5%)
- (2) Please find the transfer function (i.e. H(z)). (2.5%)
- (3) Plot the pole-zero plot and find the R.O.C. of H(z). (2.5%)
- (4) Draw the implementation of this DT LTI System. (2.5%)


Problem 8 DT LTI System

Given the difference equation of an DT LTI Causal system,

$$y[n] - \frac{5}{6}y[n-1] + \frac{1}{6}y[n-2] = 2x[n] - \frac{5}{6}x[n-1].$$


- (1) Please find the impulse response (i.e. h[n]). (2.5%)
- (2) Please find the transfer function (i.e. H(z)). (2.5%)
- (3) Plot the pole-zero plot and find the R.O.C. of H(z). (2.5%)
- (4) Draw the direct form II implementation of this DT LTI System. (2.5%)

Problem 9 DT LTI Causal System

- (1) Please find the difference equation. (2.5%)
- (2) Please find the transfer function (i.e. H(z)). (2.5%)
- (3) Is the system stable? (2.5%)
- (4) Please find the impulse response(i.e. h[n])). (2.5%)

Problem 10 DT LTI Causal System

- (1) Please find the difference equation. (2.5%)
- (2) Please find the transfer function (i.e. H(z)). (2.5%)
- (3) If the system is stable, what is the range of k? (2.5%)
- (4) When k is 0.5, please find the impulse response(i.e. h[n])). (2.5%)

1625 (5 7) 0 x(x) e 2+ 2 + 5 (e2) x 7777 1(4)= \to \(\frac{1}{40}\) \(\frac{1}{40 CTFS くわメ XXX x(h)= 2 1 2 x(h) e j kzzn e 1 1/czn > (m) x 17 TC ロイドノ h=to Luste = jnth of XG> (4) ×

Jupan City (13-2)53 * (+) X = (+) X ととなったと Xp(4) = X1(f=6-X1(£)=f5 X1(f-mfs) Xp[c]= fxx 5m-mN] (1)4)1× |× |-(4)1× (1/2) dx = (4) dx X/2(m) = x1 (m) & \(\sigma \) \(\sigma \) Xp[k] - X/Cf=6-1) 2=-po 2/m/2

Table 01 \bigstar $\delta(t)$ $\int sinc(t)$ u(t)rect(t) $e^{-at}u(t)$ $e^{+j2\pi f_o t}$ $x(t) = \int_{-\infty}^{+\infty} X(f)e^{+j2\pi ft}df$ CTFT $\delta(f-f_o)$ $\frac{1}{j2\pi f} + \frac{1}{2}\delta(f)$ $a+j2\pi f$ sinc(f)rect(f)**Basic Function** $X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft}dt$

 $e^{-j2\pi f_o t}$

 $\delta(f+f_o)$

DTFT

Basic Function

	I	T						
,<	· (<	<	5	<	<	(
$e^{-j2\pi f_o n}$	$e^{+j2\pi f_o n}$	$a^n u[n]$	u[n] .	1	$\delta[n]$	$x[n] = \frac{\sin(K\pi n)}{\pi n}$	$x[n] = \begin{cases} 1, n \le M \\ 0, else \end{cases}$	$x[n] = \int_{-\frac{1}{2}}^{+\frac{1}{2}} X(f) e^{+j2\pi f n} df$
$\delta(f+f_o)$	$\delta(f-f_o)$	$\frac{1}{1-ae^{-j2\pi f}}$	$\frac{1}{1-e^{-j2\pi f}} + \frac{1}{2}\delta(f)$	$\delta(f)$		$X(f) = \begin{cases} 1, f \le K/2 \\ 0, else \end{cases}$	$X(f) = \frac{\sin((2M+1)\pi f)}{\sin(\pi f)}$	$X(f) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j2\pi fn}$

CTFS

Basic Function

$x(t) = e^{-j\frac{m2\pi t}{T}}$		$\bigvee x(t) = \sum_{n=-\infty}^{+\infty} \delta(t-nT)$	$\underbrace{x(t)} = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X[k] e^{+j\frac{k2\pi t}{T}}$
$X[k] = T\delta[k+m]$	$X[k] = T\delta[k-m]$	X[k] = 1	$(X[k]) = \int_0^T x(t)e^{-j\frac{k2\pi t}{T}}dt$

DTFS

Basic Function

$x[n] = e^{-j\frac{m2\pi n}{N}}$	$x[n] = e^{+j\frac{m2\pi n}{N}}.$	$x[n] = \sum_{l=-\infty}^{+\infty} \delta[n-lN]$	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j\frac{k2\pi n}{N}}$
$X[k] = N\delta[k+m]$	$X[k] = N\delta[k-m]$	X[k]=1	$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{k2\pi n}{N}}$

		(7	5	<u> </u>	0	0	<u> </u>	<	<		
	- \	x(at)	$-j2\pi tx(t)$	$\int_{-\infty}^{\infty} x(\tau) d\tau$	$\left(\frac{d}{dt}x(t)\right)$	$x(t) \times y(t)$	x(t) * y(t)	$e^{+j2\pi jot}$	$x(t-t_0)$.	ax(t) + by(t)	$x(t) = \int_{-\infty}^{+\infty} X(f) e^{+j2\pi f t} df$	able 05
$\int_{-\infty}^{+\infty} x(t) ^2 dt =$	$x^*(t) = x(t)$					٠					$^{j2\pi ft}df$	CTFT
$\int_{-\infty}^{+\infty} x(t) ^2 dt = \int_{-\infty}^{+\infty} X(f) ^2 df$		$\frac{1}{ a }X(\frac{f}{a})$		$\frac{1}{2\pi f}$	$\left(j2\pi fX(f)\right)$	X(f)*Y(f)	$X(f) \times Y(f)$	$X(f-f_0)$.	$e^{-j2\pi f_0}X(f)$	aX(f)+bY(f)	$X(f) = \int_{-\infty}^{+\infty} x(t)e^{-j2\pi ft} dt$	Basic
				$\left(\frac{1}{2}\delta(f)\right)$,						$^{i\pi f}dt$	Basic Property

$\sum_{n=-\infty}^{+\infty} x[n] ^2 =$		$\bigvee x[\frac{n}{p}]$	$\sqrt{-j2\pi nx[n]}$	$\bigvee \sum_{m=-\infty}^{n} x[m]$	$\checkmark x[n]-x[\tilde{n}-1]$	$\bigvee x[n] \times y[n]$	$\bigvee x[n]*y[n]$	$\bigvee e^{+j2\pi f_0 n} x[n]$		χ $ax[n]+by[n]$	$x[n] = \int_{-\frac{1}{2}}^{+\frac{1}{2}} X(f) e^{+j2\pi f n} df$	Table 06 DTFT
$\sum_{n=-\infty}^{+\infty} x[n] ^2 = \int_{-\frac{1}{2}}^{+\frac{1}{2}} X(f) ^2 df$	$\to X^*(f) = X(-f)$	X(pf)		$X(f) \times \left(\frac{1}{1 - e^{-j2\pi f}} + \frac{1}{2}\delta(f)\right)$	$(1-e^{-j2\pi f})X(f)$	X(f)*Y(f)	$X(f) \times Y(f)$	$X(f-f_0)$	$e^{-j2\pi f n_0} X(f)$	aX(f)+bY(f)	$X(f) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j2\pi fn}$	Basic Property

Table 07 **CTFS Basic Property**

		<	<	<	<	1	<	<	
$\int_0^T \left x(t) \right ^2 dt$	$x^*(t) = x(t) \blacktriangleleft$	x(at)	$\frac{d}{dt}x(t)$	$x(t) \times y(t)$	x(t) * y(t)	$e^{+j2\pi f_0 t}x(t)$	$x(t-t_0)$	ax(t) + by(t)	$x(t) = \frac{1}{T} \sum_{k=-\infty}^{+\infty} X[k] e^{+j\frac{k2\pi t}{T}}$
$\int_0^T \left x(t) \right ^2 dt = \frac{1}{T} \sum_{k=-\infty}^{+\infty} \left X[k] \right ^2$	$\longleftarrow X^*[k] = X[-k]$	$\frac{1}{a}X[k]$	$j\frac{k2\pi}{T}X[k]$	$\frac{1}{T}X[k]*Y[k]$	$X[k] \times Y[k]$	$X[k-Tf_0]$	$e^{-jrac{k2\pi t_0}{T}}X[k]$	aX[k]+bY[k]	$X[k] = \int_0^T x(t)e^{-j\frac{k2\pi t}{T}}dt$

		<	<	<	<	<	<			1•
$\sum_{n=0}^{N-1} x[n] ^2$	$x^*[n] = x[n] \blacktriangleleft$	$x[\frac{n}{p}]$	x[n]-x[n-1]	$x[n] \times y[n]$	x[n] * y[n]	$e^{+j2\pi f_0 n}x[n]$	$x[n-n_0]$	ax[n]+by[n]	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{+j\frac{k2\pi n}{N}}$	Table 08 DTFS
$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{n=0}^{N-1} X[k] ^2$	$\longrightarrow X^*[k] = X[-k]$	X[k]	$\left(1-e^{-j\frac{k2\pi}{N}}\right)X[k]$	$\left(\frac{1}{N}\right) X[k] * Y[k]$	$X[k] \times Y[k]$	$X[k-Nf_0]$	$\left(e^{-j\frac{k2\pi n_0}{N}}X[k]\right)$	aX[k]+bY[k]	$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{k2\pi n}{N}}$	Basic Property

tome response x(+) - (CT 3060 Plot Cos(22+++0) - (CT) - (H) - (H) - (H) CT) - (O) (22++++++ CH) 22+t e finte CT LTI System 7 (+) & (+) & (+) & (+) + 1/4 = (+ (j 2) +) . e 1] x ++ (ナ)かし

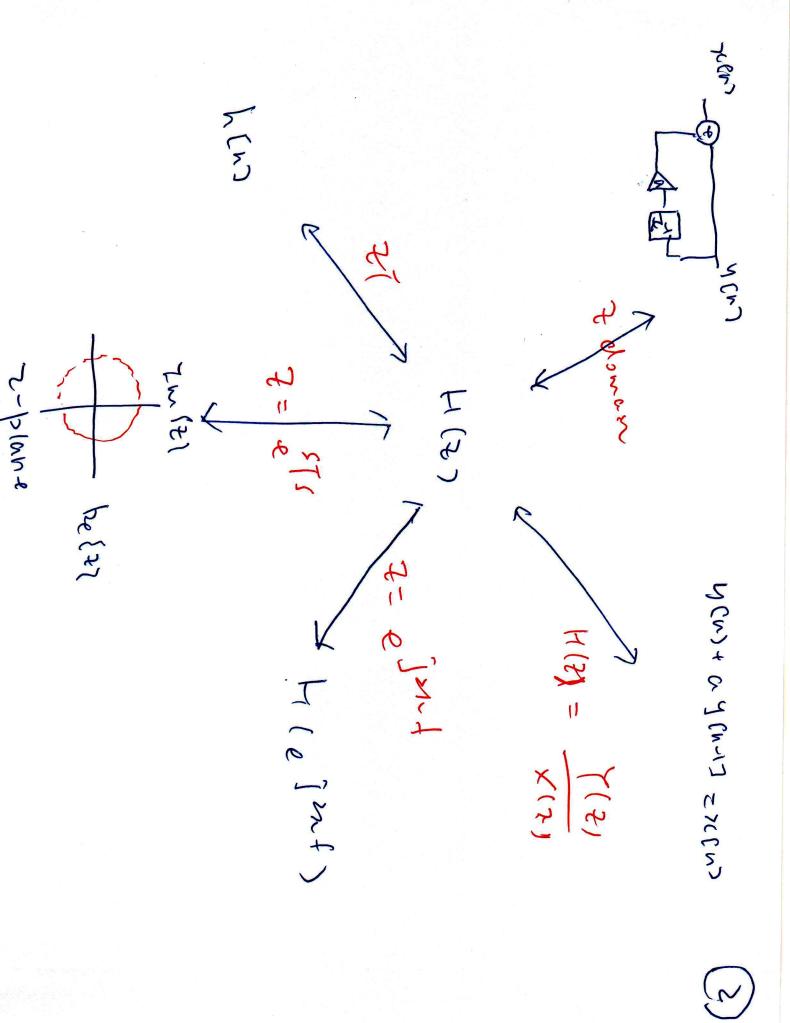
Pole-tero Hx & -> (CT) -> HUI etst

(S) II ruply s pole-zero 4(4)+ (2, 44) - (2, x4) てくりょと (Bode

(~)

Constat / (In) Higherty out part + CHillerti 12000 12101 hofs = chof-of hit = - e vi-x) Pale - Zero (to) - 1 - (to) - (to) - (to) Marmos mitality Grilly Associated Course 132 Bostality 4 Consol Bako statility Cansal Pres or 2 2 2 20 1 1 2 25 的智和多级多大学等国 图本未至10g opd GB 图11g ca algusts 引加州北への一点できます可るか 本面型多马则在150gg 电处气管备条气制 mind (Milmind) くれられか (00) (26 50

Table 11 **Basic Function**


$h(t) = e^{-at} \sin(\omega_o t) u(t)$	$h(t) = e^{-at} \cos(\omega_o t) u(t)$	$h(t) = \sin(\omega_o t) u(t)$	$h(t) = \cos(\omega_o t) u(t)$	h(t) = u(t)	$h(t) = \frac{d}{dt}\delta(t)$	$h(t) = \delta(t)$	$h(t) = -te^{-at}u(-t)$	$h(t) = te^{-at}u(t)$	$h(t) = -e^{-at}u(-t)$	$h(t) = e^{-at}u(t)$	$h(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} H(s)e^{+st} ds$
$H(s) = \frac{\omega_o}{(s+a)^2 + \omega_o^2}$	$H(s) = \frac{s+a}{(s+a)^2 + \omega_o^2}$	$H(s) = \frac{\omega_o}{s^2 + \omega_o^2}$	$H(s) = \frac{s}{s^2 + \omega_o^2}$	$H(s) = \frac{1}{s}$	H(s) = s	H(s)=1	$H(s) = \frac{1}{(s+a)^2}$	$H(s) = \frac{1}{(s+a)^2}$	$H(s) = \frac{1}{s+a}$	$H(s) = \frac{1}{s+a}$	$H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt$
$ROC: Re\{s\} > -a$	$ROC: Re\{s\} > -a$	$ROC: Re\{s\} > 0$	$ROC: Re\{s\} > 0$	$ROC: Re\{s\} > 0$	ROC: all s – plane	ROC: all s – plane	$ROC: Re\{s\} < -Re\{a\}$	$ROC: Re\{s\} > -Re\{a\}$	$ROC: Re\{s\} < -Re\{a\}$	$ROC: Re\{s\} > -Re\{a\}$	$ROC: R_{x}$

Basic Property

-th(t)	$\int_{-\infty}' h(\tau) d\tau$	$\frac{d}{dt}h(t)$	$e^{at}h(t)$	h(t-a)	$h_1(t)*h_2(t)$	$ah_1(t)+bh_2(t)$	$h(t) = \frac{1}{j2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} H(s)e^{+st} ds$
$\frac{d}{ds}H(s)$	$\frac{1}{s}H(s)$	sH(s)	H(s-a)	$e^{-as}H(s)$	$H_1(s)H_2(s)$	$aH_1(s)+bH_2(s)$	$H(s) = \int_{-\infty}^{+\infty} h(t)e^{-st}dt$
$ROC: R_h$	$ROC: R_h \cap Re\{s\} > 0$	$ROC: R_h$	$ROC: R_h + Re\{a\}$	$ROC: R_h$	$ROC: R_{h_1} \cap R_{h_2}$	$aH_1(s)+bH_2(s)$ $ROC:R_{h_1}\cap R_{h_2}$	^{-st}dt $ROC:R_h$

perpenso 3 mg Bode 171. + 1224 " Cos(22fn+0) - LIZ- (H(e) 20-1) (G(22fn+0+ < H(e)) int からん 7([12] -5650) H(e) mt). e f) mt. (4) 4 (4) y = (4) 4 xch) Ly h Ch) ~~~ 1 F (3) H

H(2)2 (17) (-1/2) es) Pale-Zero Plot Bode Plot 2-plane (2)>(a) h(m) = a (u(n) 1012/8 > h(m) 2-0 ncn-1) (cuvial X5/8) [Chall Solo D) (de D) (de D) - (H(e]n+) (Os (2+++2+(e)n+)) Re (2) 1 S (h [m] / < 00 182180 Stability + Cansal 四图图图图图到到明明 Stable Co FMASSIPS是在军门国内 Hydnat Stability (. cansal) 图图集队则为多数外 BZBO FEALITY 927-1-78日 absolutely < HLesin) (HCesm) Sam aby

$h[n] = a^n \sin(\omega_o n) u[n]$	$h[n] = a^n \cos(\omega_o n) u[n]$	$h[n] = \sin(\omega_o n) u[n]$	$h[n] = \cos(\omega_o n)u[n]$	h[n] = u[n]	$h[n] = \delta[n - n_o]$	$h[n] = \delta[n]$	$h[n] = -(n+1)a^nu[-n-1]$	$h[n] = (n+1)a^n u[n]$	$h[n] = -a^n u[-n-1]$	$h[n] = a^n u[n]$	$h[n] = \frac{1}{j2\pi} \oint_{C} H(z) z^{n-1} dz$	Table 12 ZT
$H(z) = \frac{a\sin(\omega_o)z^{-1}}{1 - 2a\cos(\omega_o)z^{-1} + a^2z^{-2}} ROC: z > a$	$H(z) = \frac{1 - a\cos(\omega_o)z^{-1}}{1 - 2a\cos(\omega_o)z^{-1} + a^2z^{-2}} ROC: z > a$	$H(z) = \frac{\sin(\omega_o)z^{-1}}{1 - 2\cos(\omega_o)z^{-1} + z^{-2}} \qquad ROC: z > 1$	$H(z) = \frac{1 - \cos(\omega_o) z^{-1}}{1 - 2\cos(\omega_o) z^{-1} + z^{-2}} \qquad ROC: z > 1$	$H(z) = \frac{1}{1-z^{-1}}$ $ROC: z > 1$	$H(z) = z^{-n_o}$ ROC: all $z - plane$	H(z)=1 ROC: all $z-plane$	$H(z) = \frac{1}{(1 - az^{-1})^2}$ $ROC: z < a $	$H(z) = \frac{1}{(1 - az^{-1})^2}$ $ROC: z > a $	$H(z) = \frac{1}{1 - az^{-1}}$ $ROC: z < a $	$H(z) = \frac{1}{1 - az^{-1}}$ $ROC: z > a $	$H(z) = \sum_{n=-\infty}^{+\infty} h[n]z^{-n} \qquad ROC: R_x$	Basic Function

Z

Basic Property

$H(z) = \sum_{n=-\infty}^{+\infty} h[n]$ $aH_1(z) + bH_2(z)$ $H_1(z)H_2(z)$ $z^{-n_0}H(z)$ $H(\frac{z}{a})$ $(1-z^{-1})H(z)$ $\frac{1}{1-z^{-1}}H(z)$ $-z\frac{d}{dz}H(z)$			T					
$\sum_{n=-\infty}^{+\infty} h[n]$ $\sum_{n=-\infty}^{+\infty} h[n]$ $\sum_{n=-\infty}^{+\infty} h[n]$ $\sum_{n=-\infty}^{+\infty} h[n]$ $\sum_{n=-\infty}^{+\infty} h[n]$	nh[n]	$\sum_{m=-\infty}^{n} h[m]$	h[n]-h[n-1]	$a^n h[n]$	$h[n-n_o]$	$h[n]*h_2[n]$	$ah_1[n] + bh_2[n]$	$h[n] = \frac{1}{j2\pi} \oint_c H(z) z^{n-1} dz$
		$\frac{1}{1-z^{-1}}H(z) \qquad ROC: R_h \cap z ^{>}_{<} 1$		$H(\frac{z}{a})$ $ROC: a R_h$		$H_1(z)H_2(z) \qquad ROC: R_{h_1} \cap R_{h_2}$	$aH_1(z)+bH_2(z)$ ROC: $R_{h_1}\cap R_{h_2}$	$H(z) = \sum_{n=-\infty}^{+\infty} h[n]z^{-n} \qquad ROC: R_h$

