Chapter 1 Answers

11, Converting from polar to Cartesian coordinates:
lemi* = Leos(-7) = -3

e"’:%cmﬁ=—§. 5e 7
% = cos(}) +isin(3) =5, ¢ 1F =cos §) = jsin(5) =~
51 = 77 =3, VEeT = 2 [cos (3) +sin(f)) = 1+
J‘jc.lt!=\.@e‘i"=1+j. ﬂe#:ﬁe#:l—g
J:éc;i' =1-j
1.2, Converting from Cartesian to polar coordinates:
5 = 5e°, —2= 2097, —3f = 3e77F
Lo meth, 14=vEdt, (- jf =20
i - =t =i "E:; 2 = i

-]
1.3. (a) Eu= j e~4dt = 1, Poo = 0, because Eo < 00
0
O
(b) 7at) = 39, |z3()] = 1. Thesefore, B = [mu,_m[’d: = ] dt = 60, P =
-0 -
T T
im s 2 i = li =
i [ oo m i g [ de= fim1 =1

(e) z3{t) = cos(t). Therefore, Ex = % |zalt)Pdt = ]m cos?(t)dt = oo,

-0
3 o1 T (14 cos(20) i
Foo = it o7 f_.,.“’“,{‘)d‘ = Hm, 37 j_f ( 2 ) =3

(@) r1in] = (§)" uln], lznli? = (1)" uln). Thercfore, Eco = 5 n? - T4

n=—00 n -

Py =0, beeanse Eg < o0

(e) z3[n) = SUF+E) |za[n]|® = 1. Therefore, Ey, = E |z2[n]? = oo

LES

N
1 1
= fim —— ? = lim —— 1=1.
P = M2V +1 ngﬂ‘ﬂ"“ NIV '2;" :
e

(f) z3ln] = cos(§n). Therefore, Ee = 3 |zaln]l® =

”
cos’{zn) = o0,
A= —00 n=-o0

S o S e sy i ("])—5
= Jim sxry 2o (g = MmN z i
=N n=-N
1.4. (a) The signal z{n] is shifted by 3 to the right. The shifted sigoal will he zero for n < 1
and n = 7.
(b) The signal zln] is shifted by 4 to the left, The shifted signal will be zero for n < -6
andn > 0.

16 (a) Relzi(t)} = —2 = 2 cos(Ot + x) ]
(b) Re{za(t)} = v2eos(7) cos(3t + 2%) = cos(3t) = ¥ cos(3t + 0
() Re{zs(t)} = e *sin(3t +x) = e teon(3t+ F)
(d) Re{zal)} = —e~in(100¢) = e~ 5in(100t + ) = e~ cos(100¢ + 3)
1.9, (8) 7,(t) is a periodic complex exponential,
2(t) = 51 = 00 E)
The fundamental period of z1(t) is §§ = ¥
(b) z3(t) is a compl P tial iplied by a decaying exponential. Therefore, z2(t)
is not periodic.
(e) z3[n] is a periodic signal.

Za[l\] = H'r-n o ejlﬂ

i tal period of 17' =2

z3ln] is a 1 p tial with a fi
(d) z4[n] is a periodic signal. The fundamental period is given by N = m(3255) = m{}).
By chousing m = 3, we obtain the fundamental period to be 10.
(e) zs[n] is not periodic. z5{n] is a complex exponentinl with wo = 3/5. We cannot find
any integer m such that m(ZE) is also an integer. Therefore, z3(n] is not periodic.

1.10.
z(t) = 2cos(10¢ + 1) — sin{dt — 1)

Period of first term in RHS = §§ = §
Period of second term in RHS = -k )
Therefore, the overall signal is periodic with a period which is the least common multiple

of the periods of the first and second terms. This is equal to m.

1.11.
zjn| =1 L LS

Period of the first term in the RHS =1

Period of the second term in the RHS = m(;2%) =7 (when m = 2)

Period of the third term in the RHS = mh%g) =5 (when m = 1)

Therefore, the overall signal zin] is periodic with a period which is the least common
multiple of the periods of the three terms in z[n]. This is equal to 35.

1.12. The signal z[n] is as shown in Figure $1.12. z[n] can be obtained by flipping uln] .-u:ul then
shifting the fipped signal by 3 to the right. Thercfore, z[n] = u|—n + 3]. This implies that
M= -1and ng= -3

1.5.

1.13.

1.

-

4.

(c) The signal z[n] is flipped. The flipped signal will be zero forn < —4and n > 2.

{d}'l'.'hes‘xgu_a] z|n) is flipped and the Aipped signal is shifted by 2 to the right. This new
signal will be zero for n < ~2and n > 4.

(e) The signal z[n] is fipped and the flipped signal is shifted by 2 to the lefe. Thi
signal will be zero for n < —6 and n > 0. Wt 2 B ik

(a) (1 - ¢t} is obtained by fipping =(t) and shifting the i signal by 1 he ri
'I'hereﬁmm,x(l—I)wil]hem:'mﬁnrS)»—z.l i i KoLy KL ek
(b) From (a), we know that z(1—t) is zero for t > —2. Similarly, z{2—{) is zero for £ > —1.
Therefore, z(1 — 1) + z(2 — £) will be zero for t > =2.
(<) =(3t) is obtained by linearly compressing =(t) by a factor of 3. Therefore, z(3t) will be
zero for £ < 1.
(d) z(¢/3) is obtained by linearly stretching z(t) by a factor of 3. Therefore, z(t/3) will be
zero for t < 9. .
{a) z,(t) is not periodic because it is zero for t < 0.
(b) z3[n] = 1 for all n. Therefore, it is periodic with a fundamental period of 1.
(e) z3|n] is as shown in the Figure S1.6.
1 i i .
ALY I IR P
'1-1-1-1011:-’}[ n
-1 -1 -1
Figure S51.6
Therefore, it is periodic with a fundamental period of 4.
(2)
1 1
Ev{z[n]} = E[xI[ﬂ] +zy[=n]) = E(u[ﬂ] - uln = 4) + u[-n] - u[-n - 4])
Therefore, Ev{zi[n]} is zero for |n] = 3.
(b) Since zz(t) is an odd signal, Ev{x;(t)} is zero for all values of L.
()
1 1.1, 1
Eulzslnl} = Saulnl + zil-n]) = 3((3)"uln — 3] = (3)"s{-n - 3]
( Therefore, £v{z3[n]} is zero when |n| < 3 and when [n| = oo,
d)
1
Evlz0)} = 3(aalt) + z(~1)) = %[,-“uu +2) = eMu(-t+2)
Therefore, Eu{zy(t)} is zero only when 8] — oo,
2
AL
;a-lo | 23 - "
Figure 51.12
i 0, t<=2
i) = f' :(r)ﬂ:/ (Blr+2) —r—Mdt={ 1, -2<t<?2
-0 b 0, t>2
Therefore,
2
Ex= j dt =4
-2
The signal z{t) and its derivalive g(t) are shown in Figure S51.14.

e I

-1 o 1) F3 +
-2 =3 -3

Figure 51.14

Therefore,
o o
oty =3 Y &(e-2k)-8 % S(e-2k-1)

[ S— k= oo

This implies that A; =3, ¢, =0, A= -3, and {3 = 1.
(8) The signal za[n], which is the input to §;, is the same as wi[n]. Therefore,

win] = mn-2+ %n[n -3

nr-2+ %y;[n-s]

2y[n = 2]+ dzifn - 3] + (21l ~ 3] + 41 [n - 4))
= 2ry[n—2]+5nn -3+ 25 (n-4]

The input-output relationship for 5 is
yln] = 2z[n — 2] + 5z{n = 3] + 2x[n — 4]



116.

(b} The input-output relationship does not change if the order in which S| and 5; are
connected in series is reversed. We can easily prove this by assuming that 5, follows
S, In this case, the signal 7[n), which is the input to 5y, is the same as yafn-
Therefore,
wln) = nfn)+dnn-1]

= Ipn]+dwin - 1] : 3

= zzfn -3+ %wgln = 3)) + 4(za[n — 3] + iz—,-|n. —4j)

= 2r3ln — 2 + Sxgln — 3] + 2x3[n — 4]

The input-output relationship for § is once again
yin] = 2zln — 2] + 5zn — 3] + 2z[n — 4]

(a) The system is not memoryless because y[n] depends on past values of z[n).

(b} The output of the system will be y[n] = &[n}d[n - 2] = 0.

(&) From the result of part (b}, we may conclude that the system output is always zero for
inputs of the form &[n — k], k € Z. Therefore, the system is not invertible.

(a) The system is not causal because the output y(t) at some time may depend on future
values of z(¢). For instance, y(—=) = =(0).

(b) Consider two arbitrary inputs z1(¢) and z2(t).

z,(t) — yi(2) = x (sin(t))
z2(t) — wa(t) = 3 (sin(t))
Let z3(t) be a linear combination of z1(t) and zz(t). That is,
z3(t) = az,(t) + bza(t)

where o and b are arbitrary scalars. If z4(t) is the input to the given system, then the
corresponding cutput ya(t) is

ws(t) =y (sin(t))
azy (sin(t)) + bz (sin(t))

ay (i) + byalt)

[}

Therefore, the system is linear.

1.18. (a) Consider two arbitrary inputs z;[n] and zan].

1.19.

m4ng

zi[n] — pln] = z %]

k=n-ng

(a} (1) Consider two arbitrary inputs z,(t) and z3(t).
z(t) = nlt) = Fn(t-1)
z2(t) = y2(t) = z2(t - 1)
Let z3(t) be a linear combination of zy(¢) and z2(t). That is,
z3(t) = axy(t) + br2(t)
where a and & are arbitrary scalars. If z3(t) is the input to the given system. then
the correspanding output ys(t) is
nlt) = faalt-1)
Plaz(t - 1) + bra(t — 1))
ayi(t) + bya(f)

Therefore, the system is linear.
(ii) Consider an arbitrary input z,(t). Let
n(t) = (e - 1)
be the corresponding output. Consider a second input z3(1) obtained by slnfting

zy(¢) in time:
z3(t) = z3(t = to)

The output corresponding to this input is
wlt) = Pza(t = 1) =zt = 1 = to)

Also note that
wilt - to) = (¢ — t)zy(t — 1 - to) # yalt)

Therefore, the system is not time-invariant.
{b) (1) Consider two arbitrary inputs z,[n] and zz[n].
z[n] — wfn) = 23 -2
za[n] — tnln) = =i(n - 2
Let z3[n] be a linear combination of z;[n] and z;[n]. That is,
za[n] = az[n] + bza[n]
where ¢ and b are arbitrary scalars. If z3]n] is the input to the given system. then
the corresponding output yain] is
il = ln-2)
= (az|n — 2] + bzafn - 2))°
= a’zn - 2] + ¥zi[n — 2] + 2abry[n — 2Yzafn - 2]
# ayn] + banln]
Therefore, the system is not linear.

nt

zafn] — win] = 3 zafk]

k=n-no

Let z3[n] be a linear combination of z,[n] and za[n]. That is,
#1[n] = az[n] + bz;in]

where ¢ and b are arbitrary scalars. If z3[n] is the input to the given system, then the
corresponding output ys[n) is

wih] = ¥ =
::n:n ntno ntng
= 3 enk+tml)=a 3 nik+bs Y ml
k=n-ng k=n=ng k=n=ng
= apn] + byzln)

Therefore, the system is linear,
(b) Consider an arbitrary input z;[n). Let

LR

wnlbl= Y =nifk

kzneng
‘be the corresponding output. Consider a second input 3[n] obtained by shifting . [n]
in time:
£3fn] = zy[n - ny)
The output corresponding to this input is

n+ng g A—n 40y
whl= Y zlkl= ¥ ak-nl= 3 K
k=n=ng kmn-ng k=n=-n; -ng
Also note that
A-Ai4ng
wln=ml= 3 k.
k=n=nj=ng
Therefore,

vn] = yiln - n,)
‘This implies that the system is time-invariant.
({e) Hiz[n]| < B, then
vin] < (20 +1)B

Therefore, C < (2ng + 1)B.

(i1) Consider an arbitrary input z[n]. Let
wiln) = zi[n - 2]

be the ponding output. Consider a second input z2{n] obtained by shifting
zy[n] in time:

Z3[n] = z3[n — ng]

The output corresponding to this input is
w2l = 2fn — 2] = zln ~ 2 - ng]
Also note that
thn — ng] = zi[n — 2 — ng| .

Therefore,

taln] = pin — ng)
This implies that the system is time-invariant,

(¢) (i) Consider two arbitrary inputs z,[n] and z[n].

ziln] = nlnl =nifn+ 1] =zfn -1
z3[n] = w[n] = zafn 4 1] — za[n - 1]
Let 23[n) be a linear combination of 1[n] and zg[n]. That is,
z3[n} = azi[n] + bza[n]

where o and b are arbitrary scalars. If z3[n] is the input to the given system, then
the corresponding output ysln] is
win] = =zn+1)-z3h-1)

= azfn+ 1] +bxyfn + 1] - azyfn — 1] - brgfn - 1)

= a(z[n+1] = zifn = 1) + bzzfn + 1 = 220 - 1))

= ayi[n] + byeln)
Therefore, the system is linear.

(ii) Consider an arbitrary input x[n]. Let
winl=zin+1]-xn-1]
be the corresponding output. Consider a second input z2[n] obtained by shifting
zy[n] in time:
zaln] = zafn - no]

The output corresponding to this input is

vl =zn+1] -2ln -1 =5fn + 1 - ng) = 2)[n = 1 - ng)



Also uote that
iln — no] = @y + 1 —ng] = mafn = 1 =]

Therefore,
waln) = min —nd

This implies that the system is time-invariant.
{d) (i) Consider two arbitrary inputs 2, (t) and z2(t).
2 (t) — wi(t) = 0d{=1(1)}
23(t) — w(t) = Od{za2(t)}
Let z3(t) be a linear combination of x1(t) and z2(t). That is,

z3(t) = ez (t) + bralt)

whete @ and b are arbitrary scalars. If z3(t) is the joput to the given svstemn. then

the corresponding output yy(t) is
Od{za(t)}

Od{az;(t) + bralt)}
a0d{z, (1)} + bOd{z2(t)} = e (t) + bip(t)

yalt)

nown

Therefore, the system is linear.
(ii) Consider an arbitrary input z1(t). Let

) = O (0) = 220

be the corresponding output. Consider a second input z(t) obtained by shifting

z1|n] in time:

za(t) = x1(t — to)
The output corresponding to this input is

nit) = od{:z(t)}:M

. mlt=t)-nl-t-b)
i 2
Also note that

it tg) = BT L) 4y

Therefore, the system is not time-invariant.
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1.20. (a) Given
2(t) = &% — y(t) = &Y

2(f) = ™I — y(t) =¥
Since the system is linear,
1. .
zit) = i[t’h +e™ %) 5 p(t) = %[eﬂl +e7 13
Therefore,
2,(£) = cos(2t) — i {¢) = cos(3t)
(b) We know that
=] 32! =52
zo(t) = cos (2[8 - %]) = EE,_:;GJ-E—-J—
Using the linearity property, we may once again write
1 i , .
() = E(e"e’" +ejem i) oyt = %(c'-’:"" +ele™¥) = cos( Bt

Therefore,
2 (2) = cos(2(t = 1/2)) — w(t) = cos(3t - 1)

1.21. The signals are sketched in Figure 51.21.
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Figure 51.21

1.22. The signals are sketched in Figure 51.22.
1.23. The even and odd parts are sketched in Figure 51.23.
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Figure 51.24

1.24. The even and odd parts are sketched in Figure 51.24.
1.25. (a) Periodic, period = 2w /(4) = = /2.
(b) Periodic, period = 27 /(x) = 2.
(€) (1) = [1 + cos(4t — 2r/3)}/2. Periodic, period = Zw/(4) = 7/2.
(d) z(t) = cos(4t) /2. Periodic, period = 2= /(4x) = 1/2.
() z(t) = [sin(4nt)u(t) — sin(dwt)u(—1)]/2. Not periodic.
(f) Not periodic.
1.26. (a) Periodic, period = 7.
(b) Not periodic,
(¢} Periodic, period = 8.
(d) z[n] = (1/2)[cos(3wn/4) + cos(xr/4)]. Periodic, period = 8.
(e) Periodic, period = 16.
1.27. (a) Linear, stable.
(b) Memoryless, linear, causal, stable.
(c) Linear
(d) Linear, causal, stable.
(e) Time invariant, linear, causal, stable.
(f) Linear, stable.
(g) Time invariant, linear, causal.



1.28.

1.29.

1.30.

1.31.

1.33.

{a) Linear, stable.

(b) Time invariant, linear, causal, stable.
() Memoryless, linear, causal.

(d) Linear, stable.

(e) Linear, stahle.

(f)} Memoryless, linear, causal, stable.
(g) Linear, stable.

(a) Consider two inputs to the system such that

ol S il = Relzilnl}  and  aafn] S saln] = Refzzlol)-

Now consider a third input z3[n] = zi[n] + Z2[n]. The corresponding system output
will be

wnln] = Re{zs[n)}
= Re{niln] + zain]}
= Refzi[n]} + Re{zaln]
= il +

Therefore, we may conclude that the system is additive.

Let us now assume that the input-output relationship is changed to yln] = Re(e*/z[n]}.

Also, consider two inputs to the system such that
zifn] S in] = Re{*x1fnl}

and
z2|n] 3 winl = Re{e™xin]).

New consider a third input z3[n) = #1[n] + zqln]. The corresponding system output

will be
win] = Re{e™zfn]}
= cos(an/d)Re(zaln]} - sin(wn/4)Im{z;(n]}
+ cos(am/4)Re{z1[n]} — sin(mn/A)Zm{z: ()
+ cos(rn/4)Re{za[n]} - sin{xn/4)Tm{zz(n]}
= Re{e™zi[n)} + Rele™zanl}
= wiln] +waln)
Therefore, we may |ude that the system is additive.
13

(a) Invertible. lverse system: y(t) = z(t +4). .

(b) Non invertible. The signals z(t) and zy(t) = z(¢) + 2 give the same outpul

(c) Non invertible. 4[n] and 24[n] give the same output.

(d) Invertible, Inversc system: y(t) = dz(t)/dt.

(e) Invertible. Inverse system: y[n] = zln+1] for n > 0 and yln] = zlr| for » < 0.

(f) Non invertible. z[n] and —z|n] give the same result,

(g) Invertible. Inverse system: yfn) = z[l = n].

(k) Invertible. Inverse system: y(t) = 2(t) + dz(2) fdt.

(i) Invertible. Inverse system: y[n] = zfn) = (1/2)zln — 1.

(j) Nen invertible. If z(t} is any constant, then y(t) = 0.

(k) Non invertible. é[n] and 24[n] result in ylnj=0.

(1) lnvertible. Inverse system: y(t) = =(t/2).

(m)Non invertible, z[n] = 8[n] + 8[n — 1] and za(n] = &[n] give y[n] = d§[n).

(n) Invertible. Inverse system: yln] = z(2n).

(n) Note that z3(t) = na(f) - =it —2). Therefore, using lincarity we get yalt) = gith =
y(t — 2). This is as shown in Figure S1.31,

(b) Note that za(t) = Ti(t) + Tt + 1). Therefore, using linearity we get malt) = () +
yi(t + 1). This is as shown in Figure 51.31.

Y &) ¥t
2
i d +
-2
Figure $1.51

. All statements are true.

(1) z(t) periodic with period T y:(t) periodic, period T/2.

{2) w1 (t) periodic, period T, z(t) periodic, period 2T.

(3) z(t) periodic, period T’ y2(t) periodic, period 21"

(4) y(t) periodic, period T =(2) periodic, period T/2.

1) True. zln] = zln + Nliwln] = win + Nol. ie. periodic with Ng = NJ/2if N is even,
and with period Ny = N if N is odd.

15

1.34.

(b) (i) Coasider two inputs to the system such that

1 [dza()]?

2
20 5n0= -5 (50w =m0 dno-

x{t) x(t) dt
Now consider a third input z3(t) = zy(t) + za2(t). The corresponding system
output will be A
_ ) [dm®)]?
wt) = o | Te ]
2 1 [dlz.m + z3(8))]?
2 (t) + =3(t) di
# wlt) + ()
Therefore, we may conclude that the system is not additive.

Now consider a fourth input z4(t) = ez1(t). The corresponding cutput will be

1 [dz()]?
)

wit) = =0

1 [dlaz;(t))]*
T oamfe) [ dt
o [0’

) | at

= aplt)
Therefore, the system is homogeneous.

(i) This system is oot additive. Consider the following example. Let xjjn] = 2é[n +
2] + 26n + 1) + 25[n] and za[n] = &[n + 2] + 2é[n + 1] + 38[n]. The corresponding
outputs evaluated at n = 0 are

w0]=2 and (0] =3/2

Now consider a third input zafn] = x.[n] + za[n] = 38[n + 2] + 46[n + 1} + 56[n].
The corresponding output 1 d at n = 0 is y3]0] = 15/4. Clearly, wsl0] #
1[0} + y2[0]. This implies that the system in not additive.

No consider an input z4[n] which leads to the output yi[n]. We know that

zy[nlzyln=1]

wln) = { e

Let us now consider another input z5[n] = azy|n]. The corresponding cutput is
Tufn]ean—12]

wsln) = { n‘“f'LFl '

Therefore, the system is homogeneous.

Tafn -1 £ 0
otherwise :

aqn =1 #0

otherwise = tuln

14

(2) False. y,[n| periodic does no imply z[n] is periodic. i.e. let z[n] = g[n] + A[n] where
n even

= 1, 0,

otnl = { 0. neda w4 Al :{ (/2m,
Then y(n] = z[2n] is periodic but z|n] is clearly not periodic.

(3) True. zfn + N] = z[n]; yaln + No] = we|n] where Ny = 2N

(4) True. y2[n + N] = yz{n); z[n + No] = z[n] where Ny = N/2

(a) Consider

neven
n odd

3 zln) = =(0] + 3 {zln] + ={-n)}.
n=1

A= -
If z[n] is odd, z|n] + z{~n] = 0. Therefore, the given summation evaluates Lo zero.
(b) Let y[n] = zi[n)za(n]. Then
yl=n) = z1[=njag(~n] = ~zi[n]ealn] = —y[n].
This implies that y[n] is odd.
(e) Consider

Y2l = ) {zeln]l+mo[nl)?

= g =2[n] + g Zon] +2 3 zelnlzoln].

Using the result of part (b), we know that z.[n]z,[n] is an odd signal. Therefore, using
the result of part (a) we may conclude that

2 Z ze[n]rafn] = 0.

n==oo

Therefore,

Y == ¥ s+ T )

A= Py—— Pe——y

j::::’md::j:::z(t)dt+j:nzgit}d:+2[:z.{t]z,(l)d(.

Again, since z.(t)z.(t) is odd,

(d} Consider

f = B()za(t)de = 0.

—oo

‘Therefore,
f_ = ] 2(t)dt + j ().

16



1.35. Ve want to find the smallest Np such that m(2x/N)Ng = 2Zuk or No = kN/m, where k is ao
integer. I Np bas to be an integer, then N must be a multiple of m/k and m/k must be an
integer. This implies that m/k is a divisor of both m and N. Also, if we want the smallest
possible Np, then m/k should be the GOD of m and N. Therefare, Ny = Nfged(m, N}

1 36. (a) If zin] is periodic e (MMT = gionT, where wy = 2x/Ty. This implies that

2= T
—NT = 2=k — =
T T = 2n =

T -:—; = a rational number.
L)

(b) If T/Ty = p/q then z[n) = <¥™P/?). The fundamental period is ¢/ged(p,g) and the
fundamental frequency is

s = AXE = = ol _
?gcd(ﬁ‘q)w = qscdlp‘c) pzvd{p.ql > ged(p,q)

(c) p/ged(p, q) periods of z(t) are needed.
1.37. (a) From the definition of ¢xy(t), we have

bl = [ % 2(e+ rylr)dr

jwy(v—t + 1)z{7)dr
Bzl —1).

(b) Note from part (a) that dz=(t) = ¢ux(—1). This implies that ¢ (t) is even. ‘Therefore,
the odd part of ¢==(t) is zero.

() Here, oy (1) = daz(t — T) and gy (t) = dax(t)-
1.38. (8) We know that 264 (2t) = dap2(t)- Therefore,

3 o |
A'.'.ﬂ: dal2t) = éliﬂn 55,&;:{!)-

This imples that .
§(2) = i.i(f.),

(b) The plots are as shown in Figure S1.38.

1.39. We have
Jim ua(1)5(t) = Jim ua(0)3(t) = 0.
Also, .
E_%u.,(t)abm = ié{l).

1.41. (a) yin] = 22[n]. Therefore, the system is time invariant.
{b) yn] = (2n — 1)zn]. This is not time-invariant because y[n — N} # (2n - Lzle - Mol
(c) yin] = z[n]{1 + (=1)"+ 1+ (=1)""} = 2zfn]. Therefore, the system is time invariant.
1.42. (a) Consider two syst 5y and S cted in series. Assume that if x1(t) and =,(#) are
the inputs to Sy, then yi(t) and yy(t) are the outputs, respectively. Also, assume that
il 1 (t) and (t) are the inputs to Sz, then 2 (¢) and z2(t) are the outputs. respectively.
Since Jy is linear, we may write

az (£) + bra(t) =2 oy (1) + bualt),
where @ and b are constants, Since Sz is also linear, we may write
a(t) + bya(t) = ax(8) + baa(t),
We may therefore conclude that
az(t) + bra(t) 50 gy (2) + bealt).

Therefore, the series combination of 5, and Sy is linear.
Since §) is time invariant, we may write

nlt—To) Zrw(t-To)

and &
yi(t = To) == 2t — To)-
Therefore, =
2yt = To) == a1(t = To).
Therefore, the series combination of 5y and S, is time invariaut.
(b) False. Let y(t) = z(t) + 1 and 2(¢) = y(t) — 1. These correspond tu two nnulinear

systems. If these systems are connected in series, then z(t) = z(t} which 1 a lincar
system.
(c) Let us name the output of system 1 as wn] and the output of system 2 as z|n]. Then,
1 1
yln] = z[2n] = wi2n] + Ew[zn =i+ prﬂ -]
1 1
= = - = -2
z[n] + 2:{11 1]+ 4:[11 i
The overall system is linear and time-invariant.

1.43. (a) We have
z(t) oy y(t).

I
lkaf{\ ey
1 oo s &
-4 28 + ol Y Za +
w3 ude
1 1
[— 2
) e B + =A | o +
uglt) whfx)
1 g ! i
3 f "L.—V W ~ !—J‘.L' a
_a\ / A i -4 I a4 ¥

Figure S1.38
We have = =
- &t — = = 7)dr.
o) = [~ uirsste—ryar = [~ utriste - ryer
Therefore,
0, t<0 CHt=7)=0
=4 1 t>0 ulr)élt —7) = 8(t = 7)
undefined fort=0

1.40. (a) If a system is additive, then
0= x(t) - z(t) — y(t) —y(t) = 0-
Also, if a system is bomogeneous, then
0= 0.z(t) — y(t).0 = 0.
(b) yit) = 23(t} is such a system.

(]
(<) No. For example, consider y(¢) = f 2(r)dr with 2() = ult)—ult—1). Then z(t) = 0
fort> 1, but y(t)=1fort > 1. il

Sunce S is time-invariant,
2t =T) = y(t - 7).
Now, if z(t) is periodic with period T, =(z) = z(t — T'). Therefore, we may conclude
that y(t) = y(t — T). This implies that y(t) is also periodic with period T, A similar
argument may be made in discrete time,
(b)

1.44. (a) Assumption: If z(t) = 0 for ¢ < i, then y(t) = 0 for t < tp. To prove that: The system
15 causal,
Let us consider an arbitrary signal r,(t). Let us consider another signal z3(1) which is
the same as x4 (t) for ¢ < 2. But for ¢ > g, z2(t) 5 =,(t). Since the system is lincar,

21 (t) = z2(t) — wn(t) — wa(t).

Since ;(t) = z2(t) = 0 for t < tg, by our assumption y,(t) — ya(t) = 0 for t < Lo This
implies that y;(¢) = ya(t) for ¢ < Lo, In other words, the output is not affected by input
values for ¢ > tg. Therefore, the system is causal.
Assumption: The system is causal. To prove that: If z(t) = 0 for t < tg, then
y(t) =0fort <t
Let us assume that the signal z(t) = 0 for ¢ < to. Then we may express z(t) as
z(t) = z,(t) — z2(t), where ,(t) = z(¢) for ¢ < lo. Since the system is linear, the
output to z(t) will be y(t) = y1(t) —va(t). Now, since the system is causal, v (¢) = walt)
for ¢ < t implies that yy(t) = wlt) for t < tq. Therefore, y(t) = 0 for t < to.
(b) Consider y(t) = =(¢)z(t + 1). Now, z(t) = 0 for ¢ < to implies that y(t) = 0 for ¢ < tp.
Note that the system is nonlinear and non-causal.
(¢) Consider y(t) = z(t) + 1. This system is nonlinear and causal. This does nat satisfy
the condition of part (a).
(d) Assumption: The system is invertible. To prove that: y[n] = 0 for all nonly if xin| = 0
for all n.
Consider
z[n] = 0 — y[n].
Since the system is linear,
2z[n] = 0 — 2y[n].
Since the input has not changed in the two above equations, we require that yln] =
2y[n]. This implies that y[n] = 0. Since we have assumed that the system is invertible,
only one input could have led to this particular output. That input must be z|n] =0.
Assumption: y[n] = 0 for all n if z[n] = 0 for all n. To prove that: The system is
invertible.
Suppose that
z1[n] — win]
and
z2[n] — wn).

20



Since the system is linear,
21[n)] = 22[n] — waln] - wln] = 0.

By the original ption, we must conclud that z1[n] = Taln]. That is, any partic- 1{'\} ! 1’[9\]
ular i (n) can be produced by only one distinet input z1[n]. Therefore, the system is e o
invertible. e T 4
(e) yln] = =*[nl. o J J i 0lz3sgasezr "
1.45. (a) Consider i ;
2(t) = n(t) = éa, (1) o Zay
and 5 Figure S1.46
za(t) = y2(t) = Przs(t)-
Now, consider z3(t) = ax1(t) + bza(t). The corresponding system output will he FoITRE w | ped en, schspp
i TamEE e — LNEA& Syrem 18
wlt) = f z3(T)h(t + 7)dr B |
=00 I |
f’ (7)ht + T)d +efw:(1n(:+ Jd 4
= 2y (r)hit + r)dr T T)dr
o ] 1 i 2 i[h 3 %
- gd'ﬁ-l':(t} + bepaz, () : :
= an(t) + bualt) o
Therefore, S is linear. A
Now, consider 4(t) = z1(¢ = 7). The corresponding system output will be Figure 51.47
==3
wit) = j; z4(7)AlL + T)d7 (b) If z;[n] = 0 for all n, then ¥ [n] will be the zero-input response yg[n]. S may then be
g redrawn as shown in Figure S1.47. This is the same as Figure 1.48.
= j zy(7 = Thhit + 7)dr (c) (i) Incrementally linear,
—o0
= F zi(r)h(t + 7+ T)dr z[n| — z[n] + 2z[n + 1] and  win] =n
=00
= ¢ng,(t+T) (i) Incrementally linear.
Clearly, wa(t) # wi(t — T). Therefore, the system is not time-invariant 0, n even
The system is definitely nol causal because the output at any time depends on future zfn] — (n=-1)/2
values of the input signal z(¢). § zlk),  nodd -
{b) The system will then be linear, time invariant and non-causal. -0
d
1.45. The plots are as in Figure 51.46. = G { nl2, e
win] =
1.47. (a) The overall response of the system of Figure P1.47(z) = {the response of the system to (n—1)/2, modd
z[n] + z)[n}) — the response of the system to z;(n] = (Response of a linear system L (iii) Not incrementally linear, Eg. choose ys[n] = 3. Then
to z(n| + 2 [n]+ zero input of §) — (Resy of a linear system L to zi[n}+
zero input resp of §) = (Resy of & linear system L to z[n]). s o { z[n] — z[n - 1], Z[0] > 0
yin] = woln] zln) - zln— 1] - 6, (0] < 0.
21
22
still non-linear: eg.: If zy[n] = —é[n] and z3fn] = ~24|n), then y[n) = =é[n] + B ) B
S 1] - 6 and yaln] = ~28[n) + 28[n — 1] — 6 # [, 149. () Here, 7 = VT3 = 2. Abo, cond = 1/2, sin6 = V3/2. This implies that 6 = /3.
: : Therefore, 1 + j/3 = 297/3,
(iv) Incrementally linear.
(b) 5%
z(t) — =(t) + tdz(t)/dt =1 and wolt) = 1. (e) 5V3ers"/
(v) Inerementally linear (d) 5e2 1™ 4/3) = pei(s3137)
2 (e) 8e™"
z[n] — 2cos(mn)zin]  and ya[n] = cos"(wn) (f) 43
(d) Let zfn] 5 yln) and z[n] 5 2[n). Then, y{n] = z[n] +c. For time invariance, we require (g) 2v/Ze~ /12
that when the input is z[n — no], the output be (h) g=%3
AL, g T (i) e/t
yfn —no] = sfn —mo] + & (§) V2errinriz
‘This implies that we require (k) 4y/Fe—I7/12
z[n —ng) -italn-nn] 0] })f”n
) Plot depicting th i ¥ in Fi
which in turn implies that L should be time invariant. We also require that wln] = ot depicting these points is as shown in Figure 51.49.
¢ =constant independent of 1. - 74 Im
ETS
1.48. We have )
20 = roel® = rocos o + jrosinfy = zo + Jyo h ’
jxn X |AcZe
—K—-._-’. L5y —
(a) 21 = To — jw A b Xk B
®) 2= VR +i '
(¢) 5= —To—Jjwo = —%0 & %
(d) za = —=Zp+ 10
() 25 =0+ jt0 ;
The plots for the polags are 2 shown in the Figure S1.48. | I8 Figure 51.49
oy # 24,2 @ Foai
. «_l ) (o, 1.50. (a) z = rcosfy=rsind
Gan e (b) We have
s 5 r=22 497
“Tan G bt and
i # = sin~! | = cog~? z i i [¥
2 ." (6-+) [\.-"15+y5] s [3:74—;’2 e [z]
ot i
-4, - (i3,~%) o2 8 is undefined if r = 0 and also irrelevant. 8 is not unique since § and 8 + 2mr (m €
e integer) give the same results.
i Yoe2, 8,2 M2 {c) & and 6 + 7 have the same value of tangent. We only know that the complex number
Yoz 2,6 Wy Figure 51.48 i is either zyre’ or 23 = r@+™) =~z %
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151 (a) We bave

& = cos B + jsinb. (51.51-1)
and
10 = cos @ — jsind. (S1.51-2)
Summing eqs. (51.51-1) and (51.51-2) we get

cosll = %{a' +e73%),
(b) Subteacting eq. (51.51-2) from (81.51-1) we get

sinb = zij(a" -,
(¢} We now have efl0+¢] = 3%&3%. Therefore,

cos(6 + #) + Fsin(f+ &) = = (cosflcos — sindsingd)
+ j(sin@eosg+cosfsing) (S151-3)

Putting @ = ¢ in eq. (81.51-3), we get
0820 = cos® § — sin® 0.
Putting § = —¢ in eq. (51.51-3), we get
1 = cos® @ + sin® @.
Adding the two above equations and simplifying
cost 8 = %{1 + cos 26).
(d) Equating the real parts in eq. (51.51-3) with arguments (¢ + ¢) and (9 — ¢} we get
cos(f + ¢) = coaflcos ¢ — sinbsing

and
ens(f — ¢) = cos fcos ¢ + sinfsing.

Subtracting the two above equations, we obtain

1.52.

1.53.

(a) 22" = refre= 2 = 2
(b) 2/1" = relfrle? = ¥
(e) 2+ 2" =z +jy+z—jy=2r = 2Re|z)
(d) z — 2" =z +jy— T+ jy =2y = LUm{z}
(&) (n+zm)  =(m+z)+iln+w)) =n-—in+mz-—dm=2z+3
(f) Consider (sz;27)" for & > 0.
(azy23)" = (aryr2ed @+ = arye Pirpe ™I = azjz;.

For a < 0, @ = |aje’™. Therefore,

(az122)" = (Jalryr2e @ +040) = |ale 3 e M rpe™7% = az]z].

(g} For |22] # 0,

za T2 ree=tfa 2y

my _L(a), (2Y
Re{n}_z[(m)+(=z) ]
Using (g) on this, we get
ny _Lf(aY, (4] o) [a%tsz
Re{n}'2[(n)+(4)]-2[ 2223 ]
(a) () = (e5e?¥)" = eV = ¢TIV = 77
{b) Let z3 = 7125 and 24 = z}22. Then,

(ﬂ)' e WE T remif Eg

(k) From (¢}, we get

)+ 2z = 53+ =2Re{n} = Re(nz}
= z}+z3=2Re{z} = WRe{z22}
() lz] = Iret®| = r = jre=?%| = |2*|
(d) |zy2] = frirae?@ ) = |riry| = |rallral = [21ll2z2
(e) Since z = z + jy, |2l = ‘/zi + 12. By the triangle inequality,

Re{z} =22 Vrt 4yl =|a|
and

sin@sing = 5{cos(6 — #) - cos(8 + 9]

Im{z}=y< Va2 + 12 =z
(e) Equating imaginary parts in in eq. (51.51-3), we get (f) |2123 + izl = [ZRe{n1 23} = [2riracos(d) ~ )] < 2ryrz = 2|2y 22|
sin(6 + ¢) = sinfcos ¢ + cosBsingh.

25
26

(g]Sin«r.‘;G.rgz-(llnd—lgam{ﬂ.—ﬂ,)gl, (b) The desired sum is

(Inl -1zl = rf+ri-2nr T ] ;
= r‘|’+r§+2rlﬁm(91 - &) E:"“ =€ "goe' = —(1+;).
= |n+zl
{¢) The desired sum is
and 2 o
(lz1] + [z2l)? = v} +73 +2nirz 2 |2 + 22l SO S .
gy nz_,( 8 T—me 575
154 () For & = 1, 1t is fairly obvious that
- (d) The desired sum is
z o® =N.
= 2(112)"8'"9 =q ,fz)%"mz;{ 1/2)°e2 = [g + ,-g] .
For @ # 1, we may write n=2
= N1 (e) The desired sum is
(l-a)Za -En -Za"" =1-a". :
n=0 Zoos(mﬂ) —Ee’"‘f’+ Zz o= Ly 4 g) 4 50-5) =1
a 2
Therefore, n=0
T il (f) The desired sum is
a=0 1- o
(b) For Jaf < 1, (/2" cos(an/2) = 2):(1121%""” +3 Eum em2
Iim a® =0. nalt n=f a-n
N-voo - i+,i+__.i__i
Therefore, from the result of the previous part, wHn T’ T§
M-l ] 1.56. (a) The desired i | is
i Eﬂﬂ—zﬁn"i—*- (a) integral o
N-roo et e a fr.-i""’dl - e <0
" 2],

(b) The desired integral is

l
LU T
f o= Tl

(¢) The desired integral is

= @fimle™ -1 = 2.

£E) - £65)
Y nart = (—lfla—},-

d} We 3
(d) We may write fe""'ﬂdt = 7 = (2/3m)|f ~ &)=~
T

el ol uk

Sat=atd ot = —forlal <1

nmk n=l l1-a

{d) The desired integral is
1.55. (a) The desired sum is .
5 l_e;'mf? fw oy -[H;)l [ , s j
gL LY. . =1+ 14Ny — _=
-.E_—u pacrght ? 0 =1+ t3 2
28
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2.3.

2.4.

(&) The desired integral is
o [ p=(145) 4 o= (190 2 12 _ 1
f:c"ms(i]d!*fo {————2 | e = S

(f) The desired integral is

— P e A SV - B V. N
fn c“‘sm(mldﬁf[——?f—_ d= 3 Ty 13
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U'sing the given definition for the signal hln], we may write
k=1
A = (%) (ull + 3] - ulk — 10]}

The signal h[k] is non zero only in the range —3 < k < 9. From this we know that the signal
A[~k] 15 non zero only in the range =9 < k < 3. 1f we now shift the signal A{—k| by n to the
right, then the resultant signal hln = k] will be non zero in the range (n—9) < k < (n+3).
Therefore,

A=n-9 B=n+3
Let us define the signals "
mie) = (3) vl
and
hy[n] = uln).

We note that

zln)j=z[n-2 and hin) = hyln +2]
Now,

yln] = z[n]+Aln]=nln- 2w hyfn+2)

= Y onk-Amln-k+2]

k==co

By replacing k with m + 2 in the abovr summation, we obtain

= 3 ailmihiln - m) = il « baln)

me =00

Using the results of Example 2.1 in the text book, we may write

yin] =2 [I - (%)“”] uln]

o0
yln] = z[n) « hin] = 3 z[kAln — K|
k=00
The signals z[n] and y[n] are as shown in Figure $2.4. From this figure, we see that the
above summation reduces to

uln] = z[3]kln — 3] + z[d]hln — 4] + z(5]hln = 5) + z[6]Aln — 6] + z{T)A[n — 7| + 7[8lhfn - 8]

We know that

This gives
n—=6, T€<n<ll
6. 12<n<18
y[n] = 24 -n, 1M<n<23
0, otherwise
31

Chapter 2 Answers

2.1. (a) We know that

2.5.

2.6.

wifn] = z[n] s Aln] = i hik|z[n — k]

k=00

The sigoals z[n)] and hfn] are as shown in Figure 52.1.

| 2 2[n)

o Figure §2.1

From this figure, we can easily see that the above convolution sum reduces to

wiln] = A[-1zin + 1] + A)1]z[n - 1]
2zfn + 1) + 2z[n - 1]

This gives
wiln} = 2é[n + 1] + 48[n] + 2é[rn - 1] + 28[n — 2] — 2é[n — 4]
(b} We know that -
waln] = z[n + 2]+ hln] = f: hlklzn +2- &
k= =00

Comparing with eq. (52.1-1), we see that
i) = nlr +2]

(c) We may rewrite eq. (S2.1-1) as

wiln] = zln] » hjn] = Z zlk)hln — k]
Similarly, we may write
wln] = sln] « A +2) = 3 e{klhln +2- 4
k=-o0

Comparing this with eq. (S2.1), we see that

taln] = yi[n + 2]

30
“1111] =2 1™
S Sy Tis
Figure 52.4
The signal yfn] is ha
yin] = zln) + Aol = 3 =lkjhln - k)
k=—oo

In this case, this summation reduces to

9
yin} = 3" ={klhln — K] = 3" hin - &)
k=0

k=0

From this it is clear that y[n| is a summation of shifted replicas of hin]. Since the last
replica will begin at n = 9 and hln} is zero for n > N, y[n] is zero for n > N + 9. Using
this and the fact that y[14] = 0, we may conclude that N can af most be 4. Furthermore,
since y[4] = 5, we can conclude that h(n] has at feast 5 non-zero ponts. The only value of
N which satifies both these conditions is 4.

From the given information, we have:

yin] = zn)shln] = i zlkjhin — k|

k==

= E (%)"u[—k = 1luln-k-1]

k=-00

-1
=3 (%r*um — k1]

k=—o0
= T up+k-1]
k=1 3
Replacing k by p— 1,
yln) = 2(% P ufn + p] (S2.6—1)
p=0

For n > 0 the above equation reduces to,

=1 11 1
=3P =3y =
e

32
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For n < 0 eq (52.6-1) reduces to,

a0 oo i 1 i
vn) = 2 (%]n! = (%J-n-ﬂz(%]’ - g g[n4) I ] l ] I I I ]ﬁ["’ﬂ
pmmn p=0 __]_UJ__ P
= (l)-nﬂ L ={£}-n1=£ 8:4:3:3 s o, i R b
3 1-3 '3 2 2 Figure S2.7
Therefore, { (37/2) necl 2.8. Using the convolution integral,
y[ﬂ] = : o0
/2. n20 2(t) » A1) = [m 2(r)h(t - T)dr = f A(P)z(t - T)dr.
2.7.  (a) Given that i -
z[n] = 8fn — 1], Given that h(t) = &(t +2) + 28(t + 1), the above integral reduces to
we see that z(t) e ylt) = z(t +2) + 22(t +1)

yin = i afklgln - 2K = gln -2 = "lln e The signals z(t + 2) and 2z(t + 1) are plotted in Figure 52.8.

k=—00
- 2
(b) Given that 2{+2) ft+1)
z[n] = bl — 2], i [l
we see that —2 =, o % 1 b t
o Figure S2.8
yin) = Y alkloln — 2K = oln — 4] = ufn = 4] = uln - §]
frerais Using these plots, we can easily show that
(t) The input to the system in part (b) is the same as the input in part (a} slofue by 1 t+3, “2<t< -1
to the right, If S is time invariant then the system output obtained in pari (bt has to = t44, ~1ct<0
the be the same as the system output obtained in part (a) shifted by | to the right. i 2-2%,  O<e<l
Clealry, this is not the case. Therefore, the system is not LTL 0, otherwise
{d) If z|n| = uln|, then 2.8. Using the given definition for the signal A(t), we may write
oo
yin] = z[k]gln - 2k 24 T>3
[n] .‘Z_“ [Klgl ] h(r) = e""u{—-r-!—i) +e Mulr —8)={ e, g
oo 0, d<r<h
= z'ﬂ" =24] Therefore
ko ! 2r
e, T<=5
The signal g[n — 2k] is plotted for k = 0,1,2 in Figure S2.7. From this figure it is clear A(-7) = { e, I
that , - o, -S<r<—4
" n=\u, . .
dn={ 2 i — 2ufn] = 8] — 6ln — 1} If we now shift the signal h{—7) by t to the right, then the resultant signal A(t - 7) will be
0, otherwise e~ 2t=T), Pt =
hlt-1)= { -7 R |
0, (t=5) <T<(t—4)
33
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Therefore i
: Therefore, the resul lut; d
A=t—3 Bet-d, X t of this may be exp as
i 0, -0 <t€3
2.10. From the given information, we may sketch z(t) and h(t) as shown in Figure 52.10. y pie) = ¢ =— o 3<t<5h
(a) With the aid of the plots in Figure 52.10, we can show that y(t) = =(t) « h(t) is as 1-e=8)e=30-) -
shown in Figure §2.10. L'—Jf—‘ =
(b) By differentiating z(t) with respect to time we get
: i dz(t
2{¥) he) -&E-]-—é(:—a] —d(t—5)
Therefore,
0 ] + b + glt) = d'—di” » h(t) = e y(t - 3) — e Hu(t - 5).
o {c) From the result of part (a), we may compute the derivative of y(t} to be
! 1
: H 0, - at<3
L HIELS %: et ; 3<t<s
o [ + (=8 — 1)e=31t=5), 5<t<oo
Fi §2.10
gti=e This is exactly equal to g(t). Therefore, g(t) = 4.
Therefore, W 3 2.12. The signal y(t) may be written as
t, <t<a y
® a agt<l () = -+ e~y (e 1.6) + et 4 3) + e fu(t) + et - 3) +e =Syt —6)+ -
y =
;"’“"‘- 1<t=(1+a) In the range 0 < t < 3, we may write y(t) as
y otherwise
y(t) = -+ (4 6) + oW u(t + 3) + e ult)
(b) From the plot of y(t), it is clear that %! has discontinuities at 0, &, 1. and 1 + o If o ety a4 046 4
we want %) to have only three discontinuities, then we need to ensure that & = 1. = etl4ette o)
211, (a) From the given information, we see that h(¢) is non zero only for 0 < t < oo. Therefore, _ ot 1
(a) g e T=et
y(t) = z(t)+hit) = fﬁfr)z(t —r)dr Therefore, A4 = =i=3.
so - 2.13. (a) We require that
s j e (ult — 7 3) —u(t = 7 = 5))dr "\ [\ -1
L] (E) ufn] - A (3) uln - 1] = dn]
We can easily show that (u(t — 7 — 3) = u(t = 7 = 5)) is non zero only in the range : - e . y
{t—8) < 7 < (t—3). Therefore, for ¢ < 3, the above integral evaluates to zero. For Putting n = 1 and solving for A gives 4 = g.
3 < t < 5, the above integral is (b) From part (a), we koow that
1
1= e=3e-3 hjn} - zhln —1] = éfn]

-3
wit) = L e Mdr = 3

Far t > 5, the integral is

-3
yit) = f e Ydr
t-5

1
h[n] + (d[n] — Eé[n —1]) = dé[n]
From the definition of an inverse system, we may argue that

(1 — e=5)e=3e-3) i
e gin] = d[n] - E&[n -1].
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(a) We first determine if by (2) is absolutely integrable as follows

f_: Jhy(7)dr = j:’ eldr =1

Therefore, hy(t) s the impulse response of a stable LTI system.
(b) We determine if ha(t) is absolutely integrable as follows

L 00
f |hy(7)|dr = / &~ cos(2¢)|dr
—a0 o

This integral is clearly finite-valued because e~| cos(2t)] is an exponentially decaying
funetion in the range 0 < ¢ < co. Therefore, ha(t) is the impulse response of a stable
LTI system.

(a) We determine if ky[n] is absolutely summable as follows
3 Ikl = 3kl cos(TR)]
k=0

k=—o0
This sum does not have a finite value because the function k| cos(7 k)| ncreases as Lhe
value of k increases. Therefore, Ay|n] cannot be the impulse response of a stable LTI
system.
(b) We determine if hy[n] is absolutely summable as follows

o 10
3 Imafel= Y #t=3y2
k=-o0 k=-o0
Therefore, hyln| is the impulse response of a stable LTI system.

(n) True. This may be easily argued by noting that convolution may be viewed as the
process of earrying out the superposition of a number of echos of Aln]. 7% tit wuch
echo will occur at the location of the first non zero sample of zjn]. In this vas “he
first echo will occur at Ny, The echo of Afn] which occurs at n = N, will have its hrst
oon zero sample at the time location Ny + N3, Therefore, for all values of 1 which are
lesser that NV, + Nj, the output yin] is zero.

(b} False. Consider

vin] = z[n]+hln]
o

= 3 zklAln -]

Am-so
From this,

yin=1 = 3 alklaln-1-4
k=—o00
= z[n]jshn-1]

This shows that the given statement is false,
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This gives
; m S
(-1+3)K+4K =1, =K= e
Therefore,

1 ;
= (=135
wit) 30 +J_)e , t>0

In order to determine the homogeneous solution, we hypothesize that

ya(t) = Ae*
Since the homogeneous solution has to satisfy the following differential squation

d&(!—} +4ya(t) =0,

dt
we obtain
Ase + dAe™ = Ae" (s + 4) = 0.
This implies that s = =4 for any A. The overall solution to the diff } equati
now becomes

1
t) = Ae™t e Y
sy T
Now in order to determine the constant A, we use the fact that the system satisfies the
condition of initial rest. Given that y(0) = 0, we may conclude that

1 =1
T e

Therefore for t == 0,

y() = s

T3 +3)

Siner the system satisfies the condition of initial rest, p(t) = 0 for £ < 0. Therefore,

[—s"“ + ¢l'|*32!l] , t>0

_1-J i {=1435)¢
yit) = 5 [ e ]u(!}
{b) The output will now be the real part of the answer obtained in part (a).

w(t) = é [efcos 3t + e " sin3t — e~ u(2).

(€) True. Consider
ylt) = =(¢) « A(t) = f" 2(r)h(t - 7)dr.
From this,
y(—t) = F:(r)h(—i—r}d-r

o0
f z2(-r)h(—t + r)dr
z(=t) » h(—1)

i

This shows that the given statement is true.
(d) True. This may be argued by considering
yit) = z(t) o h(t) = fmz(r)h(l - 7)dr.

In Figure 52.16, we plot z(r) and h(t — 7) under the assumptions that (1} #(1) = 0
for t > T and (2) h{t) = 0 for t > T, Clearly, the produet z(+)A{t — ) is zero if

z(T) h(x-7)
T e =% T

Figure 52.16
t — Ty > Ty. Therefore, y(t) =0for t > T; + Tp.

2.17. (a) We know that y(t) is the sum of the particular and homogeneous solutions to the

given differential equation. We first determine the particular solution y,(t) by wsing
the method specified in Example 2.14. Since we are given that the input is w(t) =
el =140 y(1) for ¢ > 0, we hypothesize that for ¢ > 0

velt) = Kel=1430
Substituting for £(¢) and y(t} in the given differential equation,

(=14 35)Kel =1+t o qpl=1430 _ (=14+3))
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2.18. Sm:he-rm'umnl.y{n}-o&n-:l. Now,

vl = ;y[ﬂ]-iz[llwﬂ-é—l:l
W2l = %y{l]+z[2]-}+0:%
W3 = %"[2]”{3':11‘3*0:%

vm = (=

Therefore,
yn] = (i}"_'u{n -1)

2.19. (a) Consider the difference equation relating y[n] and win] for Sa:

vln] = ayln — 1) + fuln)
From this we may write
fn] = Gvin] - Sain -1
and
wln - 1] = éy[n- 1 - %y{ =3

Weighting the previous equation by 1/2 and subtracting from the one hefore, we obtain
- 1 L 1 o 1 =3
win) EW[" 1] = -ﬁy{n] - Ey[n -1]- Ey[ﬂ -1]+ ﬁy[n -2

Substituting this in the difference equation relating win| and z[n) for 5.

1

Fun] = Guin 1]~ 2vln - 1) + Zyfn - 2) = zfn)

A a 24 25
That is,

1
vin] = (@ + 3)pin — 1] ~ Fuln - 2] + Pln)

Comparing with the given equation relating yjn] and z{n], we obtam

A=1

(.‘l'-£
i



(b) The difference equations relating the input and output of the systems 5; and S5, are
1
yin) = Jyin - 1) + wln)
ple 2,15 to show that the impulse

win) = %w[n =1 +z[n] aad

From these, we can use the
responses of ) and §; are

1 specifed in E

hifn] = (%)“ uln)

bale) = (3) ot

respectively. The overall impulse response of the system made up of a cascade of Syand
Sz will be

and

i B [k]ha[n — k|

ka=oo

= TG un-H
k=0

= dope bk o= diame
= (_]a(_)n o (_)itn k)
E.:n 2" 4 § 2

= ()"~ ()l

An] = hi[n] v hafn] =

2.20. (a)

jw () cos(t)dt = f“ B(t)dt = 1
-0 -o0
(b}
s
f sin(Zrt)(t + 3)dt = sin(67) = 0
]
(e} In order to evaluate the integral
s
j uy(l = 7) cos(2x7)dr,
-5

consider the signal
z(t) = cos(Zxt)[u(t + 5) — u(t — 5)].

We know that
f:g = w(t)ex(t) = j::ul{!—-f}:(r)dr
= falu(t-r)ms{?rf)dr
41
-
1
1

Al I Tl L1,
o |l -1 20 n

Figure 52.21

. (a) The desired convolution is

uit) = /mxtr}h(l —7)dr
o

t
= fe""e"m"}dr, t>0
o

Then

te™tu(t) a=8
(b) The desired convolution is

yit) = f‘z(?)h(t—ﬂd?

jh{l—r}dr-—f A(t — 7)dr.

n

This may be written as

[ etemrar - j Mgr, 151
0,

2
f e¥lt=ridy — f Tl 15053
w(t) = ] Ib =
Ht=")gr, 3ZL<E
=1
Gt

Therefore,
(1/2)e® = 220D 4 H=3) 421

oty = 4 (1/2)[eF 4+ 29 22203 1<0<3
(1/2) ™) = &7, 3<I<E
0, B<t
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Now,
d:(!)Lﬂ f: (! = 7) cos(2n7)dr
which is the desired integral. We now eval the value of the integral as
dz
—d% | = sin(2e0),y =0
21. (a) The desired convolution is
vin] = =zin]«h[n)
= 3 afklal -k
k= —pe
= Y (a/B)f forn>0
k=0
1_ gn
(k) From (a),
yln] = a" [‘Z u[n] = (n + 1)a"ujn].
(¢) Forn < 6,
v} =4 {E(——}* Z(--}*}
For n > 6, e
yln] = 4 {E(—-)" E( }
Therefore, =

_ [ (8/9)(-1/8)'4", n<é
inl {(Brsn—im". n>6

(d) The desired convolution is

oo

S zlklAfn - &)

km=oo
z[0]hln] + =[1]A[n — 1] + z[2)h[n - 2]+ z[3A[n - 3] + =[4]A[n — 4]
Ala] + Aln — 1] + hln = 2] + Aln — 3] + hln — 4].

yin]|

This is as shown 1w Figure $2.21.
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(¢} The desired convolution is

yit) = f.‘::(‘r]h{t - 7)dr
2
= / sin(n7)A(t — 7)dr.
o
This gives us
0, t<l
yit) = (2/7)[1 — cos{=(t - 1)}, 1<t<3
(2/x)[cos{=(t - 3)} 1], 3<t<s
0, 5<t
(d) Let
M) = (t) - 5o(¢ - 2),
where
4/3, 0<t<1
() = { a, otherwise
Now,
$(0) = h(t) » 2(6) = [Ay(0) » 2(0)] - 32(¢ ~2).
We have

']
ha(t) « z(t) = [_’;(w +b)dr = g[%at’ - %o(t—- 12 + bt = bt - 1)L
Therefore,
ylt) = -[ Ly -a(: — 1) 4 bt - bt -1)] - %[a(.! ~2) b =at+b=zx(t)

(e) z(t) periodic implies y(t) periadic. . determine 1 period only. We have

f-!(t—f—l]df-ff‘ (1—t+7)dr=4+t-0, —f <y
W= " i
[_I(l—:+r)dr+f}(r—1—r)dr=:'-'-3a+7{4. f<t<}
The period of y(t) is 2.
2.23. y(t) is sketched in Figure 52.23 for the different values of T'.
2.24. (a) We are given that hz[n] = é[n] + §[n = 1). Therefore,

haln] » hzn] = Sln] + 28[n — 1] + 4fn - 2).
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2.25.

22T,

yi+)
T4 1 T=2Z
+ “s-z -lol 1 2 3 &4 +
o 1=
L 3
B S ek g E
Figure 52.23
Since
hln] = haln] o [haln] » halr]],
we sel.
hln] = ka[n] + 2hy[n = 1] + hafn — 2].
Therefore,
h[0] = Ay (0] = o] =1,
R[1] = By (1] + 2m1[0) = k1] =3,
h[2) = M[2) + 2k 1] + (0] = hyf2) =3,
R3] = hy[3] + 2k (2] + M (1] = hy(3) =2,
hig) = k4] + 2h[3] + k2] = hyldl =1
R[5} = m[5] + 2ha[4] + R3] = hy[5) = 0.
mn]=0forn<Candnz3.
(b) In this case,
vin] = zln) » Aln] = hln] = hfn - 1].
(a) We may write z{n] as
]
zn] = (%) ;
43
{b) Now,
yin] = z3ln] » ] = ] - waln = 1.
‘Therefore,
2{1- (/") +2{1 - (/") = /2™, = 2 ;
wei s { I’J: otherwise

Therefore, y[n] = (1/2)" ¢fn + 3.

(e) We have
aln] = zaln] » 23l = ufn + 3] — uln + 2 = 8fn +3).

(d) From the result of part (c), we get

wln] = win] + zaln] = 210 + 3] = (1/2)" uln + 3.

The proof is as follows.

[
f_:j:::(ﬂh(t — r)drdt

/_ﬁ :{r]f_:h[i = 7)dtdr

o

j () Andr
~o0

= AsAn

Ay

o0
. (a) Causal because hn] = 0 for n < 0. Stable because () =5/4 <ce.
n=0

o0
(b) Not causal because hfn] # 0 for n < 0. Stable because 3 (08)" =5< 00

o
(c) Ati-causal because hjn] = 0 for n > 0. Unstable because Y 2=

A=—0s

3
(d) Not causal because h(n] # 0 for n < 0. Stable because Z 5n=fP <o

n=—oo
(e) Causal because hfn] =0 for n < 0. Unstable because the second term becomes infimte
asn —+ oo,

o
(f) Not causal hecause hln) # 0 for n < 0. Stable because S~ Iain]| = 305/3 < o0

n=oo
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Now, the desired convolution is
yin] = hin|+=zin]
1 o0
= T (/™ el — k4 3]+ SO/ O/) uln — k43

k=—co k=0

= (1;121i{1;3}*n;4)"+*u1n +h+4+ 3 /34 /A uln - k4 3]
k=0 k=0

By consider each summation in the above equation separately, we may show that

(1z*/11)3", n< -4
il ={ (1/104%, n=—4 .
(1/4)"(1/11) + =3(1f4)" + 3(256)(1/3)", nz-3
(b) Now consider the convolution
win] = [(1/3)"uln]} » [(1/4)"u[n + 3]
We may show that
o g n<-3
ninl = { —3(1/4)" + 3(256)(1/3)*, =n>-3 "
Also, consider the convolution
vafn] = [(3)"ul—n — 1]} + [(1/4)"uln + 3]].
We may show that >
[ (2ta)an, )
wln) ‘{ (/4 (/),  n2-3 "
Clearly, y1{n] + y2{n} = y[n] obtained in the previous part.
2.26. (a) We have
wnn] = z1fn) = 22ln] = z =y [k]zzln — k]
k;—uu
= (05 un+3-4.
k=0
This evaluates to
o, a+d -1
wln] = z1fn] ¢ zaln) = { ;.{l asry, st

2.29.

2.30.

2.31.

2.32.
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o0
(§) Causal because hfn] = 0 for 2 < 0. Stable because Y [afn]| = 1 < co.

(a) Causal because A(t) = 0 for t < 0. Stable because f:i"f*""‘ =e/4 < .

(b) Not causal because h(t) # 0 for ¢ < 0. Unstable because /:m(:)i =00

(e) Not causal because 4(t) # 0 for ¢ < 0. a Stable because f:mt}m =e'%/2 < oo,
(d) Not causal because A(t) # 0 for ¢ < 0. Stable becanse j: |h{t)ldt = e~?/2 < oo.
(e) Not causal because &(t) # 0 for t < 0. Stable because f: IA(e)de = 1/3 < o0.

{£) Causal because h(¢) = 0 for ¢ < 0. Stable because j_:ik{t"di =1< oo

(g) Causal because h(t) = 0 for ¢ < 0. Unstable because f :[h[t)[d! 5

We need to find the output of the system when the input is z[n] = d[n]. Since we are asked
to assume initial rest, we may conclude that y[n] = 0 for n < 0. Now,

yin] = z[n] — 2y[n - 1].
Therefore,
yl0] = =[0] - 2[-1] =1,

and so on. In closed form,

yll] = 2(1] - 290] = =2,  w(2) = (2] + 2[2) = -4

vin) = (~2)"ufn].
This is the impulse respouse of the system.
Initial rest implies that y[n] = 0 for n < —2. Now
yln) = zfr] + 22fn = 2) = 29n ~ 1]
Therefore,

-2 = 1,
forn 2 5.

v=1=0, 0] =S5,

uld] = 56,y[8] = —110, yln] = =110(=2)""®

(&) If ya[n} = A(1/2)", then we need to verify

@) H)

Clearly this is true.

48



2.33.

{b) We now require that for n > 0
1\" 1 1 n=1 1\"
5(3)"-35 () -(3)"
Therefore, B = -2,

(€) From eq. (P2:321), we know that y{0] = 2(0] + (1/2)y{=1] = =(0] = 1. Now we also
have
WOl=A+B = A=1-pB=j

(a) (1) From Example 2.14, we know that
nit) = [‘;llzr - ;‘c'h] uft).

{ii) We solve this along the lines of Example 2.14. First assume that yelt] s o the
form Ke* for t » 0, Then using eq. (P2.33-1), we get for t > 0

2K L oK = ;{=;'.

We now know that yy(t) = e for £ > 0. We may bypothesize the homogeneons
solution to be of the form
valt) = Ae™™,
Therefore,
va(t) = Ae 4 %c". fort >0
Assuming initial rest, we can conelude that va(t) = 0 for ¢ < 0. Therefore
1 1
nO)=0=4+s = A=
Then,
valt) = [- s 5:-”] ult).
{1ii) Let the input be zy(t) = aeMtu(e) + Betu(t). Assume that the particular solution
1plt) 15 of the form
1(t) = Kiae® + K %

for t = 0. Using eq. (P2.33-1), we get
3Kvar™ + 2K e + 2Ky ae™ 4 2Ky e = g 4 gt
Equating the coefficients of ¢ and ¢ an both sides, we get

Ky = and Ky =

A
o
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We now koow that (1) = KA1 for ¢ > 7. We may hypothesize the homoge-
neous solution to be of the form

walt) = Ae™%,
Therefore,

(t) = Ac~ 4 i—" T foras,

Assuming initial rest, we can conclude that v2(t) =0 for ¢ € T. Therefore,
K

w(T)=0=Ae=TT 4 3

K
= Am —?ew,

Then,
) = [ Fe Dy K] o7y

Clearly, y2(8) = gy (¢ = 7).
(31] Consider the input-output pair £y (¢) = g (1) where 2, (¢) = 0 for ¢ < Ly Note that

E—”jg Tt =au(t),  pit) =0, fort <t
Siuce the derivative is a time-invariant operation, we may now write
"'—5!*-%%?-} +I(t-T)=2(t~T), y(t)=0, fort <t

This suggests that if the input is a signal of the form z,(¢) = z1(t = T}, then the
output is a signal of the form yu(t) = yy(t - T). Also, note that the new output
va(t) will be zero for t < 29+ T. This supports time-iovariance since 7,(t) is zero
for ¢ < tg + T, Therefore, we may conclude that the system is time-invariant,

2.34. (a) Consider 7,(t) =+ yy(t) and z3(t) ~S4 yo(t). We know that wll) = (1) = 1. Now

consider a third input to the system which is Z3(t) = = (¢)+x2(t). Let the corresponding
output be yy(t). Now, note that (1) =1 # 31(1) + (1) Therefore, the system is
not linear, A specific example follows.

Consider an input signal 2, (t) = eu(t). From Problem 2.33(a-ii), we know that
the corresponding output for § > 0 is

wlt) = %e” + Ae”H,
Using the fact that y(1) = 1, we get for ¢ >0
1 [ P
) =+ 1 q)z .
Now, consider a second signal z2(t) = 0. Then, the corresponding output =

wlt) = B~

al

Now bypothesizing that ys(t) = Ae~%, we get
wlt) = éae"-!—ilﬂzm + e~
for t > 0. Assuming initial rest,
B =0=A+afs+h4 = A:—(9+§).

Therefore,
wlt) = {éw" + %&” - (% P 2) e"’} u(t)

4
Clearly, y3(t) = ey (£) + Bya(2).
(iv) For the input-output pair =, (¢) and w1(t), we may use eq. (P2.33-1) and th

rest condition to write

B s =m@, w=omrt<s,

(SZ

For the input-output pair Z2(t) and y,(t), we may use eq. (P2.33-1) and the
rest condition to write

dya(t)

gt Tl ==(),  w)=0frt<y,

(s2
Scaling eq. (52.33-1) by & and eq. (52.33-2) by £ and summing, we get

ﬁ{w.m + Bwa(t)} + 2oy (1) + Bwa(t)} = azy(t) + fza(t),

and
vilt) +wft) =0for e < min(ty, ;).
By inspection, it is clear that the output is y3(t) = ay (¢) + Sy (¢) when the

is 23(t) = a=z,(t) + Bz3(t). Furthermore, y3(t) = 0 for ¢ < t3, where ty denot
time until which z3(¢) = 0.

(b) (i) Usiug the result of (a-ii), we may write
wlt) = -':-r- [e* - e ] u(e).

(ii) We salve this along the lines of Example 2.14. Pirst assume that wpli) is
form KYe**"T) for ¢ > T. Then using eq. (P2,33-1), we get for ¢ = T

2K AT) . gpe=T) _ e = K= %

foc > 0. Un‘agl.hﬁnﬂun(ljnl.wﬂh:)o
walt) = 72011,

Now consider a third signal z3(t) = z,(1) + zy(t) = Z1(t). Note that the output w
still be y3(t) = yy(t) for ¢ > 0, Clearly, ys(t) # wile) + pa(t) for t = 0, Therefore, t
system is pot linear,
(b) Again consider an input signal z,(t) = e™u(t). From part (a), we know that ti
corresponding output for { > 0 with wnil)=1is

=1z - &Y 21y
m(t)—‘c +(l Z)e |
Now, consider an input signai of the form z,(¢) = Tt = T) = e Thy(t - T). The
fort> T,
wlt) = %em‘ﬂ + Ae” 2,
Using the fact that (1) = 1 and also assuming that T < |, weget for t = T

12 135
1) = = ed(e-T) — Z21=T) ) =2t-1)
va(t) = 2e + ( - ge )c ;
Now note that yy(¢) £ nit-T)foret T, Therefore, the system is not time invariant
() In order to show that the System is incrementally linear with the auxiliary conditior
specified as y(1) = 1, we need to first show that the system is linear with the auxiliary
condition specified as w(l)=0.
For an input-output Pair z(t) and y{t), we may use eq. (P2.33-1) and the fact
that y;(1) =0 to write

L vm@an, wm=o (5234-1)

For an input-output Pair z3(t) and ym(t), we may use eq. (P2.33-1) and the initial rest
condition to write

di

B a0 =220, ey =0, (s231-2)
Scaling eq. (82.34-1) by @ and €q. (52.34-2) by 8 and summing, we get

O+ A0} + o) + B0} = ary() 4 et

and
wll) = wfl) +w(l) =0.
By inspection, it is clear that the output is y;(t) = ayi(t) + Bya(t) when the input is
#3(t) = az (1) + fza(2). Furthermore, y3(1) = 0 = yy (1) + (1), Therefore, the system
is linear,
Therefore, the overall system may be treated as the cascade of a linear aystem with
an adder which adds the response of the system to the auwxibiary conditions alone,
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(d) In the previous part, we showed that the system is linear when y(1) = 0. In order to
show that the system is not time-invariant, consider an input of the form =y (¢) = e u(t).
From part (a), we know that the corresponding output will be

1
n(t) = 3¢ + Ae
Using the fact that g,(1) =0, we get fore > 0
1 1 _ap-
wlt) = ie:('_ :e 2e-2)

Now eonsider an input of the form z2(t) = x,(t — 1/2). Note that (1) = 0. Clearly,
w2(l) # will = 1/2) = (1/4)(e = €*). Therefore, y2(t) # it = 1/2) for all £. This
implies that the system is not time invariant.

(e} A proof which is very similar to the proof for linearity used in part (¢} may be used
here. We may show that the system is not time icvariant by using the method outlined
in part (d}.

2.35. (a) Since the system is linear, the response g (t) = 0 for all ¢.
(b) Now let us find the output y2(t) when the input is zo(t). The particular solution is of

the form
wplt)=Y, t>-1

Substituting in eq. (P2.33-1), we get
2¥ = 1.

Now, including the bomegeneous solution which is of the form wa(t) = Ae™™, we get
the overall solution: i
walt) = Ae™ ¥ 4 3 t>-l

Since y(0) = 0, we get

=l 1 - 35-
wlt) 3¢ + 3 t>=1. (S2.35-1)
For ¢ < —1, we note that xa(t) = 0. Thus the particular solution is zero in this range
and
wit) = Be™,  t<-l (52.35-2)

Since the two pieces of the solution for yy(t) in eqgs. (52.35-1) and ($2.35-2) must match
at t = —1, we can determine B from the equation

e = Be?

L R

1

2
which yields

(Y _ 1\ —aeen s

!.m{t]—(2 2:): ,  t< =L
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2.37. Let us consider two inputs
() =0, forallt

and
13(t) = efu(t) = u(t = 1)}.

Since the system is linear, the response y(t) = 0 for all .

Now let us find the output y;(t) when the input is z3(t). The particular solution is of
the form
wit)=Ye, O0<i<l

Substituting io eq. (P2.33-1}, we get
I¥=1.

Now, including the homogeneous solution which is of the form ya(t) = Ae™, we get the
overall solution: 1
wit) = de 4+ ic‘. 0<t<l.

Assuming, final rest, we have y(1) = 0. Using this we get A = —¢*/3. Therefore,
vall) = 3¢ 4 %c‘, D<tel (52.37-7)
For t < 0, we pote that z3(t) = 0. Thus the particular solution is zero in this range and
wnlt)=Be™, <0 (82.37-2)

Since the two pieces of the solution for yo(t) in egs. (52.37-1) and (52.37-2) must match at
t = 0. we can determine B from the equation

1 2

-—=*=F

3 3
which yields

B e -2t
wlt) = (3 3?)¢ , t<l

Now note that since z;(t) = z3(t) for ¢ < 0, it must be true that for a causal system
wi{t) = ya(t) for t < 0. However, the results of obtained above show that this is not true.
Therefore, the system is not causal,

2.38. The block diagrams are as shown in Figure $2.38.
2.38. The block diagrams are as shown in Figure 52.39.
2.40. (a) Note that
W= [ e atr 2ar = / g,
-0 ]

Therefore,
hit) = e -yt - 2).
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Now note that gince 1)(t) = xa(t) for t < =1, it must be true that for a causal system
wi(t) = yal(t) for t < —1. However the results of parts (a) and (b) show that this is not
true. Therefore, the system is not causal.

2.36. (a) Consider an input z1[n| such that z;[n] = 0 for n < n;. The corresponding output will
he

will=Suin -1+ 5kl wln}=0forn <,
(52.36-1)

Also, consider another input x3(n) such that z3[n] = 0 for n < nz. The corresponding
output will be

win] = %m[ﬂ —1]+z3n], tuln]l=0forn<n,.
(52.36-2)

Sealing eq. (S2.36-1) by o and eq. {52.36-2) by £ and summing, we get
ol + Bualn] = Sualn = 1) + Syain = 1) + az o] + Bzafr.

By inspection, it is clear that the output is y3[n] = aguln] + fyzin] when the input is
z3(n] = az,[n]+ Bzan]. Furthermore, ya(1) = 0 = (1) +wa(1). Therefore, the system
is linear.
(b) Let us eonsider two inputs
zifn] =0, forallm,

0, n<=1
zin) = i Ry

and

Since the system is linear, the response to x4[n] is yi[n] = 0 for all n. Now let us find
the output y[n| when the input is z2{n]. Since y2(0] = 0,

will=(1/20+0=0, w2 =(1/2)0+0=0,
Therefore, galn] = 0 for n > 0. Now, for n < 0, note that
wl0] = (1/2h[-1] + =[0].

Therefore, y2[—1] = —2. Proceeding similarly, we get 1[—2] = —4, 1[-3] = -8, and
so0 on. Therefore, yfn] = —(1/2)"u[-n - 1].

Now note that since x,[n] = r3[n] for n < 0, it must be true that for a causal system
#n] = yz[n] for n < 0. However, the results obtained above show that this is not Lrue.
Therefore, the system is not causal.

2y P L)

¢ Y&

Figure 52.39

(b) We have
¥(t) = /mh(ﬂx{l—vldf
- rc'""z][u(t —T+1)=uft=7=12)

2
h(7) and z(t — 7) are as shown in the figure below.
Using this figure, we may write
0, t<l

i1
i) = f e~ =Ngr =1 — e~lt-1), le<tes
2

f e Vdrme -1 -3, t>4
=2

2.41. (a) We may write
aln] = sl —ezin -1
a"uln] — a®ufn - 1]

8[n].
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‘\('r]' ”~ z('t' z']

8l 2 T 4t-2 O  t+i T

Figure S2.40

(b) Note that gn] = z[n} + {[n] - ad[n — 1]} Therefore, from part (a), we know that
z[n] » {§|n) = ab[n — 1]} = d[n]. Using this we may write

z[n)  {d[n — 1] — ad[n - g = dn-1)
z[n]» {fln+ 1] —adfn]} = dn+1],
z[n]» {f[n + 2] —adln +1]} = dn+2

Now note that
2{n) ] = 46l + 2] + 26[n + 1] + B[n) + 582 — 11

Therefore,

z(n} » hin) 4zln] » {f[n + 2] = adfn + 1]}
2z(n] » {8[n + 1] — adin]}
z[n] + {4[n] = adln = 1]}
(1/2)z[n] + {dfn — 1] - adln - 2]}

+ 4+ +

This may be written as
z{n] ¢ Aln] = z[n] = {48[n +2] - 4adln + 1] + 20[n + 1]
— 2abln] + dn] = adln = 1]
+ (/2 1) - (1/2)8n = 2)
Therefore,
hln] = 48n+2]+(2-4da)dn+1]+(1- 2a)dn]
+ (1/2 - a)ln—1) = (1/2)é[n - 2]

2.42. We have o
y(t) = z(t) + A(D) = f enlt=rg,
=05
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2 44. (a) We have >
z(t) o ht) = fmz[f)h(i —1)dr = jrz(r}h(t — r)dr.

Note that A(—7) = 0for || > T5. Therefore, h{t—7)=0for7 > t+Tzand 7 < ~Tp+L.
Therefore, the above integral eval to zero either if Ty < —Ty+tor T+t < -T

This implies that the convolution integral is zero if ¢ > [Ti + Tal-
(b) (i) We have N
i
yln) = Aln] » zln] = Z hk)z[n — K]
k= Ng

Note that z[—k) # 0 for =N3 £n = —Na. Therefore, z[—k+n] #0for =Ny +n =
k < =Nz +n. Clearly, the convolution sum s not 2ero if ~-Ny4+n < N and
— Ny +n > No. Therefore, y[n] is nonzero for n < M+Nyandn2 Np+ N2
(ii) We can easily show that My = My + Mz — 1.
(e} hln] =0 for n > 5.
(d) From the figure it is clear that

-1
y(t) = h(t) « z(t) = j: z(t — v)dr + z(t - 6).

‘Therefore, .
y(0) = [ z(r)dr + z(—6).
-2
This implies that z{t) must be known for 1 <t<2andfort=—6

2.45. (a) (i) We have

z(t) — z(t = h) e wlt) —yit = h)
h h i
Taking limit as h — 0 on both sides of the above equation:
2(8) ' /1)
(i} Differentiating the convolution integral, we get
vy = % [Ez{t-f}h(r)dr]
= [ Siste =ity

- f” z (¢ = 7)h(r)dr
—o0
= 2'(t) »Alt).

0 f" - 2
y(0) = L *—;awlw/?)-

(a) Uf wy = 2x, then y(0) = 0.
{b) Clearly, our answer to part (a) is not unique. Any wo = 2k=, ke TIand k # 0 will
suffice.

2.43. (&) We first have

[=(t) » h{t)] = glt)

n

ijz{f)h(a' — 7)g(t — o' )drds’
[ [ ztomrste = = rrdrao
—odd —00

Also,

=(t) « [h(2) » glt)] jm [ x z{t = "Vh(r)glo’ — 7)da'dr
=00 S =0

f_:f_:x(ﬂ)h{f)g(f, < bide
ﬁ]_::(f)h(o)g(g — o= ¥)drda

]

The equality is proved.
{b) (i) We first have
1 2

wlr] = ufn]  hafn] = z (-3) = 2[r-cpr]um

Naw,
yln] = win} * hzfn] = (n + Duln].
(i) We first have
n k n—l
gl = hafol « helol = 55 (~3) + 3 (-3 = vl
?;:( n) zg g Tun

Now,
yin] = uln]  gn] = uln] » uln] = (n + 1)uln].
The same result was obtained in both parts (i} and (ii).

(¢) Note that
z[n] = (hafn] « ha[n]} = (z[n] * halnl) » Ayfn).
Also note that
z[n] * heln] = a"uln] — a"uln - 1] = é[n].
Therefore,
z[n] » by [n] * hz[n] = &[n] + sinfn = sinBn.
o8
— hit > -
iy ] h® o L@ btr)=y'é)
Figure §2.45

(iii) Let us name the output of the system with impulse response w, (t) as w(t). Then,
w(t) = =(t) » ui(t) = £'(t) and z(t) = £'(t) « A(2).
Since both systems in the cascade are LTI, we may interchange their order as
shown in Figure 52.45.
Then, y(t) = z(t) » h(t) and p(t) = ¢/(t). Since z(t) and p(t) have to be the same,
we may conclude that z'(t) « h(t) = /(t).

(b) (i) We have already proved that y/(2) = z'(¢) + A(t). Now we may interchange =(¢) and
h(2) in the earlier proofs and they would all still hold. Therefore, we may argue
that y'(t) = =(t) » B'(t).

() Consider
Wt) = [z(t) e ult)] e K (D)
= z(t) « [u(t) » uy(t)] » h{t)
= z(t)« k{L).

This shows that [z(t) » u(t)]h’(f) is equivalent to 2(t} » h{t). Now the same thing,
may be written as:

]

[x(t) » uft)] « A'()

[[=(t) & wa(t)] o A{t)] » u(t)
£

f (P)A(E - T)dr

= /() » [a(t) + u(t))
t
z"{l}‘] h(r)dr

wlt)

(c) Note that z'(t) = &(2) - 5e=5tu(t). Therefore, the output of the LTI system to z'(t)
will be h{t) - Ssin(wg?). Since this has to be equal to ¥/(t) = wo eos(wygt), we have

h(t) = wo cos{wgt) + Ssinfunt).



(d) (1) We have
plt) = =(t) e [wi(t) « ult)] « ()
= [z(t) « w(t)] » [ult) + ()
= () »s(t)
= F:’(r]s[t - T7)dr
-0
(ii) Also,
z(t) = a(t)+d(t)
= [z(t) suy(t)) « u(t)
00
- j 2 (r)ult — 7)dr
(e} In this case
2'(t) = e'ult) + ().
Therefore,

ylt) = s(t) + e'u(t) « s(t).
‘This may be written as
yit) = [ —2e7% +1]u(t)
-3ty

+

1
IZ(B’ -
. ;uf — e ) = et = Lult).

() Using the fact that [§[n) = é[n — 1]] » un] = djn] gives:

yin] = fzln] = sl - 1))+ sfr] = Y felK] - 2l = U)sln = ¥
k

and &

2] = [zfn] — zln — = ula] = 3 [={k] ~ =k — tjuln - &].

=—og
2.46. Note that

did(:ﬂ = —6e=Mult — 1) + 28(t = 1) = —3z(¢) + 25(z - 1).

Given that
a(t) = 2e7ut - 1) — y(t)

we know that %‘1 = —3z(t) + 25(¢ — 1) must yield —3y(¢) + 2h(t ~ 1) at the outpnt From
the given information, we may conclude that 2h(t — 1) = e=yu(t). Therefore.

h(t) = %:“‘“"u{u 1).
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(g) False. For example, if h(t) = e™*u(t), then o(t) = (1~ e~')u(t) and

/wll —e~ldt = t+ &7ty =00,
(/]

antiatal

Although the system is stable, the step resy is not y integrabl
o0
(k) True. We may write uln] = 3 _4[n — k]. Therefore,
k=0

sfn] = ih{n —K.
L]

If s[n] = 0 for n < 0, then h[n] =0 for n < 0 and the system is causal,

249, (a) It is a bounded input. |z[n]| £ 1= B; for all n.
(b) Consider

3 a{-HAlY

k=-o0
.
= & il

3 k- 0

k=-0c

yl0]

n

Therefore, the output is not bounded. Thus, the system 15 not stable and absalute
summability is necessary.
(e) Let

0, i h(—t) =0
=4 M0 fa-g A0

Now, |z(t)] < 1 for all t. Therefore, 2(t) is a bounded input Now,

]

w0) = [ at-rintriar

—o0

" o0 h‘]{,]
& f_wm‘(r‘ﬂ“’

= j_ :ms)pa =00

table if the i 1 is not at 4

Therefore, the system is P p
2.50. (a) The output will be ax(2) + bza(t).

(b) The outpul will be z;(t = 7).

247, (a) plt) = 2p0(t).
(b) ¥(t) = wolt) — wlt - 2).
(c) ylt) = polt = 1).
(d) Not enough information.
(e} y(t) = yo(=1).
(f) wlt) = w"(t).
The signals for all parts of this problem are plotted in the Figure 82.47.

K Y 4l
g > ¢ /\‘\ -E

o £ * ol Z 4
(@) (5)
e ('t.(.) H{t}
Frl=ead Ve
. = » z N
of 1 z n & * | ol +
«) !"Igcm!e §2.47 - (f)

-k
2.48. (a) True. If A(t) periodic and nonzero, then
fmlh(t]ldt = co.

Therefore, h(t) is unstable.
(b) False. For example, inverse of hin] = d[n — k] is g[n] = é[n + k] which is noncansal.
(¢) False. For example hfn] = u(n] implies that

3 Ihln)l = co.

-l
This is an unstable system.
(d) True, Assuming that hn] is bounded and nonzero in the range iy < n < 7z,
Z nafhfk]] < 0.
k=mny

This implies that the system is stable.

(e) False. For example, h(t) = e®u(t) is causal but nat stahle.

(f) False. For example, the cascade of a causal system with impulse response hy[n] =
[ = 1] and a non-causal system with impul P haln] = d[n + 1] leads to a
system with overall impulse response given by hln] = hy[n] + kajn] = d[r-
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2.51. (a) For the system of Figure P2.51(a) the response to an unit impulse is

wiln) = n(3) uln].

For the system of Figure P2.51(b) the resp to an unit impulse is

wz[n] = 0.

Clearly, wi[n] # wn].
(b) For the system of Figure P2.51(a) the response to an unit impulse is

yn) = (%)"u[n] +2.

For the system of Figure P2.51(b) the response to an unit impulse is
1
yinj = (E) uln] + 4.

Clearly, wi[n] # win]-

2.52. We pet
"
a[n] = h(n] » u[n] = g(‘k + e, nzo
0, otherwise.
Noting that
= 4 d [1-a™?
(k+Do* = = a":—[ ]
g__% do*zuo de | 1-a
we get

= +1 _ Nt
sn] = [1 (r;ti]a’ + 1(1 _aa’)]u{n]
- [ 1 a o *]
U—ep U-o° *1-a

(n+ l)a“l uln].

2.53. (a) Let us assume that
N
meﬁ =0.
k=0
Then,
L N
3
D sk (Ae) =3 Aare™'sf = 0.
k=0 k=0

Therefore, Ae® is a solution of eq. (P2.53-1).



(E]

w

(b) Consider

N o N N
E“*E‘f(d&n) . gb;h*e"-}-gﬂagh"xk"

N ¥4
Ate'tS arst + A i E(:“]

ksl k=0

N d N
Ak"g;ata" + AE";EGH*-

N
If s, is a solution, then zmaf = 0. This implies that te** is a solution.
k=0

{c) (i) Here,

243 +2=0 = s==2s=-L

‘Therefore,
ynl(t) = Ae ™ + Be™".
Since yu(0) = 0, y'al0) =2, A+ B =0and 24+ 5 =2 Therefore, A = -2,
B=1
ylt) = 2e 8 =27

(it) Here,

Pr3s+2=0 = ylt)=Ae N+ Be,

Since y(0) = 1, ¥/(0) = —1, we have y(t) = et
(iii) y(t) = 0 because of initial rest condition.

(iv) Here,

Sp241=0=(s+1? = s=-lo=2

and
y(t) = Ae™* + Bee™".

Since y{0) = 1,1/(0) =1, A=1, B= 2. Therefore,
ylt) = et + 2™t
(v) Here,

Shsfms—1=0=(s=1)s+1)} = ylt) = Ae' + Be™" + Cte™".

Since y(0) = 1, (0) = 1, and ¢/'(0) = 2, we get A = 1/2, B = 3/4. C =32

Therefore,

Lp Bt
ylt) = ze‘ +ge gt
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{ii) Here,
2 -2:+1=0.
Therefore,

yln] = A(1)" + Bn(1)* = A + Bn.
Since, yl0] =1, y[l} = Owe get A =1, B = -1, and
yin] =1-n.
(iii) Only difference from previous part is initial conditions. Since yl0] =1, y[10] = 21,

weget A=1, B=2 and
yinj=1+2n.

(iv) Here,
o ﬁu +4).
Therefore, ; \
yfn] = »‘-lm(l +3)"+ Blmll ="

Since y[0] = 0, y[~1] =1, we et A =Lz, B =%, and
oin] = =5 (5)" s /4.
(a) yl0] = #{0] = 1. hin] satisfies the equation
i) = %bin -1, Azl

The auxiliary condition is A[0] = 1. Using the method introduced in the previous
problem, we have 2 = 1/2. Therefore, hfn] = A(1/2)". Using the auxiliary condition,

hin) = (%) uln).
{b) From Figure P2.55(b), we know that if z[n] = &[n], then
i) = haln] = (3)"uln].
This implies that

yln] = hin) = (%) unl + 2{%}"_'ulu =1,
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(vi) Here, s = =1 2j and
ylt) = A~ + Be Fe U
Since y(0) =1, y'(0) = 1,
A=30-§)=B"

‘Therefore,
y(t) = e~*[cos 2t + sin 2t}

2.54. (a) Let us assume that

N
Em;z‘s =0.

Then, if y[n] = Az,

N N N
Enkb'[ﬂ -k = ZO.()&S"J = Az{;‘zngzu’ k=9,
k=0 k=0 k=0

Therefore, Az} is a solution of eq. (P2.54-1).
(b) 1f yn] = nz""", then

N N
3 ayln -k =3 axln - k)bt (52.54-1)
k=l k=0
Taking the right-hand side of the equation that we want to prave,
N N
RHS = MY ap(N = k)N ~* ! 4 (n - NS ax
- k=0 k=0
- 20*{“  k)znk=} (52.54—2)

k=0
Comparing eqs. ($2.54-1) and ($2.54-2), we conclude that the equation is proved.
(©) G) Here,
3l A
1+‘: +sz =0 = E=—g, % ¥
‘Therefore,
yiml = A(=3)" + B(-)"
Since y[0] = 1, y[-1] = —6, we get A =—1, B =2, and

yinl = 2= = (=5)"

(¢) Plugging eq. (P2.55-3) into eq. (P2.55-1) gives:

I

n n=1

S Grem- Y (" "lm)
- m=-go
(3)""=lr]
= z[n].

This implies that eq. (P2.55-3) satisfies eq. P(2.55-1).
(d) (i) Given that ag # 0 and that the system obeys initial rest, we get

S hin — mlzim] - %Eh{n - m = 1)z{m)

aylo] =1 = v[01=ﬁ-

The homogeneous equation is

N

S oihln -k =0

k=0

with the initial conditions
h0] = 1/an, h[-1}=-- =h[-N+1]=0.
(ii) We have
M
hfn] =3 behy[n — k] = 0,

k=0

where hi[n] is as above.

(e) Forn> M,
o
ngh[n -k =0
k=l
with

hl0] = ylo], -+ . h[M] = y[M].

(f) (i} We get
neven, n>0

{4

noddorn<( ~
{ii) We get
1, nevenandn 20
hln] =1 2, noeddandn>0
0, n<l
{iii) We get

2, n=0,2
hfn]=¢ -1, nevennz4d .
y else

68



iv) We get
hln] = %{m 1:— + V3sin %!
256, () In this case, s + 2 = 0 which implies that
w(t) = hit) = Ae™™,

Since y(04) =1, A=1and
hit) = e Pu(t).

Now consider eg. (P2.56-1).
LHS = %f_:h(: — r)z(r)dr +2f_:hft- )z(r)dr

- f =271 5(¢ - 7)z(r)dr

= z(l)=R.HS.
This implies that y(t) does solve the differential equation.
(b) Take
wlt) = 3 omlt)-
i
Then

~
Z&kzamhl(ﬂ = 4(1).

k=0 )
Integrating between t = 07 and t = 0+ and matching coefficients, we get = 0 except
a_x = 1/an. This implies that for 0~ <t < ot

o) = om0

and '
y(0*) =y/(0) = =y T (@) =0
and
d¥ly)| 1
PTLE N vy
(€) The impulse response is
M, dh()

at) =Y b
}g"ds
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Figure 52.57

(b) The figures corresponding to the remaining parts of this problem are shown in the
Figure 52.57.
2.58. (a) Realizing that za[n] = w(n], we may climinate these from the two given diffrrence
equations. This would give us

2uafn] — aln — 1] + valn = 3] = nif] - 5zaln — 4]

This is the same as the overall difference equation.
(b) The figures corresponding to the remaining parts of this problem are shown i Figure
S2.58.

2,59, (&) Integrating the given differential equation once and simplifying, we get
a f* bnf b
t)=—— dr + — z(r)dr + —zit).
sy =-2 [ yirsar+ 2 [ strr + 2
Therefore, A = —ag/ay, B =bifa, C = bofer.
(b) Realizing that z2(t) = 1 (t), we may eliminate these from the two given integral equa-

tions. This would give us

wlt) = A[_I ya(r)dr + Bj_;:l('r}df +Cxi(t).

n

(d) (i) Taking
yit) = 3 ouclt)

we get
3 lerur4a(t) + 3arur (1) + 200w ] = 6(1)

r
This implies that rme; = —2 and a2 = 1. Therefore, h(0+) = 0 and K(0*} =1
constitute the initial conditions. Now,

P +3s+2=0 = as=-2s5=-L

‘Therefore,
h(t) = Ae"t+Be ™", t 2 0.

Applying initial conditions, we get A = —1, B = 1. Therefore,
e G
(i) The initial conditions are h(0%) = 0 and K'(07)1, Also, s = —1 %+ ). Thercfore
h(t) = [e™" sint]u_;(¢).
M
(€) From part {c), if M > N, then 3 6, 2240 will contain singulasity terms at ¢ = 0 This

- & k=0
implies that

ht) = 3 ovu(t) + -

(£) (i) Now,
et (t) + 273 avur = 3u(t) + uolt).
Therefore, Tmazx = D.rMso
apuy () + a-yualt) + 2aguo(t) = 3uy(t) + uglt).
This gives ag = 3 and a_; = —5. The initial condition is h(0") = -5 and
A(t) = 3ua(t) — 5e~*u_,(t) = 35{t) — Se™ult).

(i) Here, @, = 1, @p = =3, a1 = 13, a-p = —44. Therefore A(0%) = 13 and
W(0*) = —44 and

h(t) = uy(t) — ug(t) + 18~ u_y(¢) = Se™u (1).

2.57. (a) Realizing that zz[n] = wi[n], we may climinate these from the two given difference
equations, This would give us
wiln] = —ayaln = 1] + bozi[n] + byzmy[n - 1]
This is the same as the overall difference equation.
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(¢) The figures ding to the ining parts of this problem are shown in Figure
52.59.

2.60. (a) Integrating the given diflerential equation once and simplifying, we get

- t ¢ pr
W) = ~ 22 [ st -2 [ vterar
14 T 13
+ :‘—;]me_mx(o)dadf + j—;j:”:(r}dr + Ex(t}.

Therefore, A = =a1/az, B = —ag/ea, C = bafay, D = by fer, E = bofaz.

(b) Realizing that xo(t) = yi(t), we may eliminate these from the two given integral equa-
tions.

() The figures corresponding to the remaining parts of this problem are shown in Figure
52.60.

2.61. (a) (i) From Kirchofi's voltage law, we know that the input voltage must equal the sum
of the voltages across the inductor and capacitor. Therefore,

(1) = chg-;g +ylt).



)

f)

Figure 52.50

Using the values of L and C we get

°Q"“) +ylt) =z=()

(i) Using the results of Problem 2‘53. we know that the homogeneous solution of the
differential equation

y(t) dy(t)
gz "% a
will have terms of the form K e*t+Koe"'* where sg and sy are roots of the equation

+ agylt) = bax(t).

S4aa+a;=0.

(It is assumed here that so # ;. ) In this problem, a; = 0 and az = 1. Therefore.
the root of the equation are sg = j and 5, = —j.. The bomogeneous solution is

ynlt) = K1 + Kae™".

And,uy =1 =wy.
(1i1) If the voltage and current are restricted to be real, then K; = Kz = K. Therefore.

vh(t) = 2K cos(t) = 2K sin(t + =/2).
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(c) (1) From Kirchoff's voltage law, we know that the input voltage must equal the sum
of the voltages across the resistor, inductor, and capacitor. Therefore,

t
d2"1:(‘.'! i Rcdyd(t) + i)
Using the values of R, L, and C we get
diy(t)
T

(ii) Using the results of Problem 2.53, we know that the bomogeneous solution of the
differential equation

z(t) = LC

+ 2“"(') + 5y(t) = 5x(1).

Lylt) 1) 0’:.'(‘)
e W

will have terms of the form K%+ Kze*' where so and s, are roots of the equation

+ azy(t) = bzx(t).

SLiras+ay=0

(It is assumed here that sg # 51.) In this problem, o, = 2 and a = 5. Therefore
the root of the equation are sg = —1+2;j and sy = -1 - 2j. The homogeneous
solution is
nlt) = Kye~te¥ 4 Kge~te™™,
And, a=1.
(iii} If the voltage and current are restricted to be real, then K = K; = K. Therefore,

yalt) = 2K e cos(2t) = 2Ke™" sin(2t + 7/2).

2.62. (a) The force z(z) must equal the sum of the foree required to displace the mass and the

force required to streteh the spring. Therefore,
() = mED 1 Ky = 200

Substituting the values of m and K, we get

“Q”m +4y(t) = 22(2).

Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation

L0 4 0,2+ auyte) = ba()

will have terms of the form Kye®' + K:e"" where 39 and 3; are roots of the equation

S 4as+or=0
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Figure 52.60

(b) (i) From Kirchoff's voltage law, we know that the input voltage must equal the sum
of the voltages across the resistor and capacitor. Therefore,

zlt) = RC%I + ule).

Using the values of R, L, and C we get

dy(!) + yit) = =(t).

(i) The I response of the syst ml.l:n:' g lution of the above differ-

ential equation. Using the results of Problem 2.53, we know that the homogeneous
solution of the differential equation

ﬁy(!)

+ ay(t) = bz(t).

will have terms of the form M‘ where 3 is the root of the equation

a+ay=0.
In this problem, a; = 1. Therefore, the root of the equation are 59 = - L. The
homogeneous solution is
ynlt) = Ke™t.
And,a= 1.
T4

(It = sssumed bere that sg # #,.) In this problem, a; = 0 and ap = 4. Therefore, the
root of the equation are 5o = +2j and 5; = =27. The bomogeneous solution is

ua(t) = Kielt 4+ Koem 4t
Assumming that y(t) is real, we have Ky = K3 = K. Therefore,
yal(t) = 2K cos{2t).

Clearly, yn(t) is periodic.
(b) The force z(t) must equal the sum of the force required to displace the mass and the
force required to stretch the spring. Therefore,

s =80

Substituting the values of m and b, we get
dy(t) | wlt) _ =(t)
dat 10000 © 1000
Using the results of Problem 2.53, we know that the homogeneous solution of the
differential equation
dy(t)
dit

+ by(t)-

+ ayylt) = bz(t).
will have terms of the form Ae*' where s; is the root of the equation
s+a =0

In this problem, a; = 1/10000. Therefore, the root of the equation are so = —107%,
The homogeneous solution is .
valt) = Ke™ e
Clearly, ya(t) decreases with increasing t.
(e) (i) We know that the input foree =(2) = (Force required to displace mass by y(t)) +
(Force required to displace dashpot by y(t)) + (Foree required to displace spring
by y(t)). Therefore,

dylt) dy(n

() =m T +b——= + Kylt).
Using the values of m, b, and K we get
d*
D %0 420 = 200
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{111 Using the results cf Problem 2.53, we know that the homogeneous solution of the

differential equation

(It is assumed here that sq # 51.) In this problem, a; =
the root of the equation are 5o = =1+ j and 8 =

solution is

And,a=1.

{3} If the force is restricted to be real, then Ki =

2 63. (n) We have

d
;Et} A dy( )

will bave terms of the form Ke** +ngl‘ where sg and sy are roots of the equation

+ agy(t) = buz(t).

S +as+ap=0.

wlit) = Kie~ted' + Kae™fe

y[ﬂ] =
= 100,0008[n] + 1.01y{n — 1] = Dufn = 1].
‘Therefore,
yln) = 1.01yfn - 1] - n>0
and y[0] = 100,000 and v = 1.01.
(b) We have

This implies that ygln] =

Therefore,

ypln) = 1.01pin — 1] -
100D. Also the homogeneous solution is of the form

waln) = AQLOL".

yln] = uln] + ypln] =

A(1.01)" + 100D

Using the initial condition y{0] = 100000, we have
A = 100000 - 1000.

= -1-3

2 and ap = 2. Therefore,
The homogeneous

K3 = K. Therefore,

ya(t) = 2Ke " cos(t) = 2Ke ' sinft + =/2).

Amt. borrowed — Amt. paid + Compounded Amt [rom prev month

(d) Total payment = $370, 296.
(e) The toughest question in this book!!

2.64. (a) We have y(t) = z(t) » h(t) and z(t) = y(2) » g(t). Therefore, g(t) ¢ h(2) = &(t). Now,
R(t) * @)l ymny = 3 kgn-k8(t — nT).
k=0
Therefore we want

i}‘ _f1, =m=0
kfn-t=10, nm1,2,3 "
k=0
‘Therefore.
et ol e
oting: RS RS TRl
(b) In this case, go = 1, g1 = =1/2, 92 = (=1/2)*, g2 = (=1/2)3, and so on. This implies
that
o 1 k
oty =8+ (—5) &(t - kT).

k=1

o
(¢) (i) Here, h(t) = Z«*a(t -T).

(i) f0ca<c, then o < 1. Therelore, h(t) is bounded and absolutely integrable
and corresponds to a stable syst Ifa > 1, then A(t) is not absolutely integrable
the system unstabl
(iii) Here, g(t) = 1 — ad(t — T). The inverse system is as shown in the figure below

()

Figure 52.64

d[n], y[n] = hln). If z2[n] = 15[n] + L8[n — N}, yln] = hfn).

2.65. (a) The autacorrelation sequences are as shown in Figure 52.65.
() The autocorrelation sequences are as shown in Figure S2.65.
(c) We get

(d) If z3[n] =

$ulal= 3 Al-klduln - K.
k=-oo

Therefore,¢y,(n] may be viewed as

$ezln] = — Ggyln].
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Figure S2.66

(€) zy(t) » halt) = za(t) + halt) = 21 (t) » hs(t} =0 for L = 4.

2.67. (a) The autocorrelation functions are;

‘Therefore,
yin] = (100000 — 100D)(1.01)" + 100D.
(c} We have
y[360} = 0 = (P — 100D){1.01)** + 100D
Therefore, D = $1028.60.
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Alse,

byyln) = D dazln — Kldualk)

Therelore.dy, [n] may be viewed as

2.66. (a) The plot of :(t) is as shown iu Figure 52.66.

dezln] —+ | hln] # A{=n]| = dyy[n].

(d) theyln] and ¢y, are as shown in Figure 52.65.

(b) The plots of 75(t) and za(l) are as shown in Figure S2.66.
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B3+ %, 0<ts2
¢r::|{l}={ E{a z +§ ¢ ;25 and  ¢rz, (t) = g2, (1)
and

71-t), 0<t<1

1=, 1€t<2

t-3, 2<t<3

3-t, 3<t<4

$eiz(t) = Ly 4<t<5h and  Buux,(t) = deaxa(—t)

S=4 5<t<h

t-17, 6<t=<?7

0, t>7

(b) If the impulse response is h(t) = (T ~ ), then y(t) = z=(t = T).

(c) We have

T
y(T) = f 2(r)h{T — 7)dr

< MY U “{:Jﬂ]m.

1/2
Therefore, y(t) is at most M*/? [ [ :’-‘(t)da] :
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1 we now choose
My | el =
f 2(t)de
0
then

T
u(m) = a7 20

Cleacly, y(T) is maximized for the above choice of A(t).
(d) (i) The responses are as sketched in Figure S2.67.

#ols Kaly
4
? o i B /\rs r ¥
1 T 3 & =

o~ -—£ ':5{\_/, T & 5 e~—" £
1%l (4)
]
4 Modifieck
© 1 ; T t Klt) for
- (4-i)
Figure 52.87

(i} Let the impulse responses of Lo and L be hio(t) and hy, (4). Then,

zo(t) * hig()le=q
zg(t) # hry (e=y
z1(t) * hro(t)iza
21(6) = hey (=g

nmououn
S

To make the job of the receiver easier, modify zo(t) as shown in the figure below
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(b) We hawe

zlnfaln] = zOldn] = ={1]8n — 1) + [=[0)éfn = 1] — =[0dln — 1]
= z[0)u[n] — {z{1] = =[0]}S[n - 1]

= z{0}6[n) - =[1)8[n — 1] + =(1)3[n) — =(1}é[n]

= z{ljusn) = {=[1] - 2[0]}4{n]

(e) We have
: ugln] = wiln] » w[n] = d[n} = 28[n ~ 1]+ d[n ~ 2]

and

uyln] = &[n] — 38[n - 1]+ 38[n - 2] - bfn = 3]
The plots for these signals are as shown in Figure 82.70.
3
T L ] . S
%

T, T

()

wy[nd TI 1 1

- 1 2 . "
(4)
Figure 52.70
(d) We have
uogln)=(n+1), nz0
and

n>0

uoslp) = LD,

The plots for these signals are as shown in the Figure §2.70.
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2.68.

2.69.

2.70.

We have
bmlr) = [ plripte s rra
< (f pmani [ nen
< f Pr)dr
Therefore,
) <0 = (D) = IOl
Also,

Soplt) = dpplt —ta) =
(a) Let g{7) = z(t = 7). Then

]_ :g('r)m (r)dr = =g (0) = == (2).

deplto) = dppl0) = 50y (1).

(b) Consider r(t) = g{) f(t). Then,

/ :rwu.um = —(0) = ~g'(0)(0) — 9(0)(O).

00 g v
[ sosomea - [ o1 @it = -5 0110) - 5(0)7'0)
which is the same as above.

© [ ~ g(r)ua(r)dr = g(0).

{d) We have
[ _sseraiiir = Fla-07Olleo
= -2 05~ + o(-01 (- lewo
= FO(0) - 24/0)1(0) +30)/"©)
Therefore,

J{tua(t) = f(O)ua(t) — 2/ (0)i{e) + S {O)uol2).
(a) We have

S almimim] = S slmi(s(m) - &m - 1)

= z[0] - =(1}.
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(&) The statement is troe for k = 1,2,3. Assume it is true for k. Then, for k >0
uisrfn] = wr[n] » weln] = veln] — wfn - 1].

By induction, we may now claim that the statement is true for all k > 0.
(f) For k = 1, u_y[n] = uln] which shows that the statement is true. For k=1,

(n+1)!
n!

u_z[n] = ufn] = (n + 1)uln]

which again shows that the statement is true. Assume that it is true for k—1>0
Then,

)] = uoefn) — vxln - 1). (82.70-1})
Also,
-2)!
vl = SEs)
n+k-1)}  (n+k-2) ., — 2]
allk—1)1 0 (m=DIk=2)!"

Using the above equation with eq. (S2.70-1), we get

(n+k=1)!

u_i[n] = —muin].

By induction, we may now claim that the statement 15 true forallk =0

2.71. (a) We have

() o [u(t) s u(t)) = =(t) =1, Jorallt,
[2(t) ety (t)] »u(t) =0wnf(t) =0 foralle,

and
[z(t) » ult)] » uy(¢) = oo » uy(t) = undefined

(b) We have z(t) = e=!, h(f) = e~u(t), and g(t) = wy(¢) + &(t). Therefore,
2(t) + [hlt) e g(8)] = 2(8) = ¢".
[=(2) » g(t}] » A(t) =0,

and oo
glt) » |=(t) = k()] = alt) » e"‘f 1dr = undefined.
o



(c) We have L i
aln)« ) gl = (3) "+ 8= 3

(zfn] » gln]) » h[n] = 0« hin] =0,

(el) + M) gl = ()" 1) » ol = .
k=0

(d) Let h{t) = ui(t). Then if the input is =, (t) = 0, the cutput will be g (t) = 0. Now if
z3{t) = constant, then (t) = 0. Therefore, the system is not invertible.
Now note that

¢ 0 ifzalf) = oWt
1£”"(’)“l={ o iz #0

t
Therefore, if lf Mti # o, then only z3() = 0 will yield ya(t) = 0 Therefore
- [T

the system is invertible.

2.72. We have L
alt) = Eu(t} « [6(t) — 4t -7
Differentiating both sides we get
d Leomy Lt
ot = U@« 6(t - T))
= %sm o [808) = 8(t = 7))
1
- E{&(t] - &(t-T))
273, For k = 1, u_1(t) = uft). Therefore, the given statement is true for k = 1. Now assume

that it is true for some k > 1. Then,

() = ult) su_xlt)

- [ = f;u_t(v)ﬂv
,rl—]

= j:(k__l—ﬂ, 120
7‘

3
= %ull).

k=1, 30
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3.5. Both z1(1 — t) and z,(t — 1) are periodic with fundemental period Ty = 2%, Since y(t) i8
» linear combination of (1 —t) and z,(t — 1), it is alsa periodic with fundemental period
Ty= :: Therefore, wy = wy.

Since z(t) 5, o, using the results in Table 3.1 we have
zy(t +1) cﬁl'ogcﬂﬂ‘”‘l
(e -1 &5, ape 2T o 2 (24 1) £, g_yemiMM)
Therefore,
sy(t+ 1)+ 21— 1) &S, g, k05T 4 gy 20T = ek (a; +ay)

3.6. (a) Comparing z,(t) with the Fourier series synthesis eq. (3.38), we obtain the Fourier
series coefficients of z)(t) to be

ﬂk:{ l'.i.ﬂk' 05 k<100

otherwise

From Table 5.1 we know that if =;(t) is real, then ax has to be conjugate-symmetric,
ie, ax = a',. Since this is not true for z,{t), the signal is not real valued.
Similarly, the Fourier series coefficients of z4(t) are

_ | cos(kx), 100 < k < 100
%=1 0, otherwise

From Table 3.1 we know that if z(f) is real, then a; has to be conjugate-symmetric,
i, ap = ab,. Since this is true for z5(t), the signal is real valued.
Similarly, the Fourier series cocflicients of z3(t) are
_ [ jsin(kaf2), 100 <k =100
PRS0 otherwise
From Table 3.1 we know that if z3(t) is real, then ay has to e conjugate-symmetric,
i, ap = a7, Since this is true for z3(¢), the signal is real valued.
(b) For a signal to be even, its Fourier series coefficients must be even. This is true only

for z5(2).
3.7.  Given that
(1) o
we have
dz(t =
olt) = _Z.(:—) o= ,k%c,.
‘Therefore,
GE = —L k#0
3{2x/T)k’
BT

Chapter 3 Answers
3.1. Using the Fourier series synthesis eq. (3.38),
z(t) = oy ETH 4 c-m“ﬂhﬂh + a2 4 age IHM/TI
= 2=/B) | g —i(2x/E) 4”58(?!.!‘)1 — 4femIUTx/BY

mas(E:) —sm(%‘is}
= 4ms(%t) + sm(:%'s + %)

3.2. Using the Fourier series synthesis eq. (3.95).
2in) = a0+ NIN 4 g og INININI 4 o GHEINN 4 g_ (g HHINIY
o] g HA) 2SIy =il 4] 252N 8
2SN 5 =3x/D) g =34(2n/N )
4n L 8 4
= 1+2Zoos(nt 3 +4ooe(Tn +3)
. Aw Ix . B7 G

= 1+ 2sin( 3 n+ T) +4sm(?n + -ﬁ—)

3.3, The given signal is
z(t) = 2+ %Cj(!-ma + %e-j{hmr N 25;&,1.'.:;:): + .b-e-,'(s.;.;};

. %,:m-mr 5 %e-nn-m: — 2B/ . gje-saRIO:

From this, we may conclude that the fundamental frequency of z(t) is 2xf6 = #/3. The
non-zero Fourier series coeffcients of z(t) are:

a=2 oe=a-2= as=aly = -2

L
3
3.4. Sineewy =, T = 2x/wy = 2. Therefore,

1
ay = = fs(l]e""'dt
24

Now,
_lf'lsdx ‘flm—u
o Biol vl i as v (St
and for k# 0
1 kmt 1f? jkt
= = o - o
ax 2101,5: dt 2,[11‘5’ dt
e, ij[l-—e—jkw]
3 ke g kT
T sin()
86
When & =0,
1
a = ?f—r :(g]a=% using given information
<>
‘Therefore,

o { 3 k=0
= b s
R k#O
3.8. Since z(t) is real and odd (clue 1), its Fourier series coefficients a; are purely imaginary and

odd (See Table 3.1). Therefore, ax = —a_y and ag = 0. Also, since it is given that a, = 0
for |k] > 1, the only unknown Fourier series coefficients are gy and a_;. Using Parseval's

relation,
1 o
B L = 3

for the given signal we have

2 1
3 0P = 3 ol

k==l
Using the information given in clue (4) along with the above equation,
jorff +leaf=1 = 2o =1

Therefore, 3
1
a = -a_ = ‘_._-ﬁj or a1 = =a-y = ___“Ji_;

The two possible signals which satisfy the given information are

1 . 1 )
1) = —— @A N (2
z1(t) 7% \/'Eje V2 sin(xt)

and
z(t) = —ﬁLjamf’" + -;%_e-ﬂ’*m' = VZsin(xt)

3.9. The period of the given signal is 4. Therefore,
1 5]
Sk -1 kn
ax q"z_:__n:[n]c
= i[ws«""?*]

This gives
a=3 a=1-2, ea=-1, a=1+2%
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3.10. Since the Fourier series coeffiecients repeat every N, we bave
ay =85, a;=a ,and goy=ay

Furthermore, since the signal is real and odd, the Fourier series coefficients a; will be purely
imaginary and odd. Therefore, ag = 0 and

8] = =Gy, ag=-a_z ay=—a_y

Finally,
6.1 ==j, aa=-23j, a3=-3

3.11. Since the Fourier series coefficients repeat every N = 10, we have a; = a;; = 5. Further-
more, since z[n) is real and even, ay is also real and even. Therefore, a; =a_; = 5 We are

also given that
1<
16 3 lelnl? = 50.
n=0
Using Parseval's relation,
z }0.&'3 = 50
k=<N>
s
Yl = 0
k==}

A
lail +laiP+af+ 3l = 50
k=2
L]
a+3 lal* = 0
k=2
Therefore, ax = 0 for k= 2,--- 8. Now using the synthesis eq.(3.94), we have

&
z] = 3 agel ¥An = Zu.e"ﬁ‘""
E= NS Es=a)
= 5t 4 gemitin
= wooe(-'sin)

3.12. Usiog the multiplication property (see Table 3.2), we have

3
ninfzaln) b5 mh-r=zdrh4
k=0

i=cN>
L aobe+ aibeoy + agby-g +asby_y
EE byt 2y + Wy 42

From the given information, we know that yln] is
5 x
cos(n+ 7)
” -
= m(§n+ :J
B %,Jt}uﬂ +§ ~i§a+5)

)

1 1
= elint§) 4 _J8Fn-3)
2:" i +2e-'
Comparing this with eg. (53.14-1), we have
H() = H(&™) =0

and
H(e'Y) = 2%, and  H(eMF) =271

3.15. From the results of Section 3.8,

vit)= 3 aiH(jkwg)e™ !
k=-co

where wy = ¥ = 12. Sinee H(jw) is zero for |w| > 100, the largest value of [k| for which
Jklwy < 100
This implies that |k| < 8. Therefore, for |k| > 8, o, is guaranteed to be zero.
3.16. (a) The given signal =, [n] is

ag is nonzero should be such that

Smub.'-Ii'nrl!lnlmofk.ithlhrthﬂb.+2h,_:+%._a+2b..3wiﬂbeﬁhlﬂ
values of k. Therefore,
zilnzafn] £5 6, for all k.

3.18. Let us ﬁmevﬂmthem:uiumeﬂiﬁmud:(:), Clearly, since z(t) is real and
odd, a, is purely imagicary aad odd. Therefore, ag = 0. Now,

i f' (L) eIk gy
8Jy

e d f' eseemig, 1 ° ianmng,
8y 8Js

= mEl=e
Clearly, the above expression evaluates to zero for all even values of k. Therefore,

a‘t={0, k=0,£2 44 ...

25 k=£1,43,45,..
When z{t) is passed through an LT[ system with f quency H(jw), the output
u(t) is given by (see Section 3.8)
o0
Vi) = 3 aH (Ghug)eitent

k=-oo
whﬁtwc-?,'e-%. Since ay is non zerv only for odd values of k, we need (o evaluate the
above summation only for odd k. Furthermare, note that

, )
Hijhn) = Hiik(r/4) = T

is always zero for odd values of k. Therefore,
y(t) = 0.

3.14. The signal z[n] is periodic with period N = 4. Its Fourier series coeficients are

E)
e = %Z:En]c'j¥h
n=l

1
= for all k

ﬁomtbermulnpmmedlnsmimuwekmwthuttheoutputy{n]isgivenby

3
yln) = E“H{,iﬂ'ﬂ)i}cﬂ(hﬂln

= 1He0)en 4 yareemyeem
+£H(e,{:'ﬂ|)‘ﬂ‘3.ﬁ] + %H(eﬂ']]eﬂ')

(83.14-1)

90

Thudnn.lhmﬂ:whoukwmda[n}intbemgeogks 15 are
=1, a3=-(j/ g, (/e
Using the results derived in Section 3.8, the output y[n] is given by
18
win] = zuﬂtesmﬂs}’amﬂc)
=t
= 0-(j ;g},:'(-m,vt!-mx:)n' + It ﬂ)e-ﬂ’vmcxl‘?lﬂﬂmln

. 3%
= an(?n+%)
(c) The signal za[n] may be written as

o = [(3)" ot « & -4 = st

where g[n] = (1)" u[n] and rfn] = E §[n — 4k]. Therefore, y3|n| may be obained
k==oo
by passing the signal rn] through the filter with frequency response H(e), and then
convolving the result with gin].
The signal r{n] is periodic with period 4 and its Fourier series cocfients are

a = % for all k (See Problem 3.14)

Th::utput gln] obtained by passing r{n] through the filter with frequency response
H{e™) is




3.18 (a) By using an ﬁmihrmthmmdioplﬂ(nja[tbepuv'nmpmhhm.u
conelude that S is defintely not LTL
(b) The output in this case is gn] = £O7/7" = &-I(%/2m_ Clearly this violates the eigen
function property of LTI sy Therefore, §; is definitely not LTI
(¢) The output in this case is yafn] = 2l /2 — 203(x/2I%_ This does not violate the cigen
function property of LTI systems. Therefore, S5 could possibly be an LTI system.

3.19. (a) Voltage across inductor = L4,
Current through resistor = i%ﬂ
Input current z(t) = current through resistor + current through inductor
Therefore,
L dy(t)

z(t) = i +ylt).

Substituting for R and L we obtain
dylt) -
S ylt) = =(t).

(b) Using the approach outlined in Section 3.10.1, we know that the output of this system
will be H{jw)e?™* when the input is it Substituting in the differential equation of
part (a), ) i

JwH ()t + H{jw)et = &
Therefore,
1
1+ jw

(¢} The signal =(t) is periodic with period 2x. Since z(f) can be expressed in the form

H(jw) =

2(t) = Lednrann g Le-sansonn,
2 2
the non-zero Fourier series coefficients of z(1) are
ay=a = 1
1 -1 = 3

Using the results derived in Section 3.8 (see eq.(3.124)), we have
wlt) = e H(EE +anH(=jle™
| : N
- (lﬁ)(meﬂ + I_-'Ju )
(1/2VB) (e T+ e
(VB cost - )

n
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322. (a) () T=1l.ao=005=4gL k0.
-2<t<-1

(n) Here,
t+2,
() =1 1, —1<t<l

2-t, 1<t<2
T =6, 89 = 1/2, and
0, k even
‘”‘“{ A sin(3)sin(%),  kodd
(i) T = 3, @ = 1, and

o = g P sialhn /) + 2 Psalhn 3, k0

()T =2 00=—1/2, ax = § = (=1)*, K #D.
(v} T =6, wp = w/3, and ;
oy = SO5(2k/3) = conlkr/3)
Jkn 3
Note that ap = 0 and ag even = 0-
(vi) T = 4, wy = 7/2, a9 = 3/4 and
et gin(kn/2) + e=it*/4 sin(kn /4)

Gy = = k.
(b) T =2, 05 = gizbmyle =] for all k.
(¢) T=3wy=27/3,a0=1 and
—jwk(3 —fnk
on = 2 gin(2nk/3) + —— sin(rk).
nk wk
3.23. (a) First let us consider a signal y(t) with FS coefficients
_ sin(kx/4)
-0
From Example 3.5, we know that y(t) must be & periodic square wave which over one
period is
o =12
ve) —{ o, 1/2<li<?’

Now, note that by = 1/4. Let us define another signal z(t) = —1/4 whose only nonzero
FS cocllicient is ag = —1/4. The signal p(t) = y(t) + z(t) will have FS coefficients

o {0, k=0

4"_““"{ sar/t)  otherwise. |

Now note that ay = die’"/3%. Therefore, the signal z(t) = p(¢ + 1) which is as shown
in Figure 52.23(a).

3.20.

(a) Current through the capacitor = C{1.
Voltage across resistor = RC' g,
Voltage across inductor = LC—.I:’-P.
Input‘wlt.ags = Voltage across resistor + Voltage across inductor + Voltage across
capacitor.
Therefore,
dy(t)
z{t) = LCW'
Substituting for R, L and C, we have

LU O | ) = 50

d;
+ RC%‘) +ylt)

(b) We will now use au approach similar to the one used in part (b) of the previous problem.
If we assume that the input is of the form /!, then the output will be of the form
H{jw)e™, Substituting in the above differential equation and simplifying, we obtain

1
Hijw) s —————
() —w? 4 w1
{c) The signal 2(t) is periodic with period 2. Since z(¢) can be expressed in the form
Ly 1
o = Ladtamsme _ 1 —jienjany
=z(t) 3 25° )

the non-zero Fourier series coefficients of z(t) are

011“:|=2—j-

Using the results derived in Section 3.8 (see eq.{3.124}), we have
w(t) = aHG)E" —a H(=j)e™
= Gt - e
(=1/2)( + &)

= —coslt)
3.21. Using the Fourier series synthesis eq. (3.38),
2t) = BT 4o HETI 4 g 4 g _yeaS(0/T
- je-"[“"'m‘ [ je"‘"""':" 4 e A 4 Qeinl2n /BN
- _z;in(-}tnem{%"n
Tl o S
= 2@3(41 =/2) + 4 cos( ] 1),
94
x) 2ty
3y 1 ] - e
o H
‘0|‘£lq;‘puk ou':.'iqr'i.?-t*
A [4*)]
Figure 53.23

(b) First let us consider a signal y(t) with FS eocfficients

. in(kr/8)
* Qbew
From Example 3.5, we know that y(t) must be a periodic square wave wlich over one
period is
_Jy2 It] < 1/4
"m_{o, a<l)<2 *

Now note that ag = bye’™. Therefore, the signal z(t) = y(t + 2) which is as shown in

Figure 52.23(b).
(¢) The only nonzero FS coefficients are ¢y = al; = and a3 = a*, = 2;. Using the FS

synthesis equation, we get

() = a2 ,,_w—;':hﬂ'}n + agd T 4 g e= J2{2n/TH
J-e,i(il'ﬂ)l = je-j(h,’qn + Eje'“?"“" i 2J-=—)2(2’,t’ﬂt
B sin(-;-:) — 4sin(mt)

(d) The FS coefficients ax may be written as the sum of two sets of FS coefficients by and

cg, where
=1, for all &

and
{ 1, k odd
qn

0, keven
The FS coefficients by correspond to the signal

el
vty = 3 alt-4k)

k= =00

and the FS coefficients ¢, correspond to the signal

2(t)= Y IAG(e - 2%).

k=-o0

96



Therefore, (c) Using the multiplication property, we know that

2(8) = y(0) + plt) = i Bt - 4k) + f: S/ — 2%), 2(t) = 2(0)y(t) D e = T aby

k=-oo k==c0 (==

5% (a) We b ‘Therefore,
3.24. (n ‘e have 1 1
1 2 ex=apeby = —48[k—2] - —d&[k+2]
ao-—%f tdt+%j (2—t)dt = 1/2. 4 e 4 W
o 1 This implies that the nonzero Fourier series coefficients of z(f) are 3 = ", = (1/47)

(b) The signal g(t) = dz(¢)/dt is as shown in Figure 53.24. (d) We have
2(t) = sin(4¢) cos(4t) = —sm(ﬂ:)
‘a&‘ 1 1 Therefore, the nonzero Fourier series coefficients of z(2) are ¢y = c.a = (1/47).
o 3.26. (a) If z(¢) is real, then z(t) = z*(t). This implies that for z(t) real a; = a* . Since this is
3 T z 3 TE not true in this case problem, z(t) is not real.
(b) If z(t) is even, then z(t) = z(—t) and oy = a_;. Since this is true for this case, r(t) is
P - - even,
(e) We have
dr(t ir
glt) = { ) 4246 _J.k“_r—llg.
i 83.24
Figure Therefore,
i 0, k=0
d as follows: = X
The FS caefficients by of 9(t) may be found as follows bx { ~k(1/2)¥l(2x/Tn),  otherwise
bn=%fldl—%fzﬂ’o Since by is not even, gt} is not even.
0
3.27. Using the Fourier senes synthesis eq. (3.38),
d
v e 172 2] = ag+ a4 g o mRRERININ 4 g ETNIN g emI42R /NI
by = E[ P Ef P = 24260 8m L g —ynfE —pldviSn o /3 g(BefE)n L —yu/3, (e 00
0 1

= Li-einy = 2+ 4dcas|(dxn/5) + /6] + 2cos|(8xn/5) + 7/3]
T 3 * g = 2+ 4sin[(4wn/5) + 2x /3] + 2sin|(8xn/5) + 5=/6]
() Note that

dz(t
glt) = { ) &5 = by = jkmay. 328 (a) N=T,
17447 gin(5nk/7)
Therefore, 1 ol 7 sin(xk/T)

S 1 - ink
b = =gl - e ™)

ag = ——
% k= (b) N =6, g, over one period (0 < k < 5) may be specified as: ag = 4/6,
3.25. (a) The nonzero FS coefficients of z(f) are gy ma_; = 1/2. 1 sin(23%)
—e-Tkf2
(b) The nonzero FS coefficients of z(t) are by = b7, = 1/2;. = ge % 1<k<s.
a7 98
(c) ¥=6. (d) We have
ar = 1 + 4cos(xk/3) — 2c08(2xk/3).
(d) N = 12, o over one period (0 € k < 11) may be specified as: a1 = § = af;, z[n] = Sln(—n+4)+sm(—n+ ) ( )
as == ‘——c,.m-!)olherm e w
7 = sin —n+—)+- sin{ n+-}+sm[ )
(e) N =4 : iy
& X! oy
ap=1+2(-1)(1- 72:)“{?)» This implies that the ponzero Fourier series coefficients of z[n] are co = cos{x/4)/2,
® a=cl,=e 2 g=cl,=e M4,
N=

3.31. (a) gln] is as shown in Figure 5$3.31. Clearly, g[n] has a fundamental period of 10,
o = 14+(1- —-f]hxx{—-] +2(1- 75)0:-{_)

k Ll
- 2(:+72-)m(T)+2(—1) +20m[ 5 ). g N I
s

3.29. (a) N =8 Over one period (0 Sn<T),

z[n] = 48[n — 1) + 4d[n - 7} + 4jd[n - 3] - 43é[n - 5).

(b) N = 8 Over one period (0 £n £7),

1 [ sin(d(p + 51} €'V sin{f(T - -”] .
% [ sin{3(F + §)} * sin{3(F - §)) Figure 53.31

zin] =

(b) The Fourier series coefficiennts of g[n] are by = (1/10)[1 - ¢~ 2(37/1018%]

N=80 riod (0 Sn<T), :
i verone pe ( : (¢) Since g[n] = z[n] = z[n = 1], the FS coeffcients ay and by must be related as

n 3xn
z[n] = 1+ (=1)" + 2eas(—) + 2oos(—=). by = o — e~HERNOK,,
(d) N =8 Owver one period (0 €1 <7), Therefore,
L3 B _ (/101 = i
Tn -
z[n] = 2+2m(?) +m(?) + EM(T) "1 - emazm0 1 — e-7an/ 10}k

3.32. (a) The four equations are
3.30. () The nonzero FS coefficients of z(t) areag =1, 01 = ey = 1/2.

(b) The nonzero FS coefficients of z(t) are b = b, = e™7*/4/2. fectorhez b=l aokiou—dre=juym)

(e} Using the multiplication property, we know that so—ay+a3—ay=2, ag-ja; —a;+jag= -1
2 Solving.wgelnn=1{2.01=-’—P.c;=—1.a;=--'-§1.
Fs,
z[n] = z(nrjy[n) — a = Z“l"&-!- (b) By direct ealeulation,

==2 oy = —J:ll + Qe Yhm _ e—jkal,.f:]_
4

This implies that the nonzero Fourier series coefficients of z[n] are cp = wos(n/4)/2,

oo e[, oy = et e/ yg This is the same as the answer we obtained in part (a) for 0 < k < 3.
A L, p=cly= .



3.33. We will first eval the freg of the system. Consider an input z(t) of |l_se
form &', From the discussion in Section 3.9.2 we know that the response Lo lhuf mput will
be y(t) = H{jw)er". Therefore, substituing these in the given differential equation, we get

H{jw)jwe™ + 46" = .

Therefore, i

H{jw) = ;u|_+_4
From eq. (3.124), we know that

o0
wt)= 3 o H (jkuwn)e?®t
k=—00
when the input is £(t). z(t) has the Fourier series coefficients a and fundamental frequency
wy. Therefore, the Fourier series ooefficients of y(t) are axH (Fkwn).

(a) Here, wy = 2r and the nonzero FS coefficients of z(t) are a; = a_; = 1/2. Therefore,

the nonzero FS coefficients of y(t) are
b =aH{j2n) =

. 1
by = g1 H(=j27) = @3

. Vi

2(4 + j2n)’

(b) Here, wy = 2x and the nonzero FS coefficients of =(t) are a; = a%y = 1/2j and
a3 = at, = ei"/*/2. Therefore, the nonzero FS coefficients of y(t) are

. 1 " g A
b= HUI) = gy b2 e RN = T

w4 y eIt
by = agH (j6r) = T 6’ by = a_sH(-jbm) = BT
4.34. The [requency response of the system is given by
Hio) = [ e Hetar = bk M
—co 44w 4 juw

(a) Here, T =1 and wy = 27 and ax = 1 for all k. The FS coefficients of the output are
" 1 1
be = aH Gkwn) = Tyt T g2k
(b) Here, T = 2 and wp = x and

_Jo k even
2% =11 kodd

Therefore, the FS coefficients of the output are
k even

0
bl _{ )
k= arfl (k) T i kodd

101

$.37. The frequency mponuoflbemmwhmﬂy:bvnwl_n

" 1 . 1
Hie*) s o= T~ T-2em
(a) The Fourier series coefficients of z{n] are

g i for all k.

Also, N = 4. Therefore, the Fourier series coefficients of y[n] are

i 1 1 1
b = ol = 5 [1 oy e i e e
(b) Tn this case, the Fourier series coefficients of z[n] are
= %[; +2cos(kn/3)], for allk.

Also, N = 6. Therefore, the Fourier series coefficients of y[n] are

; 1 1 1
b = apH(@2Y) = s+ 2cos(kn/3)] [1 TJeR - zc_,,,m]

3.38. The freq ¥ TESp of the sy may be evaluated as
H(e™) = P T P
For z{n, N = 4 and wy = 7/2. The FS coefficients of the input z[n} are
1
a =g for all n.
Therefore, the FS coefficients of the output are

by = ﬂjH(ch) = i[l - ei‘*'.lf= +¢—)'h'!?l_

3.39. Let the FS coefficients of the input be ax. The FS coeffients of the output are of the form
b = axll (G’M).

where wp = 27/3. Note that in the range 0 S k= 2, H(@*) =0 for k= 1,2. Therefore,
only by bas a nonzero value among by in the range 0 < kK < 2.

3,40, Let the Fourier series coefficients of z(t) be ag.

(c) Here, T = 1, wp = 2x and

1/2, k=0
a=4 0, keven k#0 .
malt/l)  kodd
Therefore, the FS coefficients of the output are
1/4, k=0
by = axH (Gkan) = 4 O - keven k#0
St/ (b + ), K 0dd
3.35. We know that the Fourier series coefficient of y(t) are be = H(jkuo)ax, where wo is the
fundamental frequency of z(t) and ay are the FS coefficients of z(t).
If y(t) is identical to z(t), then by = oy for all k. Noting that H(jw) = 0 for |w| > 250,
we know that H (jkwo) = 0 for |k] 2 18 (because wo = 14). Therefore, o, must be zero for
1k =18

3.36. We will first evaluate the f P of the system. Consider an input z{n] of the
form e“", From the discnssion in Section 3.9 we know that the response to this input will
be y[n] = H(e?")e?*™. Therefore, substituing these in the given difference equation, we get

H(E)e™ ~ T e (o) = 4.
Therefore,

. 1
HGu) =TT
From eq. (3.131), we know that
y[ﬂ] = E O*H(c;hk,rﬂ}e;}gz:m)n
k=<N>

when the input is z[n]. z[n] has the Fourier series coefficients ay and fundamental frequency
2 /N. Therefore, the Fourier series coefficients of y[n] are agH(e /Ny,
(a) Here, N = 4 and the nonzero FS coefficients of z|n| are a3 = e = 1/2;. ‘Therefore,

the nonzero FS coefficients of y[n] are

1 -1

2j(1 — (1/4)e-13=i4)’ 2j(1 = (1/4)ed¥=14)’
(b) Here, N = 8 and the nonzero FS coefficients of zln) are a; = a_; = 1/2 and a3 =

a2 = 1. Therefore, the nonzero FS coefficients of y(t) are

by = ﬂlH(C”"’r‘] = boa= d_|H(f_—9’"“J =

_ My _ 2 | - i _ 1
b=l = ey b1 = o = i ameT
1

iy
by = agH{e!™'?) '—""""'__(.l = (1jd]e_f’f=)'

T 1
ber = 0-e () = G
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(a) z(t = to) is also periodic with period T. The Fourier series coefficients by of z(t — to)

are

b = % f z(t — to)e P/ Thtgy
T

=3k{2= [T}ty
= £ T jx(r):“j"u'm"dr
T

e L

Similarly, the Fourier series coefficients of z(¢ + to) are
ey = M Moy,
Finally, the Fourier series coefficients of z(t — f5) + z( + to) are
di=b+e= c_'”ﬂ’ﬂ.lhﬂg + t'*m"n““oag = 2cos{k2rto/T)ax
(b) Note that £v{z(t)} = [z(t) + z(—1)}/2. The FS coefficients of z(~t} arc
1 )
= _pye—tki(2m Ty
by 7 .[r z(—t)e dt
-k f (r)ek T g
Tlr
= 0.4
Therefore, the FS cocfficients of £v{z(t)} are
=ty
===
(c) Note that Re{z(t)} = [=(t) + =" (t)]/2. The FS coefficients of z*(t) are

ag + Gk

1
= L[ pe(pyemiktz=rn
by 7 fr z"(t)e di.
Conjugating both sides, we get
= l]z(:)e"‘"m*m =a
Tir

Therefore, the FS coeflicients of Re{z(t)} are
_mktbe ok t+oly
- e 2
{d) The Fourier series synthesis equation gives

z(t) = i age! BTN,

k=-o0
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3.41.

3.42.

Dz&nmuh;buhﬁdum!t'iz,-egu

dz(t ot dxd
——-;£ ] = Z '-‘.’,-T-,a—qgt,thm“,
k=—og
By inspection, we know that the Fourier series coeflicients of d%z(t) /de? are ‘—kw‘;:—d*.
(e) The period of z(3¢) is & third of the period of z(t). Therefore, the signal z(% - 1)
is periodic with period T/3. The Fourier series coefficents of z(3t) aze still a;. Using
the ?m]ys'u of part (a), we know that the Fourier series coefficients of =(3¢ - 1) is
e~ ik(En/Th,,

Since ag = a_y, we require that z(t) = z(—t). Also, note that since g, = Giy, We require
that
z(t) = z(2)e=Ttn/ae
This ia turn implies that Z(¢) may have nonzero values only for ¢ = 0,£1.5, %3, +4 5,
0.5
Sinoef z(t) = 1, we may conclude that z(t) = &(t) for ~0.5 € ¢ < 0.5 Alsa, since
-0.5
/"':{z}m = 2, we may conclude that z(t) = 26(t — 3/2) in the range 0.5 = ¢ < 3/2
o s
Therelore, =(t) may be written as

() = i 5t — k3) +2 f: d(t — 3k - 3/2).

km oo k=-s0

(2) From Problem 3.40 (aad Table 3.1), we know that F§ coefiicients of z°(t) are a*,
Now, we know that is z(t) is real, then z(t) = z*(t). Therefore, a; = al,. Note that
this implies ag = ag. Therefore, ag must be real.

(b) From Problem 3.40 (and Table 3.1}, we know that FS coefficients of z(~t) are a.p. If
z(t) is even, then z(t) = z{—t). This implies that

ag = a.g. (83.42-1)

This implies that the FS eocfficients are even. From the previous part, we know that
if z(t) is real, then

a =al,. (53.42-2)

Using eqs. (53.42-1) and (53.42-2), we know that a; = a;. Therefore, a, is real for all
k. Hence, we may conclude that a is real and even.

(¢) From Problem 3.40 (and Table 3.1), we know that PS coefficients of z(—t)area.y. If
z(t) is odd, then z{) = —z(—t). This implies that

8y = —a_y, (83 42-3)
105
wit)
1
S Az g
-1 ) I\J?. w +
=]
Figure 53.43

(d) (1) If a; or a_, is nonzero, then
2(t) = gu T L

and
2(t + to) = agyet? Flrw) 4

The smallest value of |to| (ather than [tg| = 0 for which e %% = | 1 the funda.
mental period. Only then is

z(t + o) = ay VT 4 = 2(p)

Therefore, ty has to be the fundamenta) period.

(2) The period of z(t) is the least common multiple of the periods of e1%(¢/T) 4n4
H@/TE. The period of e™3%/TH js T/k and the period of NI 4y T/l Since
k and | have no comman factors, the least common multiple of T'/k and T/ is T

The only unknown FS coefficients are ay, a-1, a3, and a_g. Since z(t) is real. a; ~ 0", and
@z = a%,. Since a; is real, gy = a_y. Now, z{t) is of the form

z(t) = A, cos{wyt) + Ag cos(Zwot + 6),
where wy = 27/6. From this we get
2(t — 3) = Ay cos(unt = 3up) + A3 cos(2unt + 0 — Gup).

Now if we need z(t) = —=z(t — 3), then Jwy and 6wy should both be odd multiples of .
Clearly, this is impossible. Therefore, G2=a_3=0and

2(¢) = A, cos{upt).
Now, using Parseval's relation on Clue 5, we get

O 1
Z lael? = Jay | + ooy = 7

k= oo
Therefore, |o;| = 1/2. Sinee 6, is positive, we have @y = a.y = 1/2. Therefore. z(t) =
coc{xt/3).
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This implies that the FS coefficients are odd. From the previous part, we know that if
x(t) i5 real, then 2

ay =al,. (53.42-4)

Using eqs. ($3.42-3) and (53.42-4), we koow that @y = —ai. Therefore, a, is imaginary
for all k. Hence, we may conelude that ax is real and even. Noting that eq. (53.42-3)
requires lhuue=~aq.wemyahumndudethum=l].

(d) Note that £v{z(t)} = [z(t) + 7(~t)}/2. From the previous parts, we know that the FS
coefficients of £v{z(t)} will be [k +a_s]/2. Using eq. ($3.43-2), we may wrile the FS
coefficients of Ev{z(t)} as [ex +af)/2= Refag}.

(e) Note that Od{z(t)} = [z(t) - z(~t)]/2. From the previous parts, we know that the FS
coeflicients of Od{=(t)} will be [ay — a_,]/2. Using eq. (53.43-2), we may write the FS
coefficients of Od{z(t)} as {ax — a1]/2 = jZm{a,).

3.43. (a) (i) We have
z(t) = Z apert ¥
odd &
Therefore,
H+ T/ = F gt F it
odd &
Sinee 7t = —1 for k 0dd,

2(t+T/2) = —=(1).

(i) The Fourier series coefficients of z(t) are

2 T
ay = if a(t)e=Thnt gy o lf Z(t)e™ 1ol gy
Tl Titr
1
= F/ [z(t) + =(t + T/2)e™ 4% | 1kwet 4
o

Note that the right-hand side of the above equation evaluates to zero for even
values of k if z(t) = —z(z + T/2).

(b) The function is as shown in Figure §3.43.
Note that T = 2 and wy = =, Therefare,

k even

0
°"={-J-},—+pz,1 k odd

(e) No. For an even harmonic signal we may follow the reasoning of part (a-i) to show that
z(t) = z(t + T/2). In this case, the fundamental period is T/2.

, e may lude that the FS coefficients of z(t) are

ag, k=0
Te = § By + iCy, E>0 .
By — jCy, k<o
(a) We know from Problem 3.42 that if z(t) is real, the FS coefficients of Ev{z(t)} are
Re{re}. Therefore,
a = ag,
We know from Problem 3.42 that if z(t) is real, the F§ coefficients of Qd{z{t)} are
JIm{m}. Therefore,

@ = By

- _{iG  kso
=5, 3“{-;‘0., k<o

(b) oy = @ and f = -g_,

(c) The signal is
u(t) = 1+ Evlz(t)) + %zu{zu)} - 0d{z(t)).
This is as shown in Figure $3.45.
Fi i
th " .
PP e ¥ x
v
- Ty = B % %
Figure 53.45

3.46. (a) The Fourier series coefficients of 2(t) are
1 y ;
G = = nﬂﬁ‘c":""b"'c_"‘""'dt
a2
= F X T eabnblh — (n 4 1)
"

Eﬂnbt—n



(b) (i) Here, To = 3 and wp = 2% /3. Therefore,

in(k27/3
- [%au: - 30) 4 36(k + 30)] » L’;:E%-’-
Shlition _ sin{(k = 30)2r/3) _ sin{(k + 30)27/3}
= T3(k - 30)2%/3 3(k + 30)2/3

and e430 = 1/3.
(i) We may express z2(t) a8
Zg(t) = sum of two shifled square waves x cos(20xt).
Here, Ty = 3, wn = 2n /3. Therefore,
1 _(k-sojianjn 80k — 30)2x/3} % o ika3002e/3) sin{(k + 30)2n /3}

A 9P (k — 30)2x/3 (k+30)27/3
1 _jtk-sayemsin{(k = 30)=/3) 1 (e+30)(x 3y Sin{ (k + 30)=/3}
+ 3¢ D T3 e+ 30)27/3

(iii) Here, To = 4, wg = n 2. Therefore,

Gk + €7 {sin kup — cos kuwo |
2N +{M):] -

- Em— - 40) + %J(k + m}] .

Simplifying,
Jl(k = 40)wg + ¢~ {sin(k — 40)uwn = cos(k — 40)uwn}]
B 41+ {(k - 40)wn}?]
51k + 40}y + e~ {sin(k + 40)wo — cos(k + 40)wo}]
41 + {(k + 40)q}?]

() From Problem 3.42, we know that by = a’,. From part (a), we know that the F3

coefficients of z(f) = z(t)y(t) = z(t)z*(t) = |=(2)]® will be

os o0
= Z by g = ): Galnak-
= -0 n=—00
From the Fourier series analysis equation, we have
1 2_-3(3n/Tolkt % .
ox = —] o ()@ Tkt = 5" anafke
ToJo nm-00
Putting k = 0 in this equation, we get

o[ -
%) EOFd= 3 o

n==o0
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(b} Here. i
vle] = Slefn) + (-1
Far N even, :
b= E{“&"‘“t—f;l-
For N odd,

oo | Hex+assn], Kk even
qk)_{zu. 2 o

3.49. (a) Th= FS coefficients are given by

1N'—l
e = ﬁzz[nlev’lw
n=0

(Nf2)-1 N=1

= e znje-i +le 2 zlnjei 5
N = n=Nf2
(~¥/2)-1 , - jei(M/2=1 an
= % z: ;[n]e"“’?! +¢N Z :[n+Nf2|¢'JLFL =0
n=l a=0
(Nj2)-1 e
1 - e”? —gizgh
= = z[nje g _ S z z[nje™?
N ,,Z_.n NS
= 0, for k even.

(b) By adoptiog 2n approach gimilar to part (a), we may show that

-1

il -4 = oy e

> moay ["z-u“ _ IR g itk _ 1R Y a(n)e J‘ﬁ‘l
0, fork=drrel

(¢) If N/M is au integer, we may generalize the approach of part (2) to show that

B-1 tad
—_— A Z{] _ eI g g +C-ﬂ'(M-I}'}:[n]g_JL.‘F'
L et

where B = N/M and r = k/m. From the above equation, it is clear that

ag=0, ifk=rMrel

3.50. From Table 3.2, we know that il
zn] LA
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3.47.

3.48.

3.51.

3.52.

Considering z(¢) to be periodic with period 1, the nonzero FS coefficients of z(1) are a; =
a_y = 1/2. If we now consider z(¢) to be periodic with period 3, then the the nonzero FS
coefficients of z(t) are by =b_3=1/2.

(a) The FS coefficients of z[n — ng] are
e :
&y = N E z[n— no]c_ﬂ'"""w
n=l -

N=1
1 Iwmgh .
- e =j2ank/N
e E_oz{n]c

= edmkm/N

(b) Using the results of part (a), the FS coefficients of x[n] — z[n — 1] are given by
Gy = ap — eIIEINgy = (1 - a~IT Mgy,
(¢} Using the results of part {a), the FS coefficients of z[n] — =[n — N/2| are given by

aw-ali-em={g, ki

(d) Note that z[n}+{n+N/2] bas a period of N/2. The FS coefficients of z[n|+x[n - N/2]
are given by
i

b = %Z [z[n] +zfn+ %]] e AEnkiN _ 9p,

n=0
for 0 < k < (N/2-1).
(e) The FS coefficients of z*[—n] are

N=1
gl . —jammk N _ e
ar = ﬁgo: [—nje 2N = o,
(f) With N even the FS coefficients of (=1)"z[n] are

N-1
. 1 o %
=g 3 an]em itz 5 =apwp

n=0

{g) With N odd, the period of (—1)"x[n] is 2N¥. Therefore, the FS coefficients are
N=-1 N=1
= % [E,iﬂ]e—;!ia{!—gzi + Z:[n}e"zi"'*izin-ﬂ!t"”)] )
n=0 n=0
Note that for k odd 52 is an integer and k — N is an even integer. Also, for & even,

k = N is an odd integer and e~7"(5=N} = _1. Therefore,
&= { awy,  kodd

0 keven
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then
(=1)"zpn) = IRV () FS, 6, o

In this case, N = 8. Therefore,

(~1)"zfn] 5 ay_s.
Since it is given that ep = =@x-4, we have

zln] = —(~1)"z|n].

This implies that z[0] = z[£2] = z[x4] = -+~ = 0.
We are also given that z[1] = (5] = --- = 1 and z[3] = 2[7] = —1. Therefore, one period
of z[n] is as shown in Figure 53.50.

?- Lg
sJ'
-1

Figure §3.50
We have +
e;df.!:fﬂnx[n] = & zln] = (—1)"z{n] 12} Bg—g
and therefore,
nal F$
(=1)"""aln] <= —ar_y.
If ay = —ag_y, then (0] = af[#2] = az[&4] = -+ = 0. Now, note that in the signal

pln] = zn — 1], pl+1] = p[+3] = --- = 0. Now let us plot the signal z[n] = (1 + (—1)")/2.
This is as shown in Figure 53.51.

Clearly, the signal y[n] = z[nlp[n] = pln] because pln| is zero whenever z{n] is zero.
Therefore, y[n] = z{n = 1}. The FS coefficients of y[n] are age 1@,
(a) If z[n] is real, z|n] = £*[n]. Therefore,

o=y zin|e PN = af.

From this result, we get b_p = b and ¢_p = —c;.
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o N
" o 1 z 3. 4 J n
Figure 53.51

(b) If N is even, then
anj = lez:[n]s”j"' = %Z{—l)"z{n} = real.

{e) If N is odd, then

(N-1)f2
zin] = z: qgc’.ﬂ"m']h
k=—(N=1)/2
(N=1)2 (N=1)2
= 2 el /N L ape”/2/NIR (From (a))
k=0 k=t

(N=1)/2 _ (N=1}/2
= &+ Z (b,,+3'q}e’“"m‘h z {b;-jck)e'-"(z"r“]""

k=1 k=1
(N-11f2
= ag+2 3. bycos(2mkn/N) = cxsin(2nkn/N)
k=1
If NV is even, then
=1
z[n] = zme"rhm’h

k=0
(v-2)/2 _
ay + (‘”““m:*‘z ‘Z ote;[‘br,f.l\ Jen +n~_.eﬂ"r"“"“' -kin
k=1

(N=2)/2
= ap+(-1"ane+2 z ﬂkej{z"m”n - dic-’(h‘m}k" (From (al)
k=1
(N-1)f2
ag + (=1)"apys + 2 z by cos(2mkn/N) = c sin(2mkn/N).
k=1
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(&) 1f N is even, then i

1 1

Bpppe = = :{n]c_’“ == zln)(=1)"
e N(;} N-§5

Clearly, ayys is also real if z[n] is real.
(b) If N i5 odd, only ag is guaranteed to be real.

3.54. (a) Let k= pN, p€I. Then,

N-1 N-1 N=1
alpN] = Zgj(h‘r"w“ = Ee’"’“ = ZI = N.
n=0 n=l n=0

(b) Using the finite sum formula, we have

1= e’i‘tk i’ N 7
a[k]=l—_-mi—_=l), ifk#pN.pel.
(c) Let
geN=1 i
alk] = H(Im/Nkn
b3
where g is some arbitrary integer. By putting k = pN, we may again easily show that

N1 CgeN-1 R
afpN] = z BT /N)pND _ Z R Z =N
ym; n=g n=q
Now,
N=1
alk] = ,_.:{?'rNJMEgtzrmu,._
n=0

Using past (b), we may arguc that a[k] =0for k #pN,p € &

3.55. (a) Note that

0, otherwise

Zm|ntmN] = { otherwise

Therefore, z(y[r) is periodic with period mN.

(b} The time-scaling operation discussed in this problem is a linear operation. Therefore,
if z|n] = vin] + wln], then, zm[n] = vmin] + wea[n]

(=) Let us consider

m—1 m=1
_ 1 jax fmN ko N _ L it2x/mN]kon (2x fmiin
gl = —3 ¢ = ¢ I};ﬂ,r‘
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;l§+N]‘ n=0%m, - ={:[%]. n=0Em

(d) If 65 = Axe™, then by = Acos(0;) and ¢ = Asin{f;). Substituting in the resull of
the previous part, we get for N odd:

(N=1)/2
aln] = ap+2 3. Acos(8)cos(2rkn/N) ~ ey sin(6y) sin(2kn/N)
k=1
(N=-1)/2
= a+2 Y, Agcos{z—--f;k + 6},
k=1
Similarly, for N even,
(N=1)f2
zfn) = ao(=1)lanp+2 3 Acos(Ok)cos(2rkn/N) - cisin(@k)sin(2rkn/N)
k=1
(N-2)/2
2rnk
ag+(~1\app +2 $ Ay cos{ ’:r‘ 48},

[}

{e) The signal is:
ylnl = defz[n]} — d.c{z[n]} + Ev{z} + Od{z} - 204(z}.

This is as shown Figure $3.52.

L/
[n) .
3’ 3 ]ﬂ; 2 1
"'-34_11 Rl R .
. o I 2 % A F n
=lh -
"t =Sy = e 119
Figure 53.52
3.53. We have 1
ax = 5 3 alnjen i/,
<N>
Note that ;
a = 3 zln)
<N
which is real if z[n] is real.
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This may be written as [From Problem 3.54]

et e)("f"‘")‘ﬂ“‘ n=0,+N 2N,
0, otherwise.
(83.55-1})

Now, also note that by applying time-scaling on z[n], we get

= {n]={ J2r/mN}een = 0, LN, X2N, -
{m} 0, otherwise. (53.55-2)

Comparing eqs. (53.55-1) and (S3.55-2), we see that y[n] = Z(my[n).

(d) We have
miN-1

1
by = — z :{m)[nle"’ﬂ"'m")h.
n=0
We know that only every mth value in the above summation is nonzero. Therefore,

N-1
1 :
= - 'mN kmn
b = _ﬁ“{n:,(m}[nm], 3(2x/mN)

N-i
- ;n'lﬁ 3 2y [nrmle 2/

n=0

Note that z(m){nM] = z[n]. Therefore,
1 N=1 Pradpre i
i ~j(2n/N)kn _ O
by =y E:[n}e =

n=0

3.56. (a) We have
z[n] £5 ay and z'[n] & &

Using the multiplication property,

afnla’ ] = el > Y ani.

=<N>
(b) From above, it is clear that the answer is yes.
3.57. (a) We have
N=IN=1
alnlyin} = 3, 3 axbie’ /M
k=0 l=0
Putting I' = k + 1, we get
(N=1) (E+N-T) _
syl = 3 Y exbeosed @,

k=0 =k

116



But since both bp_y and ef37/N¥7 are periodic with period N, we may rewrite this as

N-LN=} N-1 [N=1 :
znlyln} = 3 3 axbrose @M = 5 [Em«.. (B INYn,
ey ' Lm0
Therefore,
N-1
= Eﬂh_»
s
By interchanging aj and by, we may show that
N-1
o= Zhﬂl—a-
k=0

() Note that since both a, and by are peroidic with period N, we may rewrite the above

summation as
=y obox = 3 o

EN> <Nz
{c) (1} Here,
N-ll
o= YWl -3+o-N + Blak-t-
=0
Therefore,

1 1
Gk = 30k-3 + FOke3-N-

(i1) Period=N. Also,

b = %. for all k.

Therefore,

p N

g = 1_\' 2 ar.
=0
(iii) Here,
By %{1 e IATKIY 4 it/

Therefore,

N-
1 = i
%= S+ e g e IRy
=0

(d) Perivd=12. Also,

zln} €5 0 = a0 = 1/2, Allothera =0, 0<k<1l

{c) Here, n = 8. The nonzero FS coefficients in the range 0 < k < 7 for z[n] are a3 = a =
1/2j. Note that for y[n), we need only evaluate by and bs. We have
by = b =
== ey

Therefore, the only nonzero FS eoefficients in the range 0 < k < 7 for the periodic
convolution of these signals are ¢y = Baaba and ¢s = 8aghs.

(d) Here,
5 1 [1 = eitamfT-mkjaid | _ gi(anfTemk/a)
zlﬂ] — g = E 1= e=3an/T—wkA) e 1 — e-ii3x/T4xk/a)
and e /2
FS, 1-1{1
D b = | ———
ylnl k=3 [1 = (1[2]3'-’"1”]
Therefore,

z{n] = znjy[n] £ Bauhy.

3.59. (a) Note that the signal z(t) is periodic with period NT. The FS coefficients of z(f) are

ut:..!_/ﬂr iz ]J(E-FPT) amilBnINT IRy
NT Jy =

Note that the limits of the summation may be changed in accordance with the Limits
of the integration so that we get

o = _Lf"r ﬁf:{ﬁ}ﬁ(t—,ﬂ"} o i(2R/NT Ik gy
Wk p=0 ;

tion and the integration and simplifying

Interchanging the

Nl

NT ‘
(1/NT) z:{p] f 8(t — pT)e~12n/NT)it gy
=0 b

®
[

N-1
(1/NT)Y " z[ple =/t

p=0

N-1
(/) [(UN)‘Zslple"“”"”*] :

p=0

Note that the term within brackets on the RHS of the above equation constitutes the
FS coefficients of the signal z{n). Since, this is periodic with period N, a must also
be periodic with period N.
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and
1 sinTxkf12 °

FS.
vinl & b = () ez

D<k<iL
Therefore one period of ¢ 15,

1 [sin{?sr(k - 2)/12} |, sin{7x(k = 10)/12} 0<k<ll

= 31 | snfr(k —9)/13) T sn{x(k—10)/12}

{e) Using the FS analysis equation, we have
N z agbe_t = E z[n]y[n)eH@x Nk,
=N <N>
Putting k = 0 in this, we get

N Z ab_y = E:in]y[ﬂ],

I=a N> N>
Now let y[n] = z*[n]. Then b = a?,. Therefore,
N Z o) = z z[n]jx"[n].
I=<N> <N
‘Therefore,
N Z jal? = E l=m)l".
t=cN> <N>
3.58. (a) We have
aln+ Nl = Zx[r}y[n +N-1].
<L>
Since y[n} is periodic with period N, y[n + N — r] = y[n = 7}. Therefore,
zln+ N]= Zzlr]y]n = 1] = z[n).
<L
Therefore, z[n] is also periodic with period N.
(b) The FS coefficients of z[n| are

a5 T T abeae

n=dN>katN>

== L 2 a“-ﬂaw\r z bn_gc'jz'["'”"w
k=<N> nroi s
1

= =N
N ﬂiNbi

= Naby.
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(b} If the FS coefficients of z(t) are periodic with period N, then
Gy = Ap-N-
This implies that
2(t) = ()P /TIN,

This i5 possible only if z(t) is zero for all ¢ other than when (27/T)Nt = 27k, where
k € T. Therefore, z(t) is of the form

o0
z(t)= 3 glklé(t = kT/N).

k==oo

o0
(¢} A simple example would be 2(t) = 3" &(t — kT).
k==00
3.60. (a) The system is not LTL (1/2)" is an eigen function of LTI systems. Therefore, the
output should have been of the form K(1/2)", where K is a complex constant.

(b) It is possible to find an LTI system with this input-output relationship. The frequency
response of this system would be H (™) = (1— (1/2)e=3)/(1—(1/4)e™?*). The system
is unique.

(c) It is possible to find an LTI system with this input-output relationship. The frequency
response of this system would be H(e/™) = (1 - (1/2)e™%)/(1 = (1/4)¢?'). The system
is unique.

(d) It is possible to find an LTT system with this input-output relationship. The system is
not unique because we only require that H(el/®) =2,

(e) It is possible to find an LTI system with this input-output relationship. The frequency
response of this system would be H(e**) = 2. The system is unique.

(F) 1t is possible to find an LTI system with this input-output relationship. The system is
not unique because we only require that H(e/™/?) = 2(1 — &77/7).

(g) 1t is possible to find an LTI system with this input-output relatinnship. The system is
not unique because we only require that H(e™/) = 1 = jv/3.

(h) Note that z[n] and yy[n) are periodic with the same fundamental [requency. Therefore,
it is possible to find an LTI system with this input-output relationship without violating
the Eigen function property. The system is not unigue because H(e’*) needs to be have
specific values only for J(e/37/13%). The rest of H(e™) may be chosen arbitrarily.
Note that z[n] and y;[n] are not periodic with the same fundamental frequency. Fur-
thermore, note that yp[n] has 2/3 the period of z[n). Therefore, y[n] will be made up
of complex exponentials which are not present in z(n]. This violates the eigen function
property of LT systems. Therefore, the system eannot be LTL

—

3.61. (a) For this system,
() = - z(t).

Therefore, all functions are cigenfunctions with an eigenvalue of one
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(b) The following is an eigen function with an eigen value of 1:
z(t) = 3 5(¢ - kT).
k
with an eigen value of 1/2:

=(t) = 33048t~ kD).
k

The following is an eigen fi

The following is an eigen function with an eigen value of 2:
z(t) = 3 (2)*6(t — kT).
%

(&) If k(¢) is real and even then H{w) is real and even.
& o [HGw) |+ H(w)e™

et 3 | H(jw) |_, H{—juw)e™ ! = H(jw)e ™"

From these two statements, we may argue that
1, s = = .
cas(wt) = gle™ + e - [HGw)] - Hijo) cos(et)

Therefore, cos(wt) is an eigenfunction, We may similarly show hat sin{wt) is an eigen-

and

function.
{d) We have
e) - — Aglt).
Therefore,

'
Adlt) = j ${r)dr.
Differentiating both sides wrt £, we get
A¢'(t) = #(t).

Let ({0} = ¢y. Then
#(t) = doet?.
3.62. (a) The fundamental period of the input is T' = 2. The fundamental period of the input
is T = m. The signals are as shown in Figure 33.62.
{b) The Fourier series cocffients of the output are
o 2D
k= - Ak
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Therefore, the system is linear.
Now consider
z4(t) = z(t = ta) = wa(t)-

We have
dlz(t - to) dz(t to)
= 1 —
wlt) =" — g #y(t —to)
Therefore, the system is not time invariant.
(¢) For inputs of the form $x(t) = t*, the output is

y(t) = K5 = K (1)

Therefore, ¢x(t) are eigenfunctions with eigenvalue A, = .
(d) The output is
ylt) = 103710 + 3¢ + BLL
365. (a) Pairs (a) and (b) are orthogonal. Pairs (c) and (d) are not orthogenal.

(b) Orthogonal, but not orthonormal. Am = 1/wn.
(c) Orthonormal.

(d) We have = (imene 1)
+ m=n)2r _
iy = grangT g . Gim-mleote T -
L e il T )

This evaluates to 0 when m # n and to 3T when m = n. Therefore, the funclions are
orthogonal but not orthonormal.

(e) We bave
T 1 T
[ et = 5[ lst0r+ -l - st
- =T
17 17,
= i'[_rzz{t)df = aj’_Ti (=t)dt
= 0
(f) Consider

f J;r"*“’ ﬂﬁ (t)dt = \,n- f j s8] (1)dt.
This valuates to zero for k ¢ I For k=1, it evaluates to Ag/Ax = 1. Therefore, the

functions are orthonormal.
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xt)

RN VA%
RVEA

Figure 53.62

(c) The de component of the input is 0. The dc component of the sutput is 2/m.

3.63. The average energy per period is
A 24 — 2 _
- fr J()f2dt = E‘:|ak| =3e

We want N such that

N=1
Yl =001

-N+1
This implies that
1-20%" +20° _ 1+0?
1-a? Tl1-a?
Solving,
N= log[1.45¢® + 0.95]
2loga '
and
L2 SR o) L8
1 4

3.64. (a) Due to linearity, we have
ylt) = ¥ o dedill):
k

(b) Let
i (t) — g(t) and  za(t) — walt).
Also, let
z3(t) = axy(t) + bra(t) —+ yalt).
‘Then,
wl(t) = Clar"(t) +bra"(2)] + tlazi(t) + 422 ()]
= aylt) + bya(t)
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(g) We have
L]
f lz(0)Fdt = f 2(t)z" (t)dt
i f Sadi()) o (0)dt
L )
b
- 33 i j A6 ()t
[} .
= Yl
(h) We have

W) = [ KT

[ amsyinrar
= S;—1fori=jand0fori#j

3.66. (a) We have
'] N N
E= f [:(t) -3 a,,mq] [:'{8}— ¥ a;¢;(r}] dt
“ k==N k=-N
Now, let a, = b; + je;. Then

% =0= f¢;(z)={:)d¢ + 2 - ]jﬁ,[t]z‘(t)d:
and . N
% =0= ;f@(:):‘(:)a + 26 —5L S ()z()dt.
Mutliplying the last eq; by § and adding to the one before, we get
2b; + 2jei = Zfz{t}qi'(!)d!,
This implies that

«= [=oe e

{b) In this case, a, would be
1t
= 1 [ =0 a.



(e) Choosing

1 To fhsot
G = — :(t]e_’ dt,
ToJs

Y

E:[ z(t) - inwei“""'l dt.
Ta

k==N

we have

Putting $£ = 0, we get .
= — | z(t)e irde.
Es

(d)ag=2/m,ay =63 =0,82= 2(1 - 2v/2)/m, ag = (1/7)2 ~ 4 cos(x1/8) + 4 cos(37/8)].

(e} We have

/0 . D feil0))I=(8) ~ > aidilt)]dt

Tai [ s

3 0

pREE / g0 (t)de
Eﬂ:'ﬂn = Z‘l" a =0

1 1
(f) Not orthogonal. Example: j; dalthda(t) = ./; ti=1#0.
(g) Here, .
a,u—_-f e'gp(t)dt =e~1.
o

(h) Here, (t) = ap + e1t. Therefore,
i
E= j (¢! — ap — ayt){e' — ag — ayt)at.
0

Setting OE/8ag = 0 = 8E{8a, we get ag = 2(2e — 5) and a1 = 6(3 — ¢).
3.67. (a) From eq. (P3.67-1) and (P3.67-4), we get

Z j2rnby(z)e? ™ = k’ E a"’“(‘iénm

n= -0

Equating coefficients of &*™™* on both sides, we get
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@ @-ii)

@- Figure S3.68

(e) We have

‘E fzln)? = }:m{rnlzamg[nl

n=MN n;-.-N'. =1

- zzqaizéilnl¢.{nl

t-ll— n=MNy

= ‘ZZM,‘A 8li — K] = zla.lzﬁ-,

kmli=1

(d) Let g, = & + jei. Then

E = z [z{n]l* + }:(h’ + A - E xlan(h - je)eiln]

.._n, =1 n=hy =l
- Z :r'[n]z{b,' + je)ilnl
n=Ny =l
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(b) Since s* = 4xjn/k?, 1
2/mnel/t
= —
k
Forn >0,

_ V2rn(l +3)
=—
is a stable solution. For n < 0,
_W2xn|(1 - J)
k
is a stable solution. Also, b,(0) = a, and

ane—VIm(I+ie/k n=0
balz) = { "e—JlenTm—ﬂ:f‘ll nel
(<) bo =2 by = (1/27)e A" by = —(1/2j)e= 1=,
T(k\/x]2,t) = 2+ e " sin(2xt — 7).
Phase reversed.
3.68. (a) 2(6) = r(f) cos() = r(0)e’® + 4r(0)e". If

oo
z(8) = 3 b,
=0

then be = (1/2)arsr + (1/2)ae-1-
(b) 2(8) <2 by Then z(8) = r(8 + x/4). The sketch is as shown in Figure 53.68.
(¢) by = ag. Rest of by is all zero. Therefore, the sketch will be a cirele of radius ag as

shown in Figure 53.68.
(d) (i) r(6)=r(=8). Even. Sketch as shown in Figure $3.68.

(ii) r(6 + kx) = r(8). Sketch as shown in Figure S3.68.

{iii) (8 + kw /2) = 7(0). Sketch as shown in Figure S3.68.

N N
3.69. (a) E éelnldiim] = 3 dfn — klé[n — m]. This is 1 for k = m and 0 for k # m.

=—N
Thmiorc oﬂhugon;]
(b) We have
rEN=-1

. aermrceom [ 1= e2eEmm 0, k#m
> Sulnlénfn] = /@ /Nira-m) [ml ={ N

Therefore, orthogonal.

Set OE/3b, = 0. Then

N
b= 247 {E {zlnldi[n] + = [ﬂ]o‘&[ﬂll] Re { 2 tlﬂld':[rll} :
n=Ny n=Hy

Similarly,
1 !
G=Im { > ={f_q¢:;n]] 2
1 n=N;
Therefore,

o = b+ jei = --_- z z[n¢i[n]-

n=N

() ¢i[n) =8[n - i]. Then, .
=Y zlnjéln -1 = =il

n=N;
3.70. (a) We get
g 1 gty
= L L
Gy Tlr'!L -/0 z(ty, t2)e € dtydt;
(BY(i) i =1, Te=x a, =1/2, a_;_, =1/2 Rest of the coefficients are all zero.
(ii) Here,

» 1/(m*mn), m,n odd
o= , otherwise ~

3.71. (a) The differential equation f,(t) and f(t) is

Toar A= ).

The frequency response of this system may be easily shown to be

j 1
109 = TR

Note that for w = 0, H(jw) = 1 and for w = o0, H{jw) = 0. Therefore, the system
approximates a lowpass filter.
{b) The differential equation fy(t) and f(t} s

dfn(‘) g f (1) = :ﬂ(t}
The frequency response of this symm may be mnly shown ta be
A Ju
RG) = k7B

Note that for w = 0, H(jw) = 0 and for w — oo, H{jw) = 1. Therefore, the system
approoximates a highpass filter.
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-~ Chapter 4 Answers
31, (a) Let z(t) = e~ 2=yt = 1). Then the Fourier transform X (jw) of (1) is:

X(u) = f" M Ny(t = 1)e e
b fme‘af“‘)g""“dl
1

= e M2+ jw)

|X (jw)! is as shown in Figure S4.1.
(b) Let 2(t) = e~2=!, Then the Fourier transform X (juw) of z(t) is:

e .
X(jw) = f el gmivty
-
oo 1
= / e-dt-Vg—tutgy o [ gAMi=lemrtyy
1 —od

71 J(2 + juw) + £T(2 - jw)
= 4e[(4 +w?)

| X (jw)| is as shown in Figure S4.1.

T Il It
A
k
5 :b.l al _‘hl'.ﬂ
(e Figure S4.1 (o>

4.2, (a) Let zy(f) = d(1+ 1) + 6(t — 1). Then the Fourier transform Xy (jw) of =(t) is:
Xy(iw) = f [B(E+ 1) + (¢ = )]e™dr
—50
= o4 =lomsw

| X1 (jw)| is as sketched in Figure 54.2.
(b) The signal z2(t) = u(~2 — £) + ult — 2) is as shown in the figure below. Clearly,

%{u(-a —)bult -2} =6t —2) - 6t +2)
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Therefore, the nonzero Fourier series eoefficients of za(t) are
1 » p Sy g
ag = 1; o = EE‘"“G‘T““ fa_y= EE ¢ i fﬂﬂ -J6=L
From Section 4.2, we know that for periodic signals, the Fourier transform consists of
a train of impulses occurring at kwy. Purthermore, the area under each impulse is 27
times the Fourier series coefficient ag. Therefore, for z3(t), the corresponding Fourier
transform X;(juw) is given by

Xaljw) = 2rapd(w) + 2ma)d{w — wo) + 2may8{w + wo)
= 2xd(w) + we b (w — 6x) + me™ I Bi(w + 67)

4.4.  (a) The inverse Fourier transform is

zi(t)

. i3
(1/27) f_ [278(w) + wb(w = 47) + wd(w + 47)]e? dw

(1/27)[2rne?® + 5™ 4 xe~34Y|
14 (1/2)e 4 (1/2)e™?* = 1 + cos(4nt)

{b) The inverse Fourier transform is
wl) = (1/2%) [ = Xl du

2 0
= ijo 2e""‘dw+(uzar)f_2(—2lc’”'-*—'

= (& = 1)/(xit) - (1 - ) (mjt)
= —(4jsin®t)/(xt)

4.5. From the given information,
o0
z(t) = (!)‘2:).[ X (jw)e dw

= % | X ()<Ko gty
3

= (1/2%) f 26~ Jetreivid,
-3

= ;('1_—?3/"2_)' sin(3(t — 3/2)]

The signal =(t) is zero when 3(t — 3/2) is a nonzero integer multiple of m. This gives
ke 3

g:-2—+§, forkeZ, and k #0.
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Xaljw) = f’ {8(2 — 2) — 6t + 2)]e T"dt
-80
= & WY _ A = 25 sin(2w)

|, (jw)| is as sketched in Figure $4.2.
n

A
) XLl
N \/\/ \
~5j -, o L 3 BE’E:‘ -~ a ™ }-W

Figure 54.2

4.3.  (a) The signal z, (3} = sm{?ﬂ + rr,l’-I] is periodic with a fundamental period of T = 1.
This 1 y of wo = 27. The nonzero Fourier series
coefficients of thns sugnal may be fnunr] by writing it in the form

L iamtan ) _ =j(2ntenga)
2 = 5 (e’ e )

1 1
= s gt _ D —ywfd -yt

% e e % € €

Therefore, the nonzero Fourier series coefficients of =z, (t) are
1 1
= I/ ST —ju 4~ fime
ay % L G-y 23: e

From Section 4.2, we know that for periodic signals, the Fourier transform consists aof
a train of impulses occurring at kwy. Furthermore, the area under each impulse is 27

times the Fourier series coefficient a;. Therefore, for z,(t), the corresponding Fouries
transform X (jw) is given by

Xiljw) = 2maf(w —wyp) + 2ra_ 6w + wy)
(n/3)e/ 48w = 2m) — (=/i)e "Bl + 2m)
(b) The signal zz(t) = 1+cos{6mt+/8) is periodic with a fundamental period of T = 1/3.

]

This t lates to a fund tal fi v of wg = 6x. The nonzero Fourier series
cocfficients of this signal may be Eound by writing it in the form
z(t) = 1+= (,Jimﬂrul s ,—Jtmwm)

1

= 1+ ie""“e"“ + Ee'””e“’“'
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4.6. Through this probk we that

2(t) €5 X, (Gw).
(a) Using the time reversal property (Sec. 4.3.5), we have
(=) &5 X (~jur)
Using the time shifting property (Sec. 4.3.2) on this, we have
2+ 1) e x(—juw)  and  z(—t—1) £5 X (—jw)
Therefore,
() =s(—t+ 1) +x(-t—1) E5 X (—ju) + X (~juw)
& 2x(—jw) cosw
{b) Using the time scaling property (Sec. 4.3.5), we have
23 &5 31X (5%)
Using the time shilting property on this, we have
axt) = 2(3(t - 2)) &5 23X (7%)

(c) Using the differentiation in time property (Sec. 4.3.4), we have

& I, juxiw)

Applying this property again, we have

d=(t) Fr,
ﬂz
Using the time shifting property, we have

—w? X (jw).

z3(t) = ﬁ%;—ll L X (Guw)e i,
4.7.  (a) Since X,(jw) is not conjugat ic, the corresp ng signal 1 (¢) is not real.

Since X, (jw) is neither even nor odd, the corresponding algnnl zy(t) is neither even
nor odd.

(b) The Fourier transform of a real and odd signal is purely imaginary and odd. Therefore,
we may conclude that the Fourier transform of a purely imaginary and odd signal
is real and odd. Since Xo(jw) is real and odd, we may therefore conclude thar the
corresponding signal z2(t) is purely imaginary and odd.
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(c) Consider a signal yy(t) whose magnitude of the Fourier transform is [Ya(jw)| = Alw}
and whose phase of the Fourier transform is a{Ya(jw)} = 2w. Since Yalyw)l =
[¥y(—jw)| and <{Ya(i)} = —<{¥a(-jw)}, we may conclude that the signal ya(t)
is real (See Table 4.1, Property 4.3.3).

Now, copsider the signal z3(t) with Fourier transform Xa(jw) = Ya(jw)e’™? =
i¥aljw). Using the result from the previous paragraph and the linearity property
of the Fourier I we may lude that z3{t) has to imaginary. Since the
Fourier transform X3(jw) is neither purely imaginary nor purely real, the signal z3(t)
is meither even nor odd.

(d) Since Xy(jw) is both real and even, the corresponding signal z4(t) is real and even

4.8.  (a) The signal z(t) is as shown in the Figure 54.8. ¥
A

(DA N (k)

i"/_ .
A W -

-4 ¥y -} CladaEts
Figure S54.8
We may express this signal as
z(t) = f o vlt)dt,

where y(t) is the rectangular pulse shown in Figure 54.8. Using the integration property
of the Fourier transform, we have

() 5 X (jw) = 3.‘3m'w1 + %Y (j0)6(w)

We know from Table 4.2 that
Yi(jw) = 2sin(w/2)
Therefore,

+ wé{w)

xtjo) = 2550 2

(b) If glt) = =(t) — 1/2, then the Fourier transform G/(jw) of g(t) is given by
2sinw/2)

Gliw) = X(w) - (22m6() = =5
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Therefore, the desired result is
FT{0dd part o)) = 55 = T
$.10. (a) We know from Table 4.2 that
% &7, Rectangular function ¥ (jw) [See Figure 54.10]
Therefore
(%)‘ &L, (1/27) [Rectangular function ¥ (jw) » Rectangular function ¥ (7¢1]

This is a triangular function Yi(jw) as shown in the Figure 54.10.
(! e Tiljed

1o b X(jv) -2
[J.j{n{
2 i

Figure 54.10

Using Table 4.1, we may write
sint\”? Fr L TP
t (7‘") 5 X(w) = i =Yilw)
This is as shows in the figure above. X (jw) may be expressed mathematically as
if2m, =2<w<l
X(w) =4 —if2m, 0<w?
0. otherwise

(b) Using Parseval's relation,

= o 4 o
4 [sint ool - 1
f > (_ dt = o= f X G = 55

—oe nt
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B0 Ty
13

.

4 | .

-1 o 1 t =} © +1
Figure S4.9

t

4.9. (a) The signal =(t) is plotted in Figure 54.9.
We see that this signal is very similar to the one considered in the previous problem.
In fact we may again express the signal z({) in terms of the rectangular pulse y(t)
shown above as follows

(t) = ‘/—”y(‘]dl - u(t - 3).

Using the result obtained in part (a) of the previous problem, the Fourier eransform
X(jw) of z(t) is
Xy = Saawid)
Ju

+ 78{w) — FT{uft - ']I”

sinw e~

Fuw? Jw

(b) The even part of =(t) is given by

Evlz(t)} = .’_{f)"'zﬁl.
This is as shown in the Figure S4.9.
‘Therefore, :
FT{Ev{z(t)}) = ":”‘

Now the real part of the answer to part (a) is
- +
m{-‘_—} = (1w)Re {i(cosw — jsinw)} =
Jw w

(c) The Fourier transform of the odd part of z(t) is same as j times imaginary part of the
answer to part (a). We have

Im {sinw _gi) _ _sinw | cosw
Jwt gw | W? w
134

4.11. We koow that 1 1
L FT L
2(3t) &5 FXUF) ABY D HG)
Therefore,
Glw) = FT{a(3t) » h(3t)} = %xu‘-‘gwug)

Now pote that
Y(jw) = FT{z(t) » h(t)} = X Gw)H(jw)
From this, we may write
L L R
v6y) =X (15) # (73)
Using this in eq. (**), we have
Gliw) = 3Y03)
and 1
glt) = zu(34).
Therefore, A = } and B = 3.
4.12. (a) From Example 4.2 we know that
- g, 2
€ Lo T+o2

Using the differentiation in frequency property, we have
St B T
- jdu{l+u3 T

(b) The duality property states that if

9lt) &5 Gw)
then
G(t) &5 2mgyw).
Now, since @
o) [FT, jw
WS TP

we may use duality to write
45t FT —hd
TR e
Multiplying both sides by j, we obtain
at

A T, coweil
orer — j2mwe” ML
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_- 4.13. (a) Taking the inverse Fourier transform of X (jw), wc obtain
1 1 1
PO SO T S
=(®) 2x + ﬂﬂ'e’ B 2’:"
The signal z(t) is therefore a d with two complex exp ials whose
fundamental frequencies are 2 /5 rad/sec and 2 rad/sec. These two complex expo-
nentials are not harmonically related. That is, the fundamental frequencies of these
pl pl p tials can never be integral multiples of a common fundamen-
tal frequency. Therefore, the sigual is not periodic.
(b) Consider the signal y(t) = z(t) ¢ h{t). From the convolution property, we know that
¥ (jw) = X(jw)H(jw). Also, from h(t), we know that

Hijw) = ¢_""2’mw-
W
The function H(jw) is zero when w = k=, where k is 2 nonzero integer. Therefore,
Y (jw) = X(jw) H(jw) = 8(w) + &(w - 5)
This gives
o 1 L 113

V) = 52+ 5
Therefore, y(t) is a compl p tial d with a ¢ We know that a
complex exponential is periodic. Adding a constant to a complex exponential does not
affect its periodicity. Therefore, y(t) will be a signal with a fundamental frequency of
2 /5.

(c) From the results of parts (a) and (b), we see that the answer is yes.

4.14, Taking the Fourier transform of both sides of the equation
FHO + j0) X (w)} = A2 ul?),
we obtain A § .
x09= e = A{mR W E)
Taking the inverse Fourier transform of the above equation
2(2) = Ae'u(t) - Ae~Mu(t)
Using Parseval's relation, we have

ol o0
f 1X () Pdw = 27 j = (8)?dt
-0 -0
=
Using the fact nmf |X (juw)Pdw = 2, we bave
-0

{- -
f |z(e)%dt = 1

—aa

137

We see that G(jw) is periodic with a period of 8. Using the multiplication property,
we know that 1 o
X(o) = = [ﬂ'{%} ‘ G{jw}]

1f we denote FT {%5'} by A(jw), then

Ed

X(w) = (1/2%)[Ajw) ¢ 87 3 §(w - 8K)

k=—00

4 }uf: A(jw = 8k)

k=—o00

X (jw) may thus be viewed as a replication of 44(jw) every 8 rad/sec. This is obviously
periodic.
Using Table 4.2, we obtain

L Wt
AGw) = { 0,  otherwise

Therefore, we may specify X (jw) over one period as

o4 wlgl
““’“’)‘{o, 1<jw<d

4.17. (a) From Table 4.1, we know that a real and odd signal signal z(t) has & purely imaginary
and odd Fourier transform X (jw). Let us now consider the purely imagnary and
odd signal jz(t). Using linearity, we obtain the Fourier transform of this <ignal to
be jX(jw). The function jX (jw) will clearly be real and odd. Therefore the given
statement is false.

(b) An add Fourier Lransform corresponds to an odd signal, while an even Fourier transform
corresponds to an even signal. The convolution of an even Fourier transform with an

odd Fourier may be viewed in the time domain as a multipli of an cven and
odd signal, Such a multiplication will always result in an odd time signal. The Fourer
transform of this odd signal will always be odd. Therefore, the given is true.

4.18. Using Table 4.2, we see that the rectangular pulse 1(t) shown in Figure $4.18 has a Fourier
transform X, {jw) = sin{3w)/w. Using the convolution property of the Fourier transform,
we may write

. ]
FT. . 5 i sin(3w
) = 110 4 1(8) B XaGo) = XiGGui o = (22
The signal 22(t) is shown in Figure 34.18. Using the shifting property, we also note that

- 2
Lot +1) &5 e (’——“‘(M)
2 2 w
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Substituting the previously obtained expression for (¢} in the above equation, we bave
f- [A%e~ ¢ A%~ — 24% Mu(t)dt = |
-

r (A% 4 A2 — 24%Mdt = 1
.:*;12 =1
= A=V12
We choose A to be /12 instead of —/12 because we know that z(t) is non negative.
4.15. Since z(t) is real,
Ev{z(t)} = 2E)+zl ) +;(4) flery Re{X (3w}

We are given that
IFT{Re{X(jw)}} = |tle M.

‘Therefore,
Ev{z(t)} = L"’;"ﬂ _—
We also know that z(t) = 0 for ¢t < 0. This implies that =(—t) is zero for ¢ > 0. We may
conclude that
z(t) = 2tle™™  fort =0
Therefore,

z(t) = 2te " *ult)

4.16. (a) We may write

= sinfkr/4)
z() = .:E_:,Wm ~ kn/fd)
sint e
= ?‘—k’_nIJ(t — kn f4)
Therefore, 9(t) = 3 wé(t — kn/d).
k=—00
(b) Since gt} is an impulse train, its Fourier transform G(jw) is also an impulse train.
From Table 4.2,
I 2rk
Glw) = rmtgwa (w—— *_1'4)
= 8r Y d(w=8k)
km-o0
138
and

1 . 2
dmle-1) 5 L (S'_n(:’:-ﬂ) .
2 w
Adding the two above equations, we ohtain
sin(?.u))’

W

he) = %r,(n N+ %z,(r_ 1 .Em(..,)(

The signal h(t) is as shown in Figure S4.18. We note that h(f) has the given Fourier
transform F (jw).

)‘:,(t') I{.Q-J
5z
i R SRE * 9 § Tt
Kit)
sh

e N

-2 -5 o0 5 3 +
Figure 54.18

Mathematically h{t) may be expressed as

5 Itl<1

n=d —3+3 15HsSs
. —$+;, S<jtsT

0, otherwise
4.19. We know that ¥ii
H(jw) = X{é:;

Since it is given that y(t) = e *u(t) — e **u(t), we can compute ¥ {jw) to be

1 1 1

Yjw = ——— - —— = —_—
Gw) I+dw Ad+iw (34 w4+ jw)
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Sinez. H(jw) = 1/(3 + jw), we have

X(o) = 202 = 1704 4 ju)

Taking the inverse Fourier transform of X (5w}, we have
z(t) = e *u(t).
4.20. From the answer to Problem 3.20, we know that the frequency response of the circu 15
Al 8T
—w? 4 w1
Breaking this up into partial fractions, we may write

H(jw) =

Hiw) ‘{ et — J
W) = —
R T TP D R
Using the Fourier transform pairs provided in Table 4.2, we obtain the Fourier ‘ransform

of A(ju) to be
At) = _;Iﬁ [-gl'i“?ﬂ‘-l- +:"§”§’”'] ult).
Simplifying,
h(t) = %g'}‘ain(—";—jl)u[ﬂ-

4.21. (a) The given signal is
e % cos(wot)u(t) = %c"“e’“‘"u(:} - %c'“e"""‘u{t}.

Therefare, ) i
X(w) = - — - - -
) e — juo + jw)  2(a — jug + ju)

(b) The given signal is

z(t) = e sin(2t)u(t) + ¢* sin(2t)u(~t1).

We bave
—— er Yy
zi(t) = e™Msin(2t)u(t) <= X, (jw) = P S 3-—-—+J2 T
Also,

1/25 1/25

#alt) = e win(2)u(=t) = —zy(~t) &5 Xy(jw) = — X (~jw) = g e e e

Therefore,
3 35

M S N ) = g R S T
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(i) Using the Fourier transform analysis eq. (4.9) we obtain
: 1 2e~r 2g~i0_2
Xjw) = 3-; + —-_-;r - -—-—J—u-T—
() ={t) is periodic with period 2. Therefore,
X(jw) == 3~ X(jkm)s{w — kx),
k=-oe

where X {ju) is the Fourier transform of oge period of z{t). That is,

o 1 1 = g=l43w) e 1 - e"‘“""’]
X(jw) = 1—-e—"'[ Lbgar <h %
bl t|<3
422, (a) 2(t) = { ;:' itlt:mm

(b) =(t) = Je~Im/38(¢ = 4) & Jein/24(t 4 4).
(c) The Fourier transform synthesis eq. (4.8) may be written as

z(t) = El;/;mixuu}|avxw!gurdd.

From the given figure we have

_ 1 [sin(t=3) = cos(t—3) -1
s [‘:T*"'{:TEJT”]
(d) #(t) = Zsint + I cos(2nt)
(e} Using the Fourier synthesis equation (4.8),

cm.‘.ll'.+ sint = sin 2t

o It et
.23 For the given signal zo(t), we use the Fourier transform analysis eq. (4.8) to evaluate the
corresponding Fourier transf
3 1 — g~{143a)
Yol = 575

(i) We know that
zi(t) = zo(t) + zo(~1).
Using the linearity and time reversal properties of the Fourier transform we have

. 2-2.! = Zwe™! si
X3(j) = Xoljw) + Xo(=jw) = T
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(e) Using the Fourier transf lysi: ' {4.9_} we have
. 2sinw  sinw  sinw
Al wcmp e e
(d) Using the Fourier transform analysis (4.9) we bave
) 1
Ko}
(e) We have
Z(t) = (1/2])te™# My () - (1/25)ee= ey (4).
Therefore,
- V% apy
XGw) (2-J4+507 " @igd—gap
(f) We have
_sinmt pr . 1, lw] <
aflf= HX;(;:-.-)-{ 0, other:i.'-'e )
Ao in2x(t - 1) 2
_ SinZx(t - FT = T || < 2x
(1) m(t—1) = Xaljw) = { ; otherwise
#(t) = 21(0z2(0) € X () = 2= (X () » Xa (o).
Therefore,

eV, Jw] <

(1/2%) (3% + w)e=2-, I Cwe -
(1/27) (3% = w)e3=, #<w<3n

0, otherwise

Xjw) =

(8) Using the Fourier transform analysis eq. (4.9) we obtain

X(w) = 2 [Dus?w— ‘ﬂ]

(b) If
Ll
() = 3" b(e-2%),
k=—00
then
z(t) = 21, (1) + z(t - 1).
Therefore,

X(w) = 0w)2+ e = # 3 bl - km)2 4+ (—1),

k= —on
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i) We know that
T2(t) = zo(t) — zo(~1).
Using the linearity and time reversal properties of the Fourier transform we have
Xalj) = Xolje) = Xo(~ju) = 5 [h—z‘—“—"—*—'ﬂi—z‘i—ﬂmﬂ} ,
14w
{iii) We know that
z3{t) = zo(t) + xg(t + 1).
Using the linearity and time shifting properties of the Fourjer traosform we have
Xs(iu) = Xo(w) + & Xo(~juw) = ¥ — 7M1 + 7).
14 jur
{iv) We know that
Z4(t) = tzp(t).
Using the differentiation in frequency property

Xaw) = 5 2= Xo(50).
Therefore,
. 1-2e~temdw — jupe~le=se
X, =
“Gw) T+ )
4.24. (a) (i) For Re{X(jw)} to be 0, the signal z(¢) must be real and odd. Therefore, signals
in figures () and (c) have this Pproperty.

(it} For Im{X (jw)} to be 0, the signal z(¢) must be real aud even. Therefore, signals
in figures (e) and (f) have this property,

(iii) For there to exist a real @ such that X (juw) is real, we require that z(t + a) be

a real and even signal, Therefore, signals in figures (a), (b), (e), and (f) have this
property.

(iv}Fbrl.h.inmndi:io.nmbe;m. (0) = 0. Y als in ),
(d), 104 (1) have this property. | 1R, signal in figures (), (b), (c)

(v} For this condition to be true the derivative of z(t) has to be zero at ¢ = 0. Therefore,
signals in figures (b), (c), (e), and (f) bave this property.

(vi) For this to be true, the signal z(t) has to be periodic, Ouly the signal in figure (a)
has this property
(b) For a signal to satisfy only properties (i), (iv), and (v), it must be real and odd, and
z(t) =0, ='(0) =0,

The signal shown below is an example of that.



1.25. (a) Note that p(f) = z(t + 1) is & real and even signal. Therefore, ¥ (jw) is also real and
Y(jw) = 0. Also, since ¥ (jw) = el¥X(jw), we know that

even. This implies that <
X (jw) = =,
(b) We have

(¢) We have

-t
]

Figure 54.24

X(30) =fm:(t)dt=7.
80

f@ X (jw)dw = 2wz(0) = 4n.

(d) Let ¥ (juw) = 282e¢%w The corresponding signal ylt)is

Then the given integral is

-3t =1
otherwise

wo={

fw X{jw)Y (jw)de = 2x{z(t) » y(t) }i=o = T7
—00

(e) We have

-} o0
f |X () Pde = 27 [ |2(t)["dt = 267

(f) The mverse Fourier transform of Re{X (jw)} is the Ev{z(t}} which is [=(t) + =(=1)}/2.

This is as shown in the figure below. Evinte}

1 e L
73
-3 -2 =1 o g =& 3 ki
Figure 54.25
4.26. (a) () We have
1 1
Y(jw) = X(ju)H[jw):[m] [q—_;};]

a/4) M) (1/2)
A+jw  2+gw (24 5w)?
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(b) The Fourier eeries coefficients o) are

ag =

-'1; f 1r>i(t)c‘*‘ L

<

1,2 oy e
—z-{j:e -"P‘"dtv—Lc k'S

!iﬂ(::){z) a _e-jn}t—ﬂhﬂ

Comparing the answers to parts (a) and (b}, it is clear that

where T = 2.

4.28. (a) From Table 4.2 we know that

1,27k
o = Xl h

plt) = i Pl £ P(jw) = 2x Z axdlw = kwp).

n=-00

From this,

k=—o0

Y() = g {X ()« BGw)} = 3 axX(ilw ~ ko))

k=-00

(b) The spectra are sketched in Figure 54.28.

Taking the inverse Fourier transform we obtain

y(t) = :—c'“n{!) - %:""u(l) “ %tc"""'u[r]

(ii) We have

o = xo09- e]fr

Jw)

(1/4) + (1/4)  _ (1/4) + (1/4)
24w (24 jwP  A+iw (44 ju)?

Taking the inverse Fourier transform we obtain

ylt) = %e-"u(t) + %Ie""u(f} - %c"'u(t) + %:e'“u(z}.

(iii) We have

Y (jw)

= X(w)H(jw)

AR P
1+4jw| |1-jw
1/2 1/2

I+jw+i—jw

Taking the inverse Faurier transform, we obtain

(e) = et

(b} By direct convolution of z(t) with h(t) we obtain

0,
yt) =4 1-e D,
P

t<1
1<t<s

Taking the Fourier transform of y(t),

Y (jw)

4.27. (a) The Fourier transform X (jw) is

[}

1]

26~ gin(2w)

w(l + w)

e~ | ¢~/ sin(2w)
[1 3 J'w] w
X () H (5e)

X(jw) = j_z:(l.‘)c_-"'“d! = j;:e"""dl - ‘[:r"""dl:

" 2‘—-—5“(:"? ) (1 emiwyemitel?

4.29. (i) We have

Xaljw) = | X ()| X072 = X (ju)e 7%

From the time shifting property we know that

za(t) = 2(t

- a).
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Figure 54.28
(iv) We have
Xoljw) = | X (jw)le TN+ o 3= ()™,

(ii) We have

Xyljw) = | X (jw)]ef ¥OMHE = X (u)e™,

From the time shifting property we know that

(iii) We have

() = z(t + b).

Xeljw) = | X (ju)le 7 X0 = X*(jus).

From the conjugation and time reversal properties we know that

z(t) = 2" (=t}

Since =(¢) is real, z.(t) = z(~t).
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From the conjugation, time reversal, and time shilting properties, we know that

24(t) = 2 (~t — d).

Since z(t) is real, zy{t) = z(—t = d).

4.30. (a) We know that

w(t) = cost £ W (jw) = n[8(w — 1) + 8w +1)

and

4(6) = ={t)cost T Gliw) = o (X (i) + W (i)

Therefore,

Gliw) = ;x{j(u 1)+ %xu(m +1)).
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Since Gl jw) hﬂmhfmﬁ-m,ilhdwﬁwthlhnqmion that X (jw)
is as shown in the Figure 54.30.

T&{id} PrERGW
| P B 1]
-1 o 2 w - _:J
Figure 54.30
Therefore, !
0= 2sini
z( —

(b) X;(jw) is as shown in Figure £4.30.
4.31. (a) We have
() = cost &5 X (jw) = wlélw +1) + 6w = D).
(i) We have :
Ry(t) = u(t) &5 Hiljw) = ek wélw).

Therefore, p
Y(jw) = X(juprw) = 18w +1) = blw - ik

Taking the inverse Fourier transform, we obtain
y(t) = sin(e).

(ii) We have

hat) = =28(t) + Se~Mu(t) &5 Ha(jw) = -2+

24 jw
Therefore, -
¥ (jw) = X (jw)Hi(w) = ;[ﬂw +1) = 8w - 1.

Taking the inverse Fourier transform, we obtain

y(t) = sin(t).
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{c) We have )
a2 4
Xa(jw) ={ o et
Ya(jw) = Xy(jw)H (jw) = Xa(jw)e™
This implies that -
yalt) =zt = 1) = ==
We may have obtained the same result by noting that Xs(jw) lies entirely in the
passband of H(jw).
{d) X4(jw) is as shown in Figure 54.32.

480w
r‘l
_'[' ) & i
> HI
-4 ol % _"-Q
Figure 54.32

Therefare,
Yiw) = Xaljw)H (ju) = Xqljw)e™ ™.
This implies that 3
sin(2(t — 1
wl®) =zt —1) = (%)ﬂ :
We may have obtained the same result by noting that X,(jw) lies entirely in the
passband of H(jw).
4.33. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain

g Y (jw) _ 2
Hw) = XGw) —wt+2w+8
Using partial fraction expansion, we obtain

. 1
HG9 = o~ oad
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{iii} We bave )
ha(t) = 2e™*ult) &5 Halj) = o
Therefore, =
Y (jw) = X(jw)H(juw) = E{J(H +1) = 8w = 1}].
Taking the inverse Fourier transform, we obtain
y(t) = sin(t).
(b) An LTI system with impulse response

1
ha(t) = 3 [ () + ha(0)]
will have the same response to £(t) = cos(t). We can find other such impulse responses
by suitably sealing and linearly combining hi(t), h2(t), and hy(t).
4.32. Note that A{t) = hy(t — 1), where
sin 4l
hy(t) = B
The Fourier transform Hy(jw) of hy(t) is as shown in Figure 54.32.

From the above figure it is clear that hy(2) is the impulse response of an ideal lowpass
filter whose passband is in the range fw| < 4. Therefore, h(¢) is the imp I P of an
ideal lowpass filter shifted by one Lo the sight. Using the shift property,

H{jw) = { ;"'"‘ jl <4

otherwise ~

(a) We have
X, (jw) = vl T 8{w — 6) + ned 8w + 6).

It is clear that
Yi(w) = X (jw)H (ju) = 0=y (t) = 0.

This result is equivalent to saying that X;(jw) is zero in the passband of H(jw).

(b) We have
’ 7 [ 1 §
Xa(jw) = 3 Lg(i) {8(w — 3k) — &{w + 3K)}| -
‘Therefore,
Yaliw) = Xalju) H{jes) = } [(1/2){6(w = 3) = b(w + 3)}e ]
This implies that
nlt) = %sin(St- 1).

We may have obtained the same result by noting that only the sinusoid with frequency

3 in Xa(jw) lies in the passhand of H{jw).
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Taking the inverse Fourier transform,
h(t) = e~ Hu(e) — e~ ult).
(b) For the given signal z(t), we have
i g 1
X6r= g

Therefore, ) 3
Y(w) = XGHGw) = a1 8) @+ 00

Using partial fraction expansion, we obtain

oo R o 12 114
YW = S T ot oF T GutdP  qwtd

Taking the inverse Fourier transform,
o) = ;e'nu(!} - Bt () + e u) - Teule).

(c) Taking the Fourier transform of both sides of the given differential equation, we ohtamn
Y{jw) _ 2=’ -1)
X(w) —wt+vZw+l

Using partial fraction expansion, we obtain

H(jw) =

St ~I-2v3 | 2+
H(Jw)—?-i-jw_n :’*"ﬁ+ju—‘"’5‘”'

Taking the inverse Fourier transform,
R = 26(8) = VE(L + 2§)e=UHVBy(t) = VA(L - 24)e™ PV Puge)
4.34. (a) We have
Y A
X(Gw) 6—w?+5jw
Cross-multiplying and taking the inverse Fourier transform, we obtain

Lylt) | dult) _ d=z(t)
Pz + .'s-—&-!- + by(t) = — + dx(t).

(b) We have " :
Hiw) = T+ jw 34w
Taking the inverse Fourier transform we obtain,

hit) = 2eHu(t) — e Hu(t).
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(e} We have ;

Hlju) = “@Er

WLt
4 + juw
Therefore, i
Y(jw) = X (jw)H(jw) = m
Finding the partial fraction expansion of ¥ (jw) and taking the inverse Fourier trans-
form, . i
D T L
yit) = 3¢ u(t) 3¢ uft).

4.35. (a) From the given information,

1 Gl = —m",i,:.i"; =1
at +w

Also, = .

aH(jw) = - tan ™! - —tan™!' = = ~2tan”! =,

a a a

Also,
i} T =al i
Hijw)=-1+ i h{t) = =8(t) + 2ae™""'u(t}
(b) If a = 1, we have
|HGw) =1, <H{jw)=-2tan""a.

Therefore, 2
(1) = coslzz — ) — ooslt = )+ cun(VBe = )

4.36. (a) The frequency response is

Y(w) _ 33+ jw)

B0 = (o) ™ G 59

(b) Finding the partial fraction expansion of answer in part (a) and taking its inverse
Fourier transform, we obtain

h(t) = g e +e % ult).

(e} We have
Y(w) _  (9+35w)
X(w) B+ 6jw—w?’
Cross-multiplying and taking the inverse Fourier transform, we obtain

diylt) | dylt daf¢
;:g} £ 6_,?) +Bylt) = 3""&‘[?]' +9z(t).
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y shift to the analysis equation, we have

4.38, (a) Applying a fi

X(jlw - wp)) = f_m 2(t)e N0l = f_ :x(ueh'e-!“'dc = FT{z(t)e™"}.

(b) We have
w(t) = 9! & W (jw) = 2xd{w — wo)-
Also,
sOul) €5 5o 1XGw) » WGw)
= X(jw) » 8w — wy)
= X(jlw - wo))

4.39. (a) From the Fourier transform analysis equation, we bave

Gliw) = f_ :g(t)e'i”‘d!= f_ :xu:]e"‘“dz. (50401

Also from the Fourier transform synthesis equation, we have
z(t) = lfmx( jw)eduw
i (R :
Switching the variables t and w, we have
1 ’
r(w) = = f_: X (jt)etat.
We may also write this equation as
oo .
2wz (=—w) = j X(jt)e™idt.
-
Substituting this equation in eq. {54.39-1), we obtain
Gliw) = 2xz(-w).

(b) If in part (a) we have z(t) = &(t + B), then we would have g{t) = X(jt) = ¢’ and
G(jw) = 2rz(—w) = né(—w + B) = 2xé(w — B).

4.40. When n = 1, 7, (t) = e~*u(t) and X;(jw) = 1/(a + jw).
When n = 2, z2(t) = te~=tu(t) and Xa(jw) = 1/(a + jw)*.

Now, let us 2ssume that the given statement is true when n = m, thal is,
-1
e~otuft) £ Xp(w) =

™ 1
() = oy T
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4.37. (a) Note that

4.41.

4.42.

z(t) = 2y (t) » 21 (),
Lt { (1,: el < i_m
Also, the Fourier transform X (jw) of 24(t) is

Xi(iw) = 252412

where

Using the convolution property we have
2
X(w) = X)X, () = [z"i;ﬂ] .

(b) The signal £(t) is as shown in Figure $4.37

ALK

/\
SQ.\" :I:

Tk 3 2=t 0ol 12
[
AN Pt
e ¢ % -1 -2 =1 B ' 2 3 4 ré =k
Figure 54.37

{c) One possible choice of g(¢) is as shown in Figure S4.37.
(d) Note that

o . et x - ®
X(jw) = XUW}%.:T-_’:U(“ ~k3N = G(ju]—ikgaé()(w - k3)
This may also be written as

KG) =5 3 Xtrk/abli - K3) = 5 3 GUTk/28Gw - k5)
s

Clearly, this is  possible only if
Giak/2) = X (ixk/2).
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Fornrm+tumuuthediﬂumthlimhﬁqummtywwﬁu.

2mt(8) = 2 (0) D Xpga(u) = g X2

This shows that if we assume that the given statement is true for n = m, then it is true for
n =m+ 1. Since we also shown that the given statement is true for n = 2, we may argue
that it is true for n = 2+ 1 =3, n =3 4+ 1 = 4, and so on. Therefore, the given statement
15 true for any n.

(a) We have

o) = = f: 5= XGw) o Y o) e

-]
_ %f”%[! X[jﬂ}?(j(u—ﬂ)]d&]r‘“‘dw
- -

= %f_:xua) [ai'f_:y(,'{u — B))etdu| &b
(b) Using the frequency shift property of the Fourier transform we bave
E]";j_:.'l’[j(w - 8)) s = eIy (t).
(¢) Combining the results of parts (a) and (b),
o0 = 5[ XGOSy
y{t];—“ f: X(78)e2™de
ylt)z(t).

(t) is a periodic signal with Fourier series coefficients ax. The fundamental frequency of
z(t) is wy = 100 rad/sec. From Section 4.2 we know that the Fourier transform X (jw) of
=(t) is

X(w)= 3 2maxd(w ~ 100k).
k=—ao
(a) Since
() = =(0) eoslnt) T Yif) = H{XG(w = wo)) + X (i + wo)}

we have

Yijw) = = E [aed(w — 100k — wp) + axéw — 100k + wal]

k=-2o

o
= 7Y lo_ablw + 100k — wy) + ard(w — 100k + wo)] (S4.42-1)

k==o0
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l!w=5w,tMntbelaminth=abonsmnhn with k = 5 becomes
xa_gd(w) + masb(w).
Since z(¢) is real, ay = a%,. Therefore, the above expression becomes 2rRefay }d(w),
which is an impulse at w = 0. Note that the inverse Fourier transform of 2xRe{as }d(w)
is g;(t) = Ref{as ). Therefore, we now need to find a H(jw) such that
Yi(iw)H (jw) = Gy{jw) = 2xRe{as}d(w).

We may easily obtain such & H(jw) by noting that the other terms (other than that

for k = 5) in the summation of eq. ($4.42-1) result in impulses al w = 100m, m # 0.

Therefore, we my choose any H (jur) which is zero for w = 100m, wheremn = £1,£2,-+-.
Similarly since

n(®) = 2(8)sinfut) D Yaio) = F{X (e = wn)) = X + o))

we have
Yaljw) = % Y londlw — 100k — wp) = axdlw — 100k + wy)]
k=-oc
= ¥ Z [o_adlw + 100k — wo) = ard(w — 100k + )] (84.42-2)
k=-o0

If wy = 500, then the term in the above summation with k = 5 becomes
® ™
—a_s8{w) — —agdlw).
705 ( 3 (w)

Since z(t) is real, a, = a,. Therefore, the above expression becomes 2xIm{as}é(w),
which is an impulse at w = 0. Note that the inverse Fourier transform of 2xZm {as H{w)
is g2(t) = Tm{as}. Therefore, we now need to find a H{jw) such that

Yaljw)H (jw) = Galiw) = 27Re{as}é(w).

We may easily obtain such a H(jw) by noting that the other terms (other than that
for k = 5) in the summation of eq. (84.42-2) result in impulses at w = 100m, m # 0.
Therefore, we my choose any H (jw) which is zero for w = 100m, where m = 41, 42,---,

(b) An example of a valid H(jw) would be the freq p of an ideal lowpass filter
with passband gain of uaity and cutoff frequency of 50 rad/sec. In this case,
k) = .‘ir“(_wﬂ.
nt
4.43. Since . o
w(t) = cos?t = —-%.
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Therefore, an LTI system with impul P h(¢) = 16(t) may be used to obtain gt)

4.44.

4.45.

4.46.

from z(t).
(a) Taking the Fourier transform of both sides of the given differential equation, we have
Y ()10 + ju] = X (Gw)[Z(w) ~ 1)
Since, Z(jw) = 5 + 3, we obtain from the above equation
Yiw) 3+ %w
XGw) (1 + w10 + jw)’
(b) Finding the partial fraction expansion of H{jw) and then taking its wnverse Founer
transform we obtain

Hw) =

h(t) = %e"u(l} + !;e"“"u(t']
We have
W)=z eh) =  Y(w) = XGw)H(w).
From Parseval's relation the total energy in y(t) is
[ woae=g- [ " ¥ )i
- L Y .
= o [ IXGoPIEG s
p 1 [wetdf2 . 1 +af2 L=
= e g [ X G)P

1o s Laarrs g2
= ol X( Jwo)l' 8 4 g=I X (Guo)l"A

E

For real z(t), 1X{—jwo)l? = | X (jug)|®. Therefore,
E= LX(uw)PA.

Let g1(t) be the response of Hy(jw) to s(t)cosw,t. Let g2(t) be the response of Hyljw) to
z(t} sinwet, Then, with reference to Figure 4.30,

y(t) = z(t)e“* = z(t) cos w.t + f2(t) sinwel,

and
w(t) = qu(t) + joalt).
Also,
F(t) = emtw(t) = [ooswet — j sinwet]lgs () + Fga(d)]-
Therefore,

Re{f(t)} = qi(t) coswet + ga(t) sinwet,
This is exactly what Figure P4.46 implements.
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we obtain o -
Yi(iw) = xé(w) + EE(U -2} + Ei(@ +2).

Therefore,
n®) = =00 (8) = =) cos?() D> Yalio) = 32 {X(e) # ¥iCe))-
This gives
Yatiu) = SX () + }XGw = 2)) + TXG +2)
X (jw) and Yz(jw) are as shown in Figure 54.43.

X
A
- o v W
X.Gw)
Afy
Aly Al
-3 -z =i d 1 2 3w
AT
Afz
-1 of 1 ‘w
Figure S4.43
Now,
sint A [l 1 Jwj <1
wo =T Ly =5 M,
Also,

a(t) = a(t) » 1a(t) <5 6iw) = Yaljw)¥a(jw).
From Figure S4.43 it is clear that

Gljw) = %xu...-).
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4.47. (a) We bave

helt) = h{l.! +2h[—l}.

Since h(t) is causal, the non-zero portions of h(t) and h(—t) overlap enly at t = 0.

Therefore,
0, t<0
A(t) =4 he(),  t=0 .
2h.(t), t>0
Also, from Table 4.1 we have

he(t) &5 Re{H (ju)}.

(54.47—1)

Given Re{H(jw), we can obtain k,(t). From k(t), we can recover h(t) (and conse-
quently H(jw)) by using eq. (54.47-1). Therefore, H(jw) is completely specified by

Re{H(juw).

(b) If
.

1 1 .
t, 1t
ze"" + 5€

Re{H(jw)} = cost =
then,
helt) = 36+ 1) + 36E=1).

Therefore from eq. (84.47-1),
h{t) = é(t = 1).

(¢) We have

h) = MO +2h(-ljl

Since h(t) is causal, the non-zero portions of A(t) and h(—t) overlap only at t = 0 and

holt) will be zero at ¢ = 0. Therefare,

a, t<
h(l):{unkmwn. t=0 .
2h(t), t>0
Also, from Tahle 4.1 we have
ho(t) 5 Tm{H (juw)).

(54.47-2)

Given Tm(H(jw), we can obtain ho(t). From hy(t), we can recover h(t) except for
t = 0 by using eq. (S4.47-1}. If there are no singularities in h(t) at t = 0, then H(jw)
can be recovered from h(t) even if A(0) is unknown. Therefore H(jw) is completely

specified by Im{H(jw) in this case.
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Hill - .
4.38. (a) Using the multiplication property we have () Let y(t) be the Hilbert transform of =(t) = cos(3¢). Then,

Y (w) = X(jw)H (Gw) = x[6(w — 3) + bw + I)]H(w) = —jxé{w — 3) + gwd{w + 3]
h(t) = h{thu(t) & H{jw) = 5 {H()w) . [ + rﬂw]]}

Therefore,
The right-hand side may be written as ylt) = sin(3t).
e 1 o o 4.49. (a) (i) Since H(jw) is real and even, h(¢) is also real and even.
H{jw) = EH(}w] + E-E [H{Ju] v w] 4 P
That is 1 /= 1 /=
' At = | = jua)er & | H G .
i = & [0 @l = | [ HtGeran| < 5o [ 1)
Breaking up H(jw) into real and imaginary parts, Since H(jw) is real and positive,
. 1 (™ Hp(ny 4 gHiln) L [ Hilin) - sHnim) A g
Hpljw) + 3Hjw) = “—jf_w—ﬂ%&—t“—'dn? = _m-—“j__T—---I- dn (8] = h_f_mﬁ(ga.:)e’“‘du = h{0).
Comparing real and imaginary parts on both sides, we obtain Therefore,
max(|A()]] = A[0].
Hi(im) 1% Helm)
Hrliw) = 'f Srdy wd  EiGu)==0f S 9 (b) The bandwidth of this system is 2W.
: (c) We have
(B) From eq. (P4.48-3], we may writs By H(j0) = Area under H{(jw).
o=zt~ = Ylw) = XGu)FT{/(xt) Therefore,
= (S4.48-1) o B f” H{jw)dw
a7 A
Also, from Table 4.2
b
ult) E5 2 + #6(w). (d) We have
g " o H{j0) 27

s(m) _
Therefore, i
2u(t) -1 &5 2‘1_%. T O T } H{jw)dw g; f Hiw)d v

Using the duality property, we have

(e) Therefore,
Bty = B.,-— = 2n.

3,2? Pl 2x[2u(—w) = 1] B
or 1 4.50. (n) We know from problems 1.45 and 2.67 that
FY _
= jlon(—w) = 1). T A
Therefore, from eq.(54.48-1), we have i
¥ (ju) = X (jw)H(jw) Bayliea) = Pyz(—iw).
Since dyz(f) is real,
where S e s
A = out-w) =1 = { 77 nEY Bay () = B3 (G0)-
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f) Wi i
(b) We may write (f) We require that - T
bntt) = [ 4 Piutrdr = 2(0) + =0 G = S

The possible causal and stable choices for H(jw) are

‘Therefore,
Payliw) = X ()Y (—jw). o 104 jw 10 — juw
Hijwfj=—— and Hljuw)= i
S+ jw 54w

Since y(t} is real, we may write this as

Bayljw) = X ()Y (). The corresponding impulse responses are

- -5 - ¢
(€) Using the results of past (b) with y(t) = =(t), I(f) = 5(0) +5e7u(t)  and  ha(t) = =8(¢) + 15e~ul)

g ljw) = X(Gu)X*(jw) = | X (jw)l* 2 0. Only the sy with impul P hy(t) has a causal and stable inverse.
51. (a) H{jw) = 1/G(jw).
(d) From part (b) we have (b) (i) If we denote the output by y(t), then we have
¢=y(3'l‘-'} = X[)‘“)Y.U—W} .
= XGo)HG)X G Yo =3
= bpe(w)H (jw) Since H(j0) = 0, it is impossible for us to have ¥ (;0) = X(30)H({j0). Therefore,
) we cannot find an z(t) which produces an output which looks like Figure P4.50.
Also, (i) This system is not invertible because 1/H(jw) is not defined for all w.
D, (iw) = Y(w)Y (iw) (¢) We have
= [HG)XG)HEG)X Gl P S
_ @“{jw)[ff[ju)i’ H{jw) ?;.f AT =ik ——

We now need to find a G(jw) such that

{e) From the given information, we have
H(jw)G(jw) = 1.

=1, e
X(uw) = e = i — : :
w w Thus G{jw) is the inverse system of H(jw), and is given by
and : s
g ros Gljw) =1 = e~ 1 +9IT,
H(jw) = a+jw
(d) Since H{jw) = 2 + jw,
Thepke _ . 2-2cosw 2sinw 1 P s S T
&, 0w = 1 XGW) = ot '___w'r-+ e’ X{Jw} 2 + Jw
y —2cosw 2sinw | 1 1 Cross-multiplying and taking the inverse Fourier transform, we obtain
Suytiu) = BuslidH"G) = |0 = <=+ | o= dy(t)
*’ +29(8) = =(8).
and
g 2-2¢osw 2sinw 1 1 b
Brptio) = uGlH G = [ - 25554 3=l (fy e R
H{jw) = —————.
—w? + 6w+ 9
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Therefore, the frequency resg of the inverse is

- 1 —w? + 6w+ 9
Glw) = AQw)  —w?+3jw+2
The differential equation describing the inverse system is
dylt) | dut)
= T
Using partial fraction expansion followed by application of the inverse Fourier trans-
form, we find the impulse responses to be

() = 5(t) = 3~ Hu(t) + 2te™u(t)

+ 2y(t) = f% + 61':.{Tt) + 9z(t).

and
g(t) = &(t) — e~ Hult) + e~ u(t).

4.52. (a) Since the step response is s(t) = (1 — e~4?)u(t), the impulse response has to be
1
=1 -
h(g) = ze~/Aul).

The frequency response of the system is

. 1/2
H{jw) = T+ =

We now desire to build an inverse for the above system. Therefore, the frequency
response of the inverse system has to be

Cliw) = ﬁ)— =?[%+ju] "
Taking the inverse Fourier transform we ohtain
g(t) = 8(t) + 2u 2).
(b) When sin(wt) passes through the inverse system, the cutput will be
y(t) = sin{wt) + 2w cos(wt).

We see that the output is directly proportional to w. Therefore, as w increases, the
contribution to the output due to the noise also increases.

(¢) In this case we require that |H(jw)| € 4 when w = 6. Since
1
: 2
IHGF =

we require that

1 1
a® + 36 BT
Therefore, a £ ﬁ—‘
165
Therefore,
1 1
X{wn wn)

+ - - -
(2% 51 + jun) (2 + Jwr — Jua) | (2+ Jwa)(2 4 jun + Jun)
1 1

BT @ + Jor —dwn) | @ g — Jn - ju)
2 1

B o = e @ — g + gwn) | G2 — Jun — 1)

(d) =ty 13) = e+ 20)y(e, + 23)
(e) (i) e Tre T X (jun, jws)
i) X (S.9%)

{iif) X (g, Jua) H (jun, jon)
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4.53. (a) From the given definition we obtain
-3
X(wi, jwe) = f F,,(11‘iz)ﬂ—i(um-hnnld"dt,
- -

f’ U‘ z(ty, hk"'"‘d‘l] eTItige,

X (w, tp)e gty
e

]

{b) From the result of part (a) we may write

80
z(ty, 1) = FToHFTIH X Gun, jun)}) = é[ f’ X (o ju )0 430 s iy

(€) () XGuwn,wa) = Ty Ty

i : _ [leeUse|1omtizae)] [ e (i) T o ]
(ii) X (jwi,w2) = (E3rNI(E) * u”u,;{‘u;mi
ey . o 3_,—0*1-»:I_,-cH-MI_1|_,-tlc:-|\m_c-{lu-n_14_
(ki) XIU-::‘:::{I— PLGED.CER) ’
— - -z w3
-“+;UI ﬂi‘-mi & -July Juy
» _ 1 [etmaiegiteital)peivai—emdi tnd
(iv) X{wr,w2) = — 555 |© = -:ln-:*-r:): L
+v“il\-z"‘l""”)-l—t““‘[{""'!"‘”—1)
=3l —wn)
(v) As shown in the Figure $4.53, this signal has six different regions in the (ti, )

plane, @ é;

®|@
Figure 34.33
The signal z(t),3) is given by

e~ in region 1
e in region 2

et in region 3
() = edfa in :g'un 4
el in region 5
e~ in region 6
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Chapter 5 Answers )
5.1. () Let zfn] = (1/2)"'uln - 1]. Using the Fourier transform analysis equation (5.9), the
Fourier transform X (e™) of this sigoal is

Z z[nje™ "

n=—00

= Y (2te

m=l

o
- Z(Uz]"ﬂ""{“u
n=0

X(e™)

T TaUS |
(1 - (1/2)e¥)

(b) Let z[n] = {1/2)I"Y. Using the Fourier transform analysis equation (5.9), the Fourier

transform X (/) of this signal is
o0
X(e¥) = z [nje "
Il.o—ﬂ .
= 3 (et S ale
n=—-o0 n=1

The second summation in the right-hand side of the above equation is exactly the same
as the result of part (a). Now,

o e
~(a-1)g=sum _ (n41)giom o (1 !
ﬂ:,i;”llfz} e gufz) & (z)l-u,rz}ew'
Therefore,

_ (X i =i 1 _ 07570
X (2) T—(/me ¢ ’ (1—(1/2)e-7) ~ 1.25 - cosw’

5.2, (a) Let z[n] = 8[n — 1] + 8{n + 1]. Using the Fourier transform analysis equation (5.9, the
Fourier transform X (&) of this signal is

o0
X(e) = 2 z|n)e "
n=-00
= e 4 e =2c08w
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{b) Let zn) = d[n +2] = §[n = 2). Using the Fourier transform analysis equation (5.9), the
Fourier transform X (&) of this signal is

X)) = z o

N =

M _ ¢~ = 25 sin(2w)

5.3, We note from Section 5.2 that a periodic signal £[n] with Fourier series representation
x[n] - E ntgjkﬂﬂﬂl“
k=eN>
has a Fourier transform

X(e¥) = i Zraxd (w— 2—;,5) .

k=00
{a) Consider the signal z,[n] = sin(§n + 7). We note that the fundamental period of the
signal z;{n) is N = 6. The signal may be written as
2fn] = (1/27) 3D — (1/25)eHEnHD) = (1/25) F % - (1/2j)e 7 Fe TN,
From this, we obtain the non-zero Fourier series coefficients ax of z1[n] in the range

-2<k<3as )
ay = (1/2j)%,  aoy = —(1/2))e 7%

Therefore, in the range —x < w < =, we ohtain
2
X(e™) = Zneylw -~ %")nm_.s{w + ~5'5}
(=/ 45w — 2m[6) — e 7™ /4G(w + 27 /6)}

(b) Consider the sigoal za[n] = 2 + cos(§n + f). We note that the fundamental period of
the signal zy(n] is N = 12. The signal may be written as

nifn] = 24 (1)) 4 (1) G D =24 /2@t HR 4 2 TEe B

From this, we obtain the non-zero Fourier series cocfficients ax of z2[n) in the range
~5<k<6as 2 _
a=2 o=/,  a=(1/2e7E

Therefore, in the range — < w < 7, we obtain
X(&Y) = 2maod(w) + 2maiblw - f—;) + 2ma_ 6w + %)
= dwdw) + w{"P8(w — x/6) + ¢ /4w + x/6)}
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Using the time shifting property (Sec. 5.3.3) on this, we have
z=n+1) &L e X (") and  z[-n-1] EL prem (om0
Therefore,
nin = zf-n+ 1] +zf-n=1] £ HMX(e) + X ()
& ax(eM)cosw
(b) Using the time reversal property (Sec. 5.3.6), we have
al=n] 5 X (™)
Using the conjugation property on this, we have
2*[-n] &5 X* (&)
Therefore, .
zfn] = (1/2)(z"[-n) + zln)) D (1/2(X() + X ()
&L Re(x(e™)}

(e) Using the differentiation in frequency property (Sec. 5.3.8), we have
it
nz[n] el jd—xz )
Using the same property a second time,

n?zn) &

X (%)
du?
Therefore,
e dX (e »
zaln] = nzn] - 2nzfn] + 1 £ —‘%{_‘;—) - 2;—‘:”)- + X (&)
5.7. {(a) Consider the signal yy[n] with Fourier transform

10
Yi(e) =Y sintkw).
k=1
We see that ¥} {e/) is real and odd. From Table 5.1, we know that the Fourier transform
of a real and odd sigoal is purely imaginary and odd. Therefore, we may say that the
Fourier transform of a purely imaginary and odd signal is real and odd. Using this
observation, we conelude that y;[n] is purely imaginary and odd.
Note now that

Xy(&¥) = e FNi(e®).
Therefore, 71|n] = g1[n — 1. Therefore, z1[n] is also purely imaginary. But zi[n] is
neither even nor odd.
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5.4

5.5.

5.6.

5.8.

(1) Using the Fourier transform synthesis equation (5.8),

zy[n]

{lﬁw}f}{l(e"’)e""m

I

{1,‘2«}-/. [278(w) + 78w — = /2) + wé(w + 7/2)]" " dw

= &% (1) (1/2)e =/
= 1+ cos(wn/2)

(b) Using the Fourier transform synthesis equation (5.8),
2afn) = (1/27) f " Xa(e*)e s

= =(1/27) fu 2jel"de + (1/27) fn '25.9”"&.;

_ . 1 - G_Jl' dnl — j
= (im0 [__jn - ]
= —(/(m) sind(nn/2)

From the given information,
z[n] = (1/2x) 'X{c"“')c“”"dw

= /) [ @YX Do

(1/27) 1 'I:c‘i“e""“du

_ sin(§(n—3/2))
T T w(n—3/2)

The signal z[n] is zero when $(n — 3/2) is a nonzero integer multiple of 7 or when
[n| = oo. The value of J(n — 3/2) ean never be such that it is a nonzero integer multiple
of =, Therefore, z[n] = 0 only for n = too.

Tk hout this problem, we that

zfn] £5 Xy ().

(a) Using the time reversal property (Sec. 5.3.6), we have

2]-n] €5 X (e*)
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(b) We note that X;(e™) is purely imaginary and odd. Therefore, r;3[n| has to be real
and odd.

(c) Consider a signal y3[n] whose magnitude of the Fourier transform is |Y3(e’~)| = A(w),
and whose phase of the Fourier transform is <{¥a(e?*)} = =(3/2)w. Since [Ya(e’¥)| =
|¥3(e=™)| and «{Y3(e™}} = —a{Y¥3(e~#)}, we may conclude that the signal ya[n] is
real (See Table 5.1, Property 5.3.4).

Now, consider the signal z3[n] with Fourier transform Xj(e?) = Yj(e/™)e?” =
—Ya(jw). Using the result from the previous paragraph and the linearity property of the

Fourier transform, we may lude that z3[n] has to real. Since the Fourier transform
X3(e™) is neither purely imaginary nor purely real, the signal z4[n] is neither even
nor odd.

Consider the signal
[y =l
Ll { 0, nl>1
From Table 5.2, we know that
sin(3w/2)
sin(w/2}

Using the accumulation property (Table 5.1, Property 5.3.5), we have

z1[n] LN X&) =

3 alk] E ﬁx.(#) F 71X () T 6w - 2mk).
=00 k=g

Therefore, in the range —7 < w < 7,

Y nil) E5 X () + 3.

k=—oo

Also, in the range ~-T < w =< =,
15 2nb(w)

Therefore, in the range =7 < w < =,
n pr 1
1 k] & ——— o .
zfn] = +t§j:,1 165 —pXi(e) + 5mé(w)

The signal z[n)] has the desired Fourier transform. We may express z[n] mathematically as

n 1, n< -1
=1+ Y mlk={ n+3, -lgn<l

k== . n=2
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5.9.

From Property 5.3.4 in Table 5.1, we know that for a real signal z[nl,
Od{zin)} &5 JIm{X ()}
From the given information,

JIm{X(e)} = ‘ jsinw — 7 sin 2w y
= (/2 - e~ £ 4 e~ IY)

Therefere,
Qd{z[n]} = IFT{jIm[X(:"“]}} = (1/2)(f[n + 1] - Sjn=1]-4&in+ 2]+ dfn = 2))

Od{zln]} = x————“ =3ln

2

We also know that

and that zln] =0 for n > 0. Therefore,
zin) = 20d{z[n]} = Sn+ 1] =éln+ 2, forn<O

Now we only have to find z[0]. Using Parseval’s relation, we have
o0 o0
o [ = 3 el
n S =og nT =0
From the given information, we can write
-1
3= (alo)? + 3 lelnll? = (o) +2
LEEE- -]

This gives z[0] = %L But since we are given that z[0] > 0, we conclude that z[0] = L.

Therefore,
z[n} = é[n] + Sl + 1] - bin + 2}

5.10. From Table 5.2, we know that

513,

1) ] 5 —
3 ufn] 1-%6‘1”

Using Property 5.3.8 in Table 5.1,

X" d 1 ye
el = (3) win) 5 X =i {iT,_T«} =qo e
Therefore,

f:n (%)“ = i zfn] = X(e*) =2

n=l n=-08
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The plot of FT {'21‘-,'3!1} is shown in Figure 55.12. It is clear that if ¥ (¢™) = Xa(e*),
then (#/2) €w. < 7.

When two LTI systems are ted in parallel, the impul of the overall system
is the surm of the impulse responses of the individual systems. Therefore,

h[n] = hyin] + haln].
Using the lincarity property {Table 5.1, Property 5.3.2),
H(e¥) = Hy(@¥) + Hale)

Given that hy[n] = (1/2)"uln], we obtain
T
Hile™) = e

‘Therefore,
1245 1 uel
Wl o 2 = — -
Ha(e™) 12=Te i +e- 4% 1= ée"“ 1 —gem®

Tuking the inverse Fourier transform,
ha[n] = -2 (1—‘;) uln]-

From the given information, we have the Fourier transform (G(e?*) of g[n] to be
Gle™) = gl0] + gl1)e™

Also, when the input to the system is z[n] = (1/4)"uln], the autput is g[n). Therefore

G(e™)
=
H(eM) = XY
From Table 5.2, we obtain
X)) = ——-—1 = %"’“.

Therefore,
(o) = (0] + sltle ) (1 — e} = ol0)+ {al] — Jololye - ol
Clearly, hin] is a three point sequence.

We have ) _
H(e™) = hfo] + hl]e™™ + h{2)e ™
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5.11. We kpow from the time expansion property (Table 5.1, Property 5.3.7) that
aln] = zln) <5 G(e™) = X(¢™).
Therefore, G(e?) is obtained by compressing X (&™) by a factor of 2. Since we know that

X(e?*) is periodic with a period of 2w, we may conclude that G(e’*) has a period which is
(1/2)2% = =. Therefore,

Gle™) = Gl )

zyn] = (s_i:%l.).

From Table 5.2, we obtain the Fourier transform of z;[n] to be

- 1, 0wl sk
xen-{5 el

and o = 7.

5.12. Consider the signal

The plot of X;{e™) is as shown in the Figure $5.12. Now consider the signal xa[n| =
{z3[n])?. Using the multiplication property (Table 5.1, Property 5.5), we obtain the Fourler
tranform of z2[n] to be

Xa(e®) = (1/20) X (%) » Xa ()]

This is plotted in the Figure S5.12. ()
:.u“%m =
i y e
Lo U " x o K Teo
3 L T & =
G
’1 F1 {_yn g:‘n\‘l!
L
‘ —
-w,_ © w,
Figure $5.12

From Figure $5.12 it is clear that Xo(e™) is zero for jw] > #/2. By vsing the convolution
property (Table 5.1, Property 5.4), we note that

Y(e¥) = Xa(@)FT {"_"“"—") } .

T
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H(Ee) = A{o] + h{tJe e + hf2je™ V")
R{0] — A[1]e™? + Af2le ¥
We see that H(e) = H(e"©~") only if hl1] =0.

We also have
H(E™?) = h{0] + h{1]e™?™/ + h[2)e="?
hlo) — h{2)
Since we are also given that H(e™/2) = 1, we have
hl0) — A2 = 1. (S5.14-1)
Now note that
gl = hin]« {(1/4)"uln]}
2
= ToAE/4) Fuln - K]
k=0
Evaluating this equation at n = 2, we have
glzj=0= ll—sk'[o] + %h[i] +h(2)
Since h(1] =0,
1
Rk{ﬂ} + h[2] = 0. (55.14-2)

Solving equations (55.14-1) and (85.14-2), we obtain
16 1
MU] =1 and h[?] =-=17
Therefore,
16 1
hin] = 1_76{“] - ﬁé[n -2
5.15. Consider z|n| = sin(wen)/(mn). The Fourier transform X (%) of z[n] is as shown in Figure

§5.15. We note that the given signal y[n] = z[n)z[n]. Therefore, the Fourier transform
¥ (&) of yln] is

o T
() = 5 L XX,

Employing the approach used in Example 5.15, we can convert the above periodic conve-
lution into an aperiodic signal by defining

(&) = { ;‘:(e"u)-

- wET
otherwise
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Then we may write & :
Y (&) = 2-‘; j_ m;‘r(a“)x(eﬁ“-‘iw,

This is the aperiodic convolution of the gular pulse X(&) shown in Figure 55.15
with the periodic square wave X (), The result of this convolution is as shown in the

Figure 55.15 e
s :
1 e 3] i(&:pl
i .
' —y
T A o AT 20 w
-1 . <Ll
e SE )
—2u Py LiE™ va
Figure 56.15

From the figure, it is clear that we require —1+ (2uw/x) to be 1/2. Therefore, w, = 3n/d.

3
; 1 1 wk
R0 o {m ’ ["?ﬂ““ - T’]}

where s denotes aperiodic convolution. ‘We may also rewrite this as a periodic eanvolution

5.16. We may write

X(ev) = 2-1_; [ 'G(é‘)Q(e-i{u-a:W

where 1
Gle™) = —7——
==
and s
; wk
)y =2r% Sw—— for 0 < w < 2w,
Q) ét =)

(n) Taking the inverse Fourier transform of G(e#*) (see Table 5.2), we get g[n] = (1/4)"uln].

Therefore, a = }
(b) Taking the inverse Fourier transform of @(e’) (see Table 5.2), we get

1 twrzm 1 1
gln]l=1+ Etﬂ 12 4 iejrn + Ec,::-mﬂ_

This signal is periodic with a fund. | period of N = 4.
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5.20. (a) Sioce the LTI system is causal and stable, a single input-output pair is sufficient to
determine the frequency response of the system. In this case, the input is z[n] =
(4/5)"uln] and the output is yin] = n(d/5)"u[n). The frequency response is given by

Y (e™)

H{ev) = m

where X (¢*) and Y (e} ace the Fourier transforms of z|n] and y[n] respectively. Using
Tahle 5.2, we have

z[n] = (%)“u{n] & x(ev) =

AP
1= g:‘J‘“-
Using the differentiation in frequency property (Table 5.1, Property 5.3.8), we have
4\ FT dX(ev) _ (4/8)e” ™
st = (§)uind 5 Y(eM) =555 = g
Therefore, 1
(4/5)e”™
1= gemr

H(g“) =
() Since H{ejuw) = Y (V) /X (e¥), we may wrile
Y () [1 - %e‘j"’] = X(e*) [(4/5)e77].
Taking the inverse Fourier tranform of both sides
4 4
sln] - 3l — 1) = Jaln).
5.21. (&) The given signal is
ajn) = uln — 2] ~uln=6l=35n-21+ fn = 3] + &[n — 4] + d[n - 5).
Using the Fourier transform analysis eq. (5.9), we obtain

X(e) = S L e

{b) Using the Fourier transform analysis eq. (5.9), we obtain

-1
Xe¥) = 3 e

n=-00
= E(%r’“l"
n=1
el
2 (1-4ev)

(c) We can easily show that X (e™) is not conjugate symmetric. Therefore, z(n] is not real.
5.17. Using the duality property, we have

1
1) oy = 0, £ %(,. ) = 21

5.18. Knowing that
(I)M er_1-3 3
2 1 —cosw+ | S—dcosw’

we may use the Fourier transform analysis equation to write

3 . 1 Inl o
5—4mu_n§m(§) *

Putting w = —2xt in this equation, and replacing the variable n by the variable &
o0

1 U0 & iy
5 _dcos(onl) l:-L_jmi (E) .

By comparing this with the continuous-time Fourier peries synthesis equation, it s ims
mediately apparent that ax = }(i}m are the Fourier series coefficients of the signal
1/(5 = 4cos(2mt)).

5.19. (a) Taking the Fourier transform of both sides of the difference equation, we have
1 1
Y 1 — e — B = X (V).
() { gt 3 ] X(e™)

Therefore,

Lo Yie™) 1 - 1 s
Hejw) = X(@w) 1 feiw— et (1— e 3)(1+ Ty

(b) Using Partial fraction expansion,
. 3/5 2/5
H = —— 3
(ejw) = ;= Jem T+ iem

Using Table 5.2, and taking the inverse Fourler trasform, we obtain

hn] = g (%)nu[n] +: (—%)nu[n].
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(c) Using the Fourier transform analysis eq. (5.9), we obtain

-2
X@) = 3 G)rer

el l =

- "2(38"“)
e 1
01—

(d) Using the Fourier transform analysis eq. (5.9), we abtain

o
Z 2" sin{mnf4)e "

= =¥ 27 sin(xn/d)e""
n=0

12 — (12

n=0

X(e)

L
%

e
25 (1= (1/Deew  1-(1/2)e1 e
(e) Using the Fourier transform analysis eq. (5.9), we obtain
o0
X)) = 3 (/2" cosfn(n = 1)/8]e"

n=-00

1 /s i/
T [1 Tli/He e 1= (uz)s-mae-w]
pixl g R LA
T=/ge B T 1-(1 ;eye—:rfaew]

1
4
(f) The given signal is
z[n] = =36[n + 3] — 28[n + 2] — 8[n + 1] + &[n — 1] + 28[n — 2| + 3é[n - 3.
Using the Fourier transform analysis eq. (5.9), we obtain
X(£%) = =3¢V = 26 _ &V 4 g7 4 T 4 B
(g) The given signal is
2n] = sin(nn/2) + cos(n) = % T/ = eI 4 S 4 )
‘Therefore,
X(e) = ;-T[s(..a —n/2) = bl + /D) + Allw - D Sw+D)], 0S|l <
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(k) The given signal is
zn] = sin(Swn/3) + cos(Txn/3)
—sin({xn/3) + cos(mn/3)
- _%jlejmﬁ - e—j:m’i] + ;[ejm,f-] +e—;lm’!]_

]

Therefore,

X(e™) =- }{ﬂu —x/3) = d(w+x/3)] + x[8(w—=/3) +Ew+n/3), wOZ fw| < 7.
(i} z[n] is periodie with period 6. The Fourier series coefficients of z{n) are given by
§ 4o .
a = EEs[n]e"("""”"
=l

4
k= %ze—ﬂws}h

nal

1] 1= estmaid
B |1 = e tm/oik

Therefore, from the results of Section 5.2

o _ amiSwk/3 .
x(t’“): z o (%) [li:ﬁh—ﬂﬁ Hw - 2"6’:_2"!}-

==

(§) Using the Fourier transform analysis eq. (5.9) we obtain

L 4
(5) ﬁ’s—:‘,mw'

property of the Fourier transform,

1T PTT DR gy

Using the in freq

n(%)hliﬂa i 12sinw

(5 - 3cosw)?’

Therefore,

Inl I} i

1 1 FT 4 . l2sinw
N LI EREPR b MR A P - .

:["‘_“(3) (3) 5-3cosw (65— dcosw)?

G E Y PO

(k) We have
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(¢) This is the Fourier transform of a periodic sigual with fundamental frequency /2.
Therefore. its fundamental period is 4. Also, the Fourier series coefficients of this
signal are ¢ = (=1)%. Therefore, the signal is given by

3 ;
2[,“ o, z(_nt‘g‘k{-,fz]n o ejrnﬁ S L
k=0

(f) The given Fourier transform may be written as
X(e™) = c_"‘i(l J5)re=1m — (1/5) 3 (1/5) e "
n=0 n=0

= si(us)"e-w - u;a)f:u!s)"e"“"
n=0

n=1

Comparing each of the two terms in the right-hand side of the ahove equation with 'he
Fourier transform analysis eq. (5.9) we obtain

2 = (;-)"-lu[n— 13- (%)wulnl-

{g) The given Fourier transform may be written as

i 2/9 7/9
i — e———
X(e" )’1—;6"‘“’ 1+§¢-;w

z[n] = ; (%)" uln] + ; (— %)" ufn].

{h) The given Fouricr transform may be written as

Therefare,

G L T s OO ORI Wt
X(¢) =1+ 367" + 53¢ 4 e+ e g e

sform with the analysis eq. (5.8), we obtan

Comparing the given Fourier
1 1 1 1 1 B
z[n] = &[n] + sé[n =11+ 65[& -2+ E?é[n -3+ 3—]3[11 -4+ ﬁéin =5
5.23. (a) We have from eq. (5.9) ==
X(e) = E z[n] = 6.
n=—o0

(b) Nate that y[n) = =[n + 2] is an even signal. Therefore, Y (&) is real and even Tll'lw
implies that <Y (/) = 0. Furthermare, from the time shifting property of the Fourier
transform we have ¥ (e7) = &2 X(e™). Therefore, <X (&) = eI,
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5.22.

5.24.

Also,
23[n) = cos(Txn/2) = cos(xn/2) £5 Xa(e™) = w(blw - n/2) + 8w + 7/2}},
in the range 0 € |w| < . Therefore, if z[n] = z[n]zz[n], then
X(e?) = Periodic convolution of X;(e*) and Xa(e').

Using the mechanics of periodic convolution demosntrated in Example 5.15, we obtain
in the range 0 < jw| < =,

_In H<wl<
xei={y Dt V-
(a) Using the Fourier transform synthesis eq. (5.8), we obtain
] O ol 1 hﬂgi“’"dw
zjn| = — 4+
27 S angs 2 Jups

= L sin(@rn/4) - sin(en/4)]
(b) Comparing the given Fourier transform with the analysis eq. (5.8}, we obtain
z[n) = 6n] + 38[n — 1] + 28] — 2] — dd[n — 3] + &fn - 10].
(¢) Using the Fourier transform synthesis eq. (5.8), we obtain

al) = o= [ eRrrmdy

(_1)n+l
n-1)
3
(d) The given Fouricr transform is
X(e™) = cos®w + sin’(3w)
1+cos(2w) 1 — cos(d)
B A g
LOCTIN B THIN W T
1+ i + d" + 1=“ 4&

]

Comparing the given Fourier transform with the analysis eq. (5.8), we obtain

2{n] = o) + 16l = 2] + Foln +2] = 100~ 3] = J30n +3).

(c) We have from eq. (5.8)
2xz[0] = f.\’(e*"]d.r.
Therefore, .
f X(e™)dw = 4x.
(d) We have from eq. (5.9)

)

X =Y zn)-1y =2

(e) From Table 5.1, we have
Evlzin]} & Re(X (™).
Therefore, the desired signal is £u{z[n]} = (z[n]+z[-n])/2. This is as shown in Figure
55.23.

Evixn}

(f) (i) From Parseval’s theorem we have
fmix(ejw)l? =2 z |z[n)]? = 28x.

(1) Using the differentiation in {requency property of the Fourier transform we obtain

nz(n] R jd___XLa’;“'} "

Again using Parseval's theorem, we obtain

f_ F:f”iiwﬁ|2 =2r 3 Infflzln)® = 316x.

n=—00

(1) For Re{X{e™)} to be zero, the signal must be real and odd. Only signals (b} and (1)
are real and odd.

{2) For Im{X (&™)} to be zero, the signal must be real and even. Only signals (d) and (h)
are real and even.



(3) Assume V(&™) = ™ X(e?*). Using the time shifting property of the Fourer trans-
form we have y[n] = zin + a]. If Y (&™) is real, then y[n] is real and even {assuming
that z|n] is real). Therefore, z[n] has to be symmetric about . This is true only for
signals (a), (b), (d), (e}, (f), and {h).

:
(4) Since | X(#")dw = 2x=[0], the given condition is satisfied only if z[0] = 0. This is
true for signals (b), (e), (), (h), and (i).
(5) X(e) is always periodic with period 2x. Therefore, all signals satisfy this condition.
o0
(6) Since X(e°) = 3 zln), the given condition is satisfied only if the samples of the

signal add up to zero. This is true for signals (b), (g), and (i).

5.25. If the inverse Fourier transform of X (e/) is z[n], then
2] = Evfainl) = ZEEEEH AT, 400
and
zoln] = Od{z[n]} = M & jBw)
Therefore, the inverse Fourier transform of B(@} is —jzy[n]. Also, the inverse Fourier
transform of A(w)e? is z.[n +1]. Therefore, the time function carresponding to the inverse
Fourier transform of B(w) + A(w)e™ will be T [n + 1] = jzo[n]. This is as shown in the
Figure 55.25.
2 z
| 1 \
xeln) ] 1 W h I *xo[n]
T ! : o 1 ! I
l =
= -!' t 2 “la I ”‘
-2
alnan) = § wplnl= Desivad. :1'3,@1
Figure 55.25
5.26. (a) We may express Xa(e?) 28
Xale™) = Re{Xy(#)) + Re{Xa (") + Re (X (2447 )
Therelore,
za[n] = Ev{z[n]} [1 + Ay R
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- [ " i)
/\r ¥ K,
G- 1 ha (ﬁ-i\uy\ / m
/\ = + + —F g
C-l - o n
zum T2eem
@. . (l-vj —— k%
Tr -, 0 i w
-1y E l j Geiti)
‘.’-.(e""! .
—iv) (‘b vy E 7
A I o T m
Figure 86.27
(a) If z[n} = {-1)",
gln] = &[n] — &[n = 1].
(b) If z[n] = (1/2)"uln], g} has to be chosen such that
1, n=0
_13 n=1
gln] = 0, n>l
any value, otherwise
Therefore, there are many possible choices for gln].
5.29. (a) Let the output of the system be yin]. We koow that

Y(e) = X (&™) H ().
In this part of the problem

H{e) = m
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(b) We may express Xs(e™) as
Xs(e™) = Im{Xy (@)} + Im{ X ()}

Therefore, 3 ,
£3in] = Od{z;[nl} [ + ™) = 2(=1)"0d(xi{n]).

(¢) We may express o as

LA s s

- Xile™) o 1

(d) Using the fact that H(e/) is the frequency response of an ideal lowpass filter with
cutoff frequency /6, we may draw Xy(e?) as shown in Figure 55.26.

5 Ry} _ duniTete )}
| L
= o W " w B N
Figure 55.26

5.27. (a) W(e?™) will be the periodic convalution of X (/) with P(e?*). The Fourier transforms
are sketched in Figure 55.27.

(b) The Fourier transform of ¥(e?) of y[n] is Y (&) = P{e)H[e™). The LTI system
with unit sample response hn] is an ideal lowpass filter with cutofl frequency =/2.
Therefore, Y (/) for each choice of p{n] are as shown in Figure §5.27. Therefore. y[n]
in each case is:

i) ynj=0

(if) y[n] - nn%tn[!} oy I = LTS
{iih) yin] = =20/ _ %
(iv) yin) =2 [t

(v) vin) = } [2ip]

5.28. Lot e
2—"};){(?')6(:"”“’)&& 14 = YY),

Taking the inverse Fourier transform of the above equation, we obtain
gln)zln] = dn] + d[n — 1] = y[n}.

(i) We have
1
e
‘Therefore,

Y(e)

(=] =]

Taking the inverse Fourier transform, we obtain
yln] =3 (%)nu{n] -2 (%)H uln].

; 1
X&) = — :
= Ty

(ii) We have

Therefore,

i st
(1= fe=2) 1= ge~2v
- 4 2

T—Jer  T1-le (L= jerp

Taking the inverse Fourier transform, we obtain
y[n]-d(;)nuin] : n(i)"u[m —an+ :)(i)"up.;.

©0
X(eM)=2m Y Sw— (2k+ 7).

]

(i1i) We bave

Therefore,

oo
Y(e) = |23 J(H‘-{Ekd—l]n)] [I_IHITW]
e |

km—oo

= “T'kz $w = (2K + 1))

Taking the inverse Fourier transform, we obtain

:[n]=§(—1)“.
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(b) Given . e -
(L 11 msup2
hin] = 3 (ze" ) uln] + 3 (f uln),
we obtain R 3 1/2
ST e T 1 je e

(1) We have 1
X2
Therefore,
; 1/2 1/2 1
Y(et) = [l - eitfie & 1- ag'ifﬂe—ﬂ] [m

C

A AT
TSR e T 1-G/@e~ | 1= (/2
where A = =3/[2(1 — §)], B = 1/2, and C = 1/[2{1 + j)]. Therefore,
=5 N i ot Y e (R
vl = g5 (3) o1+ e (<5) w3 (3) o

(ii) In this case, \
oind = 23 o ] wi

(c) Here,
V() = X(S)H(EW) = ~3eH — ¥ 41 - 27T
+BeIv 4 PpmI 9Ny 4o=i™
3% 4 I - T 420
Therefore,

yin] = 36fn 4 5]+ &n + 4] — 8l + 3] - 38[n + 2]
+8[n + 1] + dfn] + 66[n — 1] — 28[n = 3] + 4 - 5.

5.30. (a) The freq Y resp of the system is as shown in Figure 55.30.
(b) The Fourier transform X (&) of z[n] is as shown in Figure 55.30.
(i} The frequency response H(&") is as shown in Figure §5.30. Thereforc, yn] =
sin(mn/8).
{ii) The frequency response H(&™) is as shown in Figure 85.30. Therefore, vin] =
9 sin(xn/8) — 2cos(xn/4).
(i) The frequency response H(e3¥) is as shown in Figure 85.30. Therefore, yln| =
1 sin(wn/8) - } cos(wn/4).
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in the range 0 < jw| < =. Therefore,
yin] = a0 + @™ +a_ e = %‘ +[(1/4) + (1/2)(1/ V)] cos(wn/4).

(i) The signal z{n] is periodic with period 8. The Fourier series coeflicients of the
signal are

7
o= %Z’lﬂic'm'mt"-
n=0
The Fourier transform of this signal is

o
X(e¥y= Y 2mapd(w — 2nk/8).

k==c0
The Fourier transform Y (e’) of the output is ¥ (/) = X (e?¥)H(e?*). Therefore,
¥ (%) = 27[a0d(w) + aydlw — 7/4) + 618w + 7/4)]
in the range 0 < jw| < =. Therefore,
yln) = o Fage™ pa_ e = %4- imsfvnﬂ)_
(iii) Again in this case, the Fourier transform X (™) of the signal z[n] is of the form
shown in part (i). Therefore,
Jin] = ao + @™ 4 a_ye I = % +[(1/4) = (1/2)(1/V2)] cas(an/4).
{iv) In this case, the output is
sinjm/3(n = 1)]  sinfx/3(n + 1)]

y[n) = hln} s z[n] =

w(n=1) #(n+ 1)
5.31. (a) From the given information, it is clear that when the input to the system is a complex
exponential of frequency wy, the output isa plex ex tial of the same [requency

but sealed by the |wy|. Therefore, the frequency response of the system is
HE)=|wl, for0gw|<n.
(b) Taking the inverse Fourier transform of the frequency response, we obtain

hin)

1 " 1 jrts
= f_ H(e)e

1 0 _ 1 -
= = —me"’"dw-l——f wet"dw
2h )y 2r Jo
= lf weos(wn)dw
wJo

_ 1 [cm(mr] - ]]
= _—

kg
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Figure 55.30

(iv) The frequency response H{e/) is as shown in Figure 85.30. "Therefore, yln] =
= sin{mwn/4).
(¢) The frequency response 5 (%) is as shown in Figure 55.30.
(i) The signal z|n] is periodic with peried 8. The Fourier series coefficients of the
signal are
7
_1 —3{wf8)km
o = E"Z::nz[n]e H(en/den

The Fourier transform of this signal is

X (&%) = i 2rapdw — 2xk/B).

k=-o0
The Fourier transform ¥ (/) of the output is ¥ () = X (&) H (™). Therefore,
V(&) = 2nlaghlw) + ard{w — x/4) + a_ 18w + 7/4)]
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5.32. From the synthesis equation (5.8) we have

[El; f_',H'('-‘"" }*-’] [zi, f_: H:(e’");ﬁv] = ha[0]h2(0].

Bafn) = hafn) €5 H\ (&) Hale™),

Also, since

5
35 | H&) Ha( ) = Pl ¢ halnl -
here to asking whether it is true that
m(0}ha(o] = [Aafr] » hafod)nno-
Since hy[n] and hz{n] are causal, this is indeed true.

Therefore, the q

5.33. (a) Taking the Fourier transform of the given difference equation we have

oy TAER 1
H = m—t = —————,
) X(e¥) 1+ jeiv
(b) The Fourier transform of the output will be ¥ (/) = X (™) H (™).
(i) In this case
1

)= e

i 1 1

Y(er) ‘= [l—ie"}“] [1 + ;e“i""]
1/2 1/2

1- e " 1+ Te

Therefore,

Taking the inverse Fourier transform, we obtain
1.7IR™ 1 5 §
yin] = 5 (5) ufn] + 3 (-E) uln].

el
14 fe—tv’

(ii) In this case

X(e) =
Therefore,
2
1
Y(e™) = —| .
&) [1—_;*'?:]
Taking the inverse Fourier transform, we obtain

vird =+ 1) (3) i)
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(iii) In this case
X() =14 Lo,

2
Therefore, _
Y{e*)=1.
Taking the inverse Fourier transform, we obtain
y[n] = é[n].
(iv) In this case
X(e™)=1- %e""".

Therefore,

Taking the inverse Fourier transform, we obtain
yin] = —8[n] + 2 (—%) ufn]
{c} (i) We have

Y(e™)

[l—-lc-"‘

1+ e"“’} [W;F_’:J

1+ }e—rvyz (14 fe-se)2

Taking the inverse Fourier transform, we obtain

yinl=(n+1) (——) uln] = in (_%)""‘ uln = 1]

(if) We have

e - [ i

1= lg—)“'

Taking the inverse Fourier transform, we obtain
1 "
yln] = (i) ufn].
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5.35. (a) Taking the Fourier transform of both sides of the given difference equation we obtain

Y({e™™) bae ™

H(e™) = X(o) =

lo order for |H (/)| to be one, we must ensure that
b+e ™ = |1 -ac™H|
146 +2cosw = 1+a®=2acosw
This is possible only if b = ~a,
(b) The plot is as shown Figure 55.35.
(e} The plot is as shown Figure §5.35.

Lnew) e

Vs

i-\/ (» )

(d) When s = —4,

Also, i
Therefore,
+e v
Y(Ee™) = (1+ e ™)1 fer)
5/4 34

1—dedv 14 feww

Taking the inverse Fourier transform we obtain
5 (1\" 3 A"
viol = 3 (3) ol - § (3w
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(11} We have

- - 1 1
Tutl= [(1+ femr)(1 - }r:v}] [I + 5:—*«}
2/3 2/9 1/9
(T PR vy v il py v

Taking the inverse Fourier transform, we obtain

vin] = 2(n +1) (--) ol + 2 (-%)“u[n}+ 3 G)“u[n},

Y(e¥) = [14270) L +}IT-I]

(iv) We have

1 2¢-3
14 Je-sw 1T fem1

Taking the inverse Fourier transform, we ohtain

vl = (=) w42 (-3)" w3

5.34. (a) Since the two systems are ¢ ded, the freg Y resp of the overal] system is
H(e™) = H(e")Ha(ev)

2k

1+ jems

Therefore, the Fourier transforms of the input and output of the overall system are

related by

=

Y(e™) 2-ei®
X(er) " 14 jess
Cross-multiplying and taking the inverse Fourier transform, we get

in) + guln ~ 3] = 22n] — zfn - 1).
(b) We may rewrite the averall frequency response as

4/3 (1+3v3)/3 " (1-jv3)/s

H(eM) =
ke 1+ e " 1 - 1ae—yw ¥ [ - [edimgju’

Taking the inverse Fourier transform we get

i) = § (—%)nu[n] P ”‘"- ( am) uln) + ‘—;‘@ Gw'”)“ugng.
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This i as sketched in Figure $5.35.
5.36. (a) The frequency responses are related by the following expression:

G(e) = ;ﬁ%ﬁ;
(b) (i) Here, H(e™) =1~ le~2*. Therelore, G(e™) = 1/(1 = te72*) and gn] = (})"ufn].
Sinece
Y(E""} 1

Gle") = p (7 R e vy T
the difference equation relating the input z{n] and output vin] is
yln] - —I,rln =1} = z[n].

(ii) Here, H(e*) = 1/(1 + }e ). Therefore, G(e™) = 1 + 4¢3 and gn] = &[n) +

$6n — 1], Sinee
Y{er) ;
X(om) 14 3¢ %
the difference equation relating the input x{n] and output yln] is

Gle™) =

in) = zln] + 32fn - 1)

(iii) Here, H(e™) = (1 = 1e"#)/(1 + fe=%). Therefore, G(e) = (1 + Le-3)/(1 —
}e=) and gin] = (})ufn] + 4(2)*ufn - 1. Since

Gl < X 1+ 4ew

X(e¥) 1 femse’
the difference equation relating the input z[n] and output yjn] is

yin] - iy[n —1] = zfn] + lz[n ~ 1]
(iv) Here, H(e™) = (1~ Je % — Le~2=)/(1 4 §e=i* — Le~¥~), Therefore, G(¢¥) =
(14 Fem2 = fem2v)f(1 — Lo i“b‘] Therefore,
2 2
Gle™) =1+ 1=/ ~ T+ (1/d)e "

oln) = fn] +2 (%)‘u[n} —2 (—%)“u[n}.

Glewy = XAe&) _ (14 3e™ ~ fe iy
X{e) (1= e — fe)
the difference equation relating the input z[n] and output yjn) is

1 1
uln] - 13’["‘ =1]- El"l"‘ =1 =zn]+ :—’z[n -1 - éz{n -2}
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(v) Here, H{e™) = (1= e ™)/(14 ™7~ }e~?). Therefore, G(e™) = (1+ 32—
ée"""};‘[l - ie"“] Since
Yieh) _ (1 +femiv ~ Ja2ie)

G(e¥) = o) = e %c—f")

the difference equation relating the input z[n] and output y[n] is
1 5 1
vin] = uln - 1) = z{n] + zz[n -1] = E:[n =2

(vi) Here, H(e'¥) = 1/(1+ $¢77 - }e~9%). Therefore, G(e/) = (1+ Semiv - L=ty
Since

Gle*) = %::}) =1 ge‘i‘“ - %e—%‘")

we have 5 1
gln} = én] + id‘[n -1 - EJ[H = |

and the difference equation relating the input z[n] and output yln] is
5 1
vin] = z[n] + Zz[n -1] - §=[n -2}

(¢) The frequency respouse of the given system s

e = Lem U
i 1+ 4 Je-2w’
The frequency response of the inverse system is
i 1 e 414 femivw
G = o = i fer

Therefore,
i (%)“Iu[n+ 1+ (%)nu[ﬂ] 3 (%)' MR

Clearly, g[n] is not a causal impulse response.

1f we delay this impul P by 1 sample, then it b causal. Furthermare,
the output of the inverse system will then be z{n — 1). The impulse response of this
cansal system is

ool =sin=11= () uinl+ (3) win -4 (1)l -2

z[n] £5 x ().

5.37. Given that
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Since zjn| is real, X(e™) = X*(e™). Therefore,
whl = g [ ReX(IHEm 4 e Mo+ £ [“Im(X (@) - e
= [ Retxe2emstony - - ["In{X (@)} sinturie
7o xJa
Thercfore,
Bw) = %Rcixte’“)}m(m). and - %Im[}((c’“)]sin(m).

5.38. Let yln] = z|n] « An]. Then

Y(ew) = ”ijmirinlvh!nl}e““
- niu.im:[k]h[n—k]ﬂ"“”‘
" ‘.imr[klnimh[n—k]e"""
B .i {kleMEH ()
= H(e““j*i [kje= 1wk

= H()X(e¥)

5.40. Lei y[n] = z[n] « hln]. Then using the convolution sum

viol= 3 x(ka[-k] (85.40-1)

k==oo

Using the convolution property of the Fourier transform,
o) = - [ Xt He ) (55.40-2)
-

Now let A[n] = z*[-n]. Then H(e™) = X*(&), Substituting in the right-hand sides of
equations (85.40-1) and (55.40-2) and equating them,

oo . 1 fe ) i
> ==k = o f_ X ()X ().

k=—-oc
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(i) Since
X(@) = 3 zfn]e=im,
n=-00

we may write

X*(e™ i) = z z*[ne~ e,

Comparing with the analysis eq. {5.9), we conclude that

z*[n] £ xe (e™).

Therefore, _ B
Re{z[n]} = z[n!-;: [n) g, X(e*) +2X fe=2))
{ii) Since
X(el) = E z(nje",
we may write
o
X(e™™) = Z z[—nje~im,
ne a0
Therefore,

z[-n] & X(e ),
From the previous part we know that
2] €5 X (7).

Therefore, putting these two st t her we get

z"[-n] 5 X+ ().

(iii) From our previous results we know that

Ev{z|n]} = z[n] :’[""I T, X(ev) ;X(e‘i'-')
5.38. From the synthesis equation (5.8) we obtain
sl = o [ X

L 1 gl
= E'j; X(e-"‘)e-"""‘d:.:+i;[)((e’)e T iy
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Therefore,
3 kel = 5 [ X,

n= -0
Now let Aln] = 2*[-n]. Then H(e?) = Z*(ev). Substituting in the right-hand sides of
equations (55.40-1) and (55.40-2) and equating them,

T =lhlbl = o [ X092 )

k=-o0

5.41. (a) The Fourier transform X (&) of the signal =[n] is

oo na+N-1 i
Xi{e) = Z z[nje 7" = z z[n]e=Im,
e na
Therefore,
netN=-1
X(eSHANy = Z lnje=IE/NAn, (S5.41-1)
nEng

Now, we may write the expression for the FS coefficients of z[n] as

1 1 natN-1
Gy = N zf{n]e"’ﬂﬂm“ = N Z :l:[n]c"(h'm’h.
<N LEL

(Beeause x[n] = Z{n] in the range ng < n < ng+ N = 1), Comparing the above equation
with eq. (S5.41=1), we get

s %x(e"“";.
(b) (i) From the given information,
X(e™) = l4e ™ qpe Dy o=
¢TI e g =KD} 4 =IO/ 2Dy o i11200)
= 2e7H2 {eas(3w/2) + cos(w/2))

(ii) From part (a),

ap = %X(e”"fﬂ) i #k"u‘u”“m{OW(GI‘&;‘[?N}:I + cos(mk/N)}.

5.42. (a) P(e’) = 2mb(w - wy) for |w| < x. This is as shown in Figure 55.42.



P&“%
-1 ] wo ﬁ_ :_Lﬂ

Figure 85.42
(b) From the multiplication property of the Foutier transform we have

G(e™) zi‘ j_ :x(a"}p(ew-“w

= %f X(e)2m5(wr — B — wo)d8
= X(edl-wely

5.43. (a) Usiog the frequency shift and linearity properties,

X(et=) 4 X (e
pierw) = XTI X,

(b) Let yln] = v[2n]. Then -
Y{e) = Y vf2nle™m

n=—o0

Since the odd-indexed samples of v[n] are zero, we may put m = 2n in the above

equation to get -
YieM) = 3 smle R = V().
m==o0
(Note that the substitution of n by 2m is valid only if the odd-indexed samples in the
summation are zero.)

(c) =[2n] is & new sequence- which consists of only the even indexed samples of z(n]. v[n] is
a sequence whose even-indexed ples are equal to z(n]. The odd- indexed samples of
u[n] are zero. v[2n] is a new sequence which consists of only the even indexed samples
of v[n]. This implies that v[2n] is a sequence which consists of only the even indexed
samples of z[n]. This idea is :J.luslrued in Figure 85.43.

From part (a),

i (w/2-7)y 4 X [adwi2
oty = KON X

5.44. (a) The signal z1[n) is as shown in Figure S5.44.
(i} Taking the inverse Fourier transform, the signal za[n] is

zg[n) = 21[n + 1)-
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(a) Comparing the equation for x1(t) with the above equation, we obtain
2y (1) = X (IGO0,
Therefore z(t) is as shown in Figure 35.45. .
(b) Comparing the equation for z3(t) with the equation for X (&™), we obtain
23(t) = X (P10 = 3, (-2).

Therefore z3(t) is as shown in Figure §5.45.
(c) We know that Od{z[n]} = (z[n] — z[-n])/2. Therefore,
: ¥ i _
X(e _ex{g ) _ 3 Odfatnl)e
nas-00
Comparing this with the given equation for z3(t), we obtain
x(rm-mt) = x{,ﬁ(ﬂfs}t)
7 A

z3(t) =

Therefore z3(t) is as shown in Figure 55.45.
(d) We know that Re{z[n]} = (z[n] + z*[n])/2. Therefore,

M’J.’z_“"kl’ﬂ = Z Re{z[n]}e™".
nE=-o0
Comparing this with the given equation for z4(t), we obtain

x(t—j(hﬁ]t) i X-[eiﬂf.fﬁl*)
7 [t} = 2 =

Therefore z4(t) is as shown in the Figure $5.45.

5.46. () Let 2l = a"ufn]. Then X(&™) = r=g=c- Using the differentiation in frequency

O 1
property. " or dX(eR) - . )
natuln] & j——— = ersoa
Therefore,
dX (9"" )

+X(£‘-‘")=—:‘Z_T,-.

(n+ Da"ufn) €5

(b) From part (a), it is clear that the result is true for r = 1 and r = 2. Lot us assume
that it is also true for k = r — 1. We will now a:templ. to prove that the result is true

for k = r. We have

1
3:,_1[11] = (:_+r_2)' n ‘n] l—! Xo- ;{e""') r—?;rm

2)!
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(it) Taking the inverse Fourier transform, the signal za[n] is
za[n] = :[n = 3/2] = sin(xn3) + sin(xn/2) cos(3n/4) — cos{mn/2) sin(37/4)

This is as shown in Figure 55.44.

(b) From part (a),
zz[n) = zy[n + 1) = w(nT + T).

Also,
r3[n] = 2,[n — 3/2] = winT - 3T/2).

Therefore, o = ~1 and 8 = 3/2.

5.45. From the Fourier transform analysis equation

X&) = i z[n]e~ "

n==oc
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Refzi0} L=t}
o s w2\ ﬂ/f\

- W0 e b " &

Re{ayn}
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_( —4[1 ,{L " . ey _i& ) % £y ‘.
Figure 55.45

From the differentiation in frequency property,

nzr_1[n] & alr=1)en ., ”.e-w 5

{1 _m-ﬂ}r-l
Therefore,
(n+)zraafn+1] rFr 1
afr = 1) (1 = ae=a=)"

The left hand side of the above expression is
(m+1l)zryn+l] (m+r-—1)
alr =1} T omlr =1}
Therefore, we have shown that the result is valid for r if it is valid for r — 1. Since,

we know that the result is valid for r = 2, we may conclude that it is valid for r = 3,
r =4, and 50 on.

a"uln] = z,[n].

5.47. (a) If X(e*) = X(e/“~"}) then X(e?) is periodic with a period of 1. But we already
know that X (e} is periodic with a period of 2n. This is only possible if X (e?¥) is a
constant for all w. This implies that z{n] is of the form ké[n] where & is a constant.
Therefore, the given is true.

(b) If X () = X(ew=7)) then X (™) is periodic with a period of #. We also know that
X(e™) is periodic with a period of 2x. Both these conditions can be satisfied even
if X(e™) has some arbitrary shape i m the region 0 < |w| < x/2. Therefore, X(e')
need not ily be a Juently, z{n] need not be just an impulse.
Therefore, the given statement is talne..




(¢) We know from Problem 5.43 that the inverse Fourier transform of X(e™/?) is the
sequence uln] = (z[n] + &™z|n))/2. The even-indexed samples of vin| arc wientical
to the even-indexed samples of z{n]. The odd-indexed samples of vfn] are zero. If
X{e’¥) = X(e™1?), then z[n] = vfn]. This implies that the indexed samples of
z|n] are zero. Consequently, rfn] does not necessarily have to be an impulse, Therefore,
the given statement is false.

(d) From Table 5.1 we know that the inverse Fourier transform of X(¢/®) is the time-
expanded signal

z[n/2], n=0,%2, x4, -
0, otherwise ?

i) = {
If X(e%) = X(22™), then z[n] = z(z)[n]. This is possible only if r{n] is an impulse.
Therefore, the given statement is true.

of both 3 and elimi

Y(e™) 3—Jei
X(e*) (1= 4e=)(1 = Lemv)

548, (a) Taking the Fourier tr W(e), we abtan

H(e™) =

Taking the inverse Fourier transform of the partial fraction expansion of thi above

expression, we obtain " N
hin] =4 (%) ufn] = (i) ufn].

Y{ew) 3—je
X(er) (1= fe)(1 = fem1v)
Cross-multiplying and taking the inverse Fourier transform, we ohtain

3 1 _ .
i) = $uln ~ 1]+ Fuln = 2} = 32ln] - 52ln — 1.

(b} We know that

H(e¥) =

5.49. (a) (i) Consider the signal z[n] = azi[n] + bxa[n], where @ and b are constants  Then,
X(e') = aX,(e™) + bX3(e™). Also let the responses of the system (o r:[nl and
z3[n] be yi[n] and ya[n], respectively. Substituting for X (¢’*) in the equation given
in the problem and simplifying we obtain ¥ (e/) = a¥; (&™) +bYa(e!™). Therefore,
the system is linear

(ii) Consider the signal 1[n] = z{n — 1). Then, X;(e/¥) = £ 2%X(e). Let the
response of the system to this signal be y[n). From the given equation,

Ve™) = 2X(¥) + e X () - @
= M [QX(H"] +e X)) - %&""}] 4 eI X ()
# Y (e¥)

Therefore, the system is not time invariant.
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(b) From the given information,
. ¥Y(eM) _ (1= #c_"’}"‘
) = Xe™) ™ a0 = e

We now want to find X{e™) when ¥ (e?) = (1/2)e™ /(1 + ;r"’) Fram the ahove
equation we obtain

e~ #(1 = Lem)?
(1— Jer)2(1 4+ fer)’
Taking the inverse Fourier transform of the partial fraction expansion of the above
expression, we obtain

) : (—%)H ufi =1+ % (%)H | %n (-’2-)"-' =)

5 51. (a) Taking the Fourier transform of hn] we obtain

X(e™) =

. ; ~lemaw
'y ! =
H() = V()X () = T i e
Cross-multiplying and taking the inverse Fourier transform we obtain
3 1 3 1
yln] - E"{“ -1+ ay[ﬂ -2 = Er[n] - Ez[n -1

(b) (i) Let us name the intemediate output win| (See Figure 835.51).

ylnd

Figure 55.51

We may then write the following difference equations:

yin] + %yln -1 = %w[n] +win=1]
and . 1

i - Juln = 1] = o] - 3ain - 1]
Taking the Fourier transform of both these equations and eliminating Wi(ev), we

beai S " "

e V() fo et jerth
X(er) — 1= de-2w
Cross-multiplying and taking the inverse Fourier transform we obtain

H(e™) =

i)~ yin—2) = bl + taln=1) - geln -2
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(i} If z[n) = éfn), X(e™) = 1. Then,
Y(e™) =2+

Therefore, y[n] = 2én| + §ln - 1].
(b) We may write
- ..!._ +7 /4 B (=t}
Y(e™) = 2:],:.,‘ X(e°)H (&= )ag,

where H{e’) is as shown in the Figure $5.49.

™ weew
1
_mq ] "‘?q '7,5
Figure S5.49

Using the multiplication property of the Fourier transform and Table 5.2, we obtain

— sin(wn/4)
yin) = 2a{) 220D,
5.50. (a) (i) From the given information,
H{e™) = Yie™) _ 1= e

X(e™) ~ (1 = femi)(1 = fe=)

Taking the inverss Fourier transform, we obtain
13" 1\"
hin]=3 (I) ujnj -2 (5) uln].
(ii) From part (a), we know that

Y(e) _ 1-je
X(e) (1= Leaw)(1 = femrv)’

Cross-multiplying and taking the inverse Fourier transform

7 1 1
yin] — 1—2-y|n - 1]+ 1—2-y[n -2 =2n] - Ex[n -1

(u) From (i)

Y(e)  }+fer— i

X))~ 1-few

(iii} Taking the inverse Fourier transform of the partial [raction expansion of H(e?),

we obtain = i
i) = 280 - 3¢ (3) st + 5 (3) ")

5.52. (a) Since h[n] is causal, the nonzero sample values of A[n] and h[—n] overlap only at n = 0.

H(e") =

Therefore,
S e Anlf2, n>0
Evlhln]} = "‘I_I*‘zl‘:'l = { h{0), n=0 .
h[-n]/2, n<0
In other words,
28 v{h|n]}. n=0
hln} = { Evfhfd]},  n=0 (85 52-1)
a, n<l

Now note that if
Afn] &5 H(e™)
then

Ev{h[n]} =

Ml 8- +;‘[‘“] T, RegH(e)).

Clearly, we can recover £v{h[n]} from Re{H(¢2“)}. From Ev{h[n]} we can use eq.($5.52-
1) to recover hln]. Obviously, from hfn] we can once again obtain H(e™). Therefore,
the system is completely specified by Re{H (&™)}
(b) Taking the inverse Fourier transform of Re{H(e’~)}, we obtain
Ev{hln]} = 8fn] + g!!n ~9 4+ %6]ﬂ+2}.
Therefore,
hln] = d[n] + ad[n - 2),
ﬂ.“d x
H(d) =1+ ae™/™,
(c) Since h[n] is causal, the nonzero sample values of hln] and h{-n] overlap only at n = 0.

‘Therefore,

n=40 .
=h|=n)/2, n<0

SISO ), n>0
Od{hn]} = *‘{_IQM = { o,



In other words,

some value, n=0 (55.52-12)

204{h|n]}, n>0
hn)
0, n<0

Now note that if

hin] <5 H(e™)

Od{h{n]} = M FTy sTm{H().

Clearly, we can recover Od{h(n]} Erom Im{H(e™)}. From Od{h[n|} we can usc
€q.(55.52:2) to recaver hin] (provided k0] is given). Obviously, from h[n] we can vnee
again oblain H{e’”). Therefore, the system is completely specified by Im{H (<)}
and A[0].

(d) Let Im{H(e*)} = sinw. Then,

then

1 1
Od{z[n]} = Ed[n -1]- 55[" +1].
Therefare,
hin] = h[0)8{n] + &[n - 1)
We may choose two different values for A[0] (say 1 and 2) to obtain two different systems
whose frequncy responses have imaginary parts equal to sinw.

5.53. (a) The analysis equation of the Fourier transform is
. el
X(e) = Y alnje".
n= =00

Comparing with eq. (P5.53-2), we have
j" K = x(cj[hi-fﬂl)

(b) From the figures we obtain
Xy (e) =1 — e 4 2¢™ 4

and
Xa(&¥) = —6¥ — &% — 1 e e | ey gy 2¢ 07w,
Now, 3
X (ST = 1 = eI 9=k
and

xz(,,:l'hh“)) == e"""n + 2p=Nimk{2 X (e;['-‘xkfﬂ)l
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5.55. (a) (i) From Table 5.2, we have
o
X(e™)=2r Y 8w - 2xk).
k=00

(ii) When M =1, P(e™) = & 4 14 ¢™ = 1 + 208w
(iii) When M = 10, we may use Table 5.2 to find that

Hif s nin(:}:m_
(b) The plots aze as(:li:.?;m in Figure S5.55. PIAL)
e 3 Lt i) Helo

2w T ze
e : M
e - EA
#Hd~)
Hwl

Figure $5.55

(c) We have W(e™) = S=4eeelll, Tho plots are as shown in Figure 5.5
{d) The plots are as shown Figure 55.55.
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5.54. (a) From eq. (P5.541) it nchxthnwmmX[kiﬂormpanmhrm“o{k we
need to perform N complex multiplications. Therefore, in order to compute X&) for
N different values of k, we need to perform N.N = N? complex multiplications.
{b) (i) Since f[n] = z{2n}, we have f[0] = [0}, F(1) = =[2]. ---, FUN/2) - 1] = =[N - 2].
Since r[n] is nonzero only in the range 0 < n < N = 1, f[n] is nonzero only in the
range 0 € n < (N/2) - 1.
Similarly, since g[n] = z[2n + 1], we have g[0] = =[1], g[1] = =(3], -+, gllv/z) -
1] = z[N]. Since z[n] is nonzero only in the range 0 € n < N — 1, g|n] is nonzero
only in the range 0 < n < (N/2) = 1.
(ii) We may rewrite eq. (5.54-1) as

. 1 (N/2)=1 WA (wjz)-1
X= 2 W+ Wiy 2 zfen + W™
n=0

Since Wik = Wi, we may rewrite the above equation as

(Nj2)=1 V-1
XK o= & Z fWs, +Why Y oWk,
%F[“] + JWhGIK] v (85.54—1)
(iiil) We have
o (/-1 ol
Flk+ N2 = 5 z SN WL WS = Pl
Similarly,

Gk + N/2) = G[K).

(iv) Since F{k] is a N/2 pomt DFT, we may use an approach similar to the one in part
{a) to show that we need N2/4 pl Itplications to compute it. Similarly we
may show that the computation of Flk] N?/4 multiplications. From eq.

(55.54-1), it is clear that we need N?/2 + N complex multipleations Lo compute
X[k].

(¢) By decomposing g[n] and f[n] into their odd and even indexed samples, we can bnng
down the number of computations to N?/4 + N/2. Repeating this d
logz N times, we make the required computation Nlogy N. We tabulate helow the

computations required by the direct method and the FFT method for values of N
N irect method | FFT method

==
32 1024 160
256 65536 2048
1024 1048576 10240
4096 16777216 49152
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5.56. (a) We have

X{er, e} = ¥} ¥ zlm,pjedlamban)

n=—com=—o00

ol o
Z E z|m, n]c"‘"“'"" em

3 X(e n)em i

n=—co

Therefore, we may write
X(&™,n) = %;]_:x(e“-,am?”"m.
From this we obtain
afmon) = o j f X(, ) Mmoo,
(b) We may easily show that
X{e™,e8“7) = A(e)B(e?).

(c) We use the result of the previous part in many of the problems of this past.
(i) X(e™1, el1) = e~doighiva

(i) X(e,e27) = [ [F&J_n]

(iii)x(ew-,emu[m][ g B~ R~ 2wk b x 3 B+ % - m,]_

k==o0

(iv) Here z[n, m] = {u[m + 1) — u[m — 2]}{u[vx + 4] = ufn — 5]}. Therefore,
i sin(Tas/2)] [sin(3a /2)
Skt [Blﬂ(wzﬁ) ] [Siﬂtw:ﬂ)
(v) From the definition of the 2D Fourier transform we obtain

43w -7 g 14ws)
X(c’“‘l .e:""’) _ l:’["" Y [1=¢ J_[Ul-lh’z} gty 1 — 373 +_f )
—emdun | ] — gmilwius) 1 — e~ 710w )

(vi) From the definition of the 2D Fourier transform we obtain

X(e,e) = & 2 z [fwr = 22 + 2rl)blwn - § +277) -
J{EIT;' + 2ml)d(wy + § + 2ar)].
(d) (i) X(eXon—Wi),iten-Wa)y
(i) X(e¥, e¥)

(i) ‘—',f f'xw'(.,:-’}g(.ﬂw-«:).,:(w,-o:,d(da
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6.1.

6.2,

The sigoal z(t) may be broken Up into a sum of the two complex exponentials :|(£_} =
(1/2)e7-%% angd z,(2) = (1/2)e~r0t-ds. Since complex exponentials are Eigen functions
of LTI systems, we know that when z,(¢t) passes through the LTI system, the output is
nie) = 2(OH () = 21 (4)| H ()| H 0w
o= (ugng(j%"eﬁwhﬂ‘tﬂﬂﬁmll
Similarly, when the mput is 25(t), the output is
v2(t) = (1/2)|H (= jup) e~ Hostt du=ah(=10m))
But since hln] is given to be resl, |H(jag)| = |H(~juy)| and <H(jun) = —<H(jun).
Therefore, f ]
valt) = (1/2)| H (o) je=senttao+ o)
Using lincarity we may argue that when the ioput to the LT] system is z(t) = z)(t) + xa(t),
the output will be y(¢) = wi(t) = ya(e). Therefore,

YO = 1H (jun)| cos(uet + o + <H jwn) = [H (i) cos (ote - 228en)y #)

(a) From y(¢), we have A = |H (Fuy)].
() From y(t), we have tg = ~<Hlwm)
The signal z[n] may be broken up into & sum of the two complex exponentials zy[n] =
(1/2f)etwon+éo g Zo[n] = (=1/25)e-I#n=4%_ Since complex exponentials are Eigen func-
tions of LTI systems, we know that when zy[n] passes through the LT] system, the output
15
nln = mifnjH(ew) = Ty [n][H (e300
= (/2518 (e0)|eluwns ot at(eioy)
Similarly, when the input is z5[n], the output is
valnl = (=1/25) | H (e |~ slunsou-atiiers-o))

But since (1) is given to be real, [H{e?®)] = |H(e=#%)| and GH (M%) = —qH(e1e),
Therefore, )
V![“f = {__I;2’-]|H(emn}r¢—:lwlvnfqme"ﬂn_

Using linearity we may argue that when the input to the LT[ System is z[n] = z,[n] + z;[n],

the output will be yfn] = wn| + wa[n]. Therefore,
z —qH (el
yln] = [H ()] sin(uwyn + do + <H (ef%)) = |H (%)} sin (wn[rl - __-w:__}" + «.ﬂn)
Now note that if we require that v[n] = |H(e™)|z[n - ng), theang = —qH(eJ'"j,'Iw has
to be an integer, Therefore, AH (6] = —nguy, Now also, note that if we add an mwg_er
multiple of 2x to this aH{e’%), it does not make any difference. Therefore, we require in
general that <H(e/™0) = —po(uy + 2kx).
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Taking the inverse Fourier transform, we have
M) = Ai(g)e™et 4 b, (g)e=TPoet
= 2hy(t) cos(Let)
Therefure, g(t) = cos(2uw,t),
(b) The impulse response hy(t) is as shown in Figure S6.5. As w, increases, it is clear

that the significant central Jobe of hy(¢) becomes more concentrated around the origin,
Consequeatly h(t) = 2k (t) co8(2uw,t) also becomes more eoncentrated about the origin.

The frequency response H{(e?) is as shown in Figure S6.6.
(a) Consider the signal h[n] = sinfwen)/(xn). Its Fourier transform H\(e?) is as shown
in the figure below.

i) Hle?)
ES
~M ey o Filie .t
hfa)
A1
P + ,{ 2
Figure S6.6 n=m (assuming 7 €I)
e b
Clearly,

H{e) = H)(ellv-m)),
Taking the inverse Fourier transform, we have
kln) = hy[n]e™ = A, [n](-1)n,
Therefore, g[n) = (-1)".
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6.3,

6.4,

6.5.

6.7

6.8.

(a) We have
) 11 = ju] _ VIt
S T ey =1,
Therefore, 4 = 1.
(b) We have

HGw) = tan™!(~u) ~ tan~!u) = 2tan"w).
Therefore, the group delay is

d s 2
Tw) = —E«wa} E o 12

Clearly, T(w) > 0 for w > 0. Therefore, statement 2 is true,

(a) The signal c06(#n/2) can be broken up into a sum of two complex exponentials =
(1/2)ed*n/2 gpg 2fn) = (1/2)e=3"/2 Rrom the given information, we ko that
21[n] prsses through the given LTI system, it eXperiences a delay of 2 samples
the system has a real impulse response, it has an even group delay function. Ther
the complex exponential T2[n] with frequency —wy also ExXperiences a group dela:
samples, The output vin] of the LTI system when the input is zln) = zy[n) + £,
therefore

Vin] = 221(n — ) 4 22205 — 9] = 900 (;_'(n -2)= Zcos(gn )

(b) The signal z[n] = sin(%n 4 %) is the same a5 _ sin(§n — %), This signal may

again be broken Up into compl P Is of freq ¥ 7/2 and —x/2. We
then use an argument similar to the one used in part (a) to argue that the gutput
is '

virl = 2z[n-2) = 24in (%ﬁ(n_ 2) + i’.)

2sin (72—_”" -Tn+ ;)

2sin (";_”n_ T+ ‘E)

25in (-?2:1'1 - i—')

The frequency response H(juw) is as shown in Figure $6.5.

(a) Consider the signal Ay (t) = sin(wet)/(xt). Its Fourier transform ), (ju) is as shown

Figure S6.5.

Clearly,

]

[

Hjw) = Hy(j{w - 2u,)) + B(Glw + 2u)).
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(b)Thiwpuhempmmfn]isuthminFmss.s. AS w, mncreases, it is clear
that the significant central lobe of 4, [n] becomes more concentrated around the origin.
Consequently hjn] = Raln)(=1)" also becomes more concentrated ahout the origin,

The frequency response magnitude |5 (jw)| is as shown in Figure $6.7. The frequency
response of the bandpass filter G(jw) will be given by

Glw) = FT{2A(t) cos(4000mt)

= H(j{w - 4000%)) + H(j(w + 4000=))
This is as shown in Figure 56.7
Hlgp)
—guaa LT | fwr aeue T ger s
&1'-)
TR —~osel - leey .'L-g- qooow [ T 2
Figure SB.‘?u-ﬂ_ baceg ‘tmr

(b) From the figure, it is obvious that the stopband edges are at 16005 radfsec and 6400~
rad/sec. This translates to B0 Hz and 3200 Hz, respectively,

Taking the Fourier transform of both sides of the first difference equation and simplifying,
we obtain the frequency respouse H(e)“) of the first filter

M
Zb.-e"J"“

joy = Yiel¥)
=4 JLY{;’_J)’_l “ﬂi M.
= 2 age
k=] '

Taking the Fourier transform of both sides of the second difference equation and simpli-
fying, we obtain the frequency response H;(e2) of the second filter.

M
(=1)*bye-sok
vios  ZlVhe

X(ewy = N :
e 1= 37 (—1)kayemsun

k=l

Hy(e?) =
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This may also be written as

M
zblg-ﬁu_rl.

Hye) = =% = H{e/m),

1= S oxe-Hle-mk
k=1

Therefore, the frequency response of the second filter is obtained by shifting the fre-
quency response of the first flter by =. Although the location of the passband chauges, the
tolerances will be the same in the second filter. The first filter bas its passhand helween
~wy and wp. Therefore, the second Glter will have its passband between 7 — wp antd 7+ wp.

6.9. Taking the Fourier transform of the given differential equation and simplifying, we abtain
the frequency response of the LTT system to be
Y(iw) _ 2
X(Gw) S+
Taking the inverse Fourier transform, we obtain the impulse response Lo be
hit) = 2~ u(t).
Using the result derived in Section 6.5.1, we have the step response of the system

H{jw) =

o) = A0+ u(t) = 01 = ~ul)
The final value of the step response is
2
s(o0) = 5

We also have 2
s(to) = 3[1 - &™),

Substituting s(ta) = (2/5)[1 - 1/¢?), in the above equation, we obtain tg = § se¢

6.10. We use Example 6.5 to guide us through this problem.
(a) We may rewrite H1{(jw) to be
1

Hijuw) = | = jw +0.1).

) = (55 0+ 0

We may then treat each of the two factors as individual first order systems and draw

their Bode magnitude plots. The final Bode magnitude plot will then be a sum of these

two Bade plots. This is shown in the Figure S6.10.
Mathematically, the ight-line approxi tion of the Bode magnitude plot is

=20, w<< 01
20 logyo |H(jw)| = 20 log;glw), 0.1 c<w<<40
32, w >> 40
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(b) We may ite the frequency resp Hyljw) as

: ;. 0.02

Haw) = (jw +30) (-{J?)F’ +0.2jw + l) :

Again using an approach similar to the one used in Example 6.5, we may draw the

Bode maguitude plot by treating the first and second order factors separately. This

gives us a Bode magnitude plot (using straight line) approximations as shown helow:
Mathematically, the ight-line approxi tion of the Bode magnitude plot iz

0. we<sl

2010y |H(jw)| = § —40logiw 1<<w<<i0 .
=20 logw — 34, w >> 50

6.12. Using the Bode magnitude plot specified in Figure P6.12(a), we may obtain an expressicn
for Hi(jw). The figure shows that Hj(ju) has the break frequencies wy = ' v 3
and wy = 40. The frequency response rises at 20 dB/decade after wy. At w,. toes i
canceled by a =20 dB/decade contribution. Finally, at wy, an additional —20 dbydecade
contribution results in the subsequent decay at the rate of —20 dB/decade. Therefore. we
may conclude that

. Alju + ) s
= —— e ——, 56.12-1)
HG9) = G s wnlow + o)
We now need to find A. Note that when w = 0, 20log,q |H1 (70)] = 2. Therefore, Hi(50) =
0.05. From eq. (56.12-1), we know that

Hy(j0) = A/320.

Therefore, A = 640. This gives us

6400w + 1)

BGe) = GoreGw + a0

Using a similar approach on Figure P6.12(b), we obtain

5 6.4
HG) = Govap

Since the overall system (with freq P H({jw)) is constructed by eascading
ystems with frequency resp Hy(jw) and H2(jw)

H(jw) = Hi(jw)Ha(jw)-

Using the previously obtained expressions for H(jw) and Hy(jw),

;s H{jw) 0.01{zw + 40)
Haljuw) = -H!U‘ul} = Gw+ 1w + 8)
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Figure 56.1

(b) Using a similar approach as in part (a), we obtain the Bode plot to be as shown in
Figure S6.10.
A tically, the straight-line

of the Bode magnitude plot s

20, we<02
20logyp |H(Gw)| = ¢ —20logg(w) + 6, 02 <<w << 50
—28, w>>50

6.11. (a) We may rewrite the given frequency response Hj(jw) as
250 250
H. = =
109) = FoT TR0 sw 25 G 0510w 4 50)

‘We may ﬂm_l use an approach similar to the one used in Example 6.5 and in Problem
6.10 to obtain the Bode magnitude plot (with straight line approximations) shown in

Figure S6.11.
20 g, Xy~ apleg,, betywl
20} A —arddldieacls s
' asf
o RG] Too wlmdfiee

t4

~ugo dbfducods

Figure 56.11 |

Mathematically, the straight-line approximation of the Bode magnitude plot is

20, w << 0.5
2Wlogye |H(jw)l = { —20logye(w) + 14, 05 <<w<<H .
—40loggfw) + 48, w>>50
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6.13. Usiagmapwdldmihrwthmmdmtbepmwiompmhhn.wobuin

o 320
HGe) = o Gw + 80)

(a) Let us assume that we desire to construct this system by caseading two systems with
frequency responses Hy(jw) and Ha(ju), respectively. We require that
H{jw) = Hy(jw)Ha(juw).

We see thal H) (jw) and Hz(jw) may be defined in different ways to obtain H(jw). For

instance 0
; ; 8
H - — RNy
1(w) Gor D) and  Ha(jw) GoT 80
and 32
" 10
H, = d  Hajw) = ——==
W) =gogg ™ B0 =T
are both valid combinations.
(b) Let us assume that we desire to construct this sy by ting two with

frequency responses H, (jw) and Ha(jw) in parallel. We require that
Hijw) = Hi(jw) + Haljw).
Using partial fraction expansion on H(jw), we obtain

o 1s0/39  160/39
Hw) = G205 ™ G+ 80)

From the above expression it is clear that we can define Hy(jw) and Hy(3w) in only
one way.
6.14. Using an approach similar to the one used in Problem 6.12, we have

50000(jw + 0.2)?

Hiw) = Go T 50)Gw # 10)°

The inverse to this system has a frequency response

1 0.2 x107*(jw + 50)(jw + 10)

Hilw) = H(Gw) (jw + 0.2)%

6.15. We will use the results from Section 6.5 in this problem.
(a) We may write the frequency response of the system described by the given differential
equation as
1

HO) = Gop s a4
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The final value of the step response will be b/(1 — a). The step response exhibits oscillatory
bebavior only if |a| < 1. Using this fact, we may easily show that the maximum overshoot
in the step response occurs when 1 = 0. Therefore, the maximum value of the step response

This may be rewrnitten as

'y 1/4
Hi) = Gora + 2560/ + 1
From this we obtain the damping ratio to be { = 1. Therefore, the system is critically
damped.

13

1——?-;[1 —-a)=b

Since we are given that the maximum, overshoot is 1.5 times the final value, we have

(b) We may write the freq P of the sy described by the given differential
equation as T 1_5..-.?.... =§ == a= _%_
) = o et s e
This may be rewritten as Also, since we are given that the final valve us 1,
ji s T —b =1 =% b= E
Halw) = o T 3@ + 1 = 3

From this we obtain the damping ratio to be { = 2/5. Therefore, the system is under-
damped.

(c) We may write the frequency response of the system described by the given differential
equation as

. 1
) = G e
This may be rewritten as

Aoy 1
Haljw) = CoF 720005 @) + 1

From Lhis we obtain the damping ratio to be ¢ = 10. Therefore, the system is over-

Therefore, the difference equation relating the input and output will be
1 3
uln] + 5yin — 1] = Zaln].

6.17. We will uge the results derived in Section 6.6.2 to solve this problem.
(a) Comparing the given difference equation with eq. (6.56), we obtain

r= ;', and cosé = =1,
Therefore, = n, and the system has an oscillatory step response.
(b) Comparing the given difference equation with eq. (6.56), we oblain

damped.
(d) We may write the frequency response of the syslem deseribed by the given differential - l and cos@ml.
equation as 2

a 7+ (1/3)jw
Hilpwy= 5(Gw)? + djw + 5
The terms in the numerator do not affect the ringing behavior of the impulse response
of this system. Therefore, we need to only consider the desominator in order to de-
termine if the system is critically damped, underdamped, or overdamped. We see that
this frequency response has the same denominator as the one obtained in part (b).
Therefore, this system is still underdamped.

Therefore, 8 = 0, and the system has a nonp-oscillatory step response.

6.18. Let us first find the differential equation governing the input and output of this circuit.
Current through resistor = Current through capacitor = C%ﬂ.
Voltage across resistor = RCIHE.
Total input voltage = Voltage across resistor + Valtage across capacitor
Therefore,

(1) = Rc‘i!ﬂ +ult).

6.16. The system of interest will have & difference equation of the form
uln] - ayln — 1] = bz[n]. The frequency response of this cireuit is therefore
Making slight modifications to the results obtained in Section 6.6.1, we determine the step H{jw) = 75'6_1"_1
response of this system to be L I,
b (l_:"_.) uln). Since this is a first order system, the step response has to be non oscillatory.
1-a
221 222
6.19. Let us first find the differential i ing the input and output of this circuit (d) Here, X(jw) = 1 : . :
st find the Al equation g i outF % . = 1/(2 + jw). From this we obtain z{t) = e~ 2u(t). Therefore, y(t) =
Current throug aad inductor = Current through capacitor = C2fg. ~2dr(t)/dt = de~Pu(t) — 25(2). ]
Voltage across resistor = RC2Y,
Voliage across inductor = LC‘F—EQ. 6.22. Note that L "
Total input voltage = Voltage across inductor + Voltage across resistor + Voltage across Hijw) = { W I Swsir
capacitor 0, otherwise
Therefore, (a) Since z(t) = cos(27t+6), X (jw) = 75 (w=2r) 4+~ x8{w+2x). This is zero outside
z(t) = Lcm + Bcfy.ﬂ +y(t). the region —3n < w < 3w, Thus, ¥ (jw) = H(jw)X (jw) = (3w/37)X (jw). This umplics
P & that y(t) = (1/3x)dz(t)/dt = (~2/3) sin(2xt + 8).
The frequency response of this circuit is therefore (b) Since z(t) = cos(dxt +8), X{jw) = e/*xd(w = 4n) + e™*xé(w + 47). Therefore, the
- 1 nonzero portions of X (jw) lie outside the range —3x < w < 37. This implies that
(jw) = ICGoR + RCjw+ 1’ ¥Y(jw) = X(jw)H (jw) = 0. Therefore, y(t) = 0.
We may rewrite this to be (c) The Fourier series coefficients of the signal z(t) are given by
. 1 et | —fhamt
H{jw) = — : == z(t)e ;
(757" + 2AR/2VC/ Ly et ToJemys
where Tp = 1 and wp = 2x/Tp = 2x. Also,
Therefore, the damping constant { = (R/2)y/C/L. In order for the step responss ta have
no oseillations, we must have { > 1. Therefore, we require Xt} = 25 i ——
R22/Z dneso
The only impulses of X (jw) which lie in the region =37 < w < 37 are at w = 0, 2w,
. y . . ’ - d 2r. Defining the signal zy,(t) = ag + ;7™ + a_j1e™7?™, we note that y(t) =
6.20. Lot us eall the given impulse response h[n]. It is easily observed that the signal hyfn] = i g iplt] = ag +ay 1 ¥ hat y(t)
Kfn +2) is real and even. Therefore, (using properties of the Fourier transform) we know (1/3r)dzip(t)/dt. We can also easily show that ag = 1/m, ay = a2, = —1/(4;).
that the Fourier transform H;{e?) of hy[n] is real and even. Therefore Hy(e™) b mro Putting these into the expression for z,,(f) we obtain zp(t) = (1/x) + (1/2) sin(2xt).
phase. We also know that the Fourier transform H(e™) = Hy(e™)e™. Since H. ("1 Finally, y(t) = (1/3w)dzp(t)/dt = (1/3) cos(2xt).
zero phase, we have S P, 6.23. (a) From the given information, we have
Therefore, th delay is R 1 lw| < we
erefore, the group y , Haljw) { 0 W
Tw) = Al =2 Using Table 4.2, we get
Aalt) = sinfw.t)
6.21. Note that in all parts of this problem Y{(jw) = H(jw)X(jw) = ~2jwX (jw). Therefore, PR
y(t) = ~2dz(t)/dt. ) (b) Here,
(a) Here, () = . Therefore, y(!]l: —Zd:(l)}qc = —2ja:~". Thls |_)a.tt could also hmr.e Hyliw) = Ha(ju)eT.
been solved by noting that P P tials are Eigen of LTI systems.
Then, when z(t) = e, y(t) should be y(t) = H(j1)e* = =2j¢’". Using Table 4.1, we get -
(b) Here, 2(t) = sin(wy)u(t). Then, dz(t)/dt = wy cosfwot)u(t)+sin(wpt)d(t) = wa cosluwnt)u(t). a{t) = ha(t + T).
Therefore, y(t) = —2dz(t)/dt = —Zwo cos(wot)u(t). Therefore,
(€) Here, ¥ (jw) = X(jw)H(jw) = ~2/(6 + jw). Taking the inverse Fourier transform we Bylt) = B0l + T}
obtain y(t) = —2e~%u(t). n(t+T)
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(¢) Let us ider a freq Hp(jw) given by
Hyljw) = { ;r x} S/t
Clearly, "
H(jw) = E;IHoLiw} o W{jw)),
where

W (jw) = j2ré(w — we/2) — j2mélw + wef2).
Therefore, from Table 4.1

helt) = hofthult) = [ﬂ“‘:‘:ﬁ] [~2sinfwet/2)].

6.24. 1M r{w) = ky, where k is a constant, then
4H(jw) = —kyw + k2 (56.24-1)
where &2 is another copstant.
(a) Note that if h(2) is real, the phase of the Fourer transform <H{jw) has to be an odd

function. Therefore, the value of ky in eq. {86.24-1) will be zero.
Also, let us define Ho{jw) = |H (jw)|- Then,

hott) = sin(mﬂﬂ!'

wt
(i) Here ki = 6. Hence, < H(jw) = —5w. Then,
H{jw) = |H{w)le U4 = Ho(juw)e ™
Therefore,
_ sin[200w(t — 5)]
M) = holt=5) = —r g
(it} Here ky = 5/2. Henee, <H(jw) = =(5/2)w. Then,
H(jw) = |H()|@ ) = HoGw)e .
Therefore,
i _ sin{200s(¢ - 5/2)
A1) = ho(t - 8/2) = e
(iii) Here ky = —5/2. Hence, aH(jw) = (5/2)w. Then,
H(jw) = [HGw)le H0) = Hy(ju)e ®/.

Therefore, in[200(t + 5/2)]
3 = ’_—.——
h(t) = ho(t+5/2) = = g
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i LI R
Vo aure 86.26°F
Pram Table 4.2, we have i)
sinfu,t
holt) = —>—-
‘Therefore, i)
sinfuw,t
h(t) = 8(t) - —?‘—

(b) A sketch of lig(2) is Figure 56.26. Clearly, as w. increases, h(t) becomes more concens
trated about the origin.

(¢) Note that the step response is given by
s(t) = h{t) = u(t) = u(t) - ult) » holt).

Also, note that hp(t) is the impulse response of an ideal lowpass filter. If so(t) =
u(t) » ho(t) denotes the step response of the lowpass filter, we know from Figure 6.14
that sp(0) = 0 and sy = 1. Therefore,

3(0+) = u(0+) — 5o(0+) = 1 = (1/2) = 1/2

and
s{oo) = u(ow) = soloe) = 0.

6.27. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain

Y(w) 1

The Bode plot is as shown in Figure 56.27.
(b) From the expression for H(jw) we obtain
aH(jw) = = tan~ w/2).
Therefore,

] 2
)= -0 @

27

[b)lf.‘\(!}ismtnpuﬁdtubeml.thﬁdﬁw)dmmthmwbl:anaﬁdlunction.
Therefore, the value of k; in eq. ($6.24-1) does not have to be zero. Given only |H (jw)|
and 7(w), k2 cannot be determined uniquely. Therefore, h(t) cannot be determined
uniguely.

6.25. (a) We may write Ha(jw) as

s (1 — jw) _l=jw
i il TP T v
Therefore,
aH,(jw) = tan™[—w].
and

_daHa(iw) _ 1
s 14w’
Since 7,{0) = 1 # 2 = 74(1), 7a(w) is not a constant for all u. Therefore, the frequency
response has nonlinear phase.
(b) In this case, Hy(jw) is the frequency response of a system which isa cascade combination
of two systems, each of which has a {requency response H,(jw). Therefore,

Talw) =

aHyljw) = <H(jw) + <Ha{7w)

-l daHa(jw) 2
wugtdieGa) 2
b ol e s e

Since T(0) = 2 # 4 = 7(1), my{w) is not a constant for all w. Therefore, the frequency
response has nonlinear phase.

(c) lu this case, H.(jw) is again the frequency response of a system which is a caseade
combination of two sy . The first system has a frequency response Ha(jw), while
the second system has a fr Y Hy(jw) = 1/(2 + jw). Therefore.

aHy{jw) = <H,(jw) + aHs(sw)

el d<H,(jw)  d<tHp(jw) 2
o GdHaGw) ddHo(w) 1 2
7ele) dw ¥R vy S ey S
Since 7(0) = (3/2) # (3/5) = 7(1), 7{w) is not a constant for all w. Therefore, the
freq ¥ Tesp has Li phase.

6.26. (a) Note that H(jw) = 1 = Ho(jw), where Hy(jw) is

2 1, 0<ul<
H"(}“)'{ 0, oths[::!is_ewc !

Therefore,
h(t) = 8(2) — ho(t).
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Figure $6.27

(e) Since 2(t) = e tu(t),
X(jw) =

145w’
Therefore,
1
(14 5w)(2 + 3w)
(d) Taking the inverse Fourier transform of the partial fraction expansion of ¥ {jw), we
obtain

Y{jw) = X(jw)H(jw) =

y(t) = e™*u(t) — e ult).
(e) (1) Here,

; 1+ juw
b d =
Gw) = g3 jep
Taking the inverse Fourier transform of the partial fraction expansion of ¥ (juw), we
obtain
ylt) = e Mu(t) — te~Hu(t).
(i) Here,
¥ 1
YO ey

Taking the inverse Fourier transform of ¥ (jw), we obtain
ylt) = e~ tul).
(iii) Here,
o 1
Y0 = mime et

Taking the inverse Fourier transform of the partial fraction expansion of ¥ (jw), we
obtain

O = ) + 3¢ () = ()

6.28. (a) The Bode plots are as shown below
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(b) We may write the frequency response of (iv) as

A V1 (s
Hyw) = 12 -

Therefore, T
1
— =t e
ht) = 0t u(t) 106(:}
sad 11 1
s(t) = h(t) wu(t) = E“ = e Juft) - Eu[r).
Both k() and s(t) are as shown in Figure $6.28.
We may write the frequency response of (vi) as

_ 9/10 1
el void
Therefore, i .
= =, 2Lt
h(t) = 0° u(t) + 105(!]
and

() = Al0) ) = (1 = e alt) + ue).
l?:{}ll: h{t) and s(t) are as shown in Figure 56.28,
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-29. (a) (i) The Bode plot is as shown in Figure 86.29. Clearly, the system has phase lag. Tt

also has no lification at any freq ies (i.e., |H(jw| never exceeds 0 dB)
{u1) The Bode plot is as shown in Figure $6.29. Cleasly, the system has phaw lead, It
has amplification at approxi ly fr ies which exceed 0.1 rad /sec

(b) (i) The Bode plot is as shown in Figure 56.29. Clearly, the system has phase lag. It
also has no amplification at any frequencies (i¢., |H(jw| never exceeds 0 dB).
(1) The Bade plot is as shown in Figure $6.29. Clearly, the system has phase lag. It
has some amplification at freq ies near 0.1 rad/sec.
(iii) The Bode plot is as shown in Figure §6.29. Clearly, the system has both phase lag
and phase lead, [t also has amplification for a band of frequencies,

30. We know that

FT LW
102(101) ¢ X (532
Therefore, the Bode plot shifts by 1 decade to the left. The shape remains unaltored
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6.31. (a) The Bode plot is as shown in Figure 56.31.

(b) Since
?Ei‘_:' GE. JwX (jw),
the frequency of a differenti

T 8 H{jw) = jw. Therefore, its Bode plot is as
shown in the figure below,

(c) (i) The Bode plot is as shown in Figure 56.31.
(ii) Here, w, = 10 and ¢ = 4. The Bode plot is as shown in Figure 36.31.

6.32. (a) One passible choice for the compensator frequency response is

. 50035 +1)
H.(jw) = 2%t
Gw) (% + 12
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Figure 56.32

Therefore, the overall frequency response is

; 1
Hjw) = m&?

The Bode plot for this frequency response is as shown in Figure 56.32.
(b} One possible choice for the compensatar frequency response is
505w(is + 1)
(L5 + (g + Didhs + 1

Therefore, the overall frequency response is

Heljw) =

HOW) = @ + D + V)

The Bode plot for this frequency response is as shown in Figure 56.32.

£.33. (a) From Figure P6.33, we may write

6.36.

Y (jw) = X(jw) — Hiw)H(jw) = Haliw)X(w):
Therefore,
Hepljw) = 1 = H{jw) (56.33-1)

If H(yw) corresponds to an ideal lowpass filter with cutoff frequency wip. then Hay(jw)
is as shown in Figure 56.33.
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(d) From the tolerances derived in the previous part, it is clear that H,,(jw) is not neces-
sanly highpass.

Since z[n| = cos(won + 8), we have
X(e™) == i (€06 (w = wp = 2x1) + € 708(w + wo = 270)].
l=—an
Let ) be the principal value of wy in [==,#]. Thea
Y{e™) = X (@) H(e¥) == f [l — g — 2ut) = e ¥ jupdlw + wo — 2l)].
]

It follows that
y[n] = —wh sin(won + 6).

If -7 Swp = W, then
yin] = —wpsin(uyn + 8).

Let Ky} = |H{¢™)|. Then from Table 5.2 we know that

hyin] = M.

nn

If 7(w) = — gL «H(e™) = k (where k is a constant), then aH{e™) = =kw + k;, where
ky is a constant. If &[n] is real, then <H(e™) is an odd function, and therefore we may
conclude that ky = 0, Therefore,

H(&Y) = |H() ) = Hy()e
Taking the inverse Fourier transform we obtain

sinf(n — k)/2)

hin) = ha[n— k] = e
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6.34.

6.37.

Figure 86.33

Clearly, Ho(jw) corresponds to an ideal highpass filter with cutoff frequency wip.
Also,

hoult) = 8(8) = h(t) = 8(¢) — ”L(:‘!?ﬂ

This is as shown in Figure 56.33.

(b) If H(jw) corresponds to an ideal highpass filter with cutoff frequency wap, then from
eq.(56.33-1) it is clear that Hou(jw) is as shown in Figure 56.33. Clearly, Hy(jw)
corresponds to an ideal lowpass filter with cutoff frequency wyp.

(€) If we replace H(jw) with a discrete-time lowpass filter with frequency response H(e¥)
as shown in Figure $6.33, then the overall frequency response still is

Hey(e) = 1 = H{e™).
Therefore, H{e!) is as shown in Figure §6.33. Clearly, it is highpass.
(a) From the previous problem,
Houljw) =1 - H(jw).

This is sketched in Figure 86.34. Clearly, it is approximately highpass.
(b) We have H{jw) = Hy(jw)e?™), Therefore, |H(jw)| = |Hi(jw)l. Therelore, it is still
lowpass,

(c) We have
Houliw) = 1 — H(jw) = 1 — Hy(jw)e™™.
Therefore,
[Hou(Gu)] = |1 = Hy(gu)e’ ™).
We also have

1= |Hy(ju)] < |1 — Hy Gu)e?®™)| < 1 4 |Fh(Gwll
Therefore, Hoy(jw) is between the two curves sketched in Figure 36.34.
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(a) If 7(w) = 5. then from the above result,

sin[x{n — 5)/2|
hln] = -—-—-—-—1(“ =5
(b) If 7{w) = 5/2, then from the result derived at the beginning of this problem

sin[x{n — 5/2)/2|

hin) = = —=5/2)

(e) If 7{w) = —5/2, then from the result derived at the beginning of this problem

A} s sinir(n + 5{2],’2]_

=(n +5/2)
The results of all the parts of this problem are sketched in Figure 56.36
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Figure 56.36
(a) We have
. _il—‘e""!_
(N = F gl =1
(b) We bave

qaH(e™) = afe ™)+ [1 = 15"""'] =i [1 & %e""]

2

Yoo
o = 3 sinfuw)
= —w=2tan [——-—-—l = % (w}}

= qe™™]+4 [l - loos(w] - %sin(w:l] - [l - %ws(u} + %siu{w]l
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(¢} Using the result of the previous part, we can show with some algebraic manipulation
that
_ _daH(v)  }
)= dw ~ ‘S —cosw
This is as sketched below
(d) Let z[n] = cos(xn/3). We may write this as x[n| e""‘”,—’? + z"'”"’“z‘? From the

result of part (¢), we know that the delay suffered by a comy P ! of freg ¥
nf3is
- costx/3)

0

Similarly, we know that the delay 1 by a P ial of freq y —=/3
is also 1. Therefore, the output of the system is y|n] = ¥ NNy gmavin=1)3 2 =
cos(w(n = 1)/3).

6.38. We may express H(e™) as
H(O%) = 5= [Hi(e) o (206w — =/2) + 26 + 7/D}]

and : ol <
- v wy
H;[H“}_{ 0, we < jw] <7

Using the properties of the Fourier transform, we obtain
h[n] = hy[n] [2cos(mn/2)],

where .
ko) sinfw,.n)
1n ===

(a) When w, = =/5, hln] = 220/ pog(xn/2). This is as shown in Figure $6.38.

(b) When we = = /4, hln] = 282508 cog(xr/2). This is as shown in Figure 56.38

(¢) When w, = /3, hln) = 222203 cos(xn/2). This is as shown in Figure 56.36.
As w, increases, h[n] becomes more concentrated about the origin.

6.39. The plots are as shown in Figure S6.39.
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6.40. \We may write A[n] as
o
Hi(e*) = 5 kyfnjen
Az=c0
o0
= E hy[2n)e%m
n==o0
= z hin)e=on
ne—go
= H{d™)
Therefore, f{(c"") is H(e’™) compressed by a factor of two. This is as shown in Figure
56.40. (&)
. {——] I r—.
- le s )
i)
L1 17 [
car g ~v Sy b w ko @
Figure $6.40

Therefore, H\{e?) corresponds to a band-stop Glter.
41. (a) Taking the Fourier transform of both sides of the given difference equation, we obtain

¥(e™) 1= e

H{e™) = =
&)= ¥im) ~ T- Fem e o

Taking the inverse Fourier transform of H(e’) we obtain
hln} = (%) cos(xn/d)uln] - (2v/3 - 1) G)'sinf,m;-a)s[n].

(b) The log-magnitude and phase of the frequency response are as shown in Figure S6.41.

6.42. (a) We get
Sff_i—cos w
1776 + (1/2) cos e

()] = |Ha ()] =



l.ng'ﬂlﬁ“‘)l
° ﬂ(&i“'l
v L%
. i P |
-0 frut 0 = l/l = — w
Figure 56.41

and
(1/2)sinw
1+ (1/2) cos(w)

Comparing tangents of these angle in the range ( <w < 7, We get
GHa(e™) > <Hy ().

hyln] = (—%)“ uln] + .;. (—%)MI ufn - 1]

L o1\® T
hain) = 3 (_E) uln] + (-I) uln - 1.
This is as sketched in Figure 56.42,

R LA

<Hy(e) = tan™} ( ) and  <Ha(e) = tan~! (l——

(b) We get

and

I
Y
] I LR ho ()
=] ¢ "
e
; “*1[ i e
- S 0
gy
Figure 56.42
(e) We get !
oy _ 1247 .
e = (P ) e
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(b) Since
y[n] = a[nle’™™
and
A™) = X (L) Hip(e),
we obtain

Y(e™) = Hyple™ )X ().

Therefore, the frequency response of the overall system is H|.le"“"}}, I Hiled™) is

lowpass, then Hip(e?(~™) is highpass.

All three first order factors in this frequency response are of the form .

response. Therefore, the step response of the overall system is non oscillatory.

\
il

a >
0. Therefore, none of these factors contributes an gscillatory component to the step

Therefore,
1/2+ e
T+ (1;2):--&)

(5/4) +oonw
(5/4) + cosw

6.43. (a) If hpyln] = {~1)"hpp[n] = &7 hyp[n], then
Hpg(e™) = Hyp (7“7 ™).
Therefore, Hyp(e™) is as shown in Figure $6.43. Clearly, it corresponds to a highpass

filter.

—u

Gle™) = (
and

1G(e™)] =

Hple)

/_

m

(%]
Figure 56.43

(b) Now let us define h(n] = (=1)"hyp[n], where hpg[n] is the impulse response of a highpass
filter. Then
H{e™) = Hyp (=),
Therefore, if Hap(e?™) is s shown in Figure 86.43, then H(e/*) is lowpass.
6.44. (n) Note that (—1)" = &/, From the figure we have
yln] = (z[n)e™ + bipln]) €7

We may write this as
vin] = a[n]e’™,
where aln] = (z[n]e’*" o hyy[n]). Taking the Fourier transform of a[n], we obtain
A() = X(&@“ ) Hy(e).
Suppose that the input to the system is now z[n — ng). Let the corresponding output
be yi[n]. Then we may write
win] = b{n)e™™",
where b[n] = (z[n — ngle”™ * hpn]). Taking the Fourier transform of bin], we abtain
B(&¥) = X (e " Hy(e?)e ™ = A(¢¥)e T

Therefore,
bjn] = a[n = no).
Consequently, y1[n] = y[n = no). Therefore, the system in time invanant.
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{b) One such example i h[n] = d{n} + 28fn = 1] + 38[n — 2] + 24ln — 3] + &ln - 4].
(e} We have

ol
H{e™) 3 hfnje

"= —on

B0} + Aftle™ 4 - + ATy — Lems(F1) 4 h[%]e'l“"f’
4ooe sk R[N = 1)eeN L

Since h[q- +n]= h[g —n — 1], we may writc

H(eW) = e AN=072 [pjgleieiN-0/2 4 pfr)es*F D

(i8) The factor ;715 contributes anoscilhuont P t to the step resp There- . *”'IE R +h[£ e
fure, the step response of the overall system is oscillatery. 2 2
(ii1) Consider the second order factor For this, weget r = $and e 4 = 4 4o R[1)em 0BT =) | ppfeaed £ J]

1
T dem= ﬁ:ﬁ— e
Since # # 0, this second order factor contributes an oscillatory component to the step

response. Therefore, the step response of the averall system is oscillatory.

6 46. (a) We have

H(e¢™)

o0
3 hfne "
n=-00

A0 + Bl + - + B

; Lie st =172 4 g pIN — 1]

Since h[&7 + n] = {25 — n, we may write

H{gy, = g =NE [h[n]e'*‘”-im +h(1)e Y hiN—;-l]
oo 4 A[Lem ISR hloje-wl%“‘b]
= RN [ghfcos(u(N - 1)/2) + peosfu 2 - 1)
——
1N =112 )
where

Alw) = [%[U]m(m[N - 1)/2) +2h{1]w[u(£;—l —1)] 4 -+ A N—z:--h]
is a real-valued function.
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-1)

= gl [ﬂh[l]]oos(w(f"’ —1)/2) 4 2h[l]uos[ul¥ - 1)}
g +zh[1:— = llm(wﬂ]]
L LT ()
where

Alw) = |2h]0) cos(w(N = 1)/2) + 24{1] cos[w{N a

N
— 1))+ 2H 5 = Hcos(w/2)
is a real-valued function.
(d) One such example is A[n] = é[n] + 2é[n = 1] + 28[n - 2] + 8ln - 3}
6.47. (a) Taking the Fourier transform of both sides of the given diflerence equation, we have

¥ (e
X(e=)

H(e™) = = b1 + 2acosw].
(b) We want H(e'®) = b) + 2a] = 1. Therefore, b = 1/(1 + 2a).
(c) gﬁﬂ‘: 1/2, then b = 1/2. Therefore, H(e?*) = j[1 + cosw]. This is plotted in Figure

6.48. (a) Here, ) )
H{e¥) = bie™™ + by~ = 2bye~ ™2 cos(w/2).

Therefore, :
|H{e®)] = 2]by|] cosiw/2)].
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b) Here, ’
5 aa H(e™) = by + bye " = 2bpe ™%/ cos(3u/2).
Therefore,
|H{e™)] = 2bo|| cos{3w/2)|
(c) Here,
H() = by + e~ + bye™?™ 4 bye ™% = 2bye ™37 coslw) ooriun/2)
Therefore,
[H ()] = 2]bo|l cos(w)]] cos(w/2)].
(d) Here,
H(e™) = by + bre 7 + bye ™72 4 bye™ ™ = —2bye 7512 sin(w) sinw/2).
Therefore,

1H(e™)] = 2|by|| sinfw)| sin(w/2)].
The plots for the frequency response magnitudes are shown in Figure 56.48

6.49. (a) Taking the Fourier transform of both sides of the given differential equation. we obtain

h 9
v = o e+ 10
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(d) The approxi i P may be exp i as

7 : o g 1 1
AiGw) = i) - Balio) = 1555 ~ 1o

The differential equation relating the iuput and output of the approximate system i

a0, . 1d) 8
T+ (‘)—E i +1=(‘)-

The magnitude of the freq P of the exact and approximate systems are
plotted in Figure 56.49. Clearly, they are identical for low &aqugncie.-s- The step re-
sponses of the exact and approximate systems are also plotted in Figure S6.4%, Clearly,

they are identical for ¢ approximately greater than L.

6.50. (a) We have
¥ (jw) = X Gw)H (jw) = [S(Gw) + W (jw)] H(jw)

Therefore,
elw) = IS(gw) = Y Gw)? = [SGw) - [SGw) + W ()] H )l
(b) From part (a), we obtain
dw) = [SEWIE + HAGw)IS(w) + W) - 2Re(S"Gw) [SGw) + W) H (jw)
= 18Gw)I? + HY(w)|SGw) + W Gw)? = 2HGw) (ISG) + RelS" Gu)W (iw))]
Therelore,

W) g )|SGw) + W) — 2 [ISGw)? + Re{S* ()W Liw)}]
AH (jw)

If u'.i' ';l_" = (. then
[ISGw)I? + Re{S" (jw)W ()} ]
[5Gw) + WGl i

Note that is §{jwg) + W(jwe) = 0, then X (jwp) = 0 and ¥ (jup) = 0 no matter what
the value of H{jwo).
() If 5(7w) and W(jw) are non-overlapping, then Re{ 5" (ju)W (jw}} = 0 for all w and so

Hi{jw) =

|5~”—'r=“‘- for W(jw) = 0,5(jw) #0
T =0, for W{iw) # 0, 5(jw) =10
O(arbitrarily), for W(jw) = 0,5(jw) =0

H{jw) =

Clearly, this is an ideal frequency selective filter.
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Taking the ioverse Fourier transform of the partial fraction expansion of H(jw), we
obtain the impulse response to be

hit) = e tuft) = e '%u(t).

Therefore, the step response is

s(¢) = A(t) = u(t) = [1 -t = ﬁ + i%e"“'] u(t).

The final value of this response is 9/10. Therefore, the time-constant 7 is the time at
which the response reaches 9/(10e). Therefore,

S ra Lo 9
[10 S T B T
is the equation that we need to solve.

(b) We may write H(jw) as

H(jw) = = Hi(jw) = Ha(jw)

1 1
14w 10+ 3w

Therefore, H(jw) may be viewed as the parallel interconnection shown in Figure 56.49.
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Swes " Figure 56.49 N—

The first time constant is 7 = 1 and the second time constant is 73 = ;.
(¢) Dominant time constant is ¥ = 1. This approximately satisfies the equation of part

(a).
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(d) In this case,

1, |l
Hijw)=4 4 1< <2
0, |w] =2

This is as shown in Figure 56.50.
(a) We may write H(jw) as
H{jw) = Hip(jw) » [§lw - wo) + &(w + wp)] .

where Hy,(jw) is the frequency response of an ideal lowpass filter with cutofl frequency
%. Therefore,

h{t) = 2hyp(t) cos(wt),

where ——
hyp(t) = %ﬂ
(b) We have
iy 1 L Fw/10%
Hl(JUl——l",jﬁ' and H:(Jh-')—-—-—l_”ﬁ_’-

Therefore the Bode diagrams for these two filters are as shown in Figure S6.51.
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R 4

Figure 56.52

(¢) Since H{jw) = Hi(jw)Hzliw),
20log,o | H (jw)| = 2010g:g |H1 (jw)] + 2010810 [ H2 (7).

Therefore, the Bode diagram for the bandpass filter is the sum of the twe Bode diagrams
sketched in part (b).

§.52. (a) Sinee
~0.1|H(jw)| £ [16Gw)| - IH )] < 01H )l

we have
0.9|H(jw)| < 1GGw) € 1UH (w)]-

Therefore,
0.9lw| < |G(w)} = 11wl

This is sketched in Figure 56.52.
(b) From Figure P6.52(b) we have

¥(t) = l=(t) = 2(¢ = T)).

Therefore, 3
Y(e) = 5 X0 - e+ X ()]
and :
Cliw) = % - li-eH M= L e s TR Gniu T12).

Therefore, 5

|Gliw)| = Tl"i“(uﬂ'ﬁ}f.
v Gl _ |sin(wT/2)]

= lwT/2| -
249

where sa(ta) = A/10 and so(fy) = 94/10. Now,

'l_ig spht) = ‘lirnnﬂ sipltfa) = A.
Vie now need to find the limes ty and ¢; at which splt) is A/10and 9A/10, rclspcntive]y.
I sip{tz) = A/10, then so(t2/a) = A/10. This implies that tp = aty. Also, if sf,,(s,_) =
9A4/10, then sg(ts/a) = 94/10. This implies that 3 = aly. Therefare, the new rise-time
.ls n

i _2
r,=t;—!-_>=u(t.-—tu)=nf,—;.

7! is sketehed in Figure $6.54 as a function of w-
L4

Figure S6.54

6.55. We have

|B(jw)f* = mﬁm (86.55-1)

Also, |B(70)|* = 1. Therefore, |B(jws)|? = 1/2. From eq.(86.55-1), we conclude that
N
(‘fz) =1 = Wy = we.
e
Also, since |BU‘.|JA)|2 = 1/100, we may use eq.(86.55-1) to conclude that
N
(ﬂ) =00 = w,=(09)Mu
e
Therefore, the transition ratio is
Y5 _ (99PN = 104N,
Wy

This is sketched in Figure $6.55.

6.56. (a) The conditioning system with frequency response M) (jw) hoosts the frequen_cim that
are going to be most affected by the noise. Therefore, its frequency response is chosen
to have a magnitude plot as shown in Figure 6.56(a). Therefore.

(1+E),
H\ljw) = =——5,
l+ﬂ¥1)

where wy = 2w (5000) radfsec and wy = 22(10000) rad/sec.
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For |G{w)| to be within £10% of k|, we require the ahove rativ to be greater than
0.9. It can be easily sbown that for T = 1072, the above ratio falls below 0.9 for
WwT/2 = /20, that is, w = 31.4 rad/sec. Therefore, the magnitude of the frequency

of the approxi L within £10% of the ideal differentiator for
|wl < 31.4 rad/sec.

6.53. If 5(t) denotes the step response and h(Z) the impulse response, then
_ ds(t)
hit) = =

1fh(z) = 0, then %4 > 0. This implies that s(t) is a jeally non-decreasing function.

6.54. (a) The cutoff frequency 2m x 10? rad/sec in Hip(jus) maps to the frequency we = 27 x 10%/a
rad/sec in Hy(jw). Therefore,
2 % 10?
0= —
e

(b) We know from Table 4.1 that
z(at) <5 %xu'f}.
‘Therefore,
ipl®) = Sa(t/e) = g5ieho ()
(c) We know that :
sl f ho(r)dr.
Also, 2
)= [ " bt
Therefore, i
aplt) = :7 f_ lmhq{r,l’a)dr.

Let v’ = r/a. Then,
tfa
sip(t) = j ho(r')dr' = ag(tfa) = so(twe/(Zm x 10°)).

(d) Let
‘li!glu ag(t) = A.

‘Then
T =1 = o,
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(b) The bigher frequencies would appear boosted. This would make it sound like the
“treble” was higher.

(&) The system with frequency response Ha(jw) should undo the effects of H,(juw). There-
fore, it has to be the inverse system of H;(jw). The Bode plot for Ha(jw) would be as
shown in Figure S6.56.

A th(§e

oda x—
—|2AB 4
sin
bigure $6.56

Therefore,

Ez
(1+2

Sl
(1 + g)

where wy = 27(5000) rad/sec and w; = 2m(10000) rad/sec. The input (r) and the
output y(t) of Hajw) are related by the following differential equation

1 dyA(e) | 2 dylt) 1 de?(n) | 2 dx(t)
wf d? i G TP T

Hal(jw) =

+ z(t}

6.57. 1f s|n] denotes Lhe step response and h[n] the impulse response, then
hn] = s[n] = s[n - 1).
If Aln] 2 0, then s[n] > s[n = 1]. This implies that s[n| is a monotonically non-decreasing
function.
6.58. (a) The sequence of operations shown in Figure 6.58(a) may be interpreted as follows:
G(e™) = H(e™)X(e™)
R(e™) = Ge™™)H(e™) = H(e ™)X (e ) H(e™)
S(e™) = Rle™¥) = H(e™)X () H(e™") = Hi(e™) X ()

1
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[, (™) [ate™a|

©

<i=

3T ol
I'

£H
Kl=
e

Figure S6.58

Therefore,
Hy (&%) = H{&¥)H(e™ ™).

If An] is real, then H (™) = H'(e i+, Then
Hi(e™) = |H (&™)
Therefore,
hufn] = hin] « h[-nl.

Also, )
[Hy(e&)| = [H(e¥)}  and  <Hi(e¥) =0

(b) The sequence of operations shown in Figure 6.58(a) may be interpreted as follows:

Gle™) = H{e“)X(¢")

Re¥) = X(e*)H() o

Y(e*) = G(&¥)+ Rle™™)= X(&)H () + Hie ™)
Therefore,

Hayle™) = H{e™) + H{e™™).
If hln) is real, then H(&?) = H*(e~7). Theu
Hy(e) = 2Re{H(&™™)} = 2H(e*)| cos( aH ().

Therefore, g i
holn] = —--—--—[ﬂ} +2 1 “I.
Also,
|Ha(e) = 2H ()| cos(H (D))

{e) The plots for |Hi(e™)] and |H;(e?)| are shown in Figure 56.58.
Clearly, Method A is preferable because the magnitude of the zero-phase filter does
not depend on the phase of Afn).
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6.61. (a) We have ) _
Gle™) = H{e™)H(eM) = [H(e) P,

Therefore,
1G] = |H (&)

1t follows that the tolerance limits on |G(e?¥)| are given by
(1-&)P < IGENS+a), O0swsw
0 < |G <8, wlwsr

(b) 1f & << 1 and § << 1, then (1—&)? = 1 =26 and (14+6,)° = 1+24,. Also, 82 < by
Therefore, the passband ripple ¢ and the stopband ripple decreases.
() Tf N filters are caseaded, then the overall frequency response is

G‘e’”} A |H(¢’u)1'~f'~q"{°‘-’.

Therefore, _ !
iG(e™)] = |H{e™=N".

The tolerance limits are now:
(1-6" S IGE@I<+86)", 0<ww
0 < IG(E™)NS8, wmsSwsT
1t §, << 1, then (1=6;)¥ 21— Né; and (1 +&)V == 1+ N&,. Therefore, the tolerance
limits on |G(e™)| are given by
1= N&
0

IGle“) €1+ N§, 0Zww
IGle™) 28, wmLwsw

=
<

6.62. (a) From Figure P6.62(a) we have
w(e™) = [2X (™) - X(e¥YH (™)) H{e™).
Thercfore,
W(e™)
X (em)
Let H(?¥) = 1+ 6. Then G(e¥) =[2-1-&]1 + &) =1~ 5. Let H(e®) = 1=
Then G(e?) = [2 — 1+ ][l = &1 = 1 — &}. Therelore,

G(e™) = = [2- H(™)| H(e®).

1-8<GEv) <1, 0Swsuy

Therefore, A = 1 - & and B = 1. Let H(e*) = —&. Thea G(&**) = [2 - & %] =
267 — 63. Lot H(e) =& Then G(e?) = [2- &4)[&g] = 282 — 63. Therefore,

28, - RS G@¥) <2 -8, wSw<m
Therefore, C = —24; — 8% and D = 28 - 5}.
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6.59. (a) We have

E(e™) Ha(e™) — H(&™)

:;_: [halnje?*™ = hln]e "]

3 (hefn) = hinpen

n

Therefore, e[n] = haln] = h[n].
(b) Noting that E(e?™) is the Fourier transform of e[n], we may use Parseval's theorem to

obtain -
= o [ 1@ = 3 lelnl?
{c) We have
e o= Y lenl?

= ?:mlni - hfn]?
N-——Im o o0

= S lhan] - P+ 3 Ihaln)l® + 3 1halr]?
n=0 n=—-0o n=N

The last two terms in the right-hand side of the above equation are constant. The

-1
only variable term z:l.‘u[u] — hin]|® is minimized when h4ln] = hjn] in the range
a=0

0<n=N-=1
6.680. The development is identical to that in Problem 6.50. We have
™) = |§(e) - Y ()P
1S{e™) - H(e™)[S(e) + W(e=)]*
= |S(E) + HA(e™)|S(e%) + W(e)|?
—2H()[|S(@*) [ + Re{S" ()W (e™)}]

where H{e’) is assumed to be real. With Je(e)/8H () = 0, we obtain

(IS(™)2 + Re{S* (M)W (e™))]

ey 15(e) + W (=2

If for some wy, S(e“0) = W(e?0) = 0, then ¥ (e?*0) = 0 regardless of the value of H(e7¢).

(b}lfé,-:-c:and&,ccl,thmds:l-ﬂ,ﬂt:|+J’;‘,G:=—26;a-dﬂ=a&;.
Theref the passhand ripple is ller and the stopband ripple is larger.
() From part (a), we have

1G(e?)] = 12 = H(e)[|H{e)]-
Since [2 — H(e?)] <2+ [H(e9)| and |2 = H(e™)| 2 2 — [H(e™)|, we may write

[2- 1HE)] |H(E)] £ G™) < 2+ [H ()] [H ()]
(56.62=1)

1f H{e’) = 1, then from the above equation we obtain
1< 6% <3

If H{e*) = 0, then from the eq, ($6.62-1) we obtain
0<Gle™) s 0

Therefore, the filter is a good approximation of a lowpass filter in the stopband. But in
the passband, for some 8(w) it is possible to obtain extremely large ripple. Therefore,
averall it is not a good approximation for a lowpass filter.

(d) In Figure P6.62(a) if we attach a N point delay to H(e?), then the equivalent filter
will be a real filter that is a good approximation to & lowpass filter. We have scen that
in such a case the overall system is also a good approximation to lowpass.

6.63. (a) Let gln] = nh[n]. Then,

dH (')
e
Using Parseval's theorem (an also noting that g[n)] is real)

Gle) =3

S g2} = o [ 1G(e*) P
Y ot = 5z [ 16

n=—00
Therefore, - .
1 dH{e"")\
- 232 .
D= ..g‘mn Hiln] = ;- ‘———dw duw.

(b) Replacing H(e™) by |H(e/)[@*“) in the result of part (a),

1 oy dLH ()] ” ()|’
D= 5£|a“ o A et — I du

1 [ |dEE)]
dur

2x ) .

do 2
+ [H(&)] ;:)‘ el



Let M(w) = [H(e™)| and @(w) = H=). Also note that M{w) = M(-w). M'(w) =
M'{-w) and #lw) = #(-w). Therefore,

D 53; _£ 4 {IM'(w) + M(w)& (W)? + M () - M{w)8 ()]} do.

Now since the integrand is positive for all w, it is sufficient to minimize the integrand
to mumimize . Therefore,

B M) 4 MOEWF + 1MW) - MR} =0,

Simplifying this, we obtain
W) =0 = &) =0
However, since 8(w) is odd, the only function that satisfies Hlu)=0is@w)=n

6.64. (a) From Table 5.1 we know that when a signal is real and even, then its Fourier transform
15 also real and even. Therefore, using duality, we may say that if the Fourier transform
of a signal is real and even, then the signal is real and even. Therefore, A, [n) = htem]

By using the time shift property, we know that if H (&%) = H, (=)e= "M then

hln] = h,{n - M),

(b) We have
h[M + 1] = &, (M + n~ M] = A[n).

Also,
AM=n]=h[M-n-M= he[-n].

Siace h.[n] = h,[-n],
h[M +n] = h{M — n)

(e) Since hln| is causal, h{—k] = 0 for k > 0. But due to the SYmmetry property,
hl—k] = he[~k = M] = h,[k + M] = A[k + M)

Therefore,
hlk +2M] =0 fork > 0.

It follows that
hln]=0 forn>2M.

6.65. (a) We have

S 1 T
1B(e™)* = 1+ an?(w/2)  seci(w/2) cos(w/2).
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Figure 56.66

(d) Ia order for hfn] to be the impulse response of an identity system, we require that
h[n] = d[n]. From part (), we know that

hln] = ho[n} 3" dln ~ kN).

k=—oo

Therefore, the necessary and sufficient condition for hfn] to be 8[n] is

holO)= & and  RolkN] =0 for km £1,42,....

(b) If B(e™) = a cos(w/2), then
1[B(e™)]? = aa” cos?(w/2).
If we want this to be the same as part (a), then aa® = 1. Therefore,
o= )
(e) Taking the Fourier transform of the given difference equation we obtain

H(e™) = %:,:;;- = ot fe T = ¢ "R aedl2 oy gy,

Comparing with
B(e™) = ¢~3tw) [l,.w: i %c-;m]
= .

we find that H(e'”) = B(e’*) when

a=fi=

1=
=]
n

6.66. (a) Since hyin] = 72"/ py(n] we have
Hi(e™) = Ho(,.-{o-z-um)_
Below are shown the sketches of H(e™) for N = 16 in Figure 56.66.
(b) Overall frequency response of the system is H,(e?~) = Nz'lﬁ.,{n“] For this to b

k=0
an identity system, we require that Hew(e™) = 1 for all w. Therefore, we want th
non-zero portions of the Hy(e/)s to be non-overlapping and yet caver the region fror
=7 to x. We see that this is achieved by having w, = =/N.

N-1
(€) Since Hoy(e™) = 3~ Hy(e'¥), we have

k=0

N-1 N=1 N-i
hoslnl = 3~ huln] = 3~ holnjer 40N — pojn] §™ prtrin/s
k=i k=0 k=l
Therefore,
N=-1
awensn _ | N, n=0+N 12N, ..
LB { 0,  otherwise :

k=0

el
Therefore, rjn] = N E dé[n — kN] and is as sketched in Figure 56,66,
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Chapter 7 Answers

7.1 Pm." the Nyquist nfnpiiug theorem, we know that only if X(jw) =0 for [ > w, /2 will
be signal be le from jts ples. Theref; , X (Jer) = 0 for |w] > 50007,

7.2, From the Nyquist theorem, we know that the sampling frequency in this case must be at
least “:-s= 20007 In other words, the sampling period should be al most T = 2nf{w,) =
1% 1073, Clearly, caly (a) and (c) satisfy this condition,

7.3. (a) Wg can eaa_i]y show that X (jw) = 0 for lw| > 40007. Therefore, the Nyquist rate for
this signal is wy = 2(4000%) = 8000y
(b) From Table 4.2 we koow that, Alw)isa rectangular pulse for which X(jw) = 0 for
jw| > 4000%. Therefore, the Nyquist rate for this signal is wy = 2{4000x) = 8000w,
(e) From Tables 4.1 and 4.2, we know that X{3w) is the convolution of two rectangular
pulses each of which is zero for Jwl > 40007, Therefore, X(jw) = 0 for jw| > 8000
and the Nyquist rate for this signal is wy = 2(80007) = 16000x.

T.4. If the signal 2(¢) has a Nyquist rate of wy, then jts Fourier transform X{jw) = 0 for
Jwl > wof2.
(a) From chapter 4,

v ==(t) + 2(¢ - 1) &L vy - x(Gw) 4o K ().
Clearly, we can only guarantee that ¥(jw) = 0 for |w] > wy/2. Therefore, the Nvquist
rate for y(¢) is also iwp. -
{b) From chapter 4,
dz)
ylt) = —‘% L Yiw) = jwx )

Clearly, we can only guarantee that ¥ (ju) = 0 for lw] > wy/2. Therefore, the Nyquist
rate for y(t) is also wy,

(e} From chapter 4,
) =20 5 Y (o) = (1/20)[X (jw) » X(ju)

Clearly, we can guarantee that Y(w) = 0 for k| > w. Therefore, the Nyquist rate for
ult) is 2y
{d) From chapter 4,

wlt) = z(t) cosfuwgt) 5 ¥ (juw) = (12X (j ~ wo)) + (1/2) X (G (w + wo)).

Clearly, we can guaranter that Y(w) =0 for [w] > wy + wyf2. Therefore, the Nyquist
rate for y(?) is Juwy.

260



Using Table 42
g E i ${w = k2x/T)
P T k=00 )

From Table 4.1,
Fr 27 . = ‘21__‘2:” 2%, axle
plt—1) = ¢ -""g?;w-i(w - k-,F] 2 ?,2__‘__',,6(” - k?—).-. sk
Sinee y(t) = z(t)plt = 1}, we have
Yiw) = (/2nXGe) « FT{p(t = VY]
ot

. S X - ke

k=—on
Therefore, ¥ {[jw} consists of replicas of X(jw) shifted by k2% /T and added 1o ean aher
(see Figure ST.5). n order Lo recover 2(t) from y(t), we need to be able L wwtubt vne
replica of X (ju) from Y (jw). X
A
T @ T

"'Zﬂ"lf

Figure S7.5
s -2
From the figure, it is clear that this is possible if we multiply ¥ (3e) with
. _J T |wl = we
Hjw) = { 0. otberwise
where {wp/2) < we < (2n/T) — (wo/2).
7.6, Consider the signal w(t) = zy(t)zalt). The Fourner eransform W(pw) of wit) 1s given bY

W) = gelXae) o XalGe)

Since Xy (pw) = 0 for jw| = wy and Xaljw) = 0 for | 2 wa, we may conclude that
W (jw) = 0 for |w| Z wy + w2 Consequently, the Nyquist rate for wit) isw, = 2wt ¥ wg)-
Thercfore, the mazimum sampling period which would still allow w(t) to be recovered is

T = 2nflwy) = w/lun + wa)-
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Therefore,

Hatgw) = 5T Holi) = " a’*1_-‘:--—-—’“"w‘;_T‘r 2

- &, (a) Yes, ahasing does occur io this case. This way be easily shown by considering the
sinusoidal term of z(t) for k = 5. This term is asignal of the form yit) = (12" singhimt).
If x(t) is sampled as T = 0.2, then we will always be sampling y(t) at exactly its
aerocrossings (This is similar to the idea presented in Figure 7.17 of yout textbook).
Therefore, the signal y(t) appears to be identical to the signal (1/2) sin{0md; tor all
time in the sampled signal. Therefore, the sinusoid y(¢) of frequency &7 is aliased into

a sinusoid of frequency 0 in the sampled signal.
(b) The lowpass filter performs band limited interpolation on the signal 2(t). But since
aliasing has already resulted in the loss of the sinusoid (/2® sin(57t), the output will

be of the form
4 1 k
z(t) = ‘T_" (i) sin{kext).
kw0

The Fourier series representation of this signal is of the form

"= o

4 0,
aftym Daee i), where k= —5(1/2
e it -

=9 The Founer transform X (jw) of Z(t) is as shown in Figure 87.9.

=208l a 2000 w

[

Figure 57.9
We know [rom the results on impulse-train sampling that

1 o
Gliw) = 5 2. X (il = keaa)):

k=-00

where T = 25 fws = 1/75. Therefore, G(jw) is as shown in Figure ST.9. Clearly, Glw) =
/TIX(w) = 75X (juw) for fw] < 507
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We note that

A==

zi(t) = M6 * { T =(aT)ét —m}_

From Figure 7.7 in the textbook, we know that the output of the sero-order hold may be

writien as y
3 =nT)é( = nT)} ‘
n=—08
where ho(t) is as shown in Pigure 57.7. By taking the Fourier transform of the two above
equations, we have

zg(t) = holt) ¢ {

X\(w) = Hy(jw) Xp(iw)
Xolgw) = Holiw) Xpl3w)

We now need to determine a frequency response Hyljw) for a filter which produces 7 (t)
at its output when zolt) is its input. Therefore, we need

Xo(jw)Haljw) = Xa(iw):

The triangular function hy(t) may be obtained by convolving two rectangular pulses as
shown in Figure 87.7. helt)
o

~T T Y T
Figure 57.7

Therefore,

(o) = {0/ VT)halt + T/2} = {1 /VT)holt + T/2)}
Taking the Fourier sransform of both sides of the above equation,

Hiljw) = L o g (juw) Holiw)-
T

Therefore,
Xigw) = Hy(jw) XpUw)
= LeTHGW ol Xpl5e)

- R HGOXoU)
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-10. (=) We know that z(t} is not & band-limited signal. Therefore, it cannot underge impulse
train sampling without aliasing.

(b) From the given X (jw) it is clear that the signal z(t) which is bandlimited. That is,
X(jw) = 0 for |w| > wo Therefore, it must be possible to perform impulse-train
sampling on this signal without experiencing aliasing. The minimum sampling rate
required would be be w, = 2wyg. This implies that the sampling period can at most be
T =2nfuy = = fun.

{c) When z(t) und i Ise train pling with T = 2 fusg, we would gbtain the

signal glt) with Fourier transfurm

Gl = 3 3 Xl = k2e/T)-

k=-o0

This is as shown in the Figure ST.lthQ-u,‘

1
1
[] wig )
*alge)
- tdg o W TS PR
Figure 57.10

It is clear from the figure that no aliasing occurs, and that X (jw) can be recover
by using a hliter with frequency response

; T, f€wswy
Ay =13 fws
Gw) { 0, otherwise

Therefore, the given L is true.

7.11. We know from Section 7.4 that

Xy = %. 3 Xelilw = 27K) IT).
k=00

(a) Since X(e?¥) is just formed by shifting and summing replicas of X (jw), we may as
that if Xg(e?™) is real, then X (jw) must also be real.

(b) X4le?) consists of replicas of X (jw) which are scaled by 1/T. Therefore, il Xal
has a maximum of 1, then X (jw) will have a maximum of T =0.5% 107

(e) The region drfd < w| £ 7 in the discrete-time domain corresponds to the re
3n/(4T) < |} € =/T in the continuous-time domain. Therefore, if Xa{e™) =
infd € |wl =, then X(jw) = 0 for 15007 < Jw| € 20007, But since we already
X (ju) = 0 for lw] > 2000w, we have X(jw) =0 for jw| 2 15007
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d) In this case, since * iD discrete-time frequency domain a_ormpondn to zl:m' in the
continuous-time frequency Jdomain, this condition translates to X(jw) =( th-mn.
discrete and continuous-Hne frequencics 2 and w ar¢

rom Section 74, we know that the
3, we find the corresponding value of

clated by 1= wT. Therefore, in this ease for =
~tobew= ;;" =mﬂ’4=750!.
For this problem, we use an approach similar to the one used in Example 7.2, We assume

that
sin(xt/T
z(t) = lﬂ"‘——‘"

The overall output is

 sinl(m/T)(e = 20
yelt) = zelt = Ty = g T .

From z.(t), we obtain the corresponding discrete-time signal z4ln] wo be

1
z4ln] = zo(nT) = ?J[n],
the corresponding discrete-time signal yaln) 10 be

ginfaln =2
yaln) = ve(nT) = fg;’%:-‘jﬁ}l

Also, we obtain from velth

We note that the right-hand side of the above equd jon is alway$ Tero when n # 2. When
1/T. Therefore,

no= 2, we may evaluate the value of the ratio using L' Hospital's rule 0 be
fr) = 3ol -2}
yalnl = T ;
We conclude that the impulse response of the filter is
haln] = $ln = 2.
14. For this problem, We use an approach similar to the one used in Example 7.2. We assume
that
& sin(xt/T)
zelt) = -——;'!——"

The overall output is

d T (x/T)eoslr/TIE=T/D] 2= (/T = T2
wel) = =~ P = -T2 =T

From Tclt), we obtain the corresponding discrete-time signal z4ln] to be

2dn] = znT) = Foin)
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This is as shown in Figure ST-17-

From cq. (7.49) we know that the Fourier transform of the decimated impulse response

Hi(e) = H,{e"""’).

In other words, Hyle™) is Hyle™) expanded by 2 factor of 2. This is as shown in the ﬁ_gurr
abeve. Therefore, myinl = h|2n] is the impulse response of an ideal lowpass filter with &
passband gain of unity and a cutafl frequency of w/2.

- 18 From Figure 737, it is clear interpolation by & factor of 2 Tesults in the frequency response
getting compressed by 3 factor of 2. Iaterpolation also results in 3 magnmuig scaling by 2
gactor of 2. Therefore, in this problem., the i impulse response will correspond

1o an ideal lowpass flter with cutoff frequency x/ and 3 passband gain of 2.

- 19. The Fouries transform of zln] is given by

e |w| € w1
X(e")= { g,  otherwise T

This is as shown in Figure $7.19. .
(n) When wi < 3r/5, the Fousier transform X, (&) of the output of the zero-insertion
system is 35 shown in Figure §7.19. The output wi(e™) of the lowpass _E'.uz: is as
shown in Figure 57.19. The Fourier Lrans of the output of the decimation system
¥(elv) is an expanded or stretched out version of W (e}, This s 85 <hown in Figure

5719
Therefore, -
1 sin{5wn/3)
il = 5 xn i
(b) When w1 > 2[5, the Fourier transform Xy(e) of the output of the zero-msertion
Jowpass filter 18 ax

system is 85 shown in Figure §7.19. The output wi{ew) of the
ghown in Figure 57.19.
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Also, we obtain from yc(t), the corresponding discrete-time signal yaln) to be

= (x/T) coslx(n = 1/2)] _ sinlx(n = 121
= _ (xfT)coslxln = 20200
valn) = velnT) *Tn—1/2) =T (n-1/2)"

The first term in the right-hand side of the above equation is always zero because cos|nin—

1y =0 Therefore,
_ _sinlx(n = 1/2)]
vdnl =~ o 1/2)

of the filter is

__sinx(n = 1/2)]
hdol = ~“erm /2

We conclude that the impul

7.15, In this problem we arc¢ interested in the lowest rate which z{n] may be sampled without the
possibility of aliasing. We use the approach used in Example 7.4 t0 solve this problem. To
find the lowest rate at which z[n] may be sampled while avoiding the possibility of aliasing,

we must find an N such that

2% A 7
Lwnl| = _—
N_'I T)::-N__B

Therefore, N can at most be 2.

=16. Although the signal zi[n] = 2sin(zn/2)/(xn) satisfies the first two conditions. it docs
not satisfy the third condition. This is because the Fourer transform X () of this
signal is 3 rectangular pulse which is zero for 7/2 < o] < ®/2 We also note that the
signal z[n] = 4jsin(xn/2)/ (7m)]? satisfies the fest two conditions. From out AUMETOUS
encounters with this signal, we know that its Fourier transform X (&) 18 given by the
periodic convolution of Xy (e?) with itself. Therefore, X () will be a rriangular function
in the range 0 < ol = = This obviously satisfies the third condition as well, Therefore,
the desired signal is zln] = 41-1:\("";'2)}(“)]7,

7.17. In this problem, we wish to determine the effect of decimating the jmpulse response of the
given filter by a factor of 2. As explained in Section 7.5.2, the process of decimation may
be broken up into two steps. In the first step W€ perform impulse train sampling on hin]
to obtain s

holn) = Y h2Kliln - 2]
k= -00

The decimated sequence is then obtained using
win] = h{2n] = hpl2n].
Using eq. (1.37), we obtain the Fourier transforms Hyle) of hyln] to be

Hyle™) = (/2 H(E) + u{zw(al“-"}.

266
) 1) °
@ L
- .¥ oK f 1 = - '% ‘_'} o -n -»!:. o 5_«5.9
-y "\3
(™) e

_¥ o \ [
I°N
s >

The Fourier transform of the output of the decimation system Y () is an exps

or stretched out version of W(e™). “This is as shown in Figure 57.19. Therefore,

vin} = '551,11_

7.20. (a) Suppose that X (e7) is as shown in Figure ST.20, then the Fourier eansform X
of the output of Sa, the Fourier transform X, (e) of the output of the lowpass
and the Fourier transform Xg(e™) of the output of Sg are all shown in the

below. Clearly this system accomplishes lbﬁigilmins task.

1
A
p X )_Abz_“ . -,
.

j!,h"“)
w z
~g ' T Figure ST.20 3—— J [ ‘

R
—
-

|
e, M
e

(b) Suppose that X(e™) is as shown in Figure 57.20, then the Fourier transform
of the output of Sg, the Fourier transform Xi (&) of the output of the firs
filter, the Fourier transform Xa(e?) of the output of Sa, the Fourier transfors
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T.22.

7.23

of the output of the first lowpass filter are all shown in the figures below. Clearly this
system does not accomplish the filtering task.

(8) The Nyquist rate for the given signal is 2 x 50007 = 100007. Therefore, in order to be
able to recover z(¢) from z(t), the sampling period must at most be Tmaz = o =
5% 104 sec. Since the sampling period used is T = 1074 < Trnaz, 2(t) can be recavered
from zp(t).

(b) The Nyquist rate for the given signal is 2 % 150007 = 300007, Therefore, in order to b
able to recaver z(¢) from zp(t), the sampling period must at most be Trmaz = b=
0.66 % 10~4 sec. Since the sampling period used is T = 10=4 > Tynaz, z(1) cannot be
recovered from zp(t).

{¢) Here, Zm{X(jw)} is not specified. Therefore, the Nyquist rate for the signal z(Z) is
indeterminate. This implies that one cannot guarantee that z(t) would be recoverable
from zp(t).

(d) Since z(t) is real, we may conclude that X(jw) = 0 for |w| > 5000. Therefore, the
answer to this part is identical to that of part (a).

() Since z{t) is real, X(jw) = 0 for lw| > 150007, Therefore, the answer to this part is
identical to that of part (b).

(f) 1f X (jw) = 0 for |w| > wy, then X (jw)vX (jw) = 0for [w| > 2. Therefore, in this part,
X{jw) = 0 for |w| > 75007. The Nyquist rate for this signal is 2 x 75007 = 15000
Therefore, in arder to be able to recover z(t) from z,(t}, the sampling period must
at most be Tmer = yoigge = 133 % 10-4 see. Since the sampling period used is
T = 107* < Tonaz, 2(t) can be recovered from zy(t).

(g) If | X (ju)| = 0 for w > 5000w, then X(jw) = 0 for w > 50007, Therefore, the answer
to this part is identical to the answer of part (a).

Using the properties of the Fourier transform, we obtain
Y (jw) = Xi(jw) Xalsw)-

Therefore, Y(jw) = 0 for jw| > 1000w. This implies that the Nyqust rate for y(t) 18
2 x 10007 = 2000%. Therefore, the sampling period T’ can at most be 27 /(20007) = 107
sec. Therefore we have to use T' < 10~2 sec in order to be able to recover yit) from uy(t).

. (&) We may express p(t) as
plt) = pu(t) = it = &),

where pi(t) = z §(t — k2A). Now,

Lt
P;(j:.a}=% 3 §lw - =/
k=-00
Therefore,
Pljw) = Pi(jw) = e 74Py (juw)
269
£ g
b 3
o_ [,
-T -4 0 & T &

(b) F
2y ﬁf ) ‘“WT 23 ,u, 1}_3

Figure 57.24

Clearly, 5(jw) consists of impulses spaced every 2x/T.
(a) If & = T/3, then

St = ¥ ‘E“l(-":'—k‘m—).s(w = k2 /T) — 2mb(w).

k==o0

Now, since w(t) = s(t)z(t),

) 1 < dsin(27k/3)
W) = 3= 3 —— X lilw = k2%/T)) = 20X ).
k==o0
Therefore, W (jw) consists of replicas of X (jw) which are spaced 2n /T apart. [n order
to avoid aliasing, war should be less that #/T. Therefore, Trmaz = % fwat-
(b) 1If A =T/3, then

. 4sin(2xk/d
SGgw) = 3 s—’“{;—xlaaw — k2e/T) - 2ré{w).
kz=oo
We note that S$(jw) = 0 for k = 0,%2,£4,---. This is as sketched i Figure 57.24
Therefore, the replicas of X (jw) in W (jw) are now spaced 4r/T apart. In order to
avoid aliasing, way should be less that 27/T. Therefore, Tmas = 25 fwin-

. Here, z,(kT) can be written as

z,(kT) = E :(nT}in;E:-%;:)—l,
Nate that when n # &,
sin[r(k - n)| 0
=k—-n)
and when n = k,
sinfx(k —n)] _ \
Tk-n)
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cos(ntfn)  (B) ) Cos(ut/n) &)

is as shown in Figure 57.23.
Now,

Xpli) = 5= (X Gw) » PG

Therefore, X,(juw) is as sketched below for & < m/(Zwy). The corresponding ¥ (jw) is
also sketched in Figure §7.23.

(b) The system which can be used to recover z(t) from z,(t) is as shown in Figure 57.23.
(c) The system which can be used to recover =(t) from z(t) is as shown in Figure 57.23

(d) We see from the figures sketched in part (a) that aliasing is avoided when wy = 7/4.
Therefore, Amaz = % fwp.

7.24. We may express a(t) as s(t) = §(t) — 1, where 5{t) is as shown in Figure §7.24.
We may easily show that

jw) = 3 %’}cﬁﬂam — K2x/T).

]

From this, we oblain

S(jw) = §Gw) - 2mbw) = Y ﬂﬂ%ﬁ&@a{w — k2% /T) - 2b{w).

]
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Therefore,
z.(kT) = z(kT).
7.26. We note that
P(juw) = ?T-:é{u — k2x/T).
Also, since z,(t) = =(t)p(t),

Xplw) = go{X(w) ¢ P(iw))
- %XU(U—k?l;T”.

This is sketched in Figure 57.26.

anfe ?(4)
g -T=1 4 ]

—umy -dUp o Yy Gy

o NAINA DA

v T Ny

'\1/\ M.'-‘,‘ — B o0 T
-4 o 2 3 Figure S7.26
Mo,

hNote that as T increases, 71'-'— — why approaches zero. Also, we note that there is aliasing
when

2
2«»1-«q<%—wp¢w;.

If 2wy —ws > 0 (as given) then it is easy to see that aliasing does not occur when

2r
0% o ~wr S 2 —wp
For maximum 7', we must choose the minimum allowable value for T —wy (which is zero).
This implies that Trnar = 27 /wz. We plot X, (jw) for this case in Figure 87.26. Therefore.
A=T,uwy=2x/T, and wy = wy = wy.

7.27. (a) Let XI.U”] denote the Fourier transform of the signal ri(t) obtained by multiplying
2(t) with e~7®! Let X;(jw) be the Fourier transform of the signal xo(t) obtained at

the output of the lowpass filter. Then, X;(jw), Xa(jw), and Xp{yw) are as shown in
Figure 57.27.

(b) The Nyquist rate for the signal =3(2) is 2 x (w; — w;)/2 = wy —wi. Therefore, the
sampling period T must be at most 2 /(uwy — w)) in order to avoid aliasing.
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(c) A system that can be used to recover z(t) from zp(t) is shown in Figure §1.27. (B5) The Fourier sories coeficionts of #{s)
1| are
7.28, (a) The fundamental frequency of =(t) is 20x rad/sec. From Chapter 4 we know that the 2
Fourier transform of z(t) is given by by = { ?‘F {%}m. k=041,42,-.- .49
o FH®. k=10
X(juw) = E”k;m“*"(“‘ =20k}, 7.28. From Section 7.1.1 we know that
This is as slu:l.ched below. The Fourier transform Xc(jw) of the signal z.(t) is also Xpliw) = < f: X (3w - k2n/T)).
sketched in Figure S7.28. e
Note that - i :
" P(jw) = Z 8w - 27K/(5 x 107*)) X(e"), Y(¢), Y;(jw), and ¥(jw) are as shown in Figure S7.29.
= W = &W x
Juw 5% 'I.I] Ex 103 7.30. (a) Since z.(t) = &(2), we have
dycl
and . l . . !f (‘) +welt) = 8(0).
KXplju) = o= ix"—’w) « P(jw)]- Taking the Fourier transform we nhtn.m
Therefore, Xp(jw) is as shown in the anure 57.28. Note that the impulses from adjacent ¥ () 4 Vi) = 1
) w) = 1.

replicas of X.(jw) add up at 2007, Now the Fourier transform X (e?™) of the sequence

z|n) is given by " Therefare,
X(&") = Xpliw)lyanr-
4 Yogw) = 1 welt) = e tult).
This is as shown in the Figure $7.28. "‘H' Towy = wlmed)
Since the impulses in X (¢/*) are located at mu]tlples of a 0.1x, the signal ={n] is (b) Since y.(t) = e *u(t),
periodic. The fundamental period is 2x/(0.17) = yIn] = ye(nT) = e "Tuln].
Therefore,
V) = T
03
27
X 10 A . for —r < ) < ». From this we get
2o T = Fpliwrr) 1
r/\ /\__ _./\\ l’/\\ .. ?ﬁu)=Y(e‘*’T]na${M
+ T e - + » 1= ’ic_‘"T
or 1 et - o an &
o e 3uue? %) for =#/T < w < #/T. In this range, ¥(jw) = Y:(jw). Therefore,
- flt lIf."' ji= Y
ey T\rr Fpli=t= XL YW T
Heljw) = —
" n n XelGw) ~ 1= LeaT"
—aﬂ -1;' W, an —imm" & 44'....11"' o
7.32. Letpln]= Y 4[n —1— 4k]. Then from Chapter §,
Lgud = Tlgun-ulged k=ses
PleM) =e" "'— z b(w = 2xk/4) = 3 Z e SIMKAAG (0 dmk fd)
7 it e e b et
g“g" "n’&ﬂl;‘ Therelore,
Gle) = ifmef‘)x(ew-")de
b2 3 -
. 3
Figure 57.29 = izc—r—‘urax(eﬂw—:mn)
k=0
Also, : i
s W(e™) 1 = Since X (&™) = 0 for 7/4 < |w| < @, G(e?) is as shown in Figure 57.32.
H(E) = 0 = e e 3
(e¥) ~ 1/(1 =e~Tem) i

Therefore, ‘A\ /

hln] = b[n] = ¢ Té[n — 1]. i -r WO My I P

7.31. In this problem for the sake of clarity we will use the variable 1 to denote discrete frequency.
Taking the Fourier transform of both sides of the given difference equatinn we ublan

o T L NVAVAVAVAVAVAVAV IR

X(@™ 1 e T Py Peu
-~an o a

Given that the sampling rate is greater than the Nyquist rate, we have
Figure S7.32

X&) = %X;URIT). for-w<R < ) )
Clearly, in order to isolate just X(e’) we need to use an ideal lowpass filter with cutaff

Therefore, frequency w/4 and passband gain of 4. Therefore, in the range |w| < =,
LX 0T
Ty ©
=T mesf Mo
; A<l €n
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7.33. Let ylnj = z[n] 3~ 4[n - 3k). Thea

k= =on

3
Y(eo) = %Ex(f!‘u*hkﬂl])l
k=l

Note that sin(xn/3)/(*n/3) is the impulse response of an ideal lowpass filter with cutoff
frequency = /3 and passband gain of 3. Therefore, we now require that vln] when passed
through this filter should yield z[n]. Therefore, the replicas of X (e™) contained in ¥Y(er-)
should not everlap with one another. This is possible only if X (e7) = 0 for n/3 < lu] < =

7.34. In order to make X(e') sccupy the entire region from — to m, the signal zfn] must be
downsampled by a factor of 14/3. Since it is not possible to directly downsample by a non-
integer factor, we first upsample the signal by a [actor of 3. Therefore, after the upssmpling
we will need to reduce the sampling rate by 14/3 % 3 = 14. Therefore, the averall <ystem
for performing the sampling rate conversion is shown in Figure 87.34

Zevo -
initrtion

) e B

#{n)
o 1&.\]_ n=o,23 £,

0, ofiwuwist  Figure S7.

Y0n= plun)

7.35. (a) The signals zp[n] and z4n] are sketched in Figure 57.35.

1 [ I rII e

[=]
L[, =
- P elsit o
o
) eV
. x’{‘ju} k‘I‘,{M) zp(c J
- R o W, -!g”“} To-m g T ow
¥ 4 Figure §7.35
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This may be written as
a(t) = ap (¢) + bpy (t - A).
Therefore,

Glw) = (a+ be™18) Py (),
with Py (jw) is specified in eq. (57.37-1). Therefore,
o0
Gliw) = W 5_: [a + be™*aWl500 — kW),
k=00

We now have
wm(t) = 2(t)p(t) f(2).
Therefore,
¥iliw) = % [Gliw) « X(5w)].

This gives us
3

Yitio) = 25 3 fa+ b AWK (5 ki)

o
In the range 0 < w < W, we may :;;e-:;y Yi{(w) as
Yitsu) = 52 [(a + BX (o) + (o + 3% X 50 - W)
Since Ya(jw) = ¥ (jw)Hy(jw), in the range 0 X w < W we may specify ¥3(jw) as
Ya(juw) = 2_; [(a+ 0)X (o) + (@ + be ™72 ) X (e — W)l
Sinee ya(t) = z{t)p(t), in the range 0 < w < W we may specily Yy(jw) as
Vo) = 3o (2X(Gu) + (14 e5¥%) X i - W)

Given that 0 < WA < 7, we require that Ya(jw) + ¥y{jw) = KX(wlforl) « w < W,
That is,

w ; . w —-JAW b= JAW Y g |

25 (2 78+ JDXGO)] + 52 [(1 4 €/4% 4 ja 4 jbeI2%) X (o — W))] = KX (ju).

This implies that )
L4 e™?2W a4 jhe1aW g

Solving this we obtain

a=1, b= =],
when WA = /2. Mare generally, we get
. (1 + cos(WA)) _ L+ cos(Wa)
o = sin(WA) + Tan(WA] and !_tnl'-;-VA_}-—

except when WA = x/2. Finally, we also get K = BlL/(2+ ja + b))
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(b) Xy(e') and Xe(e™) are sketched in Figure S7.35.
7.36. (a) Let us denote the sampled signal by z,(t). We have
o0
() = 3 2(nT)i(t - nT).
LU~

Sioce the Nyquist rate for the signal 2(t) is 2 /T, we can reconstruct the signs
zp(t). From Section 7.2, we kuow that

=(t) = zy(t) » h(t),

where ( )
_ sinf{me/T
M) ==
Therefore,

Denoting £t by g(¢), we have

d.‘: o
—?E‘-’ =Zp(t)sg(t) = 3 (nT)g(t - aT)

Therefore,
olt) = d-‘l___(!_l = eos(xt/T) i T sin(nt/T)
dt t me? t
{b) No.

7.37. We may write plt) as
Pt} = pi(e) + py (e — A),

where

Pt = 3 5t = 2mk /W)

km—oo

Therefore,

Plw) = (1 + 748~y py (50,
where

Plw) =W 3~ s - kw), (87.47

k=g

Let us denote the product P(t)/{¢) by g(t). Then,
a(t) = p()f(t) = py () f(e) + Pt — A)f(e).
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Figure 57.38

7.38. The Fourier transforms X(jw), P(jw), and Y (yw) are as shown in Figure 57.38.
Clearly, we cannot have A = 0. Also, from the figures above it is clear that we require
2rA 1
TT+4) = 3T+ &)

This implies that
T
A< —.
T =

Also from the figures, it is clear that

a

.

7.39. (a) Using Trigonometric ideatities,

cos {-?—: +d) = cos (?I) cos(d) = sin (?1) sin(g).
Therefore,
alt) = ~sin [":-:-f) sin(g).
(b) By replacing w, with 2=/T, and t by NT in the above equation, we get

9(nT) = —sin (;;-n?") sin{¢)
= —sin(nx)sin(¢).

Clearly, the right-hand side of the above equation is zero for 1 = 0,.£1,£2,...
(<) From parts (a) and (b), we get

2,(t) = )E 2(nT)S(t = nT) = )E (¢ — nT) {m (%nf)cm[’@] +g(nT}}
n=-00 -0

= 34 -nT)cos(?n'r)m«wi

nE-60
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When this signal is passed through a lowpass filter, we are w effect performing
band-limited interpolation. This results in the signal

y(8) = cos (5:¢) cos(@).
74D, (a) The Fourier transform V(jw) is as shown in Figure 57.40. {10
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Figure S7.40

{b) The Fourier transform I{jw) is
IHjw) = ix f: §{w = 2mk/T).
T
k=00
This is as shown in Figure 57.40.
{€) The Nyquist rate for v(t) is 2wy, Therefore,

2= w
— Trmor = —:
7 2w = mes = 7o

The cutoff frequency of the lowpass filter has to be wo.
(d) Now, .
Riu) = = 3 Vil - 20K/T)).
o Tg:-”

Since wo = 27(60) rad/sec, we have 27/T = 120w + 207 = 1407, Therefore R{jw) is
as shown in Figure 57.40.

281

(¢) We require a T which avoids aliasing, Therefore, T < x/wps. We also require that

H“Uu) = —wpy Cw S W

1+ ae 7o’
But,
A owt
Hw) = FHET), -

For these to be consistent, we need A = T and

il
ehln - ——
H{e™) = 1+ aeJ0T/Te

for —w< Q<.

7.42. ln this problem, to avoid confusion we use the variable 2 to indicate discrete-time frequency.

Using Parseval’s theorem and the fact that Xc(zw) = 0 for |w] 2 wy, we get

&~ [ Jrcl)Pde = 5= f" [Xe(jw)Pdo.

Also, using Parseval's theorem we have

Eem 3l = o [ (e

n=—o0
But since X (%) = $ X (4Q/T) for —7 < {1 < 7, we may write
I S Ly 2
Ba= o [ IXGR/TIPAR
Replacing /T by w, we get
Eus —1—]'” Xl P
il

Also, since 27/T > Zup, we may rewrite the above equation as

1 vt E.
Bom g | MKeiolido = 7.

7.43. Throughout this problem, to avoid confusion we use the variable f2 to indicate discrete-time

frequency.
‘Taking the Fourier transform of both sides of the given differential cquation, we get
oy Yelgw) 1
09 = X o) = “FFH0 7T
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Therefore, ve(t) obtained by passing r(t) through a lowpass filter with cutofl fre-
quency 2x(20) rad/sec is

v,(t) = %wa(ﬁlﬂ - ¢).

‘Therefore,
wo =20r, do=-—¢, and A.=%.
(e) Here, 2x/T = 1207 — 20 = 100x. Therefore, R{jw) is as shown in Figure 57.40.
It follows that .
v,(t) = T cos(20mt + ¢).
and "
wo =207 $o=¢ and Ag=g

7.41. In this problem, to avoid confusion we use the variable 2 to indicate discrete-time fre-
quency.
(a) The Nyquist rate for the signal z(t) is 2wy, Therefore, the sampling theorem states
that z(t) has to be sampled at least every 7 /wyy. In this part, T' < 7 /wps. Therefore,
ve(t) will be equal to z(t) as long as y[n] = z[n]. Now,

sln] = z(nT)+ az(nTo = To)
z[n] + azjn - 1].

]

Therefore, if we require y[n] = z[n] then,

¥y - X" = !
5 X(@M) +ae0X(eT) 14 ae

H(e") =
Therefore, the difference equation for the filter hjn] is
yln] + oyln = 1] = sfn).
{b) From Figures P7.41(a) and (b), we have
Holiw) = %H(e’m). (S741-1)

where Hy(jw) is the system response of the overall continuous-time system. Since we
require that yc(t) = z(t),

Ydjw) _ 1

Hegljw) = 56l = fprEme (87.41-2)

Comparing this with eq.(S7.41-1), we get A =Tp.

Taking the inverse Fourier transform of the partial fraction expansion of H(jw), we obtain

Bt) = %s"u[t] - %G'Jlu[l).

Now, zp(t) = 3 z[né(t = nT). Therefore, X, (jw) = X (7). Also,

Xoljw) = TXp(jw) = TX(e*T) for -—m/TSw=a/T
and 0 otherwise. From this we get
Y.(jw) = H(jw)TX(e*T)  for -n/T<w=n/T
and 0 otherwise. Then, one period of Yp(jw) may be specified as
¥oliw) = %Yc[j"’) = H(ju)X(eT)  for - m/TZwsmnT
Therefore, one period of Y (e/7) is
Y(&®) = X(@MHGQYT), for -x<0<a

Denoting the frequency r of the equivalent system, by H{e’), we have

H(e) = HGYT), for—x<N<n.

Note that H{e™) represents the Fourier transform of the sequence hjn] obtained by low-
pass filtering h(t) (with a filter of cutoff frequency w/T) and sampling the result every T.
Therefore,

oy ST [T [ ansalx(e= )/T)
"'"l"["“" #t/T [...r‘[zfo ity o
7.44. (a) We have

wlt) = i cos (2—‘,’5,'5) &t — kT).

[—

If wy = 2n/NT, then

wlt) = 3 cos(wokT)é(t — kT)
= 3 cos(unt)(t—kT)
k=-—00
o0
= econ{wgt) 3 &{t—KT).

k=-0o
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Let the range of T be Trnin € T € Trnax. Then with T, we want to obtain
the smallest frequency wy and with Tp,,., we want to obtain the largest frequency wh.
Therefore,

Tenin = m‘ and Tonaz = m

20
(b) Let c(t) = cos{wyt) and p(t) = Z &(t — kT). Then

k==-on
Yaliw) = 5= C(iw)  P(iw).

This is as shown in Figure S7.44.

Ypgw)
U-r
IS e o P
—-_;.%r - 0 u.:,}‘!; ?19'
Figure S7.44

(¢) To avoid aliasing in ¥ (jw), we require that 2wy < 2x/T. Therefore, 4= /NT < 2=/T
This implies that N > 2. Therefore, the mmnimum value of N is 3. By inspection of
Y (jw), we obtain wz < we < 47/(37). This keeps the sinusoid at frequency wy while
reyecting contributions from cosines centered around 2x/T and -2=/T.
(d) We have
Ao 5 —we fwSw
Gliw) = { arbitrary,  otherwise
7.45. (a) The Nyquist rate for the signal z.(t) is 47 x 10°. Therefore, the maximum value of T'
that can be used to sample z.(t) is
L = -8
TM_Q:RIU" =R
{b) We have
" e
yn]=T z z[k| =T z z{kjuln — k] = T{z|n} » uln]}.

- k= -0t

Therefore,
hn] = Tuln].
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In order to be able to recover z(n] from zp{n), it is clear that we need to pass 7,[n]
through a lowpass filter with cutoff f y 7/3 and passband gain 3. Therefore,

z[n] = :’[“]’ 35inx1;n13]
bl 3sin(mn/3)
{tgszSk}éln -3k 2
&= sin|r(n - 3k)/3]
2 e e

L]

[}

k==o0

T.48. ln Figure $7.49, we plot the signal cos(7nf4).

™ T

]

1

2l

Figure ST.48

Note that the signal gln] contains every fourth sample of z[n]. If the signal z[n} were
cos|x{n +2)/4] (sce Figure 57.48), then g[n] would be zero for all n. Therefore, there would
be no way of recovesing z{n] from gjn]. Therefore, ¢y should never be =/2 in arder for the
given equation to be true.

7.49. (a) Let the signals 74 [n] and 24, [n] be inputs to system A. Let the corresponding outputs
be z,[n| and zp,[n]. Now, consider an input of the form z4[n] = ayzg, [n] + m2agy [

287

() We have
lim yln] = lim T 3 z{k] = TX(e").

A—00
k==oo

Also,
Jim z(t) = Xc(50).

Therefore, eq. {(P7.45-2) requires that
TX (&) = Xc(50).

Now,
X(e™) = Xp(jw/T)
and
= 1 &
Xoliw) = = 37 Xelilw — 2mk/T)).

]

To avoid aliasing at w = 0 in Xp(w), we require that (2x/T) = 27 = 10 Ths mplics
that T < 107%, With this condition,

X(&°) = (1/T)X.(70).
7.46. We have

I i x[kN}ﬁsiniwg[mN — kN

27 w.(mN = kN)

k-
o sin 2 (m — k)
= nz_m:[kﬂj 2n(m - &)

Note that [sin[2n(m — &)]}/[2#(m — k)] is 1 when mn = k, and zero otherwise Therefore,
z.[mN] = z[mN).

7.47. Let us define a signal
o a0
zolnl = 2ln] 3 Sfn—3k] = 3 z[3k]d[n — 3k]
kE=-00 k==

From Section 7.5.1, we know that the Fourier transform of zp[n] is
l z
Xp(e™) = iz;r(eﬂ-'-?'m),
)

Since X{e*) = 0 for #/3 < |w] < =, there is no ali ng among the replicas of X () in
Xple?™). This is shown in the Figure $7.47.
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This gives an output which is

Zpafn] = { @z4[n/N] + axzy[n/N], 0 =0,4N, 42N, .
0, otherwise :

Therefore, zp, [n] = a7, In] + a3z, (n]. This implies that the system is linear.

(b) Let us consider a signal Z4[n] as shown in Figure 87.49. The output of the system
zp[n] is then as shown in the figure. Let us now define a new input z4, [n] = z4jn - 1]
'.[:ha corresponding output x,, [n) is shown in the Figure 57.49. Clearly, 2, [n] # z4/n]
Therefore, the system in not time invariant.

(c) We have Xp(e™) = Xo(e*N). This is as shown in Figure $7.49.

#4[n)

a.] 6, _IA T:-pfn]c GT x:jn)-#:,;fn-n]
Sl e 4 : -y 1 * l
’fo{éu] w“)
SN N /]
L g LA

Figure S7.49

(d) X (&) is as sketched in Figure 57.49.

7.50. (a) We have
holn] = uln] — ufn — N).
This is as shown in the Figure $7.50.

1 R

] N=]

Figure S7.50



(b} We require that H(e?)Hy(e™) = N for Jw| < w,y /2 and zero otherwise. Here, wyf2 =

r/N. But i
Hple®) = I__C__J:—
1—e"
Therefore,
o[ NESE <N
’”""{u,”' (x/N) < ol € =
{e) We have

haln) = 7 [holn] « hol=n])-

(d) Again we have H(e™) = N/H\(&) for [w| < =/N and zero otherwise. But from part

(e), . .
" Hy(e) = (1/N?)|Ho(e™).
Therefore, }
H{c’”}-{ N}]ﬂ}—‘-T—T] . lwl<w/N
0, {(#/N)Sl€m

7.51. (a) This is possible only of h{kL] = 0 for k = £1,£2,-- and hl0] = 1.

(b) N must be odd. In this case, o is an integer. If N is even, ar is not an ingger: If o were
an integer, shifting Afn] by a would make A[n] an even sequence. This is impossible
with N even.

(¢} N can be odd or even. This time, o is allowed to be fractional. Thus, an even length
filter can be designed which is a linear-phase causal symmetric FIR flter.

7.52. {a) Sinee,

X(jw) = X (juw)P(iw),

we have
Z(t) = =(t) = p(t).

(b) Taking the inverse Fourier transform of P(jw), we have
1 & ( '?.lrk)
=— slt=—1]).
pl1) "’%gm =
From part (a), we have
#e) = plt) +=()

= ﬁi:(l—%

k==oo
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Chapter 8 Answers
8.1. Using Table 4.1, take the inverse Fourier transform of ¥ (j{w - we)). This gives
wlt) = 2x(t)etr.
Therefors,
mt) = 2ett.
82, (a) The Fourier transform Y (jw) of y(t) is given by
Y(w) = X (j{w — we))-
Clearly ¥ (3w) is just & shifted version of X (jw). Therefore, z{t) may be recovered
from y() simply by multiplying y(t) by e~#=**. There is no constraint that needs to be
placed on w, to ensure thal z(t) is recoverable from y().
(b} We know that
nilt) = Re{y(t)} = =(t) cos(wt).
The Fourier transform Yj(jw) of y,(t) is as shown in Figure 58.2

Y1) = $X0 (0 =) + X (il + )

T1G)
Eglewrwie))
"‘l ‘/'x(j(w- wd)

0

i e,
~WetiopoTl e <000l
Figure S8.2

If we want to prevent the two shifted replicas of ¥ (jw) from overlapping, then we
need to ensure that jwe| > 1000~

£.2  When g(!) is multiplied by cos(2000mt), the output will be
21(8) = g{t) cos(2000x1) = z(2) sin(200071) coa(2000t) = %z{ﬂ sin(40007t).
The Fourier transform of this signal is
Xy(jw) = -};XU(w — 40007)) — Ilj:xu{u + 4000x)).
This implics that Xy(jw) is zero for w] < 2000r. When (1) is passed through a lowpass

flter with cutoff frequency 20007, the output will clearly be zero. Therefore y(t) = 0.
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8.4,

£.5.

e

H{
o

T,

— N
0 0 e d
" g 6

gl

o i *
Figure 57.52

h-‘an‘nﬁ'

Noting that =(¢) is time-limited so that x(t} = 0 for |¢| > = /wp, we assume that z(t) is
as shown in Figure 57.52. Then, #(t) is as shown in the figure below. Clearly, (t) can
be recovered from Z(t) by multiplying it with the function

wo={ 5

(c) If z(t) is not constrained to be zero for |t| > m/wp, then Z(t) is as shown in Figure
§7.52. Clearly, there is “time-domain aliasing” between the replicas of =(t) in z{Z).
Therefore, z(t) cannot be recovered from z(t).

|t < =fwn
otherwise

Consider the signal
y{t) = g{t)sin(400x1)
= sin(200xt) sin?(400xt) + 2sin’{400t)
= sin(200xt)[(1 — cos(800xt))/2] + 2sin(400xt){(1 — cos(800xt)/2]
= (1/2)sin(200xt) — (1/4){sin(1000x¢) — sin(600m¢) }
+sin(4007t) = (1/2){sin(1200xt) — sin(4007¢)}

If this signal is passed through a lowpass filter with cutoff frequency 400z, then the output
will be
yi(t) = sin(200xt).

The signal =(t) is as shown in the Figure $8.5.

Enrelope o wit)

7 = *t

Figure S8.5

The envelope of the signal w(t) is as shown in the Figure $8.5. Clearly is we want
to use asynchronous demodulation to recover the signal z(t), we need to ensure that A is
greater than the height h of the highest sidelobe (see Figure S8.5). Let us now determine
the height of the highest sidelobe. The first zerc ing of the signal z(t) occurs at time
to such that

1000nty =7, == i =1/1000.
Similaly, the second zero-crossing happens at time ¢; such that
1000xty = 2w, = t; = 2/1000.
The highest sidelobe occurs at time (i + £;)/2, that is, at time ¢z = 3/2000. At this time.
the amplitude of the signal z(t) is
sin(3x/2) _ 2000
x3/2000  3Ir

Therefore, A should at least be 22, The modulation index cor
permissible value of A is

z(t3) =

ding to the lest

p

i Max. value of z(t) . 1000 _ 3w
~ Min. possible value of A 2000/3r 2
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8.6. Let us denote the Fourier transform of sin(w.t)/(xt) by H(jw). This will be a m—tam;\!tax
pulse which is nonzero only in the range [w| < w,. Taking the Fourier transfort, of 1he first
equation given in the problem, we have

Glw) = FT{e(tycos(wet)) - FT{z(e) cos(wet) H(jw)

= FT{=z(t) cos{wet)}{1 — H(jw))
= (2 [X (5w — we)) + X(Glw + we))} {3 = H )}

G(7uw) ts as shown in Figure 58.6. G‘q"‘}
Klfu)
] s 'f[a.\
R - ~tog ° e w
Frigticoruct}
(_jiir ¥ X
=2 e =y O by :-g. Liwp
Figure S8.8

The Fourier transform of g(#) cos{wct) is also shown in Figure S8.6. Clearly, ilf we want to
recover z(t) from g{t) cos(w,t), then we have to pass g(t) cos(w.t) through an ideal lowpass
lter with gain 4 and cutoff frequency wps. Therefore, A = 4.

8.7. In Figure S8.7, we show X (jw), Gliw), and Q(jw). We also show a plot of the Founer
transform of g(t) cos{wgt). From this Ggure, it is clear that if we want to be abl 1. btain
gt} from g(t) cos{wat), then we need to ensure that (1) wy = 2w, and (2] an ideal lowpass
filter with passband gain of 2 and a cutoff frequency of w, is uged Lo filter g(¢) cos{wnt)

B ..-,.v ) gy e © G
i A
—hae, O e ? w
FT {opledcos et}
ol . S 7] B
TWpmay =W g tee Flgu.rg sa7 e Wy T,
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contribution to y(t) from zz(t) by first lowpass filtering y(t) using 2 Iawpass: filter with
entoff frequency we. We may then follow this by a synchronous demodulation system.
This idea is illustrated in the Figure 58.9. Therefore,

sinw,t

sl = [{u!l‘) 20t ot

] Asinw,t
e
t
In order to determine the value of the gain A, we first plot the Fourier transform of
[{wlt) = B0t } coswpt]. From this it is clear that A = 4.

5.10. (a) From Section 8.5, we know that in order to avoid aliasing, 27T > Juyy, where wy 8
the maximum frequency in the original signal and T is the period of ¢{t). In this case,
T = 103, Therefore was < 1000%. Therefore, X (jw) = 0 for w > 10007

(b) From Figure 8.24, we know that the Fourier transform Y(jw) of the signal y(z) consists
of shifted replicas of X (jw). The replica of X (jw) centered around w =0 is scaled by
AT, where & is the width of each pulse of £{t). By using a lowpass ﬁll.elr. we may
recover X (jw) from ¥ (jw). The lowpass filter needs to have a passband gain of T/A.
In this case, this evaluates to 10~3/(0.25 x 107%) = 4.

8.11. The signal e(t) is
oft) = a8t + a_yem It 4 aged Bl 4 g_ge IR 4

Since () is real, oy = a* ,. The Fourier transform ¥ (juw) of the signal y(t) = z(f)c(t) is

Y(jw) = ay X ({w = we)) + af X (7w + we)) + 02X (lw = 2wc)) + a3 X (5w + 2c)) + -+

This is plotted in Figure S8.11.
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8.8. (a) From Figure SB.8, it is clear that ¥'(jw) is conjugate-symmetric. Therefore, y(t) is real.

(b) This part of the problem explores the d dulation of SSB signals through synchronous
demodulation. This idea is explored in more detail in Problem 8.29.

Let us assume that we use the synch demodulati shown in the
Figure $8.8. The Fourier transform Y] (jw) of the signal y,(t) is shown in the Figure
58.8. Clearly, if we use an ideal lowpass filter with cutoff frequency w, and passband
gain of 2, we would recover the original signal z(t). Therefore,

) = [ sintwet)] » { 22

wt

8.9.  Let the signals z,(¢) and z2(t) have Fourier transforms X, (jw) and X;(jw) as shown in the
Figure S8.9. When SSB modulation is performed on the signals 1,(r} and r3(t), we would
obtain the signals () and yu(t), respectively, The Fourier transforms Yi(jw) and Ya(3w)
of these signals would be as shown in the Figure 58.9 (sve Section 8.4 for details),

(a) From the figure, it is clear that the signal y(t) = ¥ (¢) + vz(t) would have a Fourier
transform ¥ (jw) which is as shown in the Figure $8.9,
From this fgure, it is obvious that ¥'(jw) is zero for |w| > 2w,
{b) In order to obtain z,(¢) from y(t), we have to first remove any contribution in w(t)
from zz(t). From the previously drawn figures, it is clear that we can remove all
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(a) The Fourier transform G(5w) of g(t) is
Gliw) = a1 X (j(w — we)) + 01 X (Gl{w + we)).

This is as shown in Figure 58.11. Cleacly, by comparing G(yw) and ¥ (jw). we know
that g(t) may be obtained from y(t) by passing y(¢) through an ideal bandpass filter
which has a passband gain of unity in the range (w./2) < || < (3w./2)
(b) If &; = |a;]e792, then a] = |ajfe™79* Also,
glt) = (@e™ +aje~1)z(t)
ey Jedleettaon) iy 4 Jay e~ twetti<a) gy

= 2ley| cos(wet + <ay)z(t)
Therefore, A = 2|uy|, and ¢ = <a,.

8.12. We need to first determine the maximum allowable period T'. From Section 8.5 1. we know
that T should be chosen such that '{F > Zwy. In this case, wy = 2000%. Therefore,
T < 0.5 x 1077 sec. We now need to have 10 different pulses within a duration of T
Therefore, each pulse can be at most A = 0.5 x 1074 sec wide.

8.13. (a) We know that
l 00
PLO) = - j_  Plju)do.

Therefore,
1 My
pl0) = — (—+nm(u'f'“|'2))du
2% S oaer \2
= YT

(b) Since P(jw) satisfies eq. (8.28), we know that it must have zero-crossings every T,
Therefare,
pkTI) =0, for k=1, %2, .



wl(t) = cos{wet + mcoswpnt)
c08({w.t) cas(m cos{wmt)) — sinfuwct) sin({m cos{w.t))

But since w, >> w,, and m << #/2, we may make the following approximations
cos(m cos{wmt)) = ]

and
sin(m cos{wyt)) 2= m o8 (wimt),

Therefore,
vlt) = cosfuwct) — sinfw.t)m Cos{timt)
= cosfwt) — ;{siu[(uc + i )t] + sia(we — wpn )]}
Therclore for w > 0,

Y () = mb{w - we) - 32‘;1;(..; = (e + i) ~ ':-—;J{w = (wr — 1)

5.15. When a signal z(t} is amplitude modulated with &7 then the Fourier transform of the
result 15
Yi(e?) = X(etloml),

When a signal =(¢) is amplitude modulated with cos{uwyn), then the Fourier transform of
the result is

Hile™) = (1/2) x (e1lv-wo)y 4 (1/2) X (o)),
¥i(e*] = Ya(e’~) only when wy is either 0 or 7.
8.16. We know that cln] = sin(5mn/2) = sin(rn/2).
¥(e™) = (1/25) X (&2 - (1/25) X (2ltmra)y,

This is as shown in the Figure 58,16,
From the figure, it is obvious that

3 5=
Y(e™) =0, waSwS?md‘g—Swﬁx.

8.17. The Fourier transforms Xie™), G{e™), Q(el~), and ¥(e™) are shown in Figure S8 17,
From the figure, it is obvious that Y(e™)=0for 0 < juj < 3
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Figure 58.18

The Fourier transforms X{e!) and ¥ (e} are as shown in Figure 58,15,

From these figures, it is clear that we wish to aec, plish single sideband modulation
using this system. In particular, we are interested in retaining the upper sidebands of the
signal. Note that in Figure 8.21 of Section 8.4, is shown a continuous-time single sidebaad
system lor retaining the lower sidebands. In this section, it was also mentioned (see aq
(8.21)) that in order to retain the upper sidebands, the [ Juency resp of the filter used
in the system had to be changed to

H(jw]:{f}l ::3 .

n this problem, we extend this same idea to discrete-time systems. We assume that the
requency response H (e} of the unknown system is

» A w>0
H(el}‘:{-j. w<@

ot 1S now show that this does indeed Eive us the desired output. We redraw the svstem
ven in the problem with appropriate labels for the intermediate outputs. The Fourier
ansforms of these intermediate outputs are shown in Figure S8.18.

From Figure $8.18, it is clear that the choice of H{e™) was appropriate.

nee 10 different signals have to be squeezed in within a bandwidth of 2, ench signal 15
owed o oceupy a bandwidth of 5 = § ofter sinusoidal modulation, Therefore, before
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Figure §8.17

29§

Sinusoidal modulation, each signal ean ecupy only a bandwidth of 5. The Fourier trans.
form ¥, (&) of the signal obtained by upsampling z.,[n) by a factor of ¥ can be nonzerc
(in the raage jw| < ) only for || < % Therefore, N has to be at least 20,

o0
8.20. Note that by choosing pln] = E &[n — 2k}, we would be able to gut i [n] and toln = 1]
komo
at the output of t_h? multipliers. Furthermore, note that Vi(ew) = Va(e%*) and Va(er) =
Ir'?[cg-""‘}e""‘. Tluls is i_llunrllad in Figure $8.20. Therefore, the output of the two branches
will be a5 shown in !":w:re 88.20. From these Bgures, it is clear that (he

8.21. (a) We have

Y = 2(0) cos(ut + 6,). Gt M.
From this we obtain
wlt) = ylt) cos(uwet +6,)
= z(t)cos*(wet + 4,)
- 1 + cos[2(u.t + 8:)]
o[ s

= %a‘(l) + %z(t} ens(2uw t + 28,).

From these figures, it is clear that in order to avoid the any overlap between the
sidebands, we muse bave w, > w,, We now sketch W (jw) in Figure $8.21, From this
fgure it is clear that we Tequire to satisfy the following eendition in order to have the
output be proportional to z(t):

wy S W < (2w, = wiar ).
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8.22. Sketches for (i) the Fourier transforms for each of the intermediate outputs and (i) the

Fourier transform ¥ (jw) of y(t) are shown in Figure 58.22.

i) {15 modudab ina) 4 [Bamdpass)
! ‘ ; Yo r"- I Bamoss
NG (] S
2 O 2w w I fp 34 O 3w I FW e
(2" paustakion) Ylgw)
P b -G T ™ Rv.';J = Y 2 A
Figure 58.22

8.23. (a) We have
w(t) = z(t) cos(wt) cos{wat).

Using Trigonometric identities, we have

w(t) ;:{l) {cos](we + wa)t) + cos{lwe = waltl}

= 3a(0) {eosf(we + ] + cosfr])
5 1w'| < e g WM -

Now, ba(t) cos|{w,+wa)t] has a spec Lrum in the range we+wa—wa :
This range may also be expressed as 2 + Hw — Wy < jw| € 2w + Aw twm Since,
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Let us denote z(t)s(t) by w(t). Then the Fourier transform of the signal w(t) is
W) = 3= XGw) s SGw))
oo
= LY eI (G~ R2x/T))
ko=ot

Therefare, the Fourier transform ¥ (jw) of the output of the bandpass filter is

¥ () = g X (i ~ 25/T)) + A gmsae T (i + 21/T)).

‘Therefore, 7 . %
o e Lol
wt) = 5 :(t)coa( =7 a) .
(¢) From the analysis in part (b}, it is clear that the maximum allowable value for w18

x/T.
£.25. (a) Y{jw) is as sketched in Figure 58.25.
)

@)

b) - 9

2(+) ) ) wlt)

Cog tuc Coswet

Figure 38,25
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we are given that W < Zw, + Aw — wyy, lowpass filtering will result in the output
La(t) cos(Bwt)
(b) We sketch the spectrum of the output for Aw = wa /2 in Figure 58.23.

1!..

v

T
" = L =
e Nw (==

Figure S8.23
as
8.24. (a) Since s(t) = 3 &{t - kT), we have
k==-o0

S(jw) = 2% z §(w — 2km/T) = we z 8w — kure).

k==oo k=-oc

Let us denote z(t)s(t) by w(t). Then the Fourier transform of the signal w(t) is
p 1
Wiw) = o= [X(Gw)e S(5e

L
= 5530 X(lw - kwe))
k=—od
This is as shown in Figure $8.24, Therefore, the Fourier transform ¥ (3w) of the output
of the bandpass filter is
Y(jw) = 2—“)"(.!(*--' = we)}+ T,'-‘X{th + )y

Therefore,
y(t) = 22 2(6) o).

(b) If & # 0, then

o -]
S(iw) = e S §(w-2n/T) = = 3 e IOTG(u = 2/ T).
T T

k=—-o0 k= —on
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(b) The block-diagram of the scrambler is as sketched in Figure 58.25.
(¢) The block-diagram of the bler is as sketched in Figure 58.25.

8.26. The Fourier transform of y{t) is as sketched in Figure S8.26. We also sketch the Fourier
transforms of y(t) cos(w.t) and y(t) sin(wet) in Figure S8.26.

amet® TG Aref®
Fub 0 KL
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3 5 AT 2000
ai“;{ei&_‘-l'%]
. noTE : HAS OTHEX
FTE?U}SMW:.{‘} 22 Rlju) sin CONTHIOUTIONS AT
° w Fet
Figure $8.26

From these figures, it is clear that the outputs of the lowpass filtess are {z(t) + A] cos(8:)
and [z{t) + A] sin(6,). Upon squaring and adding, we obtain the signal [z(2) + A {cos” A +
sin? 6.} = [z(t) + A]%. Therefore, r(t) = z(t) + A.

8.27. (2) The maximum value of z(t) is 1. Therefore, m = 1/4. Now,
y(t) = Acos(w.t -+ 8) + %m[(wf + wne)t] + %ms[(uﬁ = war)t}.

Therefore, y(t) consists of three sinusoids, From Parseval's theorem, we know that the
total power in y(t) is the sum of the powers in each of the sinusoids. Now note that
the power in a sinusoid of frequency wy is

Ix funy 1
“o f cos? (wnt)dt = .
2% Jy

2
Therefore, :
A 1 1 1
B=g+3 " 2
(b) The efficiency is given by
f_ m

B=tmarn Tem?

This is plotted in Figure 58.27.



8.28. (a) The sketches of ¥;(jw), Y2(jw), and ¥ (jw) are as shown in Figure 38.28.
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Figure S8.28

(b) The sketches of Y)(jw), Ya(jw), and Y (jw) are as shown in Figure 58.28.

8.29. (a) The sketches in Figure $8.29 show S{jw) and R(jw).
(b) ln Figure 58.29 we show how P(jw) may be obtained by considering the autpnts of
the various stages of Figure P8.29(c). From the sketch for P(yw), it is «lewr that
P(jw) = 25(jw).
(¢} In Figure 58.29 we show the result of demodulation on both s(t) and r(t] It i <lear
that z(t) is recovered in both cases.

Therefore, Q(yw) is as sketched in Figure 58.30,
..R(a’w‘)

5

-~y Y o 0k sy
Al
A /-\
I i S
M)
W i
Figure 58.30

(b) We have Q(yw) = H(jw)X(jw) for lw| < =/T. To recover X(jw) from Q(sw), we
require that H(jw) # 0 for |w| € m/T. This is possible only if 2r/A > =/T, that is
& < 2T,

(e) We require that

otherwise

Mjw) = { a5

This is sketched in Figure 58.30.

8.31. (a) Given

vit) = Y alnlp(t = n).

e -0
Taking the Fourier transform of bath sides of this equation, we obtain

Y(jw) = i:[n]?(}u}e_’“

AE-00

o
P(fu) E z[n]e"r"

P(juw)X(e™)

]

(b) Let us define the signals ¢(t) and d(t) such that

e(t) = cos(Bwe)
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8.30. (a) We have
Pz J—z—{ié{ - 2kn /T
w) = Th_m (] x/T).

Now,
R(jw) = %[X[juJ-P(ju)]

= % 3 XG(w — 2nk/T)).

k=—oo
This is as sketched in Figure $8.30. Now,
QUw) = Hyw)R(jw),

where

Hijw) = 25in(:d£2) :
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and
1, 0=tgl
at) "{ 0, otherwise °
Then
C(jw) = n [§(w — 87) + §{w + 87)]
and

D(jw) = l—il:g:;z}g"""rz.
Noting that p(t} = e{t)d(t), we have

PGw) = 5-[0Gw) + DGw)

= 3Dli(w = 8%)) + 3 D{jitw = 8x)
I’“‘H“‘ B8m)/2) < swmsmyz , 1 8i0l(w £ 87)/2] i aers

T 2 (w-8n))2 t I A2
_Losin(w/2) e 1 sin{w/2) _ .0
2(w - 8%)/2 2(w +8%)/2

Therefore,
Y{jw) = X(e¥)P{jw),

where FP(jw) is as given above.

8.32. (a) Let ¢[n] = cos(w.n). Noting that y[n] = z(n|c[n], we have
¥Y{ev) = --f C) X (a0,
We now have

Cle™) == 3 [6w = we + 2kw) + Blw +w, + 2kx)].
ke oo

Therefore, ¥(/) is
Y(e) = ; [X(e'{““’-ij 5 x(,:(um:)]

If we assume that we > wyp And w, < 7 — wyp, then ¥(e™) may be sketched as shown
in Figure §8.32.
(b) Let ¢1|n| = cos(wen + 6c). Let g[n] = y[n]ei[n]. Then,

Qlelv) = 51; j: :c, (&)Y (% )ap.
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We now have

Cile=) =x z (78w = we + 2km) + € H8(w + i + 20m)]

k=-0c

Therefare, Qe?) is
QUe) = 3 [¥ (@) 4 ey (s

This is as shown in Figure $8.32.

Thus, #jn] = z[n] if G = 1/cos(f,) We definitely require that cos(d.] # 0 This
implies that f, should not be an odd multiple of /2. The restrictions to w, and wy
are the same as the ones mentioned in part (a). Thal is, we > wip and we =< 7 — Wy

8.33. (a) Let us assume that each of the signals is bandlimited to wyy after upsampling. That
is, X;(e?”) in the range |w| < = is nonzero only for |w| € wax. Now when one of these
pled signals is modulated by a id, the Fourier of the resulting
sxgnal will cccupy 3 bandwidth of 4way in the range |w| < 7. If we need to squeeze in
four such signals in the range |w] < v, then we need to make sure that

an 4, = x
b ...
Tap -5y

Therefore, each of the signals has to be upsampled by at least a factor of 8.
the required FDM signal

(&) We may use to the following procedure to g
(i) For each z,[n], generate the signal

giln] =

zin/d,  n=0%4,8,
0, otherwise

rafiqe) wf2je )
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Figure §8.35

(b) From the above figure, it is clear that we require
2we +wyp —wr 2wyt wy = wr € 2w — war.
Note that in case wy = wr is pegative, then we may additionally require that
—uwy wr € wp — wap = wr < oy = wye

(e) Il we want to isolate the replica of X)(jw) centered around wy, then we require 5 =
2/K, o= wy - wpm, and 7 = wy +wp.

8.37. (2) We have
) =yl + A0+ g0
= con(ugt) + 5 con®(wot) + T os’(wnt) +3(8) + 3720) + 520
+ [:(r) + %x’m} cos{wt).

Therefore, Z{jw) is as sketched in Figure $8.37. Note that the overlapping components
have to be added together.
(b) From Figure 58,37 it is clear that
wet+ iy <a< oy —w

and

Qg+ wy < P < Jup.
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(i) Pass each g,[n] through a lowpass filter with cutoff frequency /4.
(i) Perform sinusoidal modulation on each gi[n] to obtain

win] = giln] cos(ix/4).
(1v) Pass each yijn] through a lowpass Elter with cutofl frequency 17 /4. This gives the
signals ry[n].
(v) Add all ri[n] together to get the FDM signal.
8.34. The output of the squarer is
r(t) = [2(t) + cos(uwet)]” = z?(t) + cos®(w,t) + 2z(t) cos(uw,t).

The bandpass filter should reject z2(t) + cos?(w.t) and multiply the remainder by 1/2.
Therefore, A = 1/2. Since the spectral contribution of 2z(t) cos(w.t) is in the range w, =
wat < |wl| € we + war, We TeqUITE Wy = W — Wiy mdw, We + Wi
Note that (i) the spectral contribution of x’(l) 15 1u the range Jw| < 2wy and (i) the
spectral contribution of cos®(wet) is at w = 0 and w = +2w,. Therefore. we need w ensure
that
wy > 2wy = war < e f3.

We also need to ensure that

wih < 2w, = WM < W

8.35. (a) Since Z(jw) = X (G(w — we)) + §X (j(w + we)), it is as shown in Figure $8.35.
The Founer senes coefficients of p(t) can be shown to be gy = 4sin{k=/2)/{27k) for
k # 0 and zero for k = 0. Therefore,

Plw) = Y 28mEn B 5, _ gy,
ety
This is as shown in Figure 58.35.
Since y(t) = z(t)p(t),
Y(jw) = % [Z(jw) » P(jw)].

Therefore, ¥ (jw) is as shown in Figure 58.35.
(b) From the last figure in the previous part, it is clear that we require H(jw) to be as
shown in Figure 58.35 to ensure that u(t) = =(t).

8.36. (a) Z(jw) is as sketched in Figure 58.36.
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8.38. One of the key issues to note in this problem is that the structure of the demodulator is
that of a synch dulator. Therefore, the input signal to the demodulator has to
have a replica of X(jw) centered around w,. Only then will the demodulator be siceessful
in recovering x(t).

Case 1:
P(jw) is given by

Pliw) = sinf(w —::19.’2] L sinllw + w) D/

w
M, (jw) will consist of impulses which oceur at intervals of 2= /T weightod by P(jw). Fur-
thermore, note that if y,(t) = z(t)m; (t), then we have

Yiiu) = 5= [X(w) « MyGw)).

Therefore, ¥ (jw) will consist of weighted replicas of X (jw) which occur every 2r/T. Note
that unless w, is a multiple of 2x/T, M (jw) = 0 for w = #w.. Il 2n/T is arbitrary, (iec.,
it is not specified to be a multiple of w,) ¥;(jw) has no replicas of X (jw) centered around
we. Since y(¢) constitutes the input to the demodulator, the signal r(f) at the output of
the demodulator will not be proportional to =(t).
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Case 2
1n this case,

Malyu) = 300t = w) + 56U + w0,

where -
. 2sin{k=D/T)
Gliw) = ‘E ——k——J(r.-l — 2mk/T).
[T
Clearly, Ma(;w) has equal-valued impulses at £w,. Therefore, the Fourier transtorm V. (ja)
of the signal ya(t) = z(t)mz{t) has replicas of X(ju) at +we. These replicas o nut ahas
with other replicas of X (jw) in Ya(juw) because 2% /T > %wps. Thus, when demodnlation is
performed on y(¢), then r(t) can be made proportional to x(t) provided 2wy = wip 22 {T.

2.39. (a) The two possible differences between the lines are

T
Dnzj cos? (wyt)dt —Ifrous(umt}cns[u.r.:]dt{
o 0
and * i
Dy =_/ cos?(wyt)dt — U ms{umt}ms(u,s)dr|.
o 1 !
Clearly, D and Dy are maximum when
T
lf m{wu!)oos(wlt)dii =0
0
This condition may also be written as
T
f cos{uot) coslwr t)dt = 0.
o
(b) We have
T 1T
f coslunt) conunt)dt = 2 .,; {cosl(wo + wn)t) + cosl(wo — wn )i}l
0
Therefore, if we ensure that T' is never a common multiple of the periods of both

cos|(wg = wi )t] and cos{(wo 4wy )t], then the above integral will be zero.

8.40. Let X;(jw) and Xz(jw) be as shown in Figure 58.40.

Then R{jw) is as shown in Figure 88.40. The overlapping regions in the figne el to
he summed, When r(t) is multiplied by coswt, in the vicinity of w = ) we grt

% {%mbw) + %szUu] + %X:(jw} - %jh’;(;‘u]} = %Xl{j-ﬂi

Therefore, the first lowpass filter output is equal to z(t).

an3

(¢} When rin] is multiplied by sinw.n, we get in the vicinity of w = 0 (i.e. i the range
Jw} <€ war) -
1 1 1. " 1 1. i 1 .
2 {0 + PN + Xl - i Xele 1} = ()
Therefore, we want H(e*) to correspond to a lowpass filter with cutoff frequency war
and passband gain 2.

& 42. (a) From the given information, it is clear that the function Pi(jw) shows odd symmetry
about /77, Alsc, Pi(jw) is even because pi(t) is real and even. Therefore, this i a
function as shown in Figure 58.42.
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Figure $8.42

If we now define P, (jw) as given in the problem, then Py{jw) is as shown in Figure
88 42. Clearly, y
Py(jw) = - Pi(gw - 27/T1)

{b) Let us define a signal q(t) = Pi(jt). This signal is periodic with a period of 4=/ 17 Let
Lhe Fourier series cocfiicients of g(t) be ax. We also know from (a) that gi{} satisfies
the expression

qlt) = —q(t = 27/T).

Equating the Fourier series of both sides of the above expression, we obtain

ar = —age HEHTIEIT where  To = éf’i_

1
Therefore,
ay = —age .

This implies that ax = 0 for k= 0, %2, %4, . We know that the Fourier transform of
gft) is of the form

Qliw) = 2 E apdlw — k2n/Ty)

k=-00

2y apdlw - K11/2)

k==
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When 7(t) is multiplied by sinwel, in the vicinity of w = 0 we get

1 g i 1 X o | . 1 " 1
5{—3[533'520”) + EXI(JW)]"'J['JEXzU“} + Ea’h(:w)l} = 3 Xalzw)
Therefore, the second lowpass filter output is equal to z3(t).

8.41, (a) Let X(e?) and Xa(e’) be as shown in Figure 58.41.
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Figure $8.41

Then R(e¥) is as shown in Figure 58.41. To avoid aliasing, we need to ensure that
W < W <X =i
(b) When r(n] is multiplied by coswen, we get in the vicinity of w = 0 (i.e. in the range
] < ww)

L300 + i) + Xl - JXae ) = 5X)

Therefore, we want H(e*) to correspond to a lowpass Rlter with cutofl frequency way
and passhand gain 2.
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Sinee ag = 0 for k = 0,42, +4,---, Q(yw) is zero for w = 0, £T, +£2T}, - .

Now note that using the duality property of the Fourier transform, we may infer
that the inverse Fourier transform of Py (jw) is 1 (¢) = Q(—3j¢)/2n. Therefore, 1 {t) =0
zero for t = 0,£T, 22T, <.

{c) We may write Bi(jw) as

= 1 . i
Pijw) = o~ | AiGw) + zﬂ.z_:(w ~ kdz [T} )] .
Taking the inverse Fourier transform, we obtain

ail) =pilt) 3 8ie - kT1/2).

k=-o0

Cleasly, 51(t) = pu(t) for t = 0,%T1/2,£T}, 37, /2,---. From part (b). it is obvious
that pi(t) =0 for ¢t = 0,£T, £2T,,---.

(d) Note that P(jw) = Pi(jw) + Fa(jw), where

=4 lw| < =/Th
Paw) = { 0,  otherwise

Therefore, p(t) = pi(t) + p2(t), where

sin(xt/T)
ooty = SRTUT).
i
We can easily see that pa(t) = 0 for t = 0,£T, +2T;,---. And since we already
have shown that py(t) = 0 for t = 0, &7y, 2274+, it is obvious that pit) — 0 for

t =0, Ty, 22T}, .
8.43. (a) We know that

: 10000
HUY) = 1500+ 0
Therefore, the frequency resp of the p ing system has to he
oy 1000 4 jw
CUw) = o500 -

This implies that 4 = 0.1 and B = 107%.
(b) If the input and output of the comp i 3 are denoted by =(t) and y(t),
respectively, then

¥jw) _ 1000 + jw
X(jw) 10000 °
Cross-multiplying and taking the inverse Fourier transform, we obtain
_qdz(t)
={.1 p et
y(t) = 0.1z(t) + 10 =

Therefore,
a=10"% B=01

316



£ 44. (a) We may write y(t) as
N
ylt)=z(t)s 3 adlt —IT2).

1=—N
Therefore, y(f) is obtained by passing z(t) through a filter with impulse response h(t) =
N

5 e~ ITy).
l==N
(b) Using eq. (P8.44-1), we obtain the following three simultaneous equations
y(0) = a—1x(Th) + agz(0) + ayz(~T1),
y(Ti) = a_,=(2T1) + aoz(Th) + ayz(0),

and
y(=Th) = a_z(0) + apz(=Th) + e =(-2T1).

Substituting the given values for z(t) and y(t) and solving, we obtain

g =0, a; = 8-].
5.45. (n) Since we are given that

y(t) = cos (wcl. +m z(r}df) .

=00

we know that the phase of the carrier is
oo
O(t) = wet + mf z(7)dr.
-
Therefore, the instantaneous frequency is
dd
wilt) = il + mz(t).
(b} Expanding y{t), we get
o0 D0
yit) = coslw,t) cos (mj :(r}nﬁ) = sinfw,t) sin (mf :(7](17)
-00 - 08

o
Using the narrowband assumption, we know that (m j ztr)dr) is very close to zero.
Therefore,

cos (m _mz[f)dr) =1

sin (mj:::(-r)dr) = (mf_z:[f)dr) ]

y(t) = cos(wet) — (m f_ O:s(r}dr) sinfwet)

and

This implies that
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5.47, Let G-(e'®) represent the Fourier transform of cos{wen + 8c). This is as shown e Figure
5847, Let Gale'®) represent the Fourier transform of cos{wgn + 04). This is a8 <hown
Figure 58.47.

Now,

2= | MRS

‘This is as shown in Figure 58.47.

Hore, we assume that we > way and 7 — war > we. Also, we have
W) = 51; j ¥ ()G gl ).
-

() If Aw = 0, then wy = wc. Therefore, W (&%) will be as shown in Figure 3847

(b) When W (e?~) passes through H (&%), we obtain R{e/) as shown below. Then. R =
cos(fs — B )X (™) = cos(A6) X (&), 1£ 5(6) = =/2, then r[n] = 0.

() In this case, W(e’*) is as shown in Figure S8.47. If w > wy + Aw, then R(eV) =
LX (eI + 1 X(eflw+Bu)). Therefore,

rln) = z[n] cos(Awn)
8.48. (a) The Pourier series coefficients of pln] are
a = J—iu"""*“f” _ gamentpamySind i)
. Nsin(3F)
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b il
“ee Figure S8.45  © *

(¢) We show both X|(jw)| and |Y(jw)] in Figure S8.45.
Cleasly, the bandwidth of x(t) is 2wg, while the bandwidth of y(t) is 2w, + Jwa-

8.46. (a) The instantancous frequency is

(= %0 _ d[wf]
0= B0 _ 4[5
(b) We have
098,
Sljw) = f et 2=ty
—o
o7 {2un) j  eilV/ETAt=w o)l gy
= fE 4 e )
uhy
(e} We have

o0
X (jwgt) n/ z(r)e 7t dr.
]
But tr = }[t2 +72 — (¢ — 7). Therefore,
X(jwot) = fw;(T)G-Jwr’ne-ﬂut‘ﬂﬂil-'}’J‘Zd,,
~00

o c‘M":’?fwz[r)c"“’""""’e’“"“""“”:ﬁ
-0
Let g(r) = 2(r)e=17/2, Then
X(junt) = ¢ g(e) o &80 17),

This is exactly what Figure P8.46 implements.
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Ple™)=2x Y aphfw - 25k/N).
k==oo
(b) With M =1,
kN SiN(27E/N)
N sin{xk/N)’

Ignoring the phase factor, and taking N = 6, we have ¥ (&)%) as shown in Figure 58.48.

ag=e

Tee Je)
iy

e
Y '/\l\f’r

yl~) ﬂ —> x(n)

Figure 58.48

{¢) We need wpr € w/N. The result does not depend on M.
(d} The block-diagram is as shown in Figure 58.48.

8.49. (a) The Fourier transform S(jw) of s(t) is given by
o1 .
S = Y. 2———”"(:”1 2 §uo — 25k/T).
k=-00
To avoid aliasing X (jw) should be 0 for |w| > =/T.

(b) Let X (jw) be as shown in Figure 88.49. Then the Fourier transforms of the signals at
the uut.;uas of Fy(jw) and Hz(jw) are as shown in the same figure. Therefore, the gain
is 24 /%2,
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ta)

fﬂ e~ Hult — 1)e™*dt

e

oo
f e [a-v:]ld!
I

e~ (345
s+5
As shown in Example 9.1, the ROC will be Re{s} > —5.

(b) By using eq. (9.3), we can easily show that g(t) = Ae~%u{—t - tg) has the Laplace
transform

X{s)

Aelr+3ito
N TR

The ROC is specified as Re{s} < —5. Therefore, A =1 and f = - 1.

Using an analysis similar to that used in Example 9.3, we know that the given signaf his 2
Laplace transform of the form

1 1
5+9 * s+
The corresponding ROC is Re{s} > maz(—5, Re{f}). Since we are g,iven_r.ha;l the ROC
1s Re{s} > -3, we know that Re{8} = 3. There are no constraints on the imaginary part
of 4.

We know from Table 9.2 that

X(s) =

(1) = —e~'sin(20)u(t) <= Xi(s) = _ia_ﬁ?’—d’-‘ Re{s} > -1

We also know from Table 9.1 that
2(t) = 31 (=t} = X(3) = X)(~3).

The ROC of X(s) is such that if 5o was in the ROC of X, (s), then —so will be in the ROC
of X(s). Putting the two above equations together, we have

2(t) = z1(=1) = e ' sin(2tJu(—t) £ X(s) = Xi(—s) = —G_—Jsﬁ- Refs} < L.

The denominator of X (s) is of the form s? — 25 + 5. Therefore, the poles of X (s) are 1 +2j
and 1 - 2;.
(a) The given Laplace transform may be written as
2s+4d
G+hE+3)
Clearly, X{s) has a zero at s = —2. Since in X(s) the order of the dunonnnater

polynomial exceeds the order of the numerator polynomial by 1, X (#) has a zero at cc.
Therefore, X (s) has one zero in the finite s-plane and one zero at infinity.

X(s) =
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Chapter 9 Answers
9.1. (a) The given integral may he written as

=1
f (Sl st gy
o

If ¢ < =5, thea the function e~(+*M grows towards oo with increasing ¢t and the given
integral does not converge. But if ¢ > =5, then the integral does converge

(b) The given integral may be written as

f em(Bralt dut gy

Ifa > -5, then the function e=/*7¥ grows towards oo as t decreases towards —so6 and
the given integral does not converge. But if @ < —5, then the integral does converge.

(e) The given integral may be written as

5
[eonema

8
Clearly this integral has a finite value for all finite values of o.
(d) The given integral may be written as

o0
[" e
o0

If ¢ = =5, then the function ¢~ (3190 prows towards oo as t decreases towards =oo
and the given integral does not converge. If ¢ < —5, then the function e~ "7 grows
towards oo with increasing ¢ and the given integral does not converge. If o = 5, then
the integral still does not have a finite value. Therefore, the integral does not converge
for any value of o.

(e) The given integral may be written as
0 oo
/ c'l's""}‘e""d't+j e=tbrolt gt gy
s o

The first integral converges for ¢ < 5. The second integral converges if o > -5,
Therefore, the given integral converges when |o] < 5.

() The given integral may be written as

fo P e P
-

Il & > 5, then the function ¢™1~5**) grows towards co as ¢ decreases towards —oc and
the given integral does not converge. But if o < 5, then the integral does converge.
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(b) The given Laplace transform may be written as

541 1

A= T DaEn) - =1

Clearly, X (s) has no zeros in the finite s-plane. Since in X (s) the order of the denomi-
nator polynomial exceeds the order of the numerator polynomial by 1, X(s) has a zero
at oo. Therefore, X (s) has oo zeros in the fuite s-plane and one zero at infinity.

(c) The given Laplace transform may be written as

(s-1s+s+1) _

X0 =—m

=1L

Clearly, X(s) has a zero at s = 1. Since in X(s) the order of the numerator palyno-
mial exceeds the order of the denominator polynomial by 1, X(s) has no zeros at oo
Therefore, X (s) has one zero in the finite s-plane and no zeros at infinity.

9.6. (a) No. From property 3 in Section 9.2 we know that for a finite-length signal, the ROC
is the entire s-plane. Therefore, there can be no poles in the finite s-plane for a finite
length signal. Cleacly, in this problem this is not the case.

(b) Yes. Since the signal is absolutely integrable, the ROC must include the jw-axis.
Furthermore, X (s) has a pole at s = 2. Therefore, one valid ROC for the signal would
be Re{s} < 2. From property 5 in Section 9.2 we know that this would correspond to
a left-sided signal.

() No. Since the signal is absolutely integrable, the ROC must include the ju-axis.
Furthermore, X (s} has a pole at s = 2. Therefore, we can pever have an ROC of
the form Re{s} > a. From property 4 in Section 9.2 we know that z(t) cannot be a
right-sided signal.

(d) Yes. Since the signal is ahsolutely integrable, the ROC must include the jw-axis
Furthermore, X{s) has a pole at s = 2. Therefore, a valid ROC for the signal could be
& < Re{s} < 2 such that @ < 0. From property 6 in Section 9.2, we know thit this
would correspond to a two-sided signal.

0.7. We may find different signals with the given Laplace transform by choosing different regions
of convergence. The poles of the given Laplace transform are

st mimes mesledE aal
5 = —a& &1 ==, 84 = 2"‘ 2}‘ =3 2.1-
Based on the locations of these poles, we my choose from the following regions of conver-

Bence:

(i) Refs)>-1

(ii) =2 < Re{s} < -3
(iii) =3 < Res) < -2
(ivi Re{a} < -3
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Therefore, we may find four different signals with the given Laplace transform.
9.8,  From Table 9.1, we know that

4(t) = e¥z(t) % G(s) = X(s - 2).

The ROC of G(s) is the ROC of X(s) shifted to the right by 2.

We are also given that X(s) has exactly 2 poles, located at s = =1 and s = =3
Sinee G(s) = X{s — 2), G(s) also has exactly two poles, located at 5 = =142 = i and
s = =3+2 = —1. Since we are given G{jw) exists, we may infer that the jw-axis lies 1n the
[.0C of G(s). Given this fact and the locations of the poles, we may conclude that glt) is
a two sided sequence, Obviously 2(t) = e~g(t) will also be two sided.

9.9.  Using partial fraction expansion
4 2
ST T
Taking the inverse Laplace transform,

z(t) = e u(t) = 2¢7Hu(t).

4.10. The pole-zero plots for each of the three Laplace transforms is as shown in Figure 59.10.

Im E [
X
__é' .: d:_ 'x I'N 1 Ly

Figure §0.10

(a) From Section 9.4 we know that the magnitude of the Fourier transform may be ex-
pressed as

1
{Length of vector from w to — 1)(Length of vector from w to —2)

We see that the right-hand side of the above expression is maximum for w = 0 and

decreases as w b more positive or more negative. Therefore |1, {juli
is approximately lowpass,
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Therefore.

Gls) = g[lzli_‘::_'“.']_

Comparing with the given equation for Gls),
1
a=-1, A= 3

9.14. Since X(s) has 4 poles and no zeros in the finite s-plane, we may assume that X (s} is of
the form

A
X(s)= (_R— a)(s = b)(s - e)s—d)

Since z(t) is real, the poles of X (s) must occur in conjugate reciprocal pairs. Therefore, we
may assume that b=a" and d =¢". This results in

A
Ale) e G-a)s—a)ls—clls=c)
Since the signal z(t) is also even, the Laplace transform X(s) must also b s Vs
implies that the poles have to be symmetric about the juw-axis. Therefore. we sy assame
that ¢ = —a", This results in

X(a) = (s=—a)(s—a*){s+a')(s + a)’

We are given that the location of one of the poles s (l;’?)e"’f‘. 1If we assume that this pole
is @, we have A

[P VL TP P TPy P TP

X(s) =

This gives us
W) o i
(-F+ s+ '\"5"' b
Also, we are given that
. fm (t)dt = X(0) = 4.
-oa
Substituting in the above expression for X (s}, we have A = 1/4. Therefore,
(1/4) :
FHIDE T 5D
9.15. Taking the Laplace transforms of both sides of the two differential equations, we have
sX(s)=-2¥(s)+1 and s¥(s]= 2X(s).

X(s) =

Solving for X (s) and ¥{s), we obtain

X(s) = 83:4

The region of convergence for both X{s) aud Y(s) is Re{s} > 0 because both are right-sided
signals.

and  Y(s) =257 +4.
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9.12.

9.13.

9.16.

. The overall system shown in Figure P9.17 may be

(b) From Section 9.4 we know that the magnitude of the Fourier transform may be ex-
pressed as

{Length of vector from w to 0)
(Length of vector from w to — } + 7%2)(Length of vector from w to — § ~ j3))

We see that the righ:-lu;;nd side of the above expression is zero for w = 0. It then in-
creases with increasing w| until jw| reaches §. Then it starts decreasing as |w| increases
even further. Therefore |H2(jw)| is approximately bandpass.

{(¢) From Section 9.4 we know that the magnitude of the Fourier transform may be ex-
pressed as
(Length of vector from w to 0)?
{Length of vector from w to — } + %)(Length of vector from w to — -3%))

We see that the right-hand side of the above expression is zero for w = 0. It then
increases with increasing |w| until |w| reaches §. Then |w| increases, |Hy(jw]| decreases
towards a value of 1 (because all the vector lengths become almost identical and the
ratio hecomes 1). Therefore |H3(jw)| is approximately highpass.

. X(s) has polesat s = —4 +532 and —4 -3, X(s) hnszernsar.s=§+336§ and & =i,

From Section 9.4, we know that {X (jw)| is

(Length of vector from w to § + j%3)(Length of vector from w to § — 3543‘_)__
(Length of vector from w to — § +j-¢}(b¢n§lh of vector from wto — § - ;"'.'-_?'J]

The terms in the tor and d
cancel out giving us | X (jw)| =1

tor of the right-hand side of the above expression

(a) If X(s) has only one pole, then z(t) would be of the form Ae™®'. Clearly such a
signal violates condition 2. Therefore, this statement is inconsistent with the given
infarmation.

(b) If X (s) has only two poles, then z(t) would be of the form Ae™* sin(w,t). Clearly such
a signal eould be made to satisfy all three conditions (Example: wo = 807, a = 19200).
Therefore, this statement is consistent with the given information.

(e) If X(s) has more than two poles (say 4 poles), then z(t) could be assumed to be of the
form Ae™*t sin{wot) + Be Msin{w,t). Clearly such a signal could still be made to satisfy
all three conditions. Therefore, this statement is consistent with the given information.

We have
X(s)= %_ Re{s} > -1.
Also,
Gis) = X(s) + aX(-s), -1<Refs}j<]l.
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Taking the Laplace transform of both sides of the given differential equation, we obtain
Y (s)[s® + (1 + a)s® + alu + 1)s + o] = X(s).

Therefore,
¥(s) 1

B = Y = i ol toa T Ins

(m) Taking the Laplace transform of both sides of the given equation, we have
Gls) = sH(s) + H(s).
Substituting for H(s) from above,

(s+1) - 1
S+(l+a)f+afa+l)ls+al s+as+od
Therefore, G(s) has 2 poles.
(b) We know that

Gis) =

1
His).m {5+ 1){s? + s + a?)’
Therefore, F () has poles at —1, a{—% +j5'?), and n-(—% —jlg}. If the system has to
be stable, then the real part of the poles has to be less than zero. For this to be true,
we require that —a/2 <0, ie, a > 0.

i as two feedback sy of the
form shown in Figure 9.31 connected in parallel. By carrying out an analysis similar to that
described in in Section 9.8.1, we find the system function of the upper feedback system to

be 2 2
£
&) = G T e
Similarly, the system function of the lower feedback system is
Ha(s) = 1/s 1

T+20/2) s+2
The system function of the overall system is now

H(s) = Hi(s) + Ha(s) = ?%’r%g.
Since H(s) = Y(s)/ X (s), we may write
Y (s)[s? + 108 + 16] = X (s)[3s + 12).

Taking the inverse Laplace transform, we obtain

dy(t) dy(t) = dx(t)
g P10 + 16y(e) = 12:(1) + 35
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918 |a) From Problem 320, we know that the differential equation relating the input and
output of the RLC circuit is

dy(t)  dy(t) _
& + . +y(t) = z(¢).
Taking the Laplace transform of this (while noting that the system is causal and stable),
we obtain
Y{s)[s® + 8+ 1] = X{(s).
Therefore,

¥{(s) 1;
X)) s#4s+l

Hs) = Refs} = —%.

{b) We note that H(s) has two poles at s = —} -:"{-’- and 5 = -} +:‘Q§- It has no zeros
in the finite s-plane. From Section 9.4 we know that the magnitude of the Fourier
transform may be expressed as

1
(Lengeh of vector from w to — § + 5 %3)(Length of vector from w to — § — 132))

We see that the right-hand side of the above expression increases with increasing fewl
until |w| reaches & Then it starts decreasing as |w] increases even further. It finally
reaches 0 for |w| = oo, Therefore Hy(jw)| is approximately lowpass.

(¢) By repeating the analysis carried out in Problem 3.20 and part (a) of this problem with
R = 1071, we can show that

53 1 .
Hig)= 263 = Aol Reuh>-0oois
(d) We have
i
{Vect. Len. from w to — 0.0005 + j32)(Vect. Len. from w to — 0.0005 - ;33))

We see thal when |w| is in he vicinity 0.0005, the right-hand side of the above equation
takes on extremely large values, On either side of this value of |w| the value of |H(jw)]
rolls off rapidly. Therefore, H(s) may be idered to be approximately bandpass.

9.19. (a) The unilateral Laplace transform is
oo
X(s) = f e Mu(t + 1)e " dt
oﬂ
o f Mty

a+2
129
k -y
o [ ® o
.¢L
-3 -1 [ A e
I I
Im om
@ !4‘ @ @
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Figure 59.21

(¢) The total response is the sum of the zero-state and zero-input responses. This is
ylt) = 2e~*u(t) - e *u(t).
9.21. The pole zero plots for all the subparts are shown in Figure 59.21.
(a) The Laplace transform of z(t) is
o
X9 = (6™ + e e dt

]
= [-e Yo 4 2 + e (o + I
O N W ... 3
s+2 343 s2+5s46

The region of convergence (ROC) is Refs) = -2
(b) Using an approach similar to that shown in part (a), we have

1

—4t £ &
e Yult) +— ot Re{s} > -4
Also, .
—Bt_jbt AR S o
e e u(an+5—j5' Refs} > =5
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9.20.

(b) The unilateral Laplace form is g
fmlﬂ(? + 1) + 8t} + et 4 1)) dt
o=

/ "16(0) 4 ¢ 2y

&

A(s)

«

= 1
+a+2

{e) The unilateral Laplace transform is

o0
j e~ ult)e=*ule)le™*dt
-

y £ F[‘_m""_“l‘_“dt
0-
1

1

s+t

X(s)

In Problem 3.19, we showed that the input and output of the RL eircuit are related by
dylt) o

P 4 (o) = =),

Applying the unilateral Laplace transform to this equation, we have

s¥(s) = w(07) + (s} = X(s).

(a) For the zero-state response, set y(07) = 0. Also we have

1

X(s) =UL{e M ul(t)) = =

‘Therefare,
e =ik
Yisis+1)= J—+ 3

Computing the partial fraction expansion of the right-band side of the above equation
and then taking its inverse unilateral Laplace transform, we have

ylt) = e”tule) — e Hu(t).

{b) For the zerc-input response, assume that z(t) = 0. Since we are given that y(07) = 1,

= Y(s) = ] .

sVs)—1+X(s)=0 31

Taking the inverse unilateral Laplace transform we have

w(t) = e u(t).
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and

e=3emi%y (1) £y Re(s} > ~5.

—_—
s+5445"
From this we obtain

e B PO O L YOO L c 5

e sin(St)u(e) 2_,'[‘ 5 S (r) GTITED
where Re{s} > —5. Therefore,

57 + 155 + 70

Sl R - R 3
ST+ 1457 + 905 + 100" ¢(s} >

(4]

e %u(t) + e sin(St)u(t)
(¢) The Laplace transform of =(t) is
o
f (e + e*)e*dt

= [l fs - gy + [ /s - D20
1 2 i 22 25 -5
5-2 5-3 s1-5s5+6
The region of convergence (ROC) is Re{s} < 2.
(d) Using an approach along the lines of part (a), we obtain
1

Xis)

n

=2t £ - 59,21~
e Muft) +— =3 Re{s} > -2 (S9.21-1)
Using an approach along the hines of part (c), we obtain
etu(—t) £ 312, Rels} < 2. (59.21-2)
From these we obtain
e = e u(t) + e®u(—t) £ ;52:;3. -2 < Refs) <2
Using the differentiation in the s-domain property, we obtain
L £ d [ 21 257+ 8 ‘
te irlf...-a[;_‘,—:‘ = ~2< Refs} <2
(e) Using the differentiation in the s-domain property on eq. (59.21-1), we get
d 1 1
e Pult) 5 - | — | = -2
u(e) & [a+2] G el
Using the diff; in the s-d property on eg. (59.21-2), we get
d 1 1
~te¥ul—1) £ = |o—u| = mo—me 2
teu( )t—}d" = G Ref{s} <2
Therefore,
[tle=2 = te~Hu(t) + —teTu(—t) +s 4 -2 < Refs} <2

(s + 2)2(s - 2)*’
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(f) From the previous part, we have

[tletu(—t) = —te™u(—t) P2 "(‘,__ig)ir Rels} <2

(g) Note that the given signal may be written as =(t) = ult) = u(t = 1). Note that
u(t) 5 E. Refs} > 0.

Using the time shifting property, we gel

u(t —1) 5’- Re{s} > 0.
Therefore,
e 1-¢™*
uft) — uft — 1) +=+ — All 5.
Note that in this case, since the signal is finite duration, the ROC is the et - lane.

(k) Consider the signal 7, (t) = t[u(t) —u(t= 1)) Note that the signal z(t) may be expressed
as z(t) = 21 (t) + 21{—t + 2). We have [rom the previous part

u(t) - u(t — 1) £ 1—"3: All's.

Using the differentiation in s-domain property, we have

2(6) = tlult) - ult - )] < % [' “:_'] - i”__%l Al s
Using the time-scaling property, we obtain
O+t SO S ('Y
Then, using the shift property, we have
R PLIpe e LA
Therefore,
z(t) = zy(t) + 2~ + 2} P it ’a:+=-' -2 23¢! :,‘,] +e". All 5.

(i) The Laplace transform of z(¢) = §(t) + u(t) is X(s) = 1+ 1/s, Refs} > 0.
(i) Note that §(31) + u(3t) = §(¢) + u(t). Therefore, the Laplace transform is the same as
the result of the previous part.

9.22. (a) From Table 9.2, we have
z(t) = %sin(:‘;ﬁ)u{t).
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(g) We may rewrite X(s) as
L
s+1p2
From Table 9.2, we know that
1
tu(t) £ & Re{s} > 0.
Using the shifting property, we obtain

ettult) 5

o +l ek Refs} > -1.

Using the differentiation property,
4, et — et N -1
dt!e tu(t)] = e”ult) — te~ ult) FE Y Refs} > -1

Therefure,
2(t) = &(t) — e tu(t) - 3te ™ ult).

424, The four pole-zero plots shown may have the following possible ROCs:
oPlot (a): Re{s} < —20r =2 < Refs}p<2or Ref{s} > 2.

«Plot (b): Refs} < =2 or Refs} > -2

oPlot (¢): Refs} <2 or Refs} > 2.

oPlot (d): Entire s-plane.

Also, suppose that the signal z{t} has a Laplace transform X (s) with ROC R.
(1) We know from Table 9.1 that
e~ ¥x(t) 5 X(s+3).
The ROC R, of this new Laplace transform is R shifted by 3 to the left, If z{f)e ¥ is
absolutely integrable, then /) must include the juw axis.
Far plot (a), this is possible only if R was Re{s} > 2.
«For plot (b), this is possible only if Rt was Refa} > -1
«For plot (¢}, this is possible only if R was Rels} > 2.
«For plat (d), R is the entire s-plane.
(2) We know from Table 9.2 that
—t £ ) =
] u(!}i—b-—8+1, Re{s} > -1
Also, from Table 9.1 we obtain
X(s)

z(t) s [e7'ult) ¢S =5, Ra=RO[Refs} > -1)

If e=*uft) » z(t) 1s absolutely integrable, then Ry must include the ju-axis
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{b) From Table 9.2 we know that
L 3
cos(3t)u(t) +— 75 Re{s} > 0.
Using the lime scaling property, we obtain

eos(3t)u(—1) 54 — Refs} < 0.

Sl
249
Therefore, the inverse Laplace transform of X (s) is
z(t) = — cos(3t)ul=t).
{c) From Table 9.2 we know that
1

£ 5 -
' cos(3t)ult) +— (s_—-ﬁm‘ Re{s} > 1L
Using the time scaling property, we obtain
-t 7 s+l
e cos(It)ul—t) +— STV Rels} < L

Therefore, the inverse Laplace transform of X(s) is
z(t) = —e" cos(3t)u(—t).
(d) Using partial fraction expansion on X (s), we obtain
ok Tl
s+4d s+3
From the given ROC, we know that z(t) must be a two-sided signal. Therefore,
z(t) = 2e™u(t) + e Mu(-t).

X(s) =

(e) Using partial fraction expansion on X (s), we obtain
2 1
X =357+
From the given ROC, we know that z(t) must be a two-sided signal. Therefore,
z(t) = 2¢ Hu(t) + e Hu(-1).

(f) We may rewrite X(s) as

3s
sT—3+1

s
Y EoRr T ARy
s =1/2 N 32

(517207 + (V3/2)2 (s = 1/2)2 + (V3/2)?

X(s) = 1+

1+3

Using Table 9.2, we obtain
2(t) = 8(¢) + 3¢ "% cos(v3e/2)u(t) + vBe~/? sin(vBt/2)u(t).
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oFor plot (a), this is possible only if R was —2 < Re{s} <2.
oFar plot {b), this is possible caly if R was Re{s} > -2.
+For plot (c), this is possible only if R was Re{s} < 2.
«For plot (d), R is the entire s-plane.
(3) If z{£) = 0 for ¢ > 1, then the signal is a left-sided signal or & finite-duration signal.
sFor plot (a), this is possible only if R was Re{s} < —2.
#For plot (b), this is possible only if R was Re {s} < -2.
oFor plot (c), this is possible only if B was Re{s} < 2.
«For plot (d), R is the entire s-plane.
{4) If z{t) = O for t < —1, then the signal is a right-sided signal or a finite-duration signal.
oFor plot (a), this is possible only if R was Re{s} > 2.
sFor plot (b), this is possible only if R was Re{s} > -2.
«For plot (c), this is possible only if B was Re{s} > 2.
oFor plot (d), R is the entire s-plane,

9.24. (n) The pole-zero diagram with the appropriate markings is shown in Figure 89.24
I 1

@ e g

-y,

(Ch)

Figure 59.24

{b) By inspecting the pole-zero diagram of part (a), it s clear that the pole-zero diagram
shown in Figure 59.24 will also result in the same | X (jw). This would correspond to
the Laplace transform

Xi(s) =s—%, Re{s} <%.
(e) aX(jw) =7 = 4X1(jw).
(d) X2(s) with the pole-zero diagram shown below in Figure 59,24 would have the property
that €Xz(jw) = <X (jw). Here, Xz(s) = .—__]-lﬁ—
(e) [Xalijwll = L/IX (5w)l.
() From the result of part (b}, it is clear that Xy(s) may be obtained by reflecting the
poles and zeros in the right-half of the s-plane to the left-half of the s-plane. Therefure,

54 1/2

Xi{s) = FEE T
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Figure 58.25

From part (d), it is clear that X3(s) may be obtained by reflecting the poles (zeros)
in the right-half of the s-plane to the left-half and simultaneously changing them to

zeros (poles). Therefore,
(s+1)°

Xalo) = GT I+

9.25. The plots are as shown in Figure §9.25.

9.26. From Table 9.2 we have

21(8) = e Hu(t) < X, (s) = ﬁ, Refs} > -2
and i
nlt) = e Hul) € Xals) = 5. Refs} > -3,

Using the time-shifting time-scaling properties from Table 9.1, we obtain
~2

zi(t - 2) £ e~ X (s) = :—2. Rels} > -2

and

Py
ral—t+3) 5 P Xo(~8) = T Refs) = -3
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(b) Sinee y(t) = x(t) « A(t), we may use the convolution property to obtain

Y(s) = X(s)H(s) = m

The ROC of Y(s) is Re{s} > =1,
(e) Performing partial fraction expansion on ¥(s), we obtain

1 1
YO =g+

Taking the inverse Laplace transform, we get
pit) = e tult) — e Hu(t).
(d) Explicit convolution of z{t) and h(t) gives us
y(t) = [ Kr)z(t = v)dr
—og
-3
= f e e Tyt = 7 )dr
o
t
= a."'f eTdr fort>0
0
= e — e Mu(t).
8.30. For the input z{t) = u(t), the Laplace transform is
X{s)= i, Refs} >0

The corresponding output y(t) = [I ~ e~ — te~“ju(t) has the Laplace transform

1 1 1 1
¥(s) = ;_m_m E*_(:‘TIT’-' Re{s} = 0.
Therefore, Yis) 1
L7 S
O =30 = e el >0

Naw, the sutput yi{t) = [2 = 3e™* + e~¥Ju(t) has the Laplace transform
. P 6

s+1 s5+3  s(s+1){z+3)

Therefore, the Laplace transform of the corresponding input will be

_Y|{3J=6.1+l}
X|{J]—m L Refs} > 0.

Yils) = % - Re{s} = 0.

Taking the inverse Laplace transform of the partial fraction expansion of Xi(x!. we oblaun

zo(t) = 2ult) + e~ u(e).
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Therefore, using the convolution property we obtain

-2 N
WO = 240t~ 2) o za(~t 4+ 3) ¢ Y (s) = [h] [: _J_‘] .

9.27. From clues ! and 2, we know that X(s) is of the form
A
(sta)s+b)
Furthermore, we are given that one of the poles of X (s) is -1 + 7. Since z(t) is real, the

poles of X (s) must occur in conjugate reciprocal pairs. Therefore, a=1—jand b= 1 + :
and

X(s) =

A
H(s)= Grl-J)e+1+7)

From clue §, we know that X{0) = & Therefore, we may deduce that A = 16 and

16

B = e

Let R denote the ROC of X(s). From the pole locations we know that there are twe
possible choices of R. R may either be Re{s} < =1 or Re{s}] > 1. We will now use clue
4 to pick one. Note that

vt) = ¥2(t) 5 Y(s) = X(s - 2)
The ROC of ¥(s) is R shifted by 2 to the right. Since it is given that y(t) is not absolutely
integrable, the ROC of ¥(s) should not include the jw-axis. This is possible vnly of R is
Re{s} > -1.
9.28. (a) The possible ROCs are

(i} Refs}< -2

(ii) =2 < Refs} < -1.

(i) =1 < Refs} < 1.

(iv) Re{s} > 1.
(b) (i) Unstable and anticausal,

(1i) Unstable and non causal,

(iii) Stable and non causal,

(1) Unstable and causal,

9.29. (a) Using Table 9.2, we obtain
1

X(s) = L Re{s} > -1
and y
H(s) = Pyt Ref{s} > -2.
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9.31. (a) Taking the Laplace transform of both sides of the given differential equation and sim-
plilying, we obtain
¥(a) 1
H(s) = =t = =2
(8) X(s) s2-s5-2

The pole-zera plot for H(s) is as shown in Figure 59.31.

Im
* -
Figure §9.31
(b) The partial fraction expansion of H(s) is
RV
H(‘)=.1—‘2_.ﬂ+1-

(i) If the systera is stable, the ROC for H(s) has to be =1 < Re{s} < 2. Thercfore,
Alt) = = 2e¥u(=1) - Fetule)
(ii) If the system is causal, the ROC for H{s) has to be Re{s) > 2. Therefore,
1
hit) = jr:'ufl') - %c_'u{ij.

(iii) If the system is neither stable nor causal, the ROC for H(s) has to be Refs} < 1.
Therefore,
1
he) = =geMu(-0) + -;.e-‘u(—:).
9.32. If z(t) = ¢ produces y(t) = (1/6)e®, then H(2) = 1 /6. Also, by taking the Laplace
transform of both sides of the given differential equation we get
5+ b(s + 4)
s+ 4)(s + 2)°
Since H(2) = 1/6, we may deduce that b = 1. Therefore,
As+2) -2
s(a+4)(s+2)  s(s+4q)

Hs) =

Hs) =
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9.33.

.34,

Since zit) = ¢ M = e7tu(t) + e'u(=t),

1 -2

1
x(‘)'m—‘;j"_"f=[7:1—)(;'_—”. -1 <Re{s} <1

We are also given that
s+1

S4+2s+2
Sinee the poles of H(s) are at —1 = j, and since h(t) is causal, we may conclude that the
ROC of H{s) is Re{s} > =1. Now,

His)=

-2

Y(s) = H(s)X(s) = (sT+21+2) (s ”’

The ROC of ¥{s) will be the intersection of the ROCs of X(s) and H(s). Thisis -1 <
Re{s} <1
We may obtain the following partial fraction expansion for ¥ (s):

o 2/5 | 2s/5+6/5
L s = 7y 4

We may rewrite this as
_ s 2 s+l 4 1 ]
YO==5 TE [(34-1}"4-1] *3 [(;-o-x)h.—l

Noting that the ROC of ¥(s) is =1 < Re{s} < 1 and using Table 9.2, we ohtain

ylt) = gg‘u{—:) + %n" costu(t) + %c"'sintu(t}.

We know that . 1

2i{t) = ult) #= Xals) = 2,
Therefore, X)(s) has a pole at s = 0. Now, the Laplace transform of the output u (f} of
the system with =(t) as the input is

Yi(s) = H{s) X, (s).

Re{s} >0

Since in elue 2, ¥;(s) is given to be absolutely integrable, H{(s) must have a zero al 5 = 0
which cancels out the pole of Xy(s) at s =0.

We also know that
zolt) = tult) ¢54 Xa(s) = ;1, Refs} > 0.

Therefore, X3(s) has two poles at s = 0. Now, the Laplace transform of the output wa(t)
of the system with z3(¢) as the input is

Yals) = H(s)Xz(s).
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kowew Porfies:

wlt)

Figure 89.35

Thercfore, f(t) = dyi(t)/dt. Similarly, e(t) = df(t)/dt. Therefore, elt) = Py () fde®.
From the block diagram it is clear that

d* d
o) = ) - 710 - 63a(0) = TonD - B )

Therefore,

¥(s) = s*Yi(s) - s¥y(s) = 6¥1(s). (59.35-1)
Now, let us determine the relationship between yi(t) and z(t). This may be done
by concentrating on the lower half of the above figure. We redraw this in Figure 59.35.
From Example 9.30, it is clear that y(t) and z(t) must be related by the following
dillerential equation: £ i
wlt) 1 (E — 2t
—z 2——‘”' + wft) = ={t}

Therefore,
X(s)

s+ 2541
Using this in conjunction with eq (59.35-1), we get

Y.(a) =

&2 =56
ity J5+23+]x(3}

Taking the inverse Laplace transform, we obtain

‘f?;(,'} + 2"% +ylt) = f:l—?) 3 L‘% - 6x(t).
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Since in clue 3, ¥3(s) is given to be not absolutely integrable, /(s) does not have twa zeros
at s = 0. Therefore, we conclude that H(s) has exactly one zero at s = 0.

From Clue 4 we know that the signal
d2h(t) |, dhit)
Plt) =~ + 25~ + 2h(t)
is finite duration. Taking the Laplace transform of both sides of the above equation, we get
P(s) = s*H(s) + 2sH(s) + 2H(s).

Therefore,

P(s)
4 20+2
Sinee p(t) is of finite duration, we know that P(s) will have no poles in the finite s-plane.
Therefore, H{s) is of the form

H(s) =

N
Ats = =)
=1
) = sy
where z;, 3 = 1,2,++- , N represent the zeros of P(s). Here, A is some constant.

From Clue 5 we know that the denominator polynomial of H(s) has to have a degree
which is ezactly one greater than the degree of the numerator polynomial. Therefore,

_ Als-=#)
Hiz) = S+2s+2

Since we already know that H(s) has a zerv al s = 0, we may rewrite this as

As

#)e s

From Clue 1 we know that H(1) is 0.2, From this, we may easily show that A = L.
Therefore, a
Hiak= 2 +254+2
Singe the poles of H{s) are at —1 % j and since h(t) is causal and stable, the ROC of H{s)

is Re{s} > -1.

9,35, (a) We may redraw the given block diagram as shown in Figure §9.35

9.36.

From the figure, it is clear that

PO vy
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Figure $9.36

{b) The two poles of the system are at —1. Since the system is causal, the ROC must be to
the right of s = —1. Therefore, the ROC must include the juw-axis. Hence, the system
is stable.

(a) We know that ¥;(s) and Y (s) are related by
Y (s) = (25° + 45 = 6)Yi(s).
Taking the inverse Laplace transform, we get

d? d
ylt) = 2%('} + 4——‘:‘“) —6ylt).

(b) Since ¥i(s) = F(s)/s, f(t) = dy(t)/dt.

(c) Since F(s) = E(s)/s, e(t) = df (1)/dt = d*y {t)/dt*.

(d) From part (a), y{t) = 2e(t) + 4/ (t) - 6y ().

(e) The extended block diagram is as shown in Figure 59.36.
(F) The block diagram is as shown in Figure 59.36.

(g) The block diagram is as shown in Figure 59.36.

The three subsy may be ted in parallel as shown in the figure above to
obtain the overall system

9.37. The block diagrams are shown in Figure 59.37.
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Figure 50.37

$.28. (a) We may rewrite H(s) as

wo= [ e [ [

H(s) clearly may be treated as the cascade combination of four first order subsystems.
Consider one of these subsystems with the system function

The block diagram for this is as shown in Figure 59.38. Clearly, it contains multiplica-
tians with coefficients that are not real.

{b) We may write H{s) as

1 1
H(s) = [m] [m] = Hy(s)Ha(s).

The block diagram for H(s) may be constructed as a cascade of the block diagram of
Hy(s) and Hy(s) as shown in Figure 59.38.
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fe) We have
. e
Gls) = Xi(s)Xz(s) = _——__[s+2)ls+3]

bl
s+2 s+3
Taking the inverse Laplace transform, we obtain
glt) = ﬂ-:{xq-u“u +1)- e~ My 4 1)
(d) We have

-3
R(s) = Xils)dals) = (sT;}(Trﬂ—)

s 1
ne? e
3+2 s5+3
Taking the inverse unilateral Laplace transform, we obtain
r(t) = e ¥ 3u(t) - e~y ),
Clearly, r(t) # glt) for t > 07,

9.40. Tuking the unilateral Laplace transform of beth sides of the given differential equation, we
et

SY(s) — sfy(07) = sy'(07) = "(07) + 637 V(s) — Gsu(07)
—6y(07) + 118)(s) = 11y(07) + 6¥(s) = X{s). (89.40-1)

{a) For the zero state response, assume that all the initial conditions are zero. Furthermuore,
from the given z(t) we may determine
1
] R
Xs) = Re{s}
From eq. (59.40-1), we get
1
3 2 - —
Y(s)[s® + 6s* + 118 + 6] =

Therefore, ;
YO = Cr@ v e + 115+ 6)

form of the partial fraction expansion of the

Taking the inverse unilateral Laplace
above equation, we get

w(t) = %e"u(t} - %e""u(t} + %c'”u(l) - %E""U[f)-
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k) )

(c) We may rewrite H(s) as

_1 85+ 3 1 l1-—= = X
100 =} [y + 3 [ ] = ) + 209

The block diagram for H{s) may be constructed as a parallel combination of the block
diagrams of H3(s) and Hy(s) as shown in Figure 59.38.

9.39. (a) For zy(t), the unilateral and bilateral Laplace transforms are identical.

Xio) = X() = 5. Rels) > -2

(b} Here, using Table 9.2 and the time shifting property we get

Xalo) = =5, Refs}> -3,

The unilateral Laplace transform is

1
243"

Ay(s) =3 Re{s} > -3.
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(b} For the zero-input response, we assume that X(s) = 0. Assuming that the milal
conditions are as given, we obtain from (59.40-1)

Y(s) = _ s 48s48 1
S 4652+ 1ls+6 s+l
Taking the inverse unil I Laplace t fi of the above equation, we get

u(t) = e fult).
(c) The total response is the sum of the zero-state and zero-input responses.
u(t) = Fe~tult) - Leu(t) + e ult) - Lo Mul)
9.41. Let us first find the Laplace transform of the signal y(t) = z(—t). We have
o0
Yi{s) = f (~t)e "dt
-

= juz(t)e“dt
= X(-—s).

(a) Since z({t) = z(~t) for an even signal, we can conclude that L{z(t})} = L{z(-1)}
Therefore, X(a) = X(—8).
(b) Since 2{t) = —z(~t) for an odd signal, we can conclude that L{z(t)} = ~£{z(~11}.
Therefore, X (s) = =X(-s).
(c) First of all note that for a signal to be even, it must be either two-sided or finite
duration. Therefore, if X (s) has poles, the ROC must be a strip in the s-plane.
From plot {a}, we get

As
e T e
Therefore, A
=-AS
X(-3)= {_—s— NG = - X(s).

Therefore, z(t) is not even (in fact it s odd).

For plot (b), we note that the ROC cannot be chosen to correspond to a bwo-sided
function z(t). Therefore, this signal is not even.

From plot (c), we get
Als—j)(s+3) _ A(s*+1)

X =G e-1 - o1
Therefore, o
X{-s)= —_——a X(s)

Therefore, z(t) is even provided the ROC is chosen to be —1 < Re{s} < L.
For plot (d), we note that the ROC cannot be chosen to correspond Lo a two-sided
function z(t). Therefore, this signal is not even.
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942, (a) From table 9.2 we know that the Laplace transform of t?u(t) is 1/s® with the ROC
Re{s} > 0. Therefore, the given statement is false.

(b) We know that the Laplace transform of a signal z(¢) is the same as the Fourier transform

of the signal z(t)e™"", The ROC is given by the rauge of o for which this Fourier

transform exists,
Now, if z(t) = e u(t), then we note that as { — oo, the signal z(t) becomes

unbounded. Therefore, for the Fourier transform of of e”™%'z(t) to exist, we need to
find a range of o which ensures that €™°'z() is bounded as ¢ — 5. Clearly, this is not

possible. Therefore, the given statement is true.
(€} This statement is true. Consider the sigual z(t) = e™'. Then

(wo—a) |

X0 = [T emeta= &
~oo Jug — 3

This integral does not converge for any value of s.

(d) This is false. Consider the signal r(t) = &™9%y(1). Then
- -|™

X(s) = [Teomtemsar = 2
o Jwo =5 |

This integral converges for any value of 5 > 0,
(e) This stat t is false. Consider the signal z(t) = |t|. Then

o0 0
X(s) = / te™"dt + j — te™*dt.
o =

Both integrals on the right-hand side converge for any value of s > 0.

9.43. We are given that A(t) is causal and stable. Therefore, all poles are in the left half of the

s=plane.

(n) Note that
olt) = 9‘% £\ Gla) = sH(s).

Now, G/(s) has the same poles as H(s) and hence the ROC for G(s) remains the same.
Therefore, g(t) is also guaranteed to be causal and stable.

(b) Note that
His)

r(t) = fma-:r)af & Ris) = 22

Note that f(s) does not have a poleat s = 0 ondy if H(s) hasa zero at s = 0. Therefore,
we cannot guarantee that r(t) is always causal and unstable

ﬁﬂ = E

X(s) ~ (s42(+1)
We know that the ROC of ¥(s) has to be the intersection of the ROCs of X(s) and
H(z). This leads us to conclude that the ROC of H(s) is Res} > -1.

(b) The partial action expansion of H({s) is

2 1

3+2 s5+1

H(s) =

Hi{s) =

‘Therefore,
hit) = 26" Hy(t) = e tu(t).

(¢) ¢™ is au Eigen function of the LTI system. Therefore,

y(t) = H(3)e™ = z%e"

Since y(¢) 15 real, the third input must be of the form &% Sinee z(t} is of the form
4(£) + e + £%" and the output is y(t) = —Ge~"u(t) + fe¥ eos(3t) + Be" sin(3t), we may
conclude that H(4 3j) = & = 548

Let us try h(t) = 5(t) - 6e™"u(t). Then

9. 46,

§=5
s+1

H(s) =

We mnay easily show that H(43j) = & £715. Therefore, H(s) as given above is consistent
with the given information.

1-47. (a) Taking the Laplace transform of y(t), we obtain

Yi) =5 Rels}>-2

Therefore,
¥(a) 2+ 1

X =70 " eone+s

The pole-zero diagram for X (s) is as shown in Figure §9.47. Now, the ROC of H(s) is
Re{s} > —1. We know that the ROC of Y{s) is at least the intersection of the ROCs
of X(s) and H(s). Note that the ROC can be larger if some poles are canceled out by
zeros at the same location. In this case, we ean choose the ROC of X(s) vo be either
—2 - Tef{s} < lor Re{s] > 1. In both cases, we get the same ROC for ¥(s) because
the polesat s = —1 and s = 1 in H(s) and X(s), respectively are canceled out by zeros.

The partial fraction expansion of X/(s) is
2,

e
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9.44. (a) Note that
8t —nT)ep =T, Apg
Therefore,

o0
i ~nT_—snT _ 1
X(e) ,‘2‘ € = e

In order to determine the ROC, let us first find the poles of X(s). Clearly, the pole
occur when e~T{148) = | Thig implies that the poles 5, satisfy the following equatior

e Tl ) = ofh2x k41 4a
Taking the logarithm of both sides of the above equation and simplifving , we get

jk2
o= —I+J—Tz,k=0.11‘12_... :

Therefore, the poles all lie on a vertical line (parallel to the ju-axis) passing througt
5= —1. Since the signal is right-sided, the ROC is Re{s} = —1.

(b) The pole-zero plot is as shown in Figure 59.44.

| In
I‘ CLIE
x e
- ? R‘
* AT
i
T -unt
: Figure 59.44

(e) The magnitude of the Fourier transform X (jw) is given by the product of the reciprocals
of the lengths of the vectors from the poles to the point jw. The phase of X(jw) is given
by the negative of the sum of the angles of these vectors. Clearly from the pole-zern
plot above it is clear that both the magnitude and phase have to vary periodically with
a peried of 2a/T.

9.45. (a) Taking the Laplace transform of the signal =(t), we get

_ 23 13 s
Loy S G-26-1

The ROC is -1 < Re{s} < 2. Also, note that since z(t) is a left-sided signal, the ROC
for X (s) is Re{s} < 2.
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Le)

Figure 59.47

Taking the ROC of X(s) to be —2 < Re{s} < II, we get
z(l) = —;e'u(—l‘.) + ile_z'u(!}.

Taking the ROC of X(s) to be Refs} > 1, we get

<

3

{b) Since it is g_-iven that =(¢) is absolutely integrable, we can conclude that the ROC of
X(s) must include the Jw-axis. Therefore, the first choice of 2(t) given above is the

2(t) = Zetu(e) + %e"‘u(t}.

one we want.
() We need to ficst find a H(s) such that H(s)Y (s) = X(a). Clearly,
_ A8} s+l
H(s) = o =i

The pole-zero plot for H{(s) is as shown in Figure $9.47. Since h(t) is gi
4T, given to be stable,
the ROC of H(s) has to be Re {s} < 1. The partial fraction expansion of H (s} is

B =gt
-1

Therefore,
hit) = 8(t) = 2e™tu(—¢)

Also, ¥ (s) hu the ROC Refs) > -2 Therefore, X(s) must Lave the ROC -2 <
:.'Ze{.i} < 1 (the intersection of the ROCs of ¥{s) and H(s). From this we get (a8 shown
in part (a})

x(t) = ;e‘u(-—!] + éc'z‘u(!)‘

Verification: Now,

MO = [6(8) - 2e~u(=0)] o [e=Hu(e))
= e Hy() - 2-/-”:""'3"':1{!' - t)dr
A r
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Figure 59.48

For t > 0, the integral in the above equation is
et / S evar 1
e = —f .
A 3

For ¢ < 0, the integral in the above equation is
- 1
t -3r x
dr = ze'.
€ /o € T =3¢

h(t) e y(t) = - ;:'u{—t) + %t"‘u(t} = z(t).

Therefore,

§.48. (a) Hi(s) = 1/H(s).
(b) From the above relationship it is clear that the poles of the inverse system will be the
zeros of original system. Also, the zeros of the inverse system will be the poles of the
original system. Therefore, the pole-zero plot for Hy(s) is as sketched in Figure 59.48.

9.49. If a system is causal and stable, then the poles of its transfer function must all be in the
left half of the s-plane. This is because the ROC of 2 causal system is to the right of the
right-most pole. For the ROC to contain the juw-axis, the right-most pole must be in the
left-half of the s-plane.

Now, if the inverse system is also causal and stable, then its poles must also all lie in the
left half of Lhe s-plane. But we know that the poles of the inverse system are the zeros of
the original system. Therefore, the zeros of the original system must also lie in the left-hall
of the s-plane.

9.50. (a) False. Counter-example: H(s) = 1/(s = 2),Re{s} < 2.

(b) True. If the system function has more poles than zeros, then h(t) does not have an
impulse at t = 0. Since we know that h(t) is the derivative of the step response, we
may conclude that the step resy has no discontinuities at ¢ = (1
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at 3 j, we know that the output of the system to the two exponentials has to be zero.
Hence, the response of the system to ¢ sin(t) has to he zero.

9.32. (a) Consider the signal ylt) = z(t = tg). Now,

¥{s) = f’ z(t — tp)e *dt.
Replacing { — tg by 7, we get

Y(s) = fw :[r]e""”’)d‘f

-0
= e‘"‘fQ z{r)e™ Tdr
-0
= e Mo X(s)
This obviously converges when X (s) converges because e~*% has no poles Therefore
the ROC of ¥ (s) is the same as the ROC of X(s).
(b) Consider the signal y(t) = e'z(t). Now,
o0
Yis) = f z(t)e’ete " dt
-1

fw z(tye -0t

X(s = %)

]

If X{s) converges in the range o < TRe{s} < b, then X(s ~ 5g) converges in the range
a+ sg < 5 < b+ so. This is the ROC of ¥Y(s).

(c) Consider the signal ylit) = z(at). Now,

Y(s) = fw z{at)e " dL

Replacing et by 7 and assuming that a > 1, we get
Y(s) = [llé‘nz)-/m° z(r)e " /3dr
= (1fa)X(s/a).
If & <0, then
Yis) = _(I;a}jwzm,-:{rmd,
-0
= —(1/a)X(s/a).
Therefore, i 5
Y(s) = X (2)-

a
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-1 &
X -1 -]
Figure 59.51

(c) False. Causality plays no part iu the argument of part (b).
(d) False. Counter-example: H(s) = (s — 1)/(s + 2}, Re{s} > =1

3.51. Sinee h(t) is real, its poles and zeros must occur in complex conjugate pairs. Therefore, the
known poles and zeros of H(s) are as shown in Figure 38.51. Since H(s) has exactly 2 zeros
at infinity, H(s) has at leas! two more unknown finite poles. In case H{(s) has more than
4 poles, then it will have a zero at some location for every additional pole. Furthermore,
sinee h(t) is causal and stable, all poles of H(s) must lie in the left half of the s-plane and
the ROC must include the jw-axis.

{a) True. Consider

olt) = hit)e™™ 55 G(s) = H(s +3).
The ROC of G(s) will be the ROC of H(s) shifted by 3 to the left. Cleacly this ROC
will still include the jw-axis. Therefore, g{t) has to be stable.

(b} lnsufficient information. As mentioned earlier, H(s) has some unknown poles. So we
do not know which the rightmost pole is in H(s). Therefore, we cannot determine what
its exact ROC is.

(c) True. Since H(s) is rational, H(s) may be expressed as a ratio of two polynomials in s.
Furthermore, since h(t) is real, the coefficients of these polynomials will be real. Now,

Y(s) _ Pls)
X(s) QM)

Here, P(s) and Q(s) are polynomials in 5. The differential equation relating =(t)
and y(t) is obtained by taking the inverse Laplace transform of ¥'(s)Q(s) = X(s)P(s).
Clearly, this differential equation has to have only real coefficients.

(d) False. We are given that H(s) has 2 zeros at s = co. Therefore, lim, 4o His} = 0.

(e) True. See the reasoning at the beginning of the problem

(f) Insufficient information. H(s) may have other zeros, Sce reasoning at the beginning of
the problem.

(g) False. We know that ¢*sin(t) = (1/27)@+30 — (1/25)el3=7, Both @) and pl3-dlt
are Eigen functions of the LTI system. Therefore, the response of the system to these
exponentials is H(3 + j)e@*?)" and H(3 — §)et3=t respectively. Since H(s) has zeros

H(s) =
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Il X{s) converges in the range a < Re{s} < f, then X(s/a) converges in the
range afa < s < ffc when a > 0. When a < 0, then X (s/a) converges in the range
Bfa < s < afa.

(d) Consider the signal y(t) = z(t) » &(t). Now,

Y(s)

o
f [z(t) » h(t)]e™*dt

j::f_::(r)hh — r)dre=tdt
.L:z{r) [ j: :h(: —r)e dll 3

Using the time-shifting property, we get

n

¥Y(s) = fwz{-!)h'(s}n“'dv

H(s}[“ z({r)e™dr
= H(s)X(s)

Clearly, ¥ (5) converges at least in the region where both X (s) and H{s) converge. lts
ROC may be larger depending on whether some of the poles of either H{s} or X (s} get
cancelled out by the zeros of X(s) or H(s), respectively.

9.53. (a) From the example worked out in the text we have
" c 1
€ = u(t) +— m—--m' Re{s} > a.

With & = 0, we get

2(0+) (;:-‘,) uft) <5 I:RT). Re{s) > 0.

(b) We may rewrite eq. (P9.53-1} as
z(t) = Z:“(DH (:%) .

Taking the Laplace transform of both sides of this equation and using the result of part

(a), we get
X(s) = Z‘—:ﬁ—‘ﬁ-’—}. (59.53-1)
A=
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(e) From the result of past (b), we have
sX(s) = 2O(0+) + 2N(O+) /s + -+

Therefore,
Jim sX(s) = 2(9(0+) = 2(0+).

(d) (1) Assuming that the ROC is s > -2, we get
2(t) = e~ Hu(t).
Therefore, z(0+) = 1. Now,
. ;i s
,I_I‘I!GIUJX(-U) = .qllﬂlom =1
(2) The partial fraction expansion of X(s) is

X(s) = (—%) -
Assuming that the ROC is s > =2, we get

z(t) = 2¢*u(t) — e ult).
Therefore, z{0+) = 1. Now,

s +a
; P o e, S [
-Ilm sx(s]_‘lm 1545

() Assuming that z("(0+) = 0 for n < N, €q.(59.53-1) may be written as

= 2" (0+
X =3 :,,(m )
n=N
Now,

N+l N+2
M X(s) = =Mo+) + I__;@_'_’_E_u,ﬂ sy

&
Therefore,

lim sV X(s) = M 0+).
o0
9.54. (a) We have ;
1 ﬂ"“x-( J -\..[ﬂ
= m— s)e .
=) ??"J'j;-,'m
Conjugating both sides, we get
1

i ot
)= —=— * ds.
£ i Jotyoe e

57

Pair 13 Using the shifting in the s-domain property on pair 11, we get
a+a

—at £
e~ ens(wgt)u(t) +— —_(-'+ T

Refs} > -a.
Pair 14:Using the shifting in the s-domain property on pair 12, we get
S & g =
e~ ¥ sinfwyt)u(t) +— m. Rels) > -a
Pair 15:From pair 1 of Table 9.2, we have

uo(t) = 8(t) <41, Alls.

44T,

Using the

iation in time-domain property on this signal, we get
[
wi(t) = %E_) Lis,  Alls
Continuing along these lines and differentiating 4(t) n times, we get
d"d(t
unlt) = ~d—£f‘—’ Losn Al
Pair 16:From pair 2 of Table 9.2, we have
ult) < -i-. Re{s} >0
By applying the convolution property, we get
o
—2(f) = ult) » u(t) = .
uoalt) = u(®) v ul)) 5 5, Rels) >
Continuing along these lines and convolving u(t) with itsell n times, we get

wnl®) 55 5, Refs}>0.

[mlz(l)lc'“'dt < oo,

we need to prove that [ X(sg)| = 0, where sy = ag + jwy. We have
oo
1X (30} = [f :(i)e"“‘dli =
—oo
Using eq. (P9.56-1), we get
Xl 5 [ lattermteita
piss
[ iateyieeiar

-0

9.56. Given that

o
j a(t)e otg~Ielgy
-0

1A

oo

WA
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For a real sigoal z{t) = 2*(t). Therefore,

1 == :
z(t) = —— X*(s)e* tds.
2 a4joe

Replacing s* by p and noting that dp = —ds for a fixed 7, we get

L[ x ot
2nj oo F
L[ e gr)ert
o *(p*)ePd
7 Jo—soo (p*)e"dp
Therefore, L{z(t)} = X*(s*). This implies that X(s) = X*(s").
(b) Let X(s) have a zero at 5 = s;. Then X(#) = 0. From the result of part (a), we know
that X*(sj) = 0. This implies that X(s}) = 0, which in turn implies that X (s} has
a zero at s]. The same approach may be used to show that poles occur in conjugate
pairs.

I

z(t)

1

9.55Pair 10:From pair 1 of Table 9.2, we have
5t) 551, Al s,
Using the time-shifting property, we get
(t-T) 56T, Alls.

Pair 11;From pair 6 of Table 9.2, we have

oly(t) ¢ ——.  Rels) >0 (89.55-1)
§ = Jug

and

eIvnty(e) o5y i) Re{s} > 0. (59.55-2)
Note that cos{wgt) = (1/2)e/*0¢ 4 (1/2)e=7%¢. Now using egs. ($9.55-1) and (59.55-2}
with the linearity property, we get

c 1 1 1 1 &
et o R R
The ROC will be Re{s} > 0.
Pair 12:Note that sin{wgt) = (1/27)e% = (1/25)e~ 7t Now using eqs. (59.55-1) and (58.55-
2) with the linearity property, we get
1

. 5 1 1 1 wn
u(l) =+ = - —— - = —.
sin{wot)u(t) % S-Ju’o] 2}[,4_3%] T

The ROC will be Re{s} > 0.
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Plousibility of eq.(P9.56-1): Integration is akin to the addition of an infinite number of
complex numbers, For any two complex numbers A and B, we know that |4+ B| < |A|+|B|.
Using this, we may argue that the same should hold for a i sum of compl b

or the integration of a complex function.

9.57. Since =(t) has an impulse at ¢ = 0, the numerator polynomial of X(s) must be of the
same /larger degree than the denominator polynomial of X (s). This implies that X (s) has
al least 4 zeros.

9.58. Since g(t) = Re{h(t)}. )

_ i)+ h7(t
glt) = ————

Using the linearity and conjugation properties, we get

o) = AT ),

The ROC of G(s) will be at least the intersection of the ROCs of H(s) and H*(s"). This
means that the ROC of G(s) will be at least as much as the ROC of H{s). Therelore, if
H(s) is causal and stable, then G(s) also has to be causal and stable.

9.50. (a) Let y(t) = =(t = 1}. Then,
= ‘-, - —lld 3
Yis)=eT"X(s)+e E:(t)c t

(b) Let y(t) = z{t + 1), Then,

1
P(s) = e X(s) - ='f a(t)e"dr.
(']
{3
(c) Let y(t) = f‘w:(f)rﬁ. Then,

X(s) + f ® a(ertat

-]
L]

Vis) =
(d) Let y(t) = d*z(t)/dt’. Then,
Yis) = 2 X(s) - s*2(07) — s2'(07) = ="(07).

9.60. (a) We have
h(t) = adlt = T) + a*(t — 3T).
From Tables 8.1 and 9.2,

H(!) o m--lT & 036—311". All 5.
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(b} To determine the zeros of H (1), note that we require
ae=T 4 oPe 3T = ae~T(1 + a?e 27| = 0.

Therefore, at the zeros
1+a%e T =0 = ae'T=4%j
This implies that the zeros occur al

1 2k
s=plogax [%1?— , k=0,41,£2 .
At the poles, H(s) = ov. Therefore, at the poles we require that
aeT +ate T =ae (L +a%e 27| = co.

This is not possible at any finite 5. Therefore, there are no poles in the finite -plane.

{c) The pole-zero plu} is as shown in Figure 59.60.
-,

? 7 1
T ant | Htgwn
w i ) i
& 4 Mt
| . S = l"l;f ey +t-J
-3 - in
A e e EE| % E
T 1
4
b F-aufr
Figure 59.60

(d) From the figure it is clear that H{jw) will be periodic and will be as shown in Figure
59.60.

9.61. (a) If we want ¢zz(t) to be the output of the system when z(t) is the input, then
durtt) = [ atrihe =)
]

Also we are given that

dutt = [ ® a(r)elt + T)dr.

Therefore,

zit+r)=hit—-1) = hit) = z(-t}.
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But s
e ¢ 1
T““’ — W s> -1

Therefore, [ ;

Xt o g F

N dam u(t) «—r ErT §» -1,

It follows that

1 U ¢ (s=1/2)"
e""m T uft) +=— -—-—'-—{’ T s> —1/2.

Therefore, ( )
s—1/2)"
@.(s) = W‘ s> =1/2.
(¢} Choose i
Hils) = PFeYs
and
(s -1/2)

Ha(s) = m{ﬁ]
9.63. (a) We have 5
H(s)= FrayiL

The pole-zero plot for H(s) is as shown in the Figure $9.63. Using the geometric
hod for evaluating the magnitude of the Fourier transform, we may sketch 1A {(jw)}

as shown in Figure 59.63.

IHjw)

]a(,' )

Figure 59.63

Also, 3
Gs) = H(}fs) = =5

The pole-zero plot for G(s) is as shown in the Fi
for evaluating the magnitude of the Fourier transform, we may sketch

in Figure 89.63.
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igure 59.63. Using the geometiw jnethod
|G (jul| as shown

Figure 59.61

(b) Since ¢-:(t) = z(t) ¢ 2(—1),
Pyz(s) = X(s)X(~5)

and
Syp(fu) = X (Gw) X (=jw).
If z(t) is real, X*(juw) = X(—jw) and
Breliw) = | X Gw)*.
(c) 1f X(s) has a pole-zero pattern as shown in Figure P9.61, then X (—s) has a pole-zero
pattern as shown in Figure S9.61. The corresponding ROC is also shown m Figure

30.61.
Neow, ®,(s) will include the poles of both X(s) and X(—s). Furthermore, its ROC
will be the intersection of the ROCa of X (s) and X(=s). (See Figure 89.61)

49.62. (a) We have
Lo(t) =e'e™' = 1,

Lift) = e:d_“%;_]l =effet —te™ =1t
e dP(tfe")
La(t) T
= ;-:IZG"‘ —2te™" — 2t~ + 1%

1
= 1= ey
2t+2f

(b) We have
dnlt) = ﬁe'ﬂ%um
l‘leq-,d"[f"e"u(s) + t"e"u{-c}]"(t)

n! ! dt"
A _1_ d"[t"e™ ult)]
. rl!ul!lﬂ dn :
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(b) LCCDE associated with H(s):
Consider Y(s) .
5
) = X(s) s+1/2
Cross-multiplying and taking the ioverse Laplace transform, we obtain

0 | Jute) = =00,

LCCDE associated with G(s):

Consider Y(s) 28
k]
O6) =X * 57
Cross-multiplying and taking the inverse Laplace transform, we obtain

dz(t)
dt
(c) Taking the Laplace transform of eq.(P8.63-1), we obtain

% + 2y(t) =2

~ N
2 ety (s) = I bes* X (s).
k=0

k=0
Therefore,
N
e
L L) R R
a0
Zn,,a"
k=0
Now
N N
Eb*.l i zb;,s” =
Gls) = H(1/s) = 552 =
zau'* Eﬂn&” £
k=0 k=0
(d) Now from the previous part, we have
N
Y( bu""'
o Yl8) _ x=0
G(s) X@) - .
E“* Nk
k=0
Cross-multiplying and taking the inverse Laplace transform, we obtain
N Al N
d¥-Ey(t) d¥*z(t)
Z"‘: ANE Zb*' PTG
k=0

k=0
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9.64. For the circuit, we know that the differential equation relating the input z(t) and autput

ult] is
LCJ;‘:E) + Rc% +y(t) = =(0).
Taking the Laplace transform of both sides and simplifying, we get
Hig) = 200 1/LC

X(s) - &+ (R/L)s + (1/LC)’
(&) Note that the poles of H(s) arc at

-RC + VRICT = 4LC
—_—

If R, L, and € are always positive, then the poles are always in the left half of the s
plane {because the real part of the numerator of the above equation is always ol
Sinee the system is causal, the ROC is to the right of the right-most pole.  Therdone
the ROC includes the ju-axis and the system is stable.

(b} From H(s} we obtain
l —
L3C%s% + (RLC? - RLC?)sY + (2LC — R¥C¥)s? + (RC - RCix 4 1
1
L3C3s% + (2LC - Eicﬁ}ai +17

For this to represent & seeand order Butterworth filter, we require

H{s)H(-s) =

L

ALC-RC'=0 = R-z‘r‘b.
9.65. (a) Thedifferential equation relating vi(t) and v,(t) may be obtamed by putting 511} = ()
and y(t) = v,(t) in the differential equation given in the previous problem. Therefore,

d’ug(t)
de?

d'"u(l}

LC—=— + RC

+ wolt) = wilt)
or
Pug(t) | Rduolt) 1 1
= Yt a T '-'-(‘J outt)
(b) Taking the unilateral Laplace transform of the above differential equation, we get
$V(8) = 5Vel07) = V4 (07) + FoVels) = Vul0™) # 7 Vals) = 7V )
159.65--1)
Now, since v,(t) = e Puft),

Vi(s) = Refs} > -3

1
s+3
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Chapter 10 Answers
10.1. {a) The given summation may be written as
s ] ] "
= f et =pm
3 (z' ) e
nm=1
by replacing z with re/*. If r < }, then jr' > 1 and the function within the
summation grows towards infinily with increasing n. Also, the summation does not
converge. But if r > i then the summation converges.
(b) The given summation may be writien as
35 @t
l|=|2
by replacing = with r&’. If r > (1/2), then 2r > 1 and the function within the
summation grows towards infinity with increasing n. Also, the summation does not
converge. Bul if r < §, then the summation converges.
{e) The summation may be writlen as

ir'" + (—r]"‘e_m
2
LE

by replacing = with re?. 1[r > 1, then the function inside the summation grows
towards infinity with increasing n. Also, the summation does not converge But if
r < 1, then the summation converges.

{d} The summation may be written as

o
Z{ P cos(an/fale R 4 Y (ér)'“mimﬂ}e""‘
A=0 As-ao

by replacing z with re?”. The first summation converges for r > . The second
summation converges for r < 2. Therefore, the sum of these two summations converges
for f<r <2

10.2, Using eg. (10.3),

Xi(n) = n-Z-u( ) ufn =3z
- }Z:(%)"“"
z [125]2(;
= [125 i_—# Lz]}%
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Substituting this aloug with the values of R, L, and C in eq. (59.65-1), we get

_ At +5547)
YlS) = Gw (s + 2)(s +3)°

The partial fraction expansion of V,(s) is
2 1
LU +1_s+2+s+3‘
Taking the inverse Laplace transform, we get

volt) = Fe~"uft) = 26 Hu(e) + e Mult).

9.66. (a) The differential equation relating 5(¢) and vs is

dit)

— + ya [l) = —u{l)

Also, i(0°) = v /R.
(b) Taking the unilateral Laplace transform of the above differential equation, we get

a1(8) = 4(07) + T 1(s) =

(i) This corresponds to the zero state response of the circuit. Here,

1 1]
(.+1} o ey o]

i(t) = 2u(t) — 2¢~*u(t).
(ii) This corresponds to the zero state response of the circuit. Here, (07 ) = 4 and

I(s) =

Therefore,

Ho)= oy

‘Therefore,
() = de~tu(t).

(iii) This corresponds to the total response of the system. It will be the sum of the
results of the previous two parts.

i) = 2ule) + 2 u(t).
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10.3. By using eg. (9.3), we can easily show that

—_—g=ne
a"u[=n = ny) S

e || < |ex|.
We then obtain AR
_z- s
X(z) = l+z"+m’ 1< |z| < |al.
Therefore, |a| has to be 2. ny can take on any value,
10.4. Using eq. (9.3), we have
0
1
X@ = 3 () cos(Im)a
= “"12) Z { }ue;mf( -4 (1/2) E { ]n -yenfd g —n
- umﬁ( e (1723 () e
n=0
- ) 1 1
= {l,f?,] TFez T i‘]'{2'}1 - Jerfiz’ ik 3

The poles are at z = %e"” and z = g-e"i’-'"'.

10.5. (a) The given =-transform may be written as

X(2) = e "
e 7o e

Clearly, X(z) has a zero at = = §. Since in X(z) the order of the denominator poly-
nomial exceeds the order of the numerator polynomial by 1, X(z) has a zero at oo,
Therefore, X(z) has one zero in the finite z-plane and one zero at infinity.

(b) The given z-transform may be written as

(z—-1){z-2)

G-3)E-4)
Clearly, X(z) has zeros at = = 1 and £ = 2. Since in X(z), the orders of the numerator
and denominator polynomials are identical, X (z) has no zeros at infinity. Therefore,
X(z) has two zeros in the finite z-plaone and no zeros at infinity.

(e) The given z-transform may be written as

X(=)=

P T | S
z(s - ;I](; + ;)

Clearly, X(z) bas a zero at = = 1. Since in X(z) the order of the denominator poly-
nomial exceeds the order of the numerator polynomial by 2, X(z) has two zeros at oo.
Therefore, X (z) has one zero in the finite z-plane and two zeros at infinity.
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10.6. (a) No. From praperty 3 in Section 10.2, we know that for a finite-length signal. the
ROC is the entire z-plage. Therefore, there can be no poles in the finite z-plane for a
fnite-length sigual. Clearly, in this problem this is not the case.

(b) No. Since the signal is absolutely summable, the ROC must include the unit circle.
Also, since the signal has a pole at z = 1/2, the ROC can never be of the form
0 < |z] < rg, From property 5 in Section 10.2, we know that the signal cannot be left
sided.

(e) Yes. Since the signal is absolutely summable, the ROC must include the unit circle
Since it is given that the signal has a pole at z = 1/2, a valid ROC for this signal would
be [z] = 1/2. From property 4 in Section 10.2 we know that this would correspond to
@ right-sided signal.

(d) Yes. Since the signal is absolutely summable, the ROC must include the unit circle,
Clearly, we can define an ROC which is a ring in the z-plane and includes the unit
circle. From property 6 in Section 10.2, we know we ma conclude that the signal could
ke two sided.

10.7. We may find different signals with the given z-transform by choosing different regions of

convergence. The poles of the s-transform are

LT i ol = 8
= .2.7‘ 1 2)» 2 2 4—‘-

Based on these pole locations, we may choose from the following regions of convergence:

(i) O<lzf <}

(i) $<fzgj<i

iii) |2] > 3

Therefore, we may have 3 different signals with the given z-transform.

10.8, 1If

z[n] 25 X(2), R,

then from Table 10.1 we have

G)":[rq Zxun, lr

o -

n
( é) zln) 2+ X(82), éﬁ.
Since R includes the unit circle, and X(z) has a pole at z = 1/2, we may conchude thar B
is definitely outside the circle with radius 1/2. The only question we now have to answer is
whether R extends to infinity outside this circle of radius 1/2. Since § R does not include
the unit circle, it is clear that this is oot the case. Therefore, R is a ring in the z-plane
From property 6 in Section 10.2 we know that z(n] must be a two-sided signal.
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- Since the ROC includes the entire z-plane, we know that the signal must be finite length,
From the finite-sum formula, we have

D.1

11024 - 0] E oy
[ -5 )

— 3z
Comparing this with the definition of the z-transform in eq. (10.3), we obtain

e { ()" 0<nso
0, otherwise

12. The pole-zero plots for each of the three z-transforms is as shown in Figure $10.12.

Tim

Figure 510.12

(a) From Section 10.4, we know that the magnitude of the Fourier transform may be

expressed as i
.

e = Length of v; '
where 0] is as shown in the figure above. Clearly, for small values of w (w near zeta).
the right-hand side of the above equation is small. But as w approaches m. the right-
hand side of the above equation becomes large. Therefore, H(e?~) is approximately
highpass.
(b) From Section 10.4, we know that the magnitude of the Fourier transform may be
expressed as R . hof )
agth of vj J(Length of
—_— b
G- (Tength of 63)?

where 1], 4, and @ are as shown in the figure above. Clearly, for small values of
W (w near zero), the numerator of the right-hand side of the above equation i much
larger than the denominator. Therefore, Hy(e™) is large near w = 0. But as w
approaches =, the denominator of the right-hand side of the above equation is r_nnch
larger than the numerator. Therefore, Hy(e?) is small near w = n. Therefore, Ha(e'~)

is approximately lowpass,

3

10.8. Using partial-fraction expansion,

2/9 /9
X(z) = 'I‘TJL—__T-F-]‘T;T_-I—. lz] > 2.

Taking the inverse #-transform,
7
zln] = gu{n] +5(=9"ufn].

10.10. We use the approach developed in Example 10,11 to solve this problem,
(a) Since |2] > §, we may use long division to obtain the power-series expansion of X
as shown below,
- <1{1 - 5
13" ) I+ 371 (14 g, e
|‘+_3L*—!
e i
Zo-l o,
I
S8+ 2y
L.t o2 3
?¥ +353

Comparing X(z) with the definition of the z.transform in 2q. (10.3}, we see that
2 2
] 1, = = =—,
M=t ah)=g a2

(b) Since |2| < : we may use long division to obtain the power-series expansion of X(=
as shown below,

‘%z_‘&""') 37+ (3-¢y s
¢ 42
-2

-2 . QE-I
621

1
Comparing X(z) with the definiti

of the z-transform in eq. (10.3), we see that
0] =3, z[-1]=-g, z[-2) =18.
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(¢) From Section 10.4. we know that the magnitude of the Fourier transform may be
expressed as
(Length of ;)2
(Length of v3){Length of i)'
where ], 4], and & are as shown in the figure above, Clearly, for small values of
@ {w near rero), and for values of w near # the numerator of the right-hand side of
the above equation is almost the same as the denominator. But when || is mear

|Hyer)| =

approximately bandpass.

10.13. (a) The signal g[n} is
oln) = 8fn) - dfn — 6],
Using the definition of the z-transform in eq. (10.3), we obtain

Gll=1-2"%_ |z>0

(b) From Table 10.1, we have

1
1-z-1

z[n] = f: alk] PN X(z) =

k=ano

Glz), At least|z) > 1.

Therefore,
13
—. >0
The ROC is |z| > 0 because 2[n] is a finite-length signal,

X(z) = ]E__L

10.14. (a) We know that z[n] » z[n] will be triangular signal whose first non-zero value occirs at
n = 0. Furthermore, we also know that z[n] = z[rn — ng] has its first nonzern value at
7 = ny. Therefore, ng = 2.
(b) From Problem 10.13 we have

1= z-¢
X(e) = 1y __:_l, Jz] > 0.
Using the shift property,
e ]
:[ﬂ«-?]hz-fz"il—_%. Jz2] >0
Using the convolution property,
— -6 2
gln] = zfn] s 2[n — 1] &, ;-2 ({—_%) v zl>0

Since
lim G(z) = 0 = g[0),

G(z) does satisfy the initial value theorem,
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10.15. Taking the z-transform of y[n], we have

Y(:) = .1.:-.:?, > g

Now from Table 10.1, we have

wln] = yglnl = { gE"L :: : g: & Yi{z) = Yz, 2> %

‘Therefore,
1 1
wtl =1, wmil]=0, 2= 5 w3 =0 w{d= Eir

it = 3 [(3) s+ - (3) -

If we now choase z{n] to be & [(4)" u[n]], then

This may be written as

Yils) = V() = (12X () + X(-2), el > %

Furthermere, since X{z) has only one pole and one zero, this choice of z[n] satisfies both
the given conditions.

We may also choose z{n] to be § [(=1)* (})" u[n]]. This would still satisfy both given
eonditions.

10.16. For a system to be both causal and stable, the corresponding z-transform must not have
any poles outside the unit circle.
(a) The given z-transform has a pole at infinity. Therefore, it is not causal
(b) The poles of this z-transform are at z = j and z = —§. Therefore, it is causal
(¢) This z-transform has a pole at ~4. Therefore, it is not causal,
10.17. (a) Since lim;ace = 1, H(z) has no poles at infinity. Furthermore, since hin] is given to be
right-sided, h[n] has to be causal.

(b) Since hln] is causal, the tor and d inator poly ials of H{z) have the
same order. Since H(z) is given to have two zeros, we may conclude that it also bas
rwo poles.

Since h{n] is real, the poles must occur in conjugate pairs. Also, it is given that one
of the poles lies on the circle defined by |2| = 3. Therefore, the other pole also lies on
the same circle.

Clearly, the ROC for F(z) will be of the form |2] > §. and will include the unit
circle. Therefore, we may conclude that the system is stable.
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10.20. Applying the unilateral z-transform to the given difference equation, we have
2 Y(2) + yl=1] + 2¥(z) = X{a).
(a) For the zero-input response, assume that z[n] = 0. Since we are given that y=1=2
-1
-1 i s e —
21V +yl-1) +20(2) = 0= Y2) = T
Taking the inverse unilateral z-transform,
e
ol == (-5) uinl

(b) For the zero-state response, set y[— 1] = 0. Also, we have

(=) = UZ(/2)ulr]) = 1—_—;—. o> 5

o) = (1—_3‘—5—,) (e—i—,) .

We use partial fraction expansion followed by the inverse unilateral z-transform to

obtain i e L/1N"
=2 () e 1 (3) o

(c) The total response is the sum of the zero-state and zerc-input responses, This is

oot = -3 (-3) i+ 5 (3) uin:

10.21. The pole-zero plots are all shown in Figure S10.21.
(a) For zfn] = §[n + 5],

Therefore,

X{z) =2 Alz
The Fouricr transform exists because the ROC includes the unit circle.

(b) For z|n] = §[n — 5],
X(z)=z"%  All z except 0.

The Fourier transform exists because the ROC includes the unit circle.
(¢) For z[n] = (-=1)"u[n},

oo

X(z) = Z:[n}z“‘

n=—o

— Z(_l}nz-n
n=0
= 1/(1+=7"), |d>1

“The Fourier transform does not exist because the ROC does not include the unit circle,
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10.18. {a) Using the analysis of Exampls 10.28, we may show that
— B! -2

H(z) = 1—-6:z"" 4+ 82 ;

1= §1—2+ ;:—2

Since H(z) = Y (z)/X(z), we may write
Y - grl + %ﬁf] = X(2)1 - 627 + 8277,
Taking the inverse z-transform we obtain
2 1
yln) = iy[“ =1)+ Ey[n -2} = z[n] — 6zfn — 1] + Bz[n - 2].

{b) H(z) has only two poles. These are both at = = }. Since the system is causal, the
ROC of H{z) will be of the form |z| > 4. Since the ROC includes the umi circle, the
system is stahle.

10.19. (a) The unilateral z-transform is

Xiz) = E(:—)"u[n-l-ﬁ]:"‘

n=0

- 1o, -n
= Z(;)z

n=0
N S
1-(1/d)z-V"
(b) The unilateral z-transform is

X(z) = i(a[n + 3] + d[n] + 2*[=n])z7"

n=0

o0
= 3 (0 +d[n] + d[n])s 7"
n=l

= 2, Alz

The unilateral z-transform is
2 = T
n=0

= YT

n=0

1 1
= =umee Wz
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{d) For z[n| = (1/2)"*'ujn + 3],

X(z) = Ez[n]z""

= Yt

- Z(Uﬁn-ﬁz-mﬂ

n=t
= 42/(1-(1/2)z7"), sl > 1/2
The Fourier transform exists because the ROC includes the unit circle.
(e) For z|n] = (=1/3)"u[-n =2},

Ll

X = Y e

n==oo

—2
= z (-1fa=""

n=—os

= Z(-]ﬂi}'":"

= z[-1}’3)_"_:$"+2

n=0
= 0:2/(1+32), | <1/3
= 3z/(1+ /37N, ll<1/3

The Fourier transform does not exist because the ROC does not include the unit circle.
(f) For z{n] = (1/4)"u[-n + 3],

X(z) = i:!n}z""

3
= 3 A
n=—00
Ll

= 3 (A
n=-3
=5 Z(”q-nm\:n-.\
n=l
= (/64)z77 /(1 =42), |z <1/4
= (11674 /(1 = (1/4)z™"), | < 1/4
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The Fourier transform does not exist because the ROC does not include the unit cirele.
(g) Consider x,[n] = 2"u[-n),

)

Xifz) = Zx;{n]z"‘

LES

o
s Z (2}"1_"
A=

- Z(z)» L

n=0
= Y -(1/2)2), |z <2
= -27Y(1-2:7"), <2

Consider za[n] = (1/4)"uln - 1),

Xa(z) = Z z3[n)z~"

= S (jan
na=|

- Z“/‘)"H"-“-’

n=)

= -, e s 1y

The z-transform of the overall sequence z[n] = z;ln] + zafn] is

2. 270 1
I—_(—U-EZTI-, (1/4) < |z] < 2.

2=}
G-zt

The Fourier transform exists because the ROC includes the unit circle
(h) Consider z[n] = (1/3)"~2ufn — 2].

X(z) = ¥ zjnje

n=-00

X(t)= =

00
e z(ln}n—iz—n

nm?

o0
= Y-t
n=0
YO - (132N, 2> 173

The Fourier transform exists because the ROC includes the unit circle
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Now
A2l o Es s > (72
and
(@ ul=n - 1) 25 ‘171;7- 2l <2
Therefare,
X(z) = "Tilmz——- = 1-:%_[ (1/2) < 2] < 2.

Note that z[n] = nz,[n]. Therefore,

G2t 2
VAP R T

The ROC is (1/2) < |2| < 2. Therefore, the Fourier transform exists.

X(2) = ~a3 Xi(e) =

(c) Write z|n] as

z[n] = n(1/2)"u[n) ~ n2"u[-n — 1] = nzy[n) = nzs(n]

where 1
z1fn] = (1/2)%ufn) +Zs X, (2) = Tme H e
and 5 1
zo[n] = (2)"ul-n - 1] «£5 Xo(2) = e |z < 2.
Using the differentiation property, we get
(1/2):! 25~

d d
Heh S =sm MG ¢ g Xala) m IR (Vs e P

The ROCis (1/2) < |2/ < 2. Therefore, the Fourier transform exists.

(d) The sequence may be written as

edli2nnfE)ela/d)] o o= slt2nn 6) 4 (x/4)] ;
zn] = 4" s uj=n =~ 1],
Now,
- z ™M 1
AHEO Nl on 1) 2y S <4
and g !
n = 5[{2en/8)4{n/4) z ¢
POy [ = 1) T3 Toaemm e <k
Therefore,
et 1 e~Im/e 1 /
= 4
X(z) PRSP + T Teaeoms 1 |21

The ROC is |2| < 4. Therefore, the Fourier transform exists.
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Figure §10.21

10.22. (a) Using the s-transform analysis equation,

X(z) = (11'2]"2‘+{l,’2)""z“+(1/2)"=7+(1{?]":'-gl,)‘?l“.-“'

O (12277 4 (1/2)3 4 (1905
This may be expressed as

X(z) = (1/2)~*24 [1_‘(}/_3’1’_']_

1-(1/2)z 1

This has four zeros at z = 0 and 8 more zeros distributed on a circle of radius 1/2, T

ROC is the entire = plane. (Although from an pection of the

it seems like there is a pole at 1/2, nate that there is also a zero at if? whic

with this pole.} Since the ROC includes the unit eirele, the Fourier transform exises

(b) Consider the sequence #1|n] = (1/2)"], This may be written as
Ziln] = (1/2)*ufn] + 2*u(—p - 1},
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10.23. (1) The partial frartion expansion of the given X(z) is

=12 3/2
e = hdey

Sinee the ROC is lz] = 1/2,

zin] = —% (%)“u[n] + ; (—%)nu[n].

Performing long-division in order to get a right-sided sequence, we obtain
= | 1 1 1l _.
x:=l— i —g~2_ 1 -3 —=t S .5 s
(z) E e Sy 6 Tl ;
This may be rewritten as

3 1 1 1
X = [l Vg~ _2.-3,_ . .
(=) 2[ 32 +qz 3+ i
1 1 1 1
i | B T Sl PSP L SRS S
EI 37 +‘2 rEgre I

Therefore,
| B % 3 1\"
z[n] = == (5) ufn] + 2 (— i) ufn].

(i) The partial fraction expansion of the given Xiz)is

=1/2 3/2
“‘“"m‘:*rﬁ:ﬂ'

yl
Since the ROC is |2] < 1/2,

() = % (%Jnn[—n— 1 - g (—%)nuf-n )

Performing long-division in order to get a left-sided sequence, we obtain
X(2) =4z - 4: £ 167 — 162" 4 642% — 6ds6 4 ...
This may be rewritten as
Xiz) = ;{2:—d:’+s¢‘- 1624 + — .|

X
+ E[2=+4z:+8:’+!8=‘+---|.

zfn) = % (%)nu[—ﬂ -1 - g (-%)nu[-n ~1).
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Therefore,



(111} The partial fraction expansion of the given X(z) is

3/2
X(z)=-2+ -1-’_—(1'!—2?".

Since the ROC is |2 > 1/2,
z[n] = —24[n] + ; (%)"u["‘]-

Performing long-division in order to get a right-sided sequence, we obtain
X BBy Sy
X(z)——§+zz + g7 +5¢ L R
This may be rewritten as
- 3yl 1
X(a) -'2+2[1+Ez etk ]
Therefore,
2[n] = —28(n] + 2 ‘)" in]
i 2\a) Mk

{iv) The partial fraction expansion of the given X(z) is

X(z)=-2+ ITfU_li;:T

Sinee the ROC is 2] < 1/2,
L]
2[n] = —28{n] - % (%) uf-n—1],
Performing long-division in order to get a lefi-sided sequence, we obtain
X(z) = —2 - 33 — 627 = 12:° — 24 —-
‘This may be rewritien as
X(z)=-2~- g{zzq-lz’ +82 + 162 + -]
Therefore,
zfn} = —28[n) = 3 }-)Hu[v—n - 1]
2\2
(v) We may similacly show that in this case,

z[n] = 2n(1/2)"un] - n(1/2)" uln + 11
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(b} X (z) may be rewritten as
2
X6 = ——
B==he-n

Using partial fraction expansion, we may rewrite this as
1 1
X(z) = 2% |-—+
z—3 &= 1

T i
= 2:{—;-_—%+2_1]

If z|n] is right-sided, then the ROC for this signal is |z| > 1. Using this fact we may
6nd the inverse z-transform of the term within square brackets above to he yin] =
—(1/2)"ufn] + u[n). Note that X (z) = 2zX(z). Therefore, z[n] = 2yfn+ 1] This gives

1 n+l
z[n] = -2 (E) uln+ 1] + 2uln + 1}.
Noting that z{—1]} = 0, we may rewrite this as
z|n) = - (;) ujn] + 2uln).
This is the answer that we obtained in part (a).
10.26. (a) From part (b) of the previous problem,
]
x
X —
el ey T
(b) From part (b} of the previous problem,

X(e) =2 [_ " ;] :

-3 z=-1

(€) If x[n] is left-sided, then the ROC for this signal is |2| < 1/2. Using this ke b, we may

find the inverse z-transform of the term within square brackets above Lo be yln| =
(1/2)"u[-n — 1] — uf-n — 1]. Note that X(z) = 22X(z). Therefore, zln] = 2yjn + 1.
This gives

1 n+l
r[n]=2(§) ul—n = 2] = 2u[-n - 2.
10.27. We perform long-division on X (z) so as Lo obtain 2 right-sided sequence. This gives us
X(z) =2 +47 + 52+ .
Therefore, comparing this with eq. (10.3) we get
z-3]=1, z[-2=4  z[-1]=5

and ;—[;.! =0forn< -3

(v1) We may similarly show that in this case,
aln] = ~20(1/2)"ul=n - 1] + n(1/2" u{-n 2.

10.24. (a) We may write X(z) as

1-2;:"1
X(E)m -2
Therefore,
1
J('(z} = ﬁ__"

If z[n] is absolutely summable, then the ROC of X(z) has to include the unit circle.
Therefore, the ROC is || > 1/2. It follow that

afn] = (%)zuln}-

{b) Carrying out long division on X (z), we get
1
X(z)=1-2"'+ %z'? ’Iz"“+ -
Using the analysis equation (10.3), we get
1=t
z[n) = é[n] = (-5) ufn — 1.

(&) We may write X(z) as

3! 37!
X(z) = - -
(=) 1-tet o122 (1= )1+ 427Y)
The partial fraction expansion of X(z) is
4 4
XO= T T

Sinee x[n] is absolutely summable, the ROC must be |zl > 1/2 in order to include the
unit circle. It follows that

zin] =4 (%)?u[ni -4 (—%)2u[n].

10.25. (a} The partial fraction expansion of X(z) is

2
X{z}=—l—- T

AL o,
—%z" 1=-3=

Since z[n] is right-sided, the ROC has to be |z| > 1. Therefore, it follows that

z[n) == (%)2u|n] + 2uln].
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10.28. (a) Using eq. (10.3), we get
§ —0.95
X({z)=1-095z"%= £
(z) =1-095z e

(b) Therefore, X (z) has six zeros lying on a circle of radius 0.95 (as shown in Figure 510.28)
and 6 poles at =z = 0.

Figure 510.28

{c) The magaitude of the Fourier transform is as shown in Figure 510.28.
10.29. The plots are as shown in Figure $10.29.

=7, + )
N 2 -1 0 P
Figure 10,20 & "

10.30. From the given information, we have

zi[n) 55 Xa(3) = 'T:F' Izl = %
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and : 1
F
z3ln] £ Xa(z) = T Izl > 3
Using the time shifting property, we get

aln+ 3 E K@, 1> )
Using the time reversal and shift properties, we get
zo[-n+1] a2 Xz, 2 <3
Now, using the convolution property, we get

yln] = nfn + 3 e zp[-n + 1] &5 ¥(2) = 22X (2) Xz, % <la| =3

Therefore, )
r

e e e

Y@ =g -1

10.31. From Clue 1, we know that z[n] is real. Therefore, the poles and zeros of X(z) hawe to
occur in conjugate pairs. Since Clue 4 tells us that X(z) has a pole at z = (120"’ e
can conclude that X (z) must have another pole at z = (1/2)e~2*/3. Now, sue X (<) has
no more poles, we have to assume that X(2) has 2 or less zeros. 1f X (z) has more than 2
zeros, then X (z) must have poles at infinity. Since Clue 3 tells us that X(z) his 2 avius at
the origin, we know that X (z} must be of the form

Az?
X(z)= P T %C_"”},

Since Clue 5 tells us that X(1) = 8/3, we may conclude that A = 2, Therefore.

2
X0 = G T
Sinee z{n] is right-sided, the ROC must be |z| > 1/3.
10.32. (a) We are given that hin] = a"u[n] and z{n] = uln] - u[n = N]. Therefore,
yin] = zln]+ hin)

i hfn — K]=[k]

k=—oo

N-1
Za""*u[ﬂ -k
k=0
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This may be written as

0, n<0
Yl = ¢ (@ =a"N)/(1=a"t), N<n<N=1
a"(1 —a~¥)/(1-a7"), n>N-1

This is the same as the result of part (a).

10.33. (a) Taking the z-tcansform of both sides of the given difference equation and simplifying,
we get
Y{(z) _ _'_I_
X(z)  1- el 4 1-7
The poles of H{z) are at (1/4) % j(v/3/4). Since hin] is causal, the ROC has to he
Iz > 1(174) + §(V3/a) = (1/2).
(b) We have

Hiz) =

X(z) = l_-i-le Iz} = %

Therefore, .

— 3z (1= 27t + 1z-2)
The ROC of ¥{z) will be the intersection of the ROCs of X(2) and H(z). This implies
that the ROC of ¥(2) is || > 1/2. The partial fraction expansion of ¥(z) s

__ 1 a~lf2
Hiays 1- 4z} ¥ 1 —!x"ﬁ- Y%

Using Table 10.2 we get
yln] = (;)nuln] + ;2-.5 (%)nsin (’—?) uln].

10.34. (a) Taking the z-transform of both sides of the given difference equation and simplifying,

¥(z) = H(z}X(z) = 0

we get -
¥ =
HG) = R = T =

The poles of H(z) are at z = (1/2) £ (vE/2). H(z) has a zero at = = 0. The pole-zero
plot for H(z) is as shown in Figure $10.34. Since hjn] is causal, the ROC for H(z) has
to be |z] > (1/2) + (vV5/2).
(b) The partial fraction expansion of H(z) is
1/v8 1/V5
H(z)=- ',
(2) e + gt

hin] = —% (l +2\/S) ufn] + ;}-E (I—_——z\/ﬁ) uln].

387

Therefore,

Now, y[n] may be evaluated to be

0, n<0

n
Za“c“, 0<n<N-1

¥l =§ k=0
N=1
zc"a'*. n>N-1
k=0

Simplifying,
Q, n<0
) = ¢ (a" —a”1)/(1 —a™}), DEnEN -1 .

a*l-a"M)/(1-a'), n>N-1

(b) Using Table 10.2, we get

1
H(z) = g0y, 1zl > ol
and
- =N
X =121, Al
1-=
Therefore,

1 P

— 1)1 —az"1) i A=-z)I-az)

¥i(z) = X(z)H(z) = i
The ROC is |z| > |a]. Consider

1
PO = i —e
with ROG |z| > |e]. The partial fraction expansion of P(z) is
Py Mza) YO
1-z 1-az"!
Therefore,

1
pin) = Tz uln) + T a"ulnl:

Now, note that
Y(z) = P(2)[1 - =~ ¥].
Therefore,

y[n] = pln) = pln - N] = 11_'“[“"‘1 -ufn - N|} + lu—la:r{c"u[r:' —a" Muln - N}
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Figure 510.34

{¢) Now assuming that the ROC is (v8/2) — (1/2) < [3] < (1/2) + (/5/2), we get

Kn) = 715 (1 *2‘/5) ul=n~1)+ % (%) uln).

10.35. Taking the z-transform of both sides of the given difference equation and simplifying, we
get

Y(z) 1 2=t
H(z) = —= = =
(!) X(Z] 2= % + 2! 1 ;z"l prape= 4
The partial fraction expansion of H(z) is
o -2/3 2/3
e 1 1=2270

If the ROC is |z] > 2, then
] i ; G) uln] + % (2)" uln].
If the ROC is 1/2 < |z]| < 2, then
alel = -3 (3) slol - 3 @ wi=n =1}
If the ROC is |2] < 1/2, then

hs[n] = % (;)“ u[-n-1] - ;(‘2)“u[—ﬂ -1}

For each hy[n], we now need to show that if y[n] = hi[n] in the difference equation, then
zln] = 6ln]. Consider substituting ki [n] into the difference equation. This vields

3 ()" uin =)= 3@ uln — 1) - §(3)" ul) _
+3@ruln] + 3 (5)" uln+1] - 1) +uln + 1) = zin]

388



Then.
zjn] =0, forn<-1,
-1 =2/3-2/3=0,
zn)j=0, forn>0.
It follows that zjn] = én). It can similasly be shown that ha[n] and haln] satisly the
difference equation

10.36. Taking the z-transform of both sides of the given difference equation and simplifying, we

lF:l’!.
Yz} 1

'-I
H(z)= X = Z'T-!}-:; = m

The partial fraction expansion of H(z) is

3/8 3/8

H(z) = _l-iz" izt

Since H(z) corresponds to a stable system, the ROC has to be (1/3) < [2] < 3. Therefore,
n
hini= -3 (3) vl - §@rel-n -1

10.37. (a) The block-diagram may be redrawn as shown in part (a) of the figure below. This may
be treated as a cascade of the two systems shown within the dotted lines in Figure
510,37, These two systems may be interchanged as shown in part (b) of the figure
Figure 51037 without changing the system furction of the overall system. From the
figure below, it is ¢lear that

yln] = 2ln] + §ain = 1} = vl = 1]+ 3uln - 2.

Figure §10.37
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Pabiey = s |, B Yy, v 2z, 810
Pask(s): ®el,patl, ve s, S -1
Pottes i kot,pa-ily, v2 iy §=-ify

Paut )2 A= St 8z Uy, ¢ = Wirg, D= Y
Pask (6} : Az %4,8=1, &z Fly, Dz -l
Poukled: Axd, 5-“”&;(-%;“4’9“"‘” §10.39

Note that

SR | S | A [

Therefore, Hy(z) may be drawn as a cascade of four systems for which the coefficient
multipliers are all real.
(b) The direct form block diagram may be drawn as shown in part (b-1) of Figure 810.39

by noting that 1

1- it" +2 -3z 4 gzt

Hy(z) =

The caseade hlock-diagram is as shown in part (b-ii) of Figure S10.39.
Note that

1 1 1 1
Hylz) = ]:i = u;u,-r] [1 - ‘_;.1,—1] L » 1+;¥|5;] L B :_gi@r.]
Therefore, Hy(z) cannot be drawn as a cascade of four systems for which the eoefficient
multipliers are all real.
() The direct form block diagram may be drawn as shown in part (¢ei) of the Figure 310,39

by noting that .

1-221 + %:’3 e L

Ha(z) =

The cascade block-diagram is as shown in part (c-ii) of the Figure $10.39.

(b) Taking the z-transform of the above difference equation and simplifying, we get

Y() _ 1+fe 14 §2-!

Skl {7 I v =y e Rl e P T P

H{z) has poles at z = 1/3 and z = =2/3. Since the system is causal, the ROC has to
be {z| > 2/3. The ROC includes the unit circle and hence the system s stable.
10.38. (a) ¢;[n] = fi|n).
(b) ealn] = faln].

(¢) Using the results of parts (a) and (b), we may redraw the block-diagram as shown in
Figure 510.38.

t
i
i
A1

Figure §10.38

(d) Using the approach shown in the examples in the textbook we may draw the block-
diagram of H,(z) = [1+ (1/4)2=}/[1 + (1/2)2~}] and Ha(z) = [1-2z"'|/[1 - (1/4)z" 1]
as shown in the dotted boxes in the figure below. H(z) is the easeade of these two
systems.

(e) Using the approach shown in the examples shown in the textbook, we may draw the
block-diagram of Hy(z) = 4, Ha(z) = [5/3)/[1 + (1/2)z~1] and H(z) = [-14/3)/[1 —
(1/4)z""] as shown in the dotted boxes in the figure below. H(z) is the parallel com-
bination of H,(z), H:(z), and Ha(z).

10.39. (a) The direct form block diagram may be drawn as shown in part (a-i) of Figure 510.39
by noting that
Hy(z) =

1
1- gz-' - E‘x" S Lt L
The cascade block-diagram is as shown in part (a-ii) of Figure 810.39.
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Note that

s [emnta] ][] [

Therefore, Hy(z) cannot be drawn as a cascade of four systems for which the coefficient
multipliers are all real.

10.40. The definition of the unil | z-transform is

X(x) = i:[n!z"‘,

(a) Since z[n] = &[n + 5] is zero in the range 0 < n < oo, A(z) = 0.
(b) The unilateral Laplace transform of z{n] = d[n = 5] is

X(z) = Zuﬂn -5l =¥,

nul

(e} The unilateral Laplace

form of z[n| = (~1)"u|n] is

o
Az) = Z(—l}"n[n}:'“ =

1
2 =Faa |z| = 1.
(d) The unilateral Laplace form of zfn] = (1/2)"uln + 3] is
X = (/2 uln+ 37"
n=0
= Saprem
n=0
] L
e Izl = 1/2.

(e) Since z{n] = (=1/3)"u[~n - 2] is zero in the range 0 < n < oo, X(z) = 0.
(£) The unilateral Laplace transform of z[n] = (1/4)"u[-n + 3] is

]

i{l}d}"ﬂ-n +3)"

L)
3
= Yy (pmyr=
n=0

T e S0
= - - e Il =
1+4: +]6: +“x ., Allz

&(z)
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(g) The unilateral Laplace transform of z[n) = 2"u[-n] + (1/4)"ulr - 1] is

X(z) = i?‘u[—ﬂ} + {1/4) " uln - 1}27"

n=0

Sajare
n=0
= I . All z.

= I,—l‘

(1x) The unilateral Laplace transform of z{n] = (1/3)"~%u[n — 2] is
s

S0/l - 2™

n=0

LI
wm=0

A=)

27
1—_(172)1—_“ |z} > 1/2.

10.41. From the given information,

) = /2l 1)

n=0

= /2y a2
n=0

1/2

e e

and

a0 = S/A iz

n=0

Soajayee

n=0

1
mﬁ, j#| = 1/4.

Using Table 10.2 and the time shift property we get
Xi(z) = = Z

T

2l = 1/2.

and 1
Xa(z) = 1——F, =] = 1/4.
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Therefore, 1
M) s L1 +32)

The partial fraction expansion of Y(z) s

oyt 6/7
Yz = 1=}z 1T

The inverse unilateral z-transform gives the zero-state responsc
1/1\" 8o
o) = 3 (3) ulnl + -1t
(b) Taking the unilateral z-transform of both sides of the given vifference equation, we get
1 1
V(=) - %;"y(:; - gul-1] = Xz} - 32 1x(z).

Setting A'(z) = 0, we get
Y(z)=0.

The inverse unilateral z-transform gives the zero-input response
yailn] = 0-
Now, since it is given that z[n] = u[n], we have

X(z) = lzl > 1.

1
1=z

Setting y[=1] to be zero, we get

Y() - 5 = —y - ot

-

‘Therefore, 1
Yish= =3

The inverse unilateral z-transform gives the zero-state response
yasn] = ufn].
(e) Taking the unilateral 2-transform of both sides of the given difference equation, we get
D 1 e
Yia) - 3% (=) - gyl-1] = X(3) - 3= (=)

Setting X(z) = 0, we get 12
V== ]—_F
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(a) We have
y " z
6le) = Xy Xale) = =T
The ROC is [z] > (1/2). The partial fraction expansion of G(z) is

2 1

Using Table 10.2 and the time shift property, we get
1y 1\
g[n]:?(i) ufn +1] - (E) ufn + 1].

RO S
(1= éz"}(l - ;'i-z'l)-
The ROC of @(z) is |z| > (1/2). The partial fraction expansion of Y(z) i»

(b) We have
Qz) = Xi(z)Xalz) =

o o e e H
2|15 1=

= () = ()

Clearly, g[n] # g[n] for n > 0.

Therefore,

10.42. (a) Taking the unilateral z-transform of both sides of the given difference equation, we get
Y(z) + 3271 P(z) + 3u[—1] = X(z).

Setting A'(z) = 0, we get

-3
YE) = T
The i ilateral z-transform gives the zero-input response

vailn] = —3(=3)"u[n] = (=3)"*'u[n].
Now, since it is given that z[n] = (1/2)"u[n], we have

X(z) = 1_;

L

2] > 1/2.
Setting y[—1] to be zern, we get

(e} +3:71V(2) = l—_:—

327!
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The inverse unilateral z-transform gives the zero-input response
l n+l
yaln] = (i) ufn).

Since the input z[n] is the same as the one used in the part (b}, the zero-state
response is still
Yaaln] = ufn].

10.43. (a) First let us determine the z-transform X;(z) of the sequence x, [n] = z|=n) m terms of
X(=):
Xi(z) = z z|-nje""
= -0
o0

3 zln)”

X(1/z)

Therefore, if z[n] = z[-n], then X (z) = X(1/2).

(b) If 2y is & pale, then 1/X(z0) = 0. From the result of part (a), we know that X (2} =
X(1/20). Therefore, 1/X(z) = 1/X(1/2) = 0. This implics that there is 2 pole at
1/z0.

If zo is & zero, then X(zg) = 0. From the result of part (a), we know that X(20) =
X(1/29) = 0. This implies that there is a zero at 1/za.

{e) (1) In this case,
o 1+
X(z)=z43" ==, |z| > 0.
X (2) has zeros z; = j and z3 = —J. Also, X (z) has the poles g, = 0 and pz = 20
Clearly, 22 = 1/21 and p; = 1/p3, which proves that the statement af {b) is true.
(2) In this case, .
o + 2
X =z-3+et = EEEE >0

z
X(2) has zeros 1y = —1/2 and 2 = —2. Also, X(z) has the poles py = 0 and
p2 = co. Clearly, 23 = 1/ and p1 = 1/p,, which proves that the statement of {b)
is true.

10.44. (&) Using the shift property, we get
Z{Az[n]} = X(2) — 27" X(2) = (1 — =71 )X(2).
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(b) The z-transform X (z) is given by

oo

X = 3 alnE

n==0
oo

= 3 2]z~

L]

= X(22).

() Let us define a signal g[n] = {2[n]+ {(~1)"z[n]} /2. Note that g[2n] = x[2n] and gn] =0
for n odd. Also, using Table 10.1, we get

Glz) = %x(;} + %X(—z}.

The z-transform X(z) is given by

o

Xz = Y =i

n=m—on
o0

= z g[2n]z"

n==oo
oo

= 3 ol

Evenl
oo
= E gln)z A/
n=-00

= G(z'7)
= %X(z”“‘)+%x[—-a‘ﬂ).

10.45. In each part of this problem, we assume that the signal obtained by taking the inverse

z-transform is called z[n],

(a) Yes. The order of the numerator is equal to the order of the denominator in the given
s-transform. Therefore, we can perform long-division to expand the z-transform such
that the highest power of z in the expansion is 0. This would make zln] = 0 farn < 0.

(b) No. This z-transform can be obtained by multiplying the z-transform of the previous
part by z. Hence, its inverse is the inverse of the previous part shifted by 1 to the left.
“This implies that the resultant signal is not zero at n.= —1.

(¢} Yes. We can perform long-division to expand the z-transform such that the highest
powsr of z in the expansion is —1. This would make z{n] =0 for n € 0.

(d) Mo. When long-division is used to expand the z-transform, the highest power of zin
the expansion is 1. This would make z[-1] # 0.
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From Table 10.1 we know that

_ [ pln/8] =", n=0,%8,£16, -
haln| = { 0, otherwise

10.47. (a) From Clue 1, we have H(=2) = 0. From Clue 2, we know that when

X(z) = l—_:ii-;-_-i-, |z] > %
we have 1
Y(z) =1+ 1—_%-;—, lel > 3-
et ¥(z) (+a-}z"')(1=327") 1
H() = 505 = _'_1%?:-—1_’;_— 12> 3-
Substituting z = =2 in the above cquation and noting that H(-2) = 0. we gt
it
5

{b) The response to the signal zfn] = 1 = 1™ will be yln] = H(1)z[n]. Thercfore.
1
vln] = H(1) = -

10.48. From the pole-zero diagram, we may write

(z — Jei"/)z — Jem2/%)
Hy(z) = A(z_—foj""‘)(! = zc-jatﬂ)

and z- ie"“""}(z s %e—jsuﬂl
(z — 3ef/4)(z = gem2* /)

where A and B are constants. Now note that

Hala) = %H, (%ze") = %H. (-g:) .

Using the property 10.5.3 of the z-transform (see Table 10.1), we get

ol = 5 (=) mat

Hy(z)=B

We may rewrite this as
ha[n] = gn]ki[n,
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10.46. (a) Taking the z-transform of both sides of the difference equation relating z|n] and sfn]
and simplifying, we get

X(z) i 2 — gl

50) =1-r"e 2=

The system has an 8th order pole at z = 0 and 8 zeros distributed around a circle of

radius ¢~®. This is shown in Figure $10.46. The ROC is everywhere on the z-plane
except at z =0

Hi(z) =

4m

(b) We have
@) S@ _ 1
B =36 = X ~ e
Therefore,
1 #
) = s = F e

There are two possible ROCs for Ha(z): |z| < e @ or|z| > e™@. Ifthe ROC s |2) = 7%,
then the ROC does not include the unit circle. This in turn implies that the system
would be unstable and anti-causal. If the ROC is |2 > ™, then the ROC includes
the unit circle. This in turn implies that the system would be stable and causal

{e) We have
Hy2) = ———pz
a(z) 1— 28¢5’
‘We need to choose the ROC to be |z| > ™ in order to get s stable system. Now
consider

PE) =

g pe=
with ROC |z| > e~°. Taking the inverse z-transform, we get
pln] = e~*"uln).
Now, note that
Ha(z) = P(z*).
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where g[n] = (B/A)(—2/3)". Note that since both hy[n] and hafn] are causal, we may
assume that g[n] = 0 for n < 0. Therefore,

ol =5 (-3) i

Naw, clue 3 also states that _|glk]| = 3. Therefore,

£2()-

‘Therefore,

gln| = (—g)“u[n],

10.49. {a) We may write the left side of eq. (P10.49-1) as

S~ el = 3 el () = 5~ etles™ (2

n=N; n=N;

) IlSlUl‘lb‘-l)

Since r; = 1o, the sequence (ri/rg)”" decays with increasing n, 1e, as n = o0
{r1/r0)~™ — 0. Therefore, (r1/ro)™ < (r1/ro) ™ for n = Nj. Substituting this
in €q.($10.49-1), we get

3> elnllei® = § fefm)ir™ (r—) T (2 )'"‘ 3 et

azN; o

n=N,

Therefore, A = (ry/re)~™ = (ro/r1)™".

(b) The above inequality shows that if X(z) has the finite bound B for |z| = ro, then
X(z) has the finite bound (ro/r)™ B for |z| = ri 2 ro. Thus, X{z) converges for
|z| = r1 = rg and Property 4 of Section 10,2 follows.

(c) Consider a left-sided sequence z[n] such that
zln)=0, n>N;
and for which

3 fellirg™ = 3 felnlirg™

n=-00 n=-00



Then we need to show that if r) < ro,

N3 Ny .
S llnlirim < P Y lalnliig™ (810.49-2)
L -] n=—-00
where P is a positive constant.
We may write the left side of eg. (510.49-2) as

N N3 N Nz 5
5 el = 3wl () = 3 o™ (5

n==oo nE—-oo

) (S10.49-3)

Since ry < rg, the sequence (ry/rg)™" decays with decreasing n, i-e..lab_u -+ -0
{rifro)"" =+ 0. Therefore, (ri/ro)™" = (ri/ro)=™2 for n € Np. Substituting this in
eq.{510.49-3), we get

Ny N3 -n =Nz J::‘ .

Therefore, P = (ry/ro)™ = {ro/r)e.

The above inequality shows that if X (z) has the finite bound B for |z| = ro. then
X(2) has the finite bound (ro/r1)¥:B for |z] = ry < ro. Thus, X(z) converges for
|z] = 1 € ry and Property 5 of Section 10.2 follows.

10.50. (a) From the given pole-zero plot, we get

H(:) = A2,
where A is some constant. Therefore,
e~ ~a
H(e™) = Ao
!
. ey = HieH e = AP [ [
Therefore,

ae™1 — ge’* +a*

= |AP.
ge=1¥ - ael + a?

[H@)F = AP =

This implies that |H{e™}] = |A| =constant.
(b) We get | ]* = 1 +a? — Zacos(w).
(e) We get =% : ;
i 2
=14+ T pesws= an’ +1+2acosuw] = o—,lwi
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10.52. We have

Xa(z) = f:z:[n];"“

= in[—n]z_"
= i:;[n]x“

= Xi(z"") =X (1/2)-

Using n argument similar to the one used on part (b) of problem 10.43, we may argue that
if X1(z) has a pole (or zero) at = = =g, then X2(z) must have a pole (or zero) at z = 1/z.

10.53. Let us assume that z[n) is a sequence with z-transform X (z) which has the ROC & < iz] <
a.
(&) (1) The z-transform of the sequence yln] = z(n - no] is

o
Yy = 3wl

L
oo

= 2 zfn = ngl ™"
as-o0
Substituting m = n — ng in the above equation, we get
o0
Y(z) = z zlm]z~™""

m=—ao
=

2 E zlm)z™™

= z""™X(z).

Cleasly, ¥ (z) converges where X(z) converges except for the addition or deletion
of z = 0 because of the =™ term. Therefore, the ROC of ¥(z) is & < [2] < g
except for the possible addition or deletion of 2 = 0 in the ROC.

(2) The z-transform of the sequence yfn] = z5zn] is

Y(z) = i ylnlz™"
= ‘_Z zpznja™
= 3 slnle/a)

= X(z/z)
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10.51. (8) We know that for a real sequence zn, z{n] = z*[n]. Let us first find the z-transform
of yn| = z*[n] in terms of X (z), the z-transform of z[n]. We have

?: yln]z™"

z z’[n)z™"

s

- .
=[ﬂl(=')"‘]
n=—co

X = X*(=").
Now, since z[n] = z°[n}, we have Z{z[n]} = Z{z’[n|} which in turn implics that
X(z) = X*(z*).

(b) If X(z) has a pole at z = zg, then 1/X(z5) = 0. From the result of the previous part,
we know that 3

X

Conjugating both sides, we get 1/X(25) = 0. This implies that X(z) has a pole at z5

If X(z) has a zero at z = zg, then X (25) = 0. From the result of the previous part,
we know that

¥(z)

X"(z5) =0.
Conjugating both sides, we get X (z5) = 0. This implies that X (z) has a zero ar =5,
(€) (1) The z-transform of the given sequence is

X(@)m—— =2 >
- |

1-4z7' =
Clearly, X{z) has a pole at z = 1/2 and a zero at 2 = 0 and the property of part
(b} holds.
(2) The z-transform of the given sequence is

2
X(:j=l—%x'+%:"=w. fzl = 0.
X(z) has two zervs at 2 = 1/2 and two poles at z = 0. The property of part (b)
still holds.
(d) Now, from part (b) of problem 10.43 we know that if z[n] and X(z) has a pole at
2 = pe?? | then X(z) must have a pole at (1/25) = (1/p)e™2",

If a[n] is real and X(z) has a pole at 2 = pe®, then from part (b) we know
that X(z) must have a pole at 2§ = pe™7®, Now, from part (b) of problem 10.43 we
know that if z[n] and X(z) has a pole at =5 = pe~?® then X(z) must have a pole at
(/) = (1/p)e.

A similar argument may be constructed for zeros

402
Since X(z) converges for o < |2] < A, ¥(z) converges for o < |z/z| < # There

fore, the ROC of ¥ (£) is |zgler < 12| < |20]8.
(3) The z form of the sequence y[n] = z[=n] is

¥z} = 2 y[nlz™"

= z z[-n|z""

A==00

Since X (z) converges for & < 2] < 8, Y(z) converges for a < |1/z] < 8. Therefore,
the ROC of ¥(z) is (1/8) < |z < (1/a).

(b} (1) From Problem 10.51(a), we know that the z-transform of the sequence y[n| = =*[n]
is ¥(z) = X*(z*). The ROC of ¥(z) is the same as the ROC of X(z).
(2) Suppose that the ROC of z|n] is a < |z] < 5. From subpast (2) of part (a). the
z-transform of y[n] = z0z[n] is
Y(z) = X(z/z)
with ROC |zgla < 2| < |z0|8. Therefore, Ry = || Rz
10.54. (a) Let z[n] = 0 for n > 0. Then,

o0

z z[n]z "

n==0
o

Z z[n)z~"

F——

z[0] + z[-1)r + =[-2)2 + -

X(z)

]

Therefore,
lim X(2) = =[0].
(b) Let z[n] = 0 for n < 0. Then,

Z z[n)z"

n==oo

iz[nis"‘
n=0

= z[0)+z[l)a "' + (=2 2+

X(z)
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Therelore,

‘I_i’n; (X (z) - z[0]) = Jim 2 {z(1)e! 42224y = =[1].

10.55. (a) From the initial value theorem, we have
lim X(z) = z[0] = non-zero and fnite.
Eind= 1

Therefore, as z = og, X({z) tends to a finite non-zero value. This implies that Xz}
has neither poles nor zeros at infinity,

(b) A rational z-transform is made up of factors of the form 1/(z = a) and (r - b) Note
that the factor 1/(z ~a)hasapoleat 2z =aand a zero at 2 = oo. Also note that
the factor (z = b) has a zero at z = band a pole at z = 0o. From the results of part
(a), we know that a eausal sequence has no poles or zero at infinity. Therefure, al]
zeros at infinity contributed by factors of the form 1/{z - &) must be canerlle] out by
the poles at infinity contributed by factors of the form (2 = b) This imples that the
number of factors of the form (z - b) equals the number of factors of the form iz a)
Consequently, the number of zeros in the finite z-plane must equal the pumber of poles
in the fnite z-plane.

10 586. (a) The z-transform of za[n) is
o
Xifz) = 3 gafnjemn
na=co
e

= 3 | 3 aba -ki}

n=-g0 k=

. Eon] S -]
k=g e

- i 7, [k] Z{z2[n - )}

k=00

¥ st

k=-p0

(b) Using the time shifting property (10.5.2), we got
Xaf2) = Z{zafn — k) = =4 Xy (z),
where X;3(z) is the z-transform of zzn]. Substituting in the result of part (a). we get

o
Xalz) = Xa(z) 3~ mafkjz*,

kz=og

0.59. (a) From Figure 510.59, we have

1
1+ 2V

Wilz) = X(z) - ;r“’W.(x) = W) =X(2)

Also, T
ko =
Wy(z) = =3* 'Wi(z) = —X(‘}T_{“;_;_‘l"

Therefore, ¥(z) - W, (2) + Walz) will be

1 N kl—l
T v ek

JX) _1-de
i (- r?r:
Since H(z) corresponds to a causal filter, the ROC will be |2] > |k}/3.

(b) For the system to be stable, the ROC of H(z) must include the unit ecircle. This 1s
possible only if |£|/3 < 1. This implies that {kl has to be less than 3.

(e) If k =1, then

Y(z) = X(z)

Finally,

142
)= P4 4z=1"
The response to xfn] = (2/3)" will be of the form

vinl = =ln)12/3) = > 273
»0. The unilateral z-transform of 1"!"] = z[n + 1] is

V(=) = f:y[n]z"‘
L
= uf0] + yjt)s™ + 22 ...
= sl 4zt ¢ 23T 4
= #=l0) + 21} 4222 4 2f32 4 ) - 2afg)
= z&(z) - zzf0].
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(c) Noting that the 2-transform of 7i[n] may be written ag

Xile)= 3y [k]a,

ke oo

We may rewrite the result of part (b) as
Xalz) = Xy (2) X0 (2).

10.57. (a) Xy(z) s a Ppolynomial of order Ny in =1, X2(2) is a polynomial of order N,
Therefore, ¥{(z) = Xi(2)Xa(2) is a polynomial of order Ny + Ny in 2!, This i
that Af = N+ N,

(b) By noting that y0] is the coefficieat of the % term in ¥(z), y[1] is the coeffic
the 271 term in ¥'(z), aad y[2] is the coefficient of the z=* tetm i ¥ (2), we get

vo] = z[0}rz[0],

¥[1] E [D]:zflf + 211z (0],
w2 = zi0)z(2) + Zi[lza{1] + 21 [2z; 0],

[}

(e) We nate the pattern that emerges from part (b). The &-th point in the sequence
is the coefficient of 2= iy ¥(z). The z~* (e of ¥(z) is formed by the following
(the product of the 20 tary, of Xi(z) with the z=* torm of Xa(z)) + (the prod,
the z=! term of X1(2) with the z—t+1 term of X3(2)) + (the product of the =2
of Xi(z) with the : k42 yorp, o X2(z)) + ... + the (product of the = ™ o
X1(z) with the z-++M term of X(z)).

Therefore,

v[k] = Zl:n {ra)zalk = |
m=o

Since zifm] =0 for m » Noand m < 0, we may rewrite this as

vkl = 3 oimizyfk - m),

10.58. Consider a causal and stable system with system function H{z)., Let jes inverse syst
have the system function Hi(z). The poles of H(z) are the zergs of Hi(z) and the zerc
H(z) are the poles of Hi(z).

For H(z) to correspond o a be causal and stable system, all its poles must be wit]
the unit cirele. Similarly, for Hi(2) to correspond to a be causal and stable system, all
pole? must be within the unit circle. Sinee the poles of Hi(z) are the zeras of f(z), u
Previous statement implies thae the zeros of H(z) must be within the unit eircle. Therefo
all poles and zeros of 5 minimum-phase system must lie within the unit circle,
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10.61. (a) The unilateral #-traasform of y[n] = =[n + 3is

=3
(z) = zy[nl-r"‘
n=0

= f::{n + 3J==n
= a3~ 2{0)s - o152 - opa):

n=-3

-~ Zx[n]x'“’ - z{0)z" — 2[1j2? - 2[2)z
n=0

= zsz:{n]x"' ~ =2[0)2* - z{1]:2 - z(2)z
n=0

]

X (z) = 2[0)2? - [1)2? - 2[2):
(b) The unilateral z-transform of y(n] = z[n - 3] is

Y = 3yl

n=0

= Er[n = 3]=="

n=0

= Y zln-3pny 2[=1z7% 4 2[=2)2~! 4 2]-3)
n=3

= iz[n]z"‘" (=17 4 x(=g)e 4 z|-3)
n=0

= ‘hli’["lt" + 21272 e gog)t 4 2[~3)

= X w12 4 #[~2J7! 4 z[-3)

(c) We have

n o0

yln] = z z(k] = z[n - m|.
k=-00 m=i
Therefore,

o0 el m
M) = Fema)4 PIERS W
m=0 =1

m=]
oo "
= ey
mml ]



10.62. Note that s
¢usln) = 3 zlklzln + k| = zn) « 2[-n}
k==00
Now, applying the convolution property, the z-transform of dzz[n] is
Poe(z) = X(I)Z{:[—n]}.

From the time-reversal property we know that the z-transform of z[=] is X(1/2) ‘There-
fore,

ozlz) = X(2)X(1/2).

10.63. {a) Since the ROC s 2| < 1/2, the sequence is Jeft-sided. Using the power-series expansion,
we get
o0 -1 -
b-of Z o
log{l —23)_ ‘n—lT =_n:—m' o '

Therefore,

z[n] = 2—;u[—n- 1}.

(b) Since the ROC is |2] > 1/2, the sequence is right-sided. Using the power seTIes UXpan-

sion, we get

o n,-n
log(l - (1/2)z71) = -zﬂ;‘—

n=1
Therefore,
ot 1
zn] = - TII["I -1].
10.64. Let us define Y(z) to be
Y(2) =~ 5 X(a).
Then using the differentiation property of the z-transform, we get

yin] = nafn.

(a) Now,
1

d 2
Yz} = —zEX(x} 2 —l—-_;’—z_’-.

Noting that the ROC of ¥'(z) is {2] < (1/2) (the same as the ROC of X{z)), we get

i = (5) ==

z[n] = % (%)“ u-n-1]= %u[-—n -1]

This is same as the answer obtained for Problem 10.63(a).

Therefore,
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10.66. (a) We are given that :
] —~z=
Therefore,
1= =i el _ gmiwf? W
Hyle'™) = He (1—_'_‘—_,.,) = H. (c,"..,;—_—: . e“l“f-’) = H, (3 tan E) 3

(b) From the given Hc(s), we get

1
HLO) = ey~
and 1
Heloo) = Tymoo(s + &™) (s + e=*1) =0
Now

IHliw)l = Gorormpee {,;WFrvq—emlﬂim

Tlmw? )+ cod? (7 /AR
Clearly, | He(jw)| decreases monotonically with increasing .

(&) (1) We are given that ;
1=z
e =t (55):

Therefore, i

(FEmre(iEm+ emim/8)

Halz) =

This may be rewritten as

= 1 (1+z70)?
) = AT+ e [1 - s el - o

Therefore, Halz) has exactly two poles which lie at z = —(1 4+ &™) /(1 - Y
and z = —(1 + e=7*/4)/(1 — 7714, It can be easily shown that both these poles

lie inside the unit circle.
(2) From the result of part (a), we have

Hal(e®) = He(j tan0) = H(j0) = 1.
{3) We have
|Hale?™))

i N I——
|He (J““"ﬂl{ = Toant D+ v gl 2
:7(l-n.ig..;:nl+:mr(.,m = T#ant o’

As w increases from 0 to pt, tan{w/2) increases monotenically from 0 to co. There-
fore, |Hale?™ )| decreases monotonically from 1 to 0.
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(b) In this part,
4 1,-1
Y(z)= —zaxm = _I—l - %z"‘

Noting that the ROC of ¥(z) is |z] > (1/2) (the same as the ROC of X(z)), we get

Lyt
yin] = ~5 (i) uln—1).
Therefore,
i) =~ (%).. ol = 1] = -2l ufn - 1)
This is same as the answer obtained for Problem 10.63(b).
10.65. (a) From the given He(s), we get

la—juwl _ Val+u? _

MG = jo 5l = Varr e

(b) Applying the bilinear transformation, we get

Hylz) = e !1-:%' i 142713
1oz ey
ﬂ+,::?r a+l|1+z 1;—J

Therefore, Ha(z) has a pole at z = (e —1)/(a + 1) and a zero at z = (e +1)/le=1).
Since a is real and positive,

a-=1
o+l

L

a-—1

"

ISI and

n+l‘

Thercfore, the pole of Hy(z) lies inside the unit circle and the zero of Hg(z) lies outside
the unit circle.
() Hg(z) may be rewritten as
s -1
Hiz) = M{l_
{a+1)+z"Ha—-1)

Therefore,

|H ()| = le=1+e?(@+1)] _|{a—1)+{cosw— jsinw){a + 1)
ler D) reo(a—1)|  |a+ 1)+ (cosw - juinw)ie = NI’

This may be written as

2117 +owe® a1 ) +2{a+1){a—1) coswt{a i) 3ind

lfl]"‘ﬁ:ﬁ’win-l!’-&l‘{ﬂ-&l (a— 1) coswrtia—1}? sin’
= a- 17 +{a+117 +2(a+i)a-1}cow _ :

a+ 1) +{a=1)"+2{c+1){a~1) conw

()

<
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(4) The half-power freq wq satisfies the relationshi

2_1 wyy |2
[Ha(* ) = 5 = |H¢ (J tanT)l .
We know that |H(j)|? = 1/2. Therefore,

jaa=; = we=rw/2
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Chapter 11 Answers

11.1. The system shown in Figure P11.1 may be looked at as a parallel interconnection of the 11.4. Taking the Laplace transform of the given differential equation we obtain
a system with system funetion Hyg(z) with a feedback system of the form shown in Figure Y(s) "
11.3{b). From Section 10.8.1 we know that the feedback system has a closed-loop system Q(a) = X "~ Taarl
function Q(z) given by () sty

- Hi(z) We also know fram Section 11.1 that
Q) = e e 0
Therefore, the system function of the parallel i on is 1+ G(s)H(s)
Since it is given that H(s) = 1/(2 + 1), we obtai
Q1(4) = Q&) + Hol#) = Hola) + i) i r
1+ G(z)H(2) o 1
O = s vowr

11.2. The system shown in Figure P11.2 may be redrawn as sbown in the left-hand side sketch

of Figure 511.2. Here, Comparing with the first equation, we obtain

Hi(s) 1
Qfs) = T AOVADE Gls) = =
The system may be further simplified as shown in the right-hand side sketeh o Digure 11.5. From Section 11.1 we know that the I aystem Furicticn f thiis Seedbback sycoin. i

S1L.2.

T 1

T N L (7 i T S RN
<) e W T e TG i

Q(z) has a pole at {25+ 1)/4. For this system to be causal and stable, the pole has to be
inside the unit circle. Therefore, we require that

) <
L-—-—i&b |u+l]<l = 5<b<3
[ 2 2
11.6. From Section 11.1 we know that the overall system function of this feedback system is
1

2N
Qz) = = =14t 4224 42N,
Comparing with the definition of the z-transform given in eq (10.3), we know that the

inverse z-transform of Q(z) is

1, D<n=N-1
wn=fp O2ns]

Figure 511.2

From the above figures it is clear that the overall system function is

Ouls) = DT Hy (o) Hals)

= .
1+ GUEEIRU 1+ Gi(s)Hi(s) + Gals) Hils) Hals) Clearly, the system is FIR.
11.3. From Section 11.1 we know that the overall system function of this feedback system is 11.7. Using the techni lined in Section 11.2, we may draw the root locus for the given

_L' 3 system. In Figure 11.7, we show the root loci for K > 0 and K < 0.
Qls) = 1_;_—‘_;? = For K > 0, the root locus never crosses over to the right-half of the s-plane. Therefore,
= the system is stable for all positive values of K. But for K < 0, the instability occurs
Q=) has a pole at (b+ 1)/2. For this system to be eausal and stable, the pale has to be in when the root locus crosses over to the right-balf of the s-plane through the point 5 = 0.
the lefi-half of the s-plane. Therefore, we require that Therefore, the valee of K at which instability begins Lo occur is obtained from eq. (11.52)
to be
F%‘--(l) = b< -1 ;{=___l.__=..
1G(0)H(0)]
Therefore, the system s stable for K > -6,

413
414

ey
L
-
|
i

|

iy R
-
I

kL &

- -* [ E] 0

Figure S11.7

11.8. The root locus for K < 0 is as shown in Figure 511.8. Clearly, the poles cross uver ro
the right-half of the s-plane at some 5 = w;. We also know that at this point, the poles
satisly;

Juwg—1 _

R+ w2

Equating real and imaginary parts on both sides, we get K = —3 and wo = 5. Therefare,
the system is stable for K > =3.

1
X
<O

ERC IS

11.9. Using the techniques outlined in Section 11.2, we may draw the root locus for the given
system, In Figure 511.9, we show the root loci for K >0 and K < 0.

From these figures, it is clear that the root locus always lies on the real axis for all values
of K. Therefore, the feedback system can have closed-loop poles anly on the real axis. In
order for a system to have an oscillatory impulse response, it must have poles which have
a nonzero imaginary part. Clearly the given system does nol have an oscillatory impulse kyo
response.

11.10. Since two branches of the root locus for K > 0 stasts at s = =1 and ends at s = 1, we can
conclude from properties 1 and 2 in Section 11.3.5 that there are two poles at s = -1 and
at least one zero ab 5 = 1. Since the entire real axis is a part of some branch of the root
locus for K < 0, we may conclude from property 3 in Section 11.3.5 we know that this is
possible only if there are two zeros at s = 1. ————

g s
-
L

Loyl

I
[

11.11. Using I.helf.edmiql_su developed in Section 11.3 we may draw the root locus K = 0. Thisis Figure S11.9
as shown in the Figure S11.11.

Fram this figure it is clear that the system becomes unstable when the root locus crosses
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11.12.

11.13.

11.14.

e b
I —_—
|
. e

Figure 511.11

either |z] = 1. From eq. (11.52), we know that the corresponding value of K

P 1 e 1 =
HGIGH)  H(-76(-5) 4
Therefore, the system is stable for 0 < K < g

In Figure 511,12, we show the rool loci for K > 0 and K < 0 for different positions of
the poles and zeros. Clearly the root loci stay on the real axis ouly if the poles and zero
alternate positions on the real axis.

Note that the system may be viewed as shown in Figure 511.13. We note now tha

z?
H(z) = = Py ]

and o
G(z) = T
Therefore, the closed loop system function is

H(iz) 2
) = T CAE - FF R —hr=q'

Therefore, the closed-loop poles of this system lie at

i -—{K—l)d:v‘[ﬁ—li’+16
3 3

it can be casily shown that the magnitude of at least one of the poles is always greater than
1. Therefore, the system is never stable.
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Figure §11.15
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Figure §11.16

FE
e e

4

The number of clockwise encirclements is given by the difference between the number of
2ercs and number of poles within C.
() There is oue pole and one zero within C. Therefore, W (p) encircles the origin 0 times.

(b) There are 2 zeros and 1 pole within C. Therefore, W(p) encircles the origin once.

11.15. The Nyquist plot for this system is shown in Figure $11.15. Since the system has zero

11.186.

right-half poles, the number of counterclockwise encirclements of the point =1/K must be
zero. From the figure, it is clear that this is possible for =1/K >1and -1/K < U, that is,
K>=1

The Nyquist plot for this system is shown in Figure 511.16. Since the system has zero
right-half poles, the ber of lockwise encirclements of the point —=1/K must be
2ero. From the figure, it is clear that this is possible for =1/K > 1 and —1/K < (), that is.

419

Figure S11.12

*x[n) 0 Y (n)

Figure 511.13
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A

Figure 511.17

Figure 511.18

K>-1.

11.17. 11.17 The Nyquist plot for this system is shown in Figure SI11.17. Since the system has zero

right-half poles, the ber of tercl ts of the point —1/K must be
zero. From the figure, it is clear that this is possible for =1/K > 1 and ~1/K < =1/4.
Therefore, the system is stable for —1 < X < 4.

11.18. The Nyquist plot for this system is shown in Figure $11.18. Since the system has zero poles

outside the unil circle, the number of eounterclockwise encirclements of the point —1/K
must be zero. From the figure, it is clear that this is possible for =1/K > land - 1/K < 1.
Therefore, the system is stable for =1 < K < 1.

11.19. Let us ider the conti time case. The Nyquist plot may be viewed as a plot

of the function G(jw}H(jw). Note that if this plot passes through a point —1/K, then
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Glywn}H{jwn) = =1/K at this point. Therefore, the denominator of the overall system {b) From the given H(s) and G(s), we obtain

function Q(s) = H(s)/[1 + KG(s)H(s)] evaluated at jug will be zera. Tl inphies the A il
system Q(s) has a pole at jwy which makes it unstable. A similar argument may be made Qs) = GCINGINFI -G
for the discrete-time case.

The partial fraction expansion of Q(s) is
11.20. Note that

A 14 jw i 1
B )=z~ Gro
In order to determine the gain margin, we first need to find the w at which 9 H{;u} = -7 Taking the inverse Laplace transform, we get

Cl 'y is to , we need
learly, for this to happen, we glt) = e~ uft) - te~u(t).

14 jw = =[=w?® + jw +1).
i e (<) From tbe given H(s) and G(s), we obtain

This is not possible for any value of w. Therefore, the system has an infinite gain margin. 12
3 In ord:r to determine the phasz margin, we first need to find the w at whieh (s a2 1 Q(s) = m‘fm-
oting that
o ) 1+w? Taking the inverse Laplace transform, we get
|HGW)| = —7 3 ¢ oo
(1 = w?)? 4w 1 1
. a0 =(3) (-3) Lete-#m
we find that |H(jw)] = 1 at wo = V2. Now, YN

<H{jwo) = tan~! V2 — tan™! (if) = —x 4 2tan~! V3. 11.23. The closed-loop system function is given by s
Q)= e
1 H
Therefore, the phase margin is 2tan—! /2. +G(z)H(z)
11.21. From Figure P11.21, we may obtain the overall system function to be {a) From the given H(z) and G(z), we obtain
= K{s + 100) __..i._
Qs) = TR+ 07K Q(!}-1+$z"—§f"
(i) When K = 0.1, the pole is at 2 = —91 and the zero is at 5 = = 100. The partial fraction expansion of Q(z) is
(ii) When K = 1, the pole is at s = =50.5 and the zero is at s = —100. o) 6/5 6/5
(iii) When K = 10, the pole is at s = —10 and the zero is at s = —100. T P T P
(iv) When K = 100, the pole is at s = —1.98 and the zero is at s = ~100. Taking the inverse z-transform, we get
11.22. The elased-loo function is given by 6 [1\" 6 T
i b= § (5) uimi- 3 (-3) el
H(s)
Qa) = = i -
1+ G(s)H(s) {b) From the given H{z) and G(z}, we obtain
: — b4 L2
(a) From the given H({s) and G(s), we obtain Qz) = ;
" 5 14 fz=t =272
Q(‘)=(3+1)(;+3)+l =G e Now, the inverse z-transform is
Taking the inverse Laplace transform, we get gln] = gc.lﬂ] = %q.{n =1+ 'ilEQai" -2,
q(t) = te™ulz). where ga[n] is the impulse response obtained in part (a).
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11.24. The root-loci are as shown in Figure 511.24.
11.25. The root-loci are as shown in Figure S11.25.
11.26. The root-loci are as shown in Figure 511.26.

11.27. (a) The root locus is as shown in Figure $11.27.
{b) The root locus is as shown in Figure 511.27.

k<o Kro (c) To have no oscillatory behavior, the closed-loop poles must lie on the real axis. We
know that the closed loop poles must satisfy

5 E i e
7o .-@ 1 GG =l - it w

24+ 2544 K’

TR Ty s e av a9 @ Therefore, the closed-loop poles satisfy
' ' :

i i S+ (2+K)s+(4+2K)=0
Y | L'l I ————

E f In order for these poles to be real, we require that

(Z+KP=44+2%) = K=6

Fuaal s
3 Z, 11.28. The plots are as shown in Figure S11.28
il I

11.29. The plots are as shown 1o Figure S11.29.
11.30. The plots are as shown in Figure 511.30

i 2
2 2 Hodd Axs 4
i GT 3 ) 11.31. The plots are as shown in Figure S11.31.
a
E E 11.32. (n) The closed-loop system function is

-2 -2
HESI VLI A T - Dy(s) N ()
g 3 2‘ 1T+ KG(s)H(s)  Dils)Dals) + KNi(2)Nals)
H ] g E ] oy Clearly, Q(s) = 0 either when Ds(s) = U or when Ny(s) = 0. Therefore. the zeros of
= o Q(s) are the poles of G(s) and the zeros of H(s).
] -2 Moh F] 4 A =2 “oh 2 4 (b) When K =0, o
z k)
Figure 511.25 Q(a) >
Therefore, the poles of Q(s) are the poles of H(s), and the zeros of Q(s) are the weros
of H(s).
{c) We may write Q(s) as
5) Mils y
o) = 2 oMol _pls) [ Fi(s)
% Dyir) Dals Nls) Nals) | NHls
pls)gls) -‘f}]l%(g;uxﬁg)l-sé,l qls) |1+ KG(s)H(s)
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Figure 811.27
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(d) In this case

Q) =13 [77%+4

The zero which is independent of K is at s = =1. The pole which is independent of K
is at s = —2. The root locus for the remaining closed-loop pole is as shown in Figure
811.32 for K > 0.

(e) In this case

541 1 ]

1
@ = e+ )
The zero which is independent of K is at = = —1. The root locus for the pole is as
shown in Figure 511.32 for K > 0.
(f) (1) For this case, we have G(2)H(z) = 1/[(z - 2)(z + 2)]. The root-locus for K > 0
and K < 0 are shown in Figure 511.32.
(i) The system is stable for when the closed-loop poles are within the unit circle. The
closed-loop poles satisfy the condition

G(=)H(z) = —1/K.

Therefore, looking at the plots from before, it is clear that as K increases, the
system becomes stable when G(1)H(1) = —1/K. That is, the system becomes
stable when K > 3. As K continues to increase, the system again becomes unstable
when G(j)H(j) = —1/K. That is, the system becomes unstable when K > 5.
Therefore, the system is stable for 3 < K < 5.

(iii) When K = 4, Q(z) = 1. Therefore, gfn} = d[n).

11.33. The root loci are as shown in Figure §11.33.
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Figure S11.33

11.34. (a) For K > 0 and for large ¢, Figure P11.34 shows that the angle contributed by any pole
of G(s)H (s} is approximately equal to the angle contributed by any zero of G{s)H(s).

Therelore,
a{G(s)H(s)} = (m —n)d

where @ is the angle contributed by any zero. To be on the root-locus we require that
(angle criterion)

(n—m)@ = (2k + 1), k=0,1,2 ,n-m=1).

This implies that
_(2k+Ur
T n-m '

& k=0,1,2,-- ,(n-m=1).

Similacly, for K <0,
(n—m)d = 2kx, k=012, ,n=-m=1}
This implies that
2w

g T A A
2, k=012 nmm-1)

(b) (i) By expanding the right-hand side we get the 5"} term to be
P GO CREl o B
Equating the coefficients of 5", we get

feer==3 G

=l
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Figure S11.34-1

(g) 17 > m, then at least 1 pole goes towards infinity for large K. This implies that there
will be a pole outside the unit circle for large K. This in turn implies that the system
would be unstable for large K.

11.35. (a) We have
. 5 1
Gljw) H(juw) = - ra
Therefore,
K(j'w-l}:u:’—ﬂjw—‘z.
Equating the real and imaginary parts on both sides, we get K=-3andw=+V5
Therefore, the system is stable for =3 < K<l

(b) Cuatinuous-time systems: For |K| sufficiently large, one of the poles approaches the zero
that is in the right-half of the s-plane. Therefore, the system will have a right-half pole.

This makes it unstable.

Discrete-time systems: For |K| sufficiently large, one of the poles approaches the zero
that is outside the unit circle. Therefore, the system will have a pole outside the unit
circle. This makes it unstable.

11.36. (a) The root locus shows three poles which move towards infinity. The asymptote angles
are —7/3, 7/3 and 7 for K >0 and 0, —2x/3, and 2x/3 for K < 0. The asymptotes
intersect at 5 = —1, Therefore, the root locus is as shown in Figure S11.36.

(b) We have
F ; 1
Gl H(jw) = -5
Therefore,
-K = —ju® - % + 2y
Equating the real and imaginary parts on both sides, we get K = 6 and w = V2
(c) From eq (P11.36-1), we have

1
Gla)H(s) = b, g T AL

439

(1) Assuming that ¢, = by = 1 and performing long division gives

1 -m = -
m—s“ +{apn-1 — b1 )5 L

Therefore,
T-m-1 = Gn=) = bmai-

Using the result of part (b-i) with eq. (P11.34-2) gives us

Gnmt = =9 0k bmo = -¥ A
k=1 k=1

Therefore,
M n
Ta-m-1 = Op=y = bmer = Zﬂx - zﬂ'k-
k=1 k=1
(iii) From eq. (P11.34-1), we have

1
G_(S)H{s) +K =0

Now, for large &, eq .(P11.34-3) may be approximated as

1 - i
-1 S s

Therefore,
M b tyemegstT T ek K =0
(iv) From (i), if ¢; are the n — m poles, then

n—m
ZC. = ~Ya—m-1 = bm=i = On-1
=1
(c) (i) Here,n—m =3. For K >0, 8= (2k+1)n/3 with k = 0,1,2. This implies that
8 =nf3x -af3
For K <0, 6 = 2kn/3 with k =0,1,2. This implies that 0=0,2n/3,—2x/3.
(ii) Tntersection point is = § = =i52=% = —3. Therefore, intersection pointis £ = —3.
(iii) The root locus is as shown in the Figure 511.34.
(d) Plots are showsn in Figure S11.34.
(e) For n—m > 3, the poles go to oo al asymptotic angles which are (2k + I)/(n - m)
for K > 0 and 2k=/(n —m) for K < 0. The smallest angles are w/(n—m) < /3 and
0. This implies that at least some of the pules will enter the right-half of the s-plane
for large enough K. This causes instability for large K.
(f) The root locus is as shown in Figure S11.34.
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Figure 511.37

(b) In this case, for K > 0, poles go to infinity at angles of —x/3,7/3, and nm  Therefore,
as shown in the roat locus in Figure 511.37, for sufficiently large values of K the poles
cross over to the right half of the s-plane. This makes the system unstable for Jarce K

(€} (i} If H{s) is given by eq. (P11.37-1), then
K(s + 100)
Gis)H(s) = Gri)E=9)"

The root locus is drawn in Figure 511.37 for K > 0. The system is stable fin large

K.
(ii) If H(s) is given by eq. (P11.37-1), then

1000K (s + 100)
(s + 10)(s = 2)(s + 1000)

The root locus is drawn in Figure §11.37 for K > 0. The system is stable for large
K.

G(s)H(s) =

11.38. (a) When a = 1/2,
K(z-1/2)

#(x—1)
The root locus for K > 0 and K < 0 is shown in Figure 511,38,

G(2)H(z) =

443

Im

Figure S11.36

Now since 1/[G(s)H(s)) = - K,
P43+ 2= K.

(i) For K >0, -1 £ s < 0 is on the root locus. Therefore, p(s) = =K < 0. If the
breakaway point oceurs at K = Ky, then the poles are no longer on the real axis.
Therefore, the breakaway point occurs at the maximum value of K for whirl the
poles are still real. Note that p(s) in the range =1 < s < 0 will be minimum at
this point. Therefore, Ko = —p(a4).

(ii) For K <0, -2 < 5 < —1 is on the root locus. Therefore, p(s) = <K > (. If the
hreakawny point occurs at K = K, then the poles are no longer on the real axis.
Therefore, the breakaway point occurs at the minimum value of K for which the
poles are still real. Note that p(s) in the range =2 € 5 € =1 will be maximum at
this point. Therefore, Ky = —p(s.).

(iii) Equating dp{s)/ds to zero,

1
s=—-lt—.

V3

The breakaway points are s, = —1+ 1/y3 for K > 0and 5. = —1 — 1/V3 for
K < 0. The corresponding gains are

3 +6s+2=0 =

Ko = —(a% + 357 + 2a,) = 0.385

and
Ky==(s* +3% +2s.) = =0.385

11.37. (a) We have G(s)H(s) = K/|(s + 10)(s — 2)]. The root locus for K > ( is shown in Figure
S11.37.
From the figure, it is clear that the system becomes stable when the pole crosses
over to the left-half at s = 0. The corresponding gain s X = 20. Thercfore, the system
is stable for X > 20.
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Figure 511.38
(b) When a = -1/2, K ”
241
G(r)H(z) = =D

The root locus for K > 0 and K < 0 is shown in Figure 511.38.
{c) If the closed-loop impulse response is qin] = (A + Bn)a®, the denominator of the
closed-loop system function

_ Hiz)
Q= = T GmaR

must be of the form (z — &)®. This implies that

x’+(K-1)z+%K=(z-a)’. (S11.39-1)
Equating coefficients of different powers of z on both sides, we get

K=2+./3
Since |af < 1, we know from eq. (511.38-1) that K/2 < 1. Therefore, K =2 - /3

11.39. (a) The root locus is as shown in the Figure S11.39.
(b) The closed-loop system function is

z
Q) = TR (511.39-1)

Clearly, as K is decreased from 0 to —1, the closed-loop pole given by 1/[2(1+ K'}] goes
from 1/2 to 0o. When K is decreased below — 1, the pole moves from —o0 tuwards 0.
The root locus for K < 0 is as shown in Figure 511.39.
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(e) From the figures above and the analysis of (b), it is clear that the system is stable for

K <=1
(d) Noting that H(z) = ¥(z)/E(z), The difference equation relating y(n] and +n| s

1
vin] — gin = 1] = eln].
Noting that G(z) = R(z)/Y (z), we get
rln] = Kyln].
Also, note that ¢[n] = z[n] — r[n]. Therefore,
e[n} = z[n] - Ky[n].
Nate that here, e[n] depends on y[n] and y[n] in turn depends on e[n].
If instead G(z) = Kz, then
rin] = Kyn-1]

and
efn] = z[n] — r{n] = z[n] = Ky[n - 1).

Here, efn] depends on y{n - 1].
(&) Since the pole is not at |z| = oo, we know that K # —1. From eq. (511.39-1), we get

yin] = ﬁ z[n] + %y[rl - l]] i

Assuming =[] = 0 for n < ng, the above differeace equation shows that y[n! =0 for
1 < ng. Therefore, the system is causal.

11.40. From the given G(z) and H(z), we have

K(z - 1/4)(z - 1/2)

Glz)H(z) = :
() (z® - ¥t+ 3]
445
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Figure S511.44 — |
Therefore,
zlzn - 1) =-K

This imphes that
—(a® = t? = o = jb + 2jab) = K.

Equating the imaginary parts on both sides, we get a = 1/2 and b= v/3/2 From this
we get K = 1. The exit points are (1/2) + j(v/3/2).

11.44. (n) At the point j0* on the infinitesimal circle around the origin, the angle ¢ contributed
to aG(j0T)H(j0*) (see Figure S11.44) by the pole at s = —1 is approximately zero.
Therefore, <G{j0*JH(j0%) is only due to the pole at the origin. Therefure,
4G0Y)H(j0T) = -’E'.

Similarly,

<GOH)H(0) = %
(b) We have 5
-
GUWH W) = —

47

Figure §11.40

The root-locus for K > 0 is as shown in Figure 511.40.

Damping is improved when the closed-loop poles are not toa close to the unit circle. If
we choose z = —1/2 to be a closed-loop pole, then K = 1.06. This value of K provides
improved damping.

11.41. (a) (i) The closed-loop system function is

Q) = H{z) B 2 -1
@) = TFemam ~ P (K- 3/4)z+ (K - 1/4)

{ii) Sum of the closed loop poles is the negative of the coefficient of 2%, Since this is
zero, it is independent of K.

(b) The closed loop poles are the solutions of the following equation:
M +an 2" o dag + K™+ by 2™ e B} = 0

If m < n — 2, then the coefficient a,-; of 2"~} is independent of K and the sum of the
roots which is equal to —am_) is independent of K.
11.42. (a) We know that .
z
Hiz)= — = ——,
COHE = e =im - K
If z = =1, then from the above equation K = 15/8.
(b) If z = 1, then from the above equation K = —~3/8.

(c) The system is stable for (—3/8) < K < (15/8).

11.43. (a) The root-locus is sketched in Figure §11.43 for K <0 and K > 0.
(b) Let the poles cross the unit circle at 25 = + jb and zps = a — 3b. Note that |zo| =
sl =la+ 38 = VaT + B2 = 1. We also have
1
Glzo)H(z0) = — -
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It is easy to see that when w = +o0, G{jw)H(jw) = 0. Now note that as w increases
from —oo to 0”, G(jw)H (jw) changes from oo to =1 + joo. Figure P11.44(b) shows
this fact. Also, as w decreases from oo to 0%, G(jw)H (jw) changes from co to —1—jec.
This is again depicted in Figure P11.44(b).

(c) We may use the argument presented in part (a) to prove this statement. Note that
for any point on the infinitesimal circle, the contribution to <G{s)H () by the pole at
s = =1 is negligible. This is shown in the figure below.

Clearly, the only contribution to 9G(s)H (s) comes from the pole at the origin. From

Figure $11.44, we note that this contribution is 8. Therefore,

4G(s)H(s) = ~8.

(d) The system is stable for —(1/K) < 0. This implies that the system is stable for X > 0.
{e) The Nyquist plots are as shown in Figure 811.44.
(f) The Nyquist plots are as shown in Figure 511.44.

11.45. (a) Note that the system function of the overall system is

1

Pl = H(&)C() = ey

Although it appears as if the overall syatem is now stable, this is still not a good way to
achieve stabilization. The reason in that since F{s) is unstable, the ontput of H(s) will
not be bounded for some inputs. In practical systems, this will lead to unpredictable
outputs for some inputs. In such cases, C(a) can in now way undo the damage caused
by H{s) since it follows H(s).

(b) The Nyquist plot for this system is shown in Figure 511.45. Since the system has
sight-half pole, we require that the Nyquist plot encircle the —1/K point once in the
counter-clockwise direction. This is clearly not possible. Therefore, the system 15 not
stable for any value of K.

(c) In this case, G(s)C(s) = K(s +a)/[(s + 1)(s —2)). The Nyquist plot for 0 < a < 1 and
for a > 1 is shown in Figure 511.45.

From these figures, it is clear that for 0 < a < 1, the system is stable for —1/K
in the range —a/2 to 0. This implies that for 0 < a < 1, the system is stable for
K > (2/a). It is also clear for the figure that for a > 1, the system is stable for —=1/K
in the range =1 and 0. This implies that for a > 1, the system is stable for K = L.
(d) The denominator of the closes-loop system function is

s+ s(K=1)+2(K=1).
This must be equal to 52 + wns + wl. Therefore,
K-l=w, and 2(K-1)=uw

Solving these two equations, we get K =1 or K = 3. Since w, > 0, K has to be 3
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Figure S11.47

For the gain margin, we first need to find wy such that €G(juwg)H{jwp) = —%. For
this we need wy = 93. Now, |G (jup)H (jwp)| = —24.7 dB. Therefore the gain margin is
24.7 dB.

.47 (a) The root locus is drawn below for K = 0, The system is stable for 6 < K < 10.

(b)For K =7,
Q) = Lo Dle+2(s+3)
S da? s+ 1
Using the Routh eriterion, we can argue that all poles have negative real parts since
all denominator coefficients are positive. Therefore, the system is stable. The log
magnitude-phase plot is as shown in Figure 511,47,
We see that when w = 0%, 4G(jw)H(jw) = —x and 20log, [Giw)H (jw)| = =15.5

dB. For this case, 7|G(jw)H (jw)| = 7/6 > 1. Also, when w = I, <G (jw)H(jw) = —x
and 20logyg |G (jw) H (jw)| = 20 dB. For this case, 7|G(jw)H (juw)] = 0.7 < 1.

(€} The root locus is as shown in Figure S11.47 for K > 0. There are poles on the juw-axis
when K = 851 and K = 4.69 = 10°.

(d) The Nyquist plat is as shown in Figure §11.47. The system is stable when K < 8 and
for K 2 10°
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(e) (i) In this case,
Kis+1/2)

(s +2)(s+1)(s - 2)
The root locus for this system for K > 0 is as shown in Figure S11 45. Clearly,
sufficiently large K, all poles are in the left-half of the s-plane.

(i) In this case,

Gls)H{s) =

K(s+3)
NH(8) = ——— ">
R A Y TR ]
The root locus for this system for K > 0 is as shown in Figure S11.45. Cleas
there are always poles in the right-half of the s-plane.

11.46. (a) The log magnitude-phase plot is as shown in Figure S11 46 The gain margin is 20 .

at w = 100 and the phase margin is =/4 at w = 10

(b) The exira phase added to the phase of the original system is —wr. Now, at w = 10, t]
phase cannot exceed the negative of the phase margin. Therefore, in order 1o enst
stability 107 < x/4. This implies that 7 < x,/40.

() For the phase margin, we first need to find wy such chat |G (jwa) H{jwg)] = 1. For tt
we need wy = 12.66. Now, <G (juo)H{jws) = —133.7°. Therefore the phase margin
180 - 133.7 = 46.3°.

450

11.48. (a) As ¢ = 0, then the contribution to <G(e®*)H (&) is from only the pole on the unit

circle. Therefore,
<G H () = -%.
Similarly,
<G(O7)H () = ;
(b) We have

; » (m29—m9)-;(&in2&—si@}
Ge™)H (&) = B = osed)
It can be easily verified that if this i plotted for various values of w, we would et
a plot looking like Figure P11.48(b). Furthermore, from part (a) we know that when
w = 0% 9G(e")H(e") = ~F, We see that this is indeed true. Also, from part (a)
we know that when w = 07 = 2r~, aG(e/ )H (") = §- We see that this is also
true.

(e} When w = x/3, 4G(e)H(e) = —x. Now, at this point
(=1)? +0?

M-z -

IG(e)H (&) =

(d) Using an argumeat similar to the one used in Problem 11.44(c), we may conelude that
<G(z)H(z) = -4
(e) The system is stable for oo < —(1/K) < =1. That is the system is stable for
0<K<l.
(f) The Nyquist plats are as shown in the figures below.
11.49. (a) The dc gain is H(j0) = C.
(b) The time constant is 1/a.
(¢} The frequency response of the system js
Ga

Ju +a’

H(jw) =

Atw = o, |H(ja)l = G/vZ = H(j0)/VZ. Therefore, the bandwidth of the amplifier is
a.

(d) The system [unction of the closes loop system is

Ga

QL) = s+a+ KGa'

The de gain is Q(j0) = G/(1 + KG). The time constant is 1/la(1 + K(7)). The
bandwidth is a(1 + KG).
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This in turn may be approximates as
Ualt) = —Klu(t) + RMer= A7),
Now note that from Figure P11.53(b),

volt) = — K[uvi(t) + RMrtt/AT)

(c) We may rewrite the equation obtained in the previous part ag

RMev(o/r _ Yolt) + Kui(t)

For large K, this becomes
RMe™ORT o ),

Taking the log of both sides and simplifying, we get
_ kT ui(t)
wt) = -q— in [-—m] .
34. (a) Sinee Xils) = —-X.[s]H{a)G‘{s}. and Gs)H(s) = -1, we may conclude that Xls) =
Xi(s) and zp(t) = (1),
{b) The closed-loap gain will be infinite.
(¢) (1) By simple algeb iy ion, the required relation may be proved,
(n) Substituting for 2, (3), Za(s), and Z3(3) in the equation for G(s)H(s), we gor
—AX) (30) Xz ()
T8 (X (w) + Xy + X3(w)) = X ()X, (Gw) + Xaljw))
If we want o produce oscillations, then we need Gliw)H (jw) = =1, Therefore,
—AX) (jw) Xa(jw)

TR(X1(Gu) + X2 50) + Xa(re)) = X2 () (X, G + X () {;1'1.54-1)

Gliw)H (Gw) =

(..‘rm«a-mumplying and equating imaginary parts on both sides, we get
RolX1(jw) + Xp(ju) + Ka(w)] = 0.
Assuming that R is not zero, we get
i) + Xa(jw) + Xa(jw) = 0
(1i1) Equating the real parts on both sided of eq. (S11.54-1), we get

4= - X0w) + Xs(u)
Xi(5w) '
Using the result of part (i), we get

>

A‘_—-._.%g"_’__

1w

—

>
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5
A
Ml b= k<l

N xzm
T R ¥ 20) v 505)"

(b) For & >, KZy(s) 5> 2y(s5) + Zy(s). Therefore,
“KZs) _ z(s)
H(s) » _‘—_-—_KZ;{a) = —z——-lr_').
1151 (a) When K = 10¢ and R3/R) = 1, then H(s) = —1, Th
When K = 10% ang Ra/By = 10°, they H{s) =
as —fa /R,
(5) (i) When R,/R, = 100 and K = 108, His) = ~99.089. When R/ R,

K =505, H(s) = -99.9798 The percentage change is 0.01%,
(i) K should be 9808,

is is the same as -fy
~999. This is approxin

11.52. In this case, using the result of Problem 11.50(a) we have

___ -KC
A0} = s(K+1)R¥C"

When K > 1,

H(s) = -;qu

Clearly, H(s) performs the job of an integrator, The approximation breaks down

c
(K + —
Frhg=g e Ty

11.53. (a) Using Kirchoff's Iaw,
. Vo) = va(t) + w(t)R + wi(t).
Also,
V= (t) = va(t) — wy(e) = vilt) + ig(t) R,
This implies that
vo(t) = =Kluva(t) - va(t)).
(b) For large K, eq. (P11.53-3) may he written as

wlt)[1 + K| = Kva(t) = valt) = uy(t).

This implies that

vo(t) = (l—}{ﬁ) Volt) + RMetva(U/iT w(t).
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(1v) From the result of part (i), we know thae at the oscillation frequency wp

1
[ A I-q;L - ;;5 =0,
Therefore,

1
“= 7
11.55. (2) From Figure P11.55(a), we get

(b) In this case

N
K5 d,a
QK K
I+KHz = =

L
i 4 K3 epees

=i (]

We need Q(2) to be of the form

N

Eﬁ.; e
Q) =0
S ae
=0

Equating coefficients in egg, (811.55-1) and (811.55-2), we get

by 1 1
= K== = - = - :
% =dy % A=xh o« Klo-d)
11.56. (a) Using the given approximations and the fact that a(t) =0, we get

ides of the above equation and simplifying, we
Eet
8(s) 1
Hs) = =
@ X(s) 52— ofL
The system has Poles at 5 = VO/L and s = _ Va/L Clearly, one of these poles s
always in the right-hand side of the s-plane. This i



Figure 511.56

(b) The block-diagram of the linearized system is as shown in Figure S11.56.
The closed loop system function is

= 1
)= F—

The poles of Q(s) are at s = /{9 — K)/L and s = — /{3 = K1/L. Clearly, oue of the
poles is always in the right-hand side of the s-plane. This implies that the system is
unstable. If now K = 29, then the poles are on the imaginary axis and the system has
a purely oscillatory response.

(€) Iu this case,

% = gBlt) - K\8(¢) + x-_.“‘:—{:’ + Lz{1),
Therefore, the closed-loop system function is
Qls) = 8(s) L

X(p) It Kp—gt Kr

The poles of Q(s) are at

o = —Ka% VR —3L(Ki —9)
2L 1

T Kz > 0 and K > g, the poles are in the left-hand side of the s-plane. This would
make the system stable.

Since wf = 9 = 2K, — 196, K\ = 14.3 rad/sec’. Also, 2K; = 2w,. This implies
that K = 3 rad/sec.

11.57. The closed-loop system function is

He(a)Hy(s)

QU =17 H.(s)Hy(s)
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11.58. (a) We have X(s) = 1/s and
Els) =1 __‘_]
s |1+ H(s)]
Using the final-value theorem, we have
1
elec) = !i&asﬁ(s) = TTHO)

Foi { = 1, H{0) = oo. Therefore, e(sc) = 0. This implies that the system can track 3
step.
(b) In this case, X{s) = 1/s* and

1 1
= [1 * H(s}] :
Using the final-value theorem, we have
: 1
eloo) = limsBle) = iy S ey

for H(s) given in the problem). Therefore.

Here e(oc) isa (using the eq)
the system canpot track a ramp.
(c) In this case, X(s) = 1/s* and

1 1
By~ [m] :
Using the final-value theorem, we have
- ’ 1
eloo) = Yo BG) = I v G

Here e(nc) is unbounded for k > 2.
(d) If 2(¢) = u_i(t), then X(s) = 1/s* and
1 1 ] _ s
B = [1 THE) - FFEOE)

where
K [Te (s = Bi)
Gls) = ]
© = TRzie e
Using the final-value thearem, we have
'3
eloo) = lim sE(s) = bim =7 T (S11.58-1)

(i) From eq. ($11.58-1), e(oo) =0 for i 2 k.
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(a) Here, the closed-loop system function is
- Ka
N = TR

We can always choose K such that the pole s = —afl + K) is in the left-half of th
s-plane.
Taking the inverse Laplace transform of Q(s), we get

q(t) = Kae~(ovKalty ()
Now, if z(t) = é(t), then
u(t) = q(t) = Kae™(@+Kalty(y)
Therefore, the error is
eg(t) = &{t) — glt) = §(t) = Kae™lotFely(y)
If g(t) corresponds to a stable system, then g(t) will be a decaying exponential. There
fore, (t) also decays with time.
Now, if z(t) = u(¢), then y(t) = u(t) « g(t) and the error is
er(t) = u(t) = uft) « q(t) = u(e) « [5(2) = g(t)) = ult) » eo(t).
We know that eg(t) is a function that decays with time. Obviously, e (f) = uft) « ep(t
cannot be a function that decays with time.
(b) Here, the closed-loop system function is

Qls) = H(s)Hy(s) alK s+ K}

T+ HA)H,(s) s +sla+ Kya) + ok
Ha+ Kya >0 and aKy > 0, then the system will be stable.
In this case,

d(t} = Kye(t) + k’»_,/‘ eft)de.

This implies that e(t) can go to zero and still result in d(t) = constant  This implies
that the system can track a step.
(<) If we use the PI controller, the closed-loop system function is
- Kis+ Ky
Qs) = S 257 4 (K +1)s+ Ky
By the Routh criterion, all coefficients in the denominator have to be positive to get all

roots Lo lie in the left-half of the s-plane. Clearly, this is not true for Q(s). Therefore.
the system is unstable.

For the PID controller,
Kys? + K3+ K

Q) =5 + 32K = 2) + 20K, + s + K3
The system is stable if K3 > 2 and Ky, Kz > 0,
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{u) From eq. (S11.58-1), e(oo) =constant for | = k — 1.
{in) From eq. (S11.58-1), e{oo) is unbounded for ! < k — 1.

11.58. (a) If zfn] = u[n), then
x{z:.z_'__|= Z . k>
1=z z=1

Therefore, /2)
1 _ 2z +1/2
Elz) = X(z) [1 + H(z)} T - 2+

It may be casily verified that partial fraction expansion may be used to write E(z] as

E(:)=l+—P +---Q,
r—a =5

where |af < 1 and [b < | and P and Q are constants, Clearly, e[n] = d[nj+ sum of to
damped exponentials. Thereflore, litn .00 efn] = 0.

(b) Here, :
Alz
A& = e Em
where A(z) and B(z) are polynomials in z. Then,
;. zB(z)
B&) = eohem A

The closed-loop system function is

lz - 1)B(z)
(z=1)B(2) + Alz)"

Sinee it is given that Q(z) is stable, we know that Q(z) has no poles outside the unit
eircle. Also note that the (z — 1) factor in the numerator cancels out the pole at z = 1
introduced by the step.

Since E(z) and Q(z) share the same denominators, we can also conclude that E(z)
also has no poles inside the unit circle. This implies that efn] is a stable signal and
limp 00 £n] = 0.

(¢) Here, H(z) = 1/(z — 1). Therefore,

Q) =

E(z) = x(;)m =1,
This implies that e[n] = 4{n] and eln] =0 forn > 1.
(d) Here, ; i
- = =1
E(z]_xtz)l'l'ﬂ(a} l+4z i

This implies that efn| = én] + (1/4)d[n — 1] and e[n] =0 for n = 2.
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(e) Here,

N=1 z
E(z)= }:uz'k and X(z) = -7

Since we know that

we get

(f) Here,

This implies that e[n] = &[n] + d[n - 1] and e[n] =0forn > 2.

11.60. (a) The output of the zero-order hold can be considered to be of the form LZ k(1 - kT)] .

hg(2), where ho(t) is as shown in Figure 511.60. Now, the output of H(s) will be of the

form

plt)

k=0
E(z) = X(s)ﬁ-}m.
N-1
z=(z— E}Eqﬂ'*
H(z) = "

E(z) = X(x)——l— =14z

Fig

L
L

T ®

ure S11.60

(z= I)zﬂg!"

k=0

1+ H(z)

-1
Ll

3 elkls(e = k7)

=00
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i elk)d(e — H‘)] » holt) » hit)

z k)bt — kT)} . f(1)

)

where f(2) = ho(t)  A(t). Now, the output of the C/D system will be of the form

Ll
pin] = p(nT) = LE e[k)f(nT - m} !
Since f[n] = f(nT), we may write the above equation as
pln) = 2 e[k]f [ = k]
k=-00
Since the overall system obviously obeys the convolution sum, we may conclude that
it is LTL
(b) Now, let efn] = ufn). Then, 3 &(t — kT)e[k] = 3 4(t — kT)e[k].. Therefore, the

k= =
output of the zero-rder hold will b:u(!}. Therefore, p;t]°= s(t) will be the step response
of H(s). Therefore, pln] = p(nT) = s(nT). Noting that when the input to F(z) was
ufn] the output was p[n] = s(nT), we conclude that the step response of the system is
gln} = s(nT).
(c) Given H(s), we know that

1 1 1 1
3""[;:"1];“”1*:-

Naw since g[n| = s(nT’),
1 o AL e = 1)
1=elz=! 1=z"1 (1=z=T){1-eTz-1)

Qz) =
Since ujn} oy 1/{1 = z='), we may conclude that

ST
F(;):(l_‘—i)a{z)zu el = 1)

T
S —or) Mre

(d) The root locus for :
K -1)
G(z)F(z) = ——
is as shown in Figure S11.60. From this it is clear that the system becomes unstable
when the roots just cross the unit circle at r = +1. From this, we may find that the
system is stable for ¥
e 41

(e) Here,
Kzle = 1)
CEFE = G - o
The root locus is as shown in Figure §11.60. When r = 1 is on the root locus, then
K = 3/2 The second pole is at z = —(1/2)e”. When z = -1, then K = (1/2)(1 +
eT)/(eT — 1). If this has to be greater than 3/2, then T < In2. Choosing T to be
In(3/2), we get K = 2. The poles are then at £4/3/2. This is a stable system,
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