EE3610 Signals and Systems 2016-Fall
Chapter 7 The z-Transform

7-1 Definition of the z-Transform

n

1. For a complex variable z, x[n] =z" 1is an eigenfunction of discrete-time LTI systems:

y[n]=h[n]xx[n]=3""  h[k]x[n—k]
=D kK]t =2y h[k] (7.1)
()= ()

H(z)=)" h[k]z"* - eigenvalue (7.2)

2. The z-transform or the bilateral z-transform of a sequence x[#] is defined as

X(2)2 2, )= {;[{x]h_}: ;(Ei (7.3)

3. The z-transform of x[n] can be interpreted as the Fourier transform of x[n] after

multiplication by a real exponential »™". (z = rejQ)
X(z) = X(rejg) = Z:j?mx[n](re/Q )_n
=2, L Axnl e (7.4)

= g-'{x[n]r_"}

Note:

@ The z-transform reduces to the Fourier transform when the magnitude of transform

variable z is unity (i.e., for z=¢/" ).

@ The Laplace-transform reduces to the Fourier transform when the real part of the

transform variable is zero (i.e., for s = jo ).

Im{z}
z=e Im
(Jo)
i Re{z}
s-plane
Re
z-plane
(a) (b)

Figure 7.1 The z-plane and s-plane: (a) z-plane; (b) s-plane.
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@ The unit circle of z-plane and the jw-axis of s-plane play a similar role.

@ For convergence of the z-transform, we require that the Fourier transform of
x[n]r™ converges.

@ The range of values for which the z-transform exists is referred to as the region of
convergence (ROC) of the z-transform.

@ [f the ROC includes the unit circle, then the Fourier transform also converges.

—n

@ The unilateral z-transform of a sequence x[#n] is defined as X (z) = Z::Ox[n]z

Example 7.1: Determine the z-transform of the following sequence:
x[n] = a”u[n], a>0.
X(2)=2, auln)z =3 (a)

For convergence of X(z), we have ‘az_l‘ <1 (|Z| > |a|)

= X(z)= L _ 2 1>l

-1
—az zZ—d

The pole-zero plot (or diagram) and ROC:

Im{z}

\
\

i o X Re{z}
I
/

z-plane
The Fourier transform of x[n] converges only if |a| <lI. ]

Example 7.2: Determine the z-transform of the following sequence:

x[n]:—a”u[—n—l], a>0.
X(z)=-2 _ dul-n-1]z"=-3" az"
=2 e ==Y ()
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X(z) converges if ‘a*12‘<1 (|z|<a)

1 1 z
:>X(z):l— - = —= , |Z|<a.
l-a 'z l-az z—a
The pole-zero plot and ROC:
Im{z}
/”_‘E\\
Ve Y
/ \
/ \
/ \
[ o % Re{z}
I ] N
\ v 14
\ /
AN /
N e
\\. //
z-plane

Example 7.3: Determine the z-transform of the following sequence:

<[] :Gj u[n]+(%)n u[n].
X(z)- z{@ u[n] +@ u [n]}z_”
-y G j ; z@ j

converges converges

—z'<1 if =z <1

if

. 1 ) 1
(1.e. 4 >_j (l.e. 4 >_J
2 3
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The pole-zero plot and ROC:

z-plane

Example 7.4: Determine the z-transform of the following sequence:

T

= zw (rz'lejQ )n e” —Zw (rz_le_jQ )n i
n=0 2jsinQ n=0 2jsinQ

Both series converge if

‘rz_le"g‘ = ‘rz‘le_"n‘ <l )
= The ROC is |z| >7r.

(i.e. |Z| > r)

~H ()= ( LA j

T o1jo TS
2jsinQ(1-rz"e” l1-rze”’

1
- (1 —rz e )(1 — rz_le_jQ)

2
z

s —2;’((:05(2)z+r2

poles: z=re’* zeros: z=0

z=re’? z=0

Note: Some common z-transform pairs are listed in Table 7.1.
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7-2 The Region of Convergence for the z-Transform

Properties of the ROC for the z-transform:

1. The ROC of X(z) consists of a ring in the z-plane centered about the origin.
X(rejQ ) = g-'{x[n] r_"}
The convergence of X(z) is dependent only on » = |z| butnoton Q.
2. The ROC does not contain any poles.

3. If x[n] is of finite duration, then the ROC is the entire z-plane, except possibly z=0

and/or z=o0.
N, -n
X(z) = Zn:N] x[n]z

=> The z-transform is the sum of a finite number of terms.

=X (z) will converge for z not equal to zero or infinity.

(1) N, 20 (only negative powers of z) = z=o is included in the ROC, and z=0
is not included in the ROC.

(2) Ny<Oand N, >0=z=0andz =00 are not included in the ROC.

3) N, <0 (only positive powers of z) = z=0 isincluded in the ROC, and z=0o0 is
not included in the ROC.

4. If x[n] 1s a right-sided sequence and if the circle |z| =1, i1s in the ROC, then all finite

values of z for which |z| >r, will also be in the ROC.

Im{z}

Re{z}

z-plane

Figure 7.2 The ROC for a right-sided sequence.

X(z)= Z:J:N, x[n]z™"

When N, <0, the summation includes terms with positive powers of z which become
unbounded as |z| — . Consequently, for right-sided sequences, in general, the ROC

will not include infinity.
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Suppose that the z-transform of x[n] converges for some value of r=r,, i.e., Z| =7
is in the ROC. Then
> llnlrr<oo= 30 xln]" <o, (75)
For r 21,
n N,
* N * -n| N 4l © —-n
SO NG P K I I A N FPE
0 0

-n -N,
. 7 . ..
*» The maximum value of [—IJ in the summation is (—lj J
17 r;
0 0

= The z-plane for |z| > r, is in the ROC.

5. If x[n] is a left-sided sequence and if the circle |z| =1, is in the ROC, then all values

of z for which 0<|z|<7, will also be in the ROC.

Im{z}

, Re{z}

z-plane

Figure 7.3 The ROC for a left-sided sequence.

When N, >0, the summation includes terms with negative powers of z which
become unbound when |z| — 0. Consequently, for left-sided sequences, in general,

the ROC will not include z=0.

Note: When N, <0, the ROC will include z=0.
Suppose |z| =71, isin the ROC. Then

ZNZ ‘x[n]‘r&” <. (7.7)
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For r <r,
-n -N,
Zaniw‘x[n]‘l(” = Z,,Ni,w‘x[”]‘ r" [:—1] < (%J Zaniw‘x[n]‘ro’” <. (7.8)
0 0

-n -N,
) 7 ) A
‘.~ The maximum value of (—1] in the summation is (—lj
7 7
0 0

6. If x[n] is a two-sided and if the circle |z| =7, is in the ROC, then the ROC will
consist of a ring in the z-plane which includes the circle |z| =1.

Note: A two-sided sequence can be expressed as a sum of a right-sided sequence and a

left-sided sequence.

} Re{z}
\ 0 ﬂ"R
ra

z-plane

(ROC for the right-sided sequence)

Im{z}

Re{z
4 0 II 7, {z}
Z-plane

(ROC for the left-sided sequence)
Im{z}

e ——

P R
4 \
/ i \
£ . N \
f / N \
1 I 7 ) |r (1
\ v 0 R/ 'L
\ N\ / /
b . | 4 /
\ /
b -
~ ,/

z-plane

Figure 7.4 The ROC for a two-sided sequence. 7, must be greater than 7 ;
otherwise the ROC for X (z) does not exist.
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Example 7.5: Determine the z-transform of the following sequence:

x[n]=

a", 0<n<N-1, a>0
0 , otherwise.

X(z)=2, a7 =2, (a)

-1\ N _ N
(@) 1 e
1-az™ M z-a

unit circle

cancellation

z-plane

The ROC includes the entire z-plane except the origin.

pole: z=0 z=a .
v pole-zero cancellation
zero: z© —a’ =0 z=a

z = e’ k=12, N-1

Example 7.6: Determine the z-transform of the following sequence:

x[a]=0" ", b>o0.
= x[n] =b"u [n] +b™"u [—n - 1]

" : 1
xl[n]=b u[n](—)Xl[z]=m , |z|>b.
-n z _1 1
xz[n]=b u[—n—l](—)Xz[Z]:m , |Z|<Z .
For b<1,
1 -1
(Z) C1-bz! " 1-57'z7"
b* -1 z 1
= . , b —.
b (z-b)(z=b") <ll<3

For b>1, there is no common ROC, and thus the z-transform does not exist.

7-8
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Im o - o
Unit circle ] Unit circle

7 L
w WL MY

// \\ é z-plane

S

SN

A\

(e)

Figure 7.5 The pole-zero plots and ROCs for Example 7.6: (a) X, [z] for |b| < 1; (b)
X, [z] for |p| > 1; (c) X, [z] for |b| < 1; (d) Xz[z] for |b| > 1; (e) X[z] for|p|<1. m

Note: For any rational z-transform

@ The ROC will be bounded by poles or will extend to infinity.

@ For a right-sided sequence, the ROC is bounded on the inside by the pole with the
largest magnitude and on the outside by infinity.

@ For a left-sided sequence, the ROC is bounded on the outside by the pole with the
smallest magnitude and on the inside by zero.
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Example 7.7: Determine the pole-zero plot and ROC for
1

(Z)z(l—;z_lj(l—2z_l).

S

The pole-zero plot:

ah

I 3
2

The ROC when x[#] is right-sided:

\

—
/%

S\

LY

The ROC when x[n] is left-sided:

S
W

The ROC when x[#n] is two-sided:

P

g
7
4

%/

Y
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7-3 The Inverse z-Transform

. Formulation of the inverse z-transform

x[n] =7 {X(z)}

_ X(rejg) = g{x[n]r’”}
x[n]r_” =er! {X(rejQ )}

x[n] =" oF" {X(re-’Q )}

=r" L X(rejg)ejg"dQ
2 d2n
- :i 2”X(rejg)(rejg )n dQ
=ij X(z)z”‘ldz

(7.9)

z=re’* and r fixed
= dz = jre’*dQ = jzdQ

=dQ= l'z_ldz
J

g(z: a counterclockwise closed circular contour centered at the origin and with radius »

that can be chosen as any value for which X(z) converges.

. Another derivation of the inverse z-transform

The Cauchy Integral Theorem from the theory of complex variables states that
1, £=0
Lﬁ 2z = (7.10)
2rj T 0, £#0
where T is a counterclockwise contour of integration enclosing the origin. Multiplying
both sides of Eq. (7.3) by z/”'/(27/) and doing integration along a suitable T'

enclosing the origin in the ROC of X(z), we obtain

! X(Z)zk_ldz :%qurzr_wx[n]z_”k_ldz

2rj ot
» 1 —ntk-1
= x|n|—® z7"" dz = x|k|.
Zn=fcc [ ]272,‘]&1" [ ]
Note that a suitable I can always be found for the integration since the ROC is an
annular ring centered on the origin. Thus, the inverse z-transform can be expressed by

x[n]zij FX(z)z”’ldz. (7.11)

7-11



EE3610 Signals and Systems 2016-Fall

3. Various methods for computing the inverse z-transform
(1) Cauchy integration

In the usual case where X(z) is a rational function of z, the Cauchy Residue

Theorem states that Eq. (7.11) can be evaluated by
x[n]=>p, (7.12)

n—1

where all p, are the corresponding residues of X (z)z at the poles inside T .

To show the case of £ multiple poles at z = p, explicitly, we write

X(z)z" =% (7.13)

and the residue at the pole z = p, is then given by

1 d"'o, (z)|
= . 7.14
Pl | (7.19)
For the case of k=1, Eq. (7.14) becomes simply
pi:q)i(pi)' (7.15)

Example 7.8: Determine the inverse z-transform of

X(z)zzia , |z|>|a|.

The function X (z)z"" =z"/(z—a) has only one pole at z=a for n>0, and
has poles at z=a and z=0 for n<0. Any T' in the ROC |z|>|a| will

enclose all of these poles. Thus, for n>0, we have only one residue

p,=z"| =a".For n=-1, there are two residues at z=a and z=0 given by

z=a

Thus x[-1]=p,+p,=0. For all n<-1, we can calculate the residue at z=a
using Eq. (7.15) and the residue at z=0 using (7.14). It can be checked that

x[n]=0 for n<-1.Asa consequence,
x[n] = a”u[n].

The result agrees with the z-transform pair described in Example 7.1.
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(2) Long division

M

¥ ()= 22 _ Lo

D(Z) Zkzoakz_k

If the ROC is the exterior of a circle, the corresponding inverse z-transform is

a right-sided sequence. In this case, we can express N(z) and D(z) in
polynomial form of z™' (starting with the lowest powers of z™'), and perform
long division of N(z) and D(z) to expand X(z) in a power series of z~'. Then,
the inverse z-transform can be obtained from the power series coefficients of
X(2).

If the ROC is inside a circle, the corresponding inverse z-transform is a

left-sided sequence. In this case, we can express N(z) and D(z) in polynomial
form of z (starting with the lowest powers of z ), and perform long division

of N(z) and D(z) to expand X(z) in a power series of z to obtain the inverse

z-transform.
Example 7.9:
1+2z7!
X e
(&)= a
1-4z7%+82z7°-32z7°
1+2z7'+ 42_2> 1+2z7"
1+2z7" +4z72
—4z7
—4z7—8z° —16z"*
8z +16z7*
8z +16z* +3227
—32z7°
= x[O] =1, x[l] =0, x[2] =4, x[3] =8, x[4] =0, x[S] =-32,-- ]

(3) The Cauchy product and a recurrence relation

-1 -2 -M
X(z)zbOerlZ +byz" +- -+ b,z _zm x[n]z’”

-1 2 -M T Ln=0
a,taz +a,z +---+a,z

Consider that the numerator and denominator have the same degree. If this is not
the case, we merely have some coefficients that are zero for the numerator

polynomial or the denominator polynomial.
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Thus we have

(Zrb)=(Erane” ) (Eortl=)

where a,=b, =0 for n>M . Applying the Cauchy product to the right-hand

side results in
Zn 0% z"= z [ZZ:ox[k]an-k}Z_n

= b, Zk N x[k]a, , =x[n] a0+z x[k]a,,

Assume a, # 0, we have

Example 7.10:

X(z)= 1+2z" _ b+ bz +bz”

-2

-1 -2 -1 Z| >r
1+2z7 +4z a,+az +a,z

a,=1,a,=2,a,=4,a,=0, for n>3
b,=1, by=2,b,=0,b, =0, for n=>3

2]=b2—x[0]a2—x[1]a1 =0-1x4-0x2=-4
3] =b, - x[O]a3 —x.[l]az _x[z]al :_(—4)><2:8

(4) Partial-fraction expansion
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@ If M <N and X(z) has no multiple poles, it may be expanded in a partial
fraction of the form
A
X(2)=2
Zk 11 pk

with p, being poles of X(z). Note that each term in the summation is just the

z|>r (right-sided) (7.16)

z-transform of an exponential sequence, and thus the inverse z-transform of

X(z) is given by

N n
x[n]= . A, pluln]. (7.17)
@ If M >N, we divide N(z) and D(z) starting with the highest powers of z
to produce
Cyyz "N+ vCz'+C,
-N -M -1 R(Z)
ayz +---+a0> b,z" +--+bz" +b, +D(z) (7.18)

where the remainder polynomial R(z) is of order M'=N—1 or less. Then,
z)/D(z) can be expanded in a partial-fraction expansion as before and x[n]

is given by
] ZMNC5 —z Z u[n (7.19)

@ For the case of multiple poles, e.g., K multiple poles of p,, X(z) should be

expanded as
All — + A12 >
=Pz (1-pz")
A A

4 1K K+ 21 _l+”'
(l—plz"l) 1-p,z 1-pyz

X(Z):

(7.20)

N1

Example 7.11: Consider

z2+2z7'42

X(Z): 2 +1

, |Z|>1.

By the long division method, we obtain
X(z) =24z -z 4z =27 .

and thus
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0, n<0
2, n=
x[n]= 0, n=1
(-1)", n=2

By the partial-fraction expansion method, we have

X(Z)zzfl+1+z_l+l, |Z|>1

and thus
x[n] = 5[n—1]+5[n]+(—1)” u[n]

It can be checked that the results derived from different methods are the same.

Example 7.12:
X(Z)_l—zijt; 2
! 4 4
(1—;z_lj(l—iz_lj 1—;z-l 1—iz-1
ROC: > L= x[n]=4|:(%jn _Gﬂu[n]
ROC: L <lzf<Lo x[n]=—4(%)nu[—n—l]—4(ljnu[n]
ROC: |z|<i:> x[n]=4{—(%jn w{%jn}u[—n—l]

Example 7.13:

3+ Ez‘1 +7z72
2

X(z)=
(1—12-‘j(14rzz-1 +4z‘2)
2
A B+Cz
T 1t w4
1_5271 zZ zZ
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3—%—1271 +7z72

A:[l—lzlJX(z) -—2 | =2
2 o, 1+2z7 +4z
z1=2
-1
= X(Z)_ 2 = B-:CZ )
(oL 14227 44z
l—i-éz’l—zf2 (1—;2_1)(1+2z"1)
= 7 ) A
- (1+22'1+4Z'2) - (1+2z'1+4z-2)
2 2
B 1+2z7! B B+Cz!
142z +4z7% 142z +4z2
-1
o x(s)- 2, l+7122 _
(oL 14227 44z
2

A B C p=—1+/3i
X(z)= AT e T
==z pz pz p =—1-+/3i
2
n
Example 7.14: Consider a right-sided sequence with z-transform
X(z)= 1 . azb
(1—az")(1-027")
ZZ a—lb—l
X = =
= (Z) (z—a)(z—b) (z'l—a_l)(z 1—b_l)
_ 1 1 N 1 1
Cb-a z'—-a' a-b z'-b"
a 1 b 1
= . + .
a-b 1—az' b—a 1-bz"
:>x[n]: aiba"u[n]+b_ab”u[n]
n

7-17



EE3610 Signals and Systems 2016-Fall

Example 7.15:

X(z) _ 4-8z7"'+6z7
(1 —2z" )2 (1 + Zﬁl)
A B C

T1-277 +(1_22—1)2 +1+zf1

B=(1-2") X(z) =1
=
C=(1+z")x(z)_, =2
Ly 4-8z7 4627 ] C ]
X (z)(1-22"1) :IZJF—;Z:A(l—zz B (122 Y

Applying differentiation to both sides, we have

d[X -2z 1
()QSZ_1 ) i d_l (1- 22_)
4 8z +627
:A—_l 1+Zl 1 22
2 2 dz 1+z! 1
o =3
2
1 .
182 1+z) (4-8" 4627 1} L
2 (1+=)
2
[_3.3j_(4_4+3j
_ 1 2 2)_,
2 9
4
1 1 2
:>X(Z):1—2zl+(1_2z ) 1+z
or
I P -1
X(Z):1221+(1(2z )+122z - 2_1
1-2z ) +z
2 2z 2
- Tt 7t T
1-2z (1_22*1) 1+z
:>x[n]:[2(2 )+n(2”)+2(—1) }u[n] n
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(5) Power-series expansion

If X(2) 1s given as a closed-form expression, its inverse z-transform x[n] can be
obtained by deriving an appropriate power series or using a previously derived

power-series expansion.

Example 7.16: Assume a z-transform of the form
X(z):e“/z, |Z|>O.

Since the ROC contains z =00, the sequence x[n] must be causal. The power

(Maclaurin) series for X(z) is given by

X(Z) = Zioa—z’” .

From this, we have immediately that

n

x[n]=Luln] .

n!
[
Example 7.17: Consider
X(z) = log(l—az‘l) , |Z| > |a| .
The power series expansion for log(1—y) is of the form
o0 _1 n
log(1-y)=2,, ,—»".
From this, we have
© _1 n_—n
X(Z) = Zn:l?a
Hence
an
=— -1].
o)=L 1)
[
Example 7.18: Determine the inverse z-transform of
1
X(z)z T |z|>a .
= X(z)=l+az'+a’z7 +---- :Z:;Oa z’”:zn?wa”u[n]z’”
= x[n] =a'u [n]
[
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7-4 Properties of the z-Transform
1. Linearity

x[n]«“>X,(z) ., ROC=R
x[n]«*>X,(z) , ROC=R,

= ax, [n]+a,x,[n]«>a,X,(z)+a,X,(z), ROC containing R R,  (7.21)

Note: If pole-zero cancellation occurs, the ROC may be larger than R, (R, .

2. Time shifting
x[n]«“>X(z) , ROC=R,

= x[n—n,]«=>z"X(z) , ROC=R, (except for possible addition or

deletion of the origin or infinity)

(7.22)
ny>0=z"—>ow as z=0
.. introducing a pole z=0
a Zero z =
ny<0=>z" >0 as z=o
.. introducing a pole z=o
a zero z=0
3. Frequency shifting
x[n]«“>X(z) , ROC=R,
= ejQO"x[n]%X(e_’Q"z) , ROC=R_ (7.23)

Re{z} =

z-plane
X(z)
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= zgx[n]<—2—>X£ij , ROC=zR, (7.24)
2y

| Zo| =1=>z, =e’™, reduce to the above

z, =re’™ = the pole and zero locations are rotated in the z-plane

by an angle of (2, and scaled in position radially by a factor of 7.

4. Time reversal

! { ' (7.25)
;:ZP:Z:Z
5. Convolution property
x [n]«—>X,(z), ROC=R
x,[n]«“—>X,(z), ROC=R,
x [n]*x,[n]«—> X,(2) X,(z), ROC contains R, R, (7.26)
Proof:
[ ] 1[n *xz[n Z, k]x2 n— k]
22: wz:f@ k]x2 n— k]z
=Y X -k
= j X k]szz( )
=X,(2) X, (2)
[
Note:

@ The ROC may be larger than R, (1R, if pole-zero cancellation occurs in
X 1(Z)X2 (Z)

@ When two polynomials or power series Xl(z) and X, (z) are multiplied, the
coefficients in the polynomial representing the product are the convolution of the

coefficients in the polynomials X, (z) and X, (z).
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X (z)=a,+az" +a,z7 +--+ay,z”¥ — (N +1) points
X,(z)=b,+bz" +bz? +--+byz" — (N+1) points
if X, (Z) =X, (Z)X2 (z) then

X,(z)=cy+qz " +c, 2+ 4z Y > (2N +1) points

C,,:Z,]Loakbn-k:an*bn , n=0,1,2,---,2N

6. Differentiation in the z-domain
x[n]«“>X(z) , ROC=R,

:nx[n](L)—zdiX(z) , ROC=R, (7.27)
z

If there is a pole at z=0 originally, then an extra pole at z=0 will occur after

differentiating and that will be cancelled with the new zeroz =0.

Proof:

Example 7.19:
X(z)zln(1+a2_1) , |z| >a.
Find x[n]=?

-1
az

. d _
nx[n]<—> Zde(Z)_1+az_

1
l+az”

o lel>ld

o lEl>ld

21> a

21> a
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Example 7.20:

X(z)=—5— . |f>]d
(l—az )
n z 1
a u[n]<—>1 T 2| >|a]
d 1 az™
= na'"u[n]«—— z—( lj: > . 7>
dz\1-az (l_azfl)
n
7. The initial value theorem
If x[n]=0 for n<0,then
x[0]=lim X (z). (7.28)
Proof: th —hmzn_ x[n
zlimZL)x[n]z
zlim[x[0]20+x[l]z’l+x[2]zfz+---]
=x[0]
n
8. The final value theorem
If x[n] is causal and stable with z-transform X (z), then
limx[n]= lirrll(l—z_l)X(z) (X(z) has poles inside the unit circle.) (7.29)
Proof:
First we know Z{x[k]—x[k—l]}:X(z)—z_lX(z):(I—Z"I)X(z).
Then take limit as z—>1 on both sides:
lziirll(l—zfl)X(z)
i3 (o {i]-alk- 1) = 35 {414 -1)
=1 i k=0
=x[ ]+ x[l]—x[O]) (x[Z]—x[l])+...x[oo]
:x[oo]zlimx[n]
n
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7-5 The System Function for LTI Systems

1. The system is stable <> The impulse response h[n] is absolutely summable.
< The Fourier transform of the impulse response h[n] converges.

< The ROC of H(z) must include the unite circle

2. If the system is both causal and stable, the ROC of the z-transform of the impulse

response must include the unit circle and be outside the outermost pole.

3. For a causal and stable system, all the poles of the system function must be inside the

unit circle.

Example 7.21.

y[n]—%y[n—l]:x[n]+%x[n—l]
Y(Z)—%ZlY(z) = X(z)+%le(z)
Y( ) l+lz_1 1 lz_1
H(Z): X(Z) ) 1—?21 ) 1—1271 ' 1—3121
2 2

Assume the system is causal and stable. Then the ROC is |z| >0.5.

= h[n] =z {H(z)}

{3 e

4. Invertible systems:

If an LTI system A[n] is invertible, there must exist an inverse system with impulse
response /,[n] such that

h[n]*h,[n]=3J[n]. (7.30)
Expressing this relationship in terms of the z-transforms of 4[n], A,[n], and o[n], we

have

H(z)H,(z)=1 or H,(z)= (7.31)

H(z)

If H(z) is the rational fraction B(z)/A(z), then H/(z) is the rational faction A(z)/B(z); the

poles of H(z) are the zeros of H/(z), and vice versa. In general, the inverse system H(z)
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for a given H(z) is not unique because multiple ROCs can be defined for a rational
z-transform A(z)/B(z) having at least poles at other than z=0 or z=o0. However, if

we set the requirements of stability and/or causality on H/(z), it will be unique.

Example 7.22: Consider the accumulator system function

H(z)=——, |4>1.

,1’
|

The associated inverse system is H,(z)=1-z",

z| >0, and the corresponding
impulse response is /,[n] = o[n]—o0[n—1]. This system is known as a first-difference
operator and is unique because H,(z) has only a pole at z=0. It can be checked that
h[n]*h[n]=u[n]*{5[n]-S[n—-1]}
=u[n]—u[n—-1]
=0[n] .

Example 7.23: Consider a stable and causal system given by

~1+0.8z7"

H(2) 1-0.5z7"

. |7>05.

We can identify two different inverse systems as follows:

1-0.5z"
H =— "% |7/>0.8
n(® 1+0.8z7" [
and
1-0.5z7"
H = <0.8.
()= e g

In most practical applications, however, only Hj(z) is useful because it is both stable

and causal. On the other hand, for the stable and causal system

—2z7!

H(z)= ll_—zzl l2|>0.5

0.5

the two possible inverse system are

-0.5z7"

1
H,,(z)= e |z|>2

and
1-0.5z"
H14(Z) ZW, |Z|< 2.

Hence, in this case, we must choose between stability and causality for the inverse

system because Hp3(z) is causal but not stable, while Hj4(z) is stable but not causal. m
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5. Systems described by linear constant-coefficient difference equations:

Consider a linear constant-coefficient difference equation given by
N M
Zaky[n —k]= Zbkx[n —-k].
k=0 k=0
Taking z-transform on both sides, we have
N M
Zakz’kY(z) = Zbkz’kX(z) .
k=0 k=0

The corresponding system function can be expressed by

Zbszk
H(z)= )Y( ((Z)) = k=0 . (7.32)
z
gzt

Example 7.24: Consider the first-order linear difference equation
yln]=ay[n—1]= x[n].
We have

(I1-az )Y (z)=X(2).
The actual system function can be either

H(z)=

P 2| >a
—az

or

H,(z)=

— lz|<a
—daz

corresponding to the causal and anticausal impulse responses
h[n]=a"uln]
and

hy[n]=—-a"u[-n—1]

respectively. Since 4[] and h;[n] are both nonzero for an infinite time duration, they
are classified as infinite-impulse-response (IIR) filters. Clearly, any filter with at least
one nonzero, finite pole (i.e., a pole at other than z=0 or z=o0) that is not

canceled by a zero, will be IIR because such poles imply exponential components in

h[n].
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Example 7.25: Consider the first-difference operator defined by the system function

H(z)=1-z"",

Z|>O.

With H(z) = Y(z)/X(z) for Eq. (7.32), we can derive the corresponding difference
equation as follows:

yln]=x[n]=x[n-1].
Since the associated impulse response

h[n]=0o[n]-9o[n—-1]

is nonzero for only a finite time duration, this filter is classified as a finite-impulse
response (FIR) filter. Note that, in contrast to the IIR case, this FIR filter has only a
pole at z=0.

Example 7.26: Linear-Phase FIR Filters

Consider an FIR filter described by the finite-order nonrecursive difference equation
M
y[n]= Zbkx[n -k
k=0

It is easy to see that the corresponding impulse response is

b, n=0,1,.,M
hn]= .
0, otherwise.

Assume that A[n] is real with either even or odd symmetry about the midpoint of
h[n], ie.,

b =b, , or b =-b

-n M-n "
For even and odd values of M, some examples are given in Fig. 7.6 to demonstrate
such symmetric properties. The system function H(z) of this FIR filter can be

expressed as
M
H(z)= Z bz"
n=0
L
=bz "+ (b,z" +b, 27"
n=0

where L is the integer part of (M —1)/2 and b, is the central coefficient (if there

exists) given by

h =

c

by, M even
0, M odd.
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hln]

h[n] b

h[n]

(b)

Figure 7.6 Four cases of symmetry for an FIR filter: (a) even symmetry and (b) odd
symmetry.

For the even-symmetry case (b, =b,, ,), the frequency response can be rewritten as

follows:

L
H(e’)=be ™" + an (e + /M)
n=0

L
_ o oM {b, +Zb (ejQ(M/2fn) 4 /M2 )}
C ~ n

, L M
=e M2 b +> 20, cos[Q(7 -n)]}
n=0
=e " MPR(QY)

where R()) is a purely real function of Q. Thus, the magnitude and phase

responses arce
|H (") = |R()

and

ZH(e) =

+ ZR(Q)

where ZR(Q)=0 if R(Q)>0, and LR(Q) =27 if R(Q)<0. The following

example is a lowpass filter with H(z)=1+z"' and frequency response described by

H(e’?)=2e " cos%.
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The corresponding magnitude and phase responses are
‘H(ejg)‘ =2 cos9
2
and
JH(e®) = ? r<Q<rx
as shown in Fig. 7.7.
| H(e™)| ZH(e™)
+7/2
12 \
- 0 V4 Q
1 — Q
- 0 Vs T—r/2

Figure 7.7 Magnitude and phase responses for H(z)=1+z"".

Note:

@ Because the real function R(€))=2cos{2/2 changes sign at Q= (2kx1)z for
k=0,1,2,..., the phase discontinuities of 7 radians occur at these frequencies.
@ Except these discontinuities, the phase ZH(e’”) is a linear function of Q. So

such FIR filters have (piecewise) linear-phase responses.

For the odd-symmetry case (b, =—b,, ), we have

n=0

JN M2 & . M_
H(e™) = je D25, sin| Q( > n)

= je M R(Q)
— ej(”/27QM/2)R(Q) )

Therefore, the magnitude and phase responses are

| H(e™) = R(Q)]

and

ZH(e™) =%—%+ ZR(QY).

The following example is a highpass with H(z)=1-z" and frequency response
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described by
H(e)=2je " sin%.

The corresponding magnitude and phase responses are

|H(e") =2 sin 2
2
and
o r/2-Q/2, 0<Q<rx
ZH(e™) =
—/2-Q/2, —7<0Q<0.

They are depicted as follows:

| H(e™)]| ZH(e™)
/2
12
- 0 s Q
| —Q
-7 0 T —— /2

1

Figure 7.8 Magnitude and phase responses for H(z)=1-z"".

Note:

@ Because the real function R(2)=2sin{)/2 changes sign at Q=2kx for
k =0,1,2,..., the phase discontinuities of 7 radians occur at these frequencies.

@ Except these discontinuities, the phase ZH(e’") is a linear function of Q. Again,

such FIR filters have (piecewise) linear-phase responses.

]
7-7 The Unilateral z-Transform
The unilateral z-transform of a sequence x[n] is defined by
X(z)=) x[nlz™". (7.33)
n=0

It is a useful tool for finding the response of a causal system to a causal input when the
system is described by a linear constant-coefficient difference equation with nonzero
initial conditions. Note that such responses cannot be obtained through the relationship
Y(z)=H(z)X(z) using the bilateral z-transform, which is applicable to LTI systems
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only. The basic properties of the unilateral z-transform that are useful for practical

applications are related to the transforms of delayed signals x[n —k]. For the unit delay

case, i.e., x[n—1], the unilateral z-transform can be written by

i x[n—=1)z" =x[-1]+ i x[n—1]z""

0

=x[-1]+z" Z x[m]z™"

=x[-1]+z"'X(2).

Similarly, the unilateral z-transform of x[n—2] can be expressed as
D xn-2k " =x[-2]+ ) x{n-2]z"
n=0 n=1

=x[-2]+z" i x[m—1]z""

=x[2]+z 'X[-1]+ 27X (2)

and so forth. The properties for some other delay cases are listed in Table 7.2.

Example 7.27:

Consider a discrete-time system described by the linear difference equation

yin]—ayln=1]=x{n]=b"u[n], y[-1]=Y,.

Applying the unilateral z-transform to both sides of this equation, we obtain

Y(z)—azle(z)—ay[—l]: ! -
1-bz
= (l-az )Y (z)-aY, = 1 -
1-bz
1 at,

= Y(z2)=

+ :
(—az )1-bz") 1-az’
The inverse z-transform of Y(z) is given by

bn+l _ an+1

; +Y,a", n>0.
—dad

y[n]

(7.34)

(7.35)

Thus, the zero-input response y_ [n] and the zero-state response y_[n] are as follows:

bn+1 _ an+1

yzs[n] yzi[n] = Ylanﬂ'
b-a

5
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Example 7.28:

Consider the second-order difference equation
vinl+ayn=11+a,y[n-2]=x[n]
with x[n]=0 for n>0 and initial conditions y[-1]=Y,, and y[-2]=Y,,. Applying
the unilateral z-transform to both sides of the difference equation, we obtain
Y(2)+a iz Y(2)+ Y-} +ay iz 7Y (2) + 2 y[=1]+y[-2]} =0
=S Y()l+az ' +a,z°1=-aY, +a,Y,,]-a,Y,z"
b, +bz" 1

l+az"+a,z l+az"'+a,z

=Y(2)= — = (b, + bz™") >=X(2)H(z)

where b, =-[aY, +a,Y,,] and b =-a,Y, . The implies that the system can be
described by an LTI system with input X (z)= (b, +bz"') and system function
1

H(z)= .
@ 1+alz’1+azz’2

Note:

@ The response of an all-pole discrete-time system with zero input for » >0 and
nonzero initial conditions can be modeled as the impulse response of a pole-zero

system at initial rest.
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Table 7.1 Common z-Transform Pairs

Sequence z-Transform ROC
5[n] 1 all z
5[n—m], m>0 z" |z|>0
5[n+m], m>0 Z" |z|<oo
u[n] l = |2[>1
-z
1
—u[—n—l] —~ |z|<1
-z
a'u[n] ! |2|> |al
l—az
n 1
~ul 1] S <k
. az”!
na"u(n) m |2|> |al
cos[n6]u[n] 1-z 7 cosd 2|>1

1-2z"cos@ +z™>

. 1-z"'sin@
sin[n8]u[n] — 22’1200851; = |2[>1

. l1-az"'cosé
a" cos[nf]u[n] - 2az’?zoscé?i o= 2] > |a]

. 1—az'sin@
a"sin[n@]u[n] 1—2az*fzzossél'rirazz’2 |2|> a

Table 7.2  Unilateral z-Transforms of Delayed Signals

Delayed Signal Unilateral z-Transform

x[n—1] ' X(z) + x[-1]

x[n—2] 22 X(2)+x[-1]z7" + x[-2]

x[n-3] 22X (2)+ x[-1]z2 + x[-2]z " + x[-3]

x{n—k] X (2)+ x[-1]z7% o X[k = D]z + x[—k]
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