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Chapter 7  The z-Transform 
 
7-1 Definition of the z-Transform 

1. For a complex variable z,   nx n z  is an eigenfunction of discrete-time LTI systems: 
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2. The z-transform or the bilateral z-transform of a sequence x[n] is defined as 
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3. The z-transform of x[n] can be interpreted as the Fourier transform of x[n] after 

multiplication by a real exponential nr .  jz re   
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       (7.4) 

Note:  

 The z-transform reduces to the Fourier transform when the magnitude of transform 

variable z is unity (i.e., for jz e   ). 

 The Laplace-transform reduces to the Fourier transform when the real part of the 

transform variable is zero (i.e., for s j  ). 
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(a)                                    (b) 

Figure 7.1 The z-plane and s-plane: (a) z-plane; (b) s-plane. 
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 The unit circle of z-plane and the jω-axis of s-plane play a similar role. 

 For convergence of the z-transform, we require that the Fourier transform of 

  nx n r  converges. 

 The range of values for which the z-transform exists is referred to as the region of 

convergence (ROC) of the z-transform. 

 If the ROC includes the unit circle, then the Fourier transform also converges. 

 The unilateral z-transform of a sequence x[n] is defined as    
0

n

n
X z x n z

 


 . 

 

Example 7.1: Determine the z-transform of the following sequence: 
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For convergence of  X z , we have  1 1   zaz a    
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The pole-zero plot (or diagram) and ROC: 

a

 

The Fourier transform of x[n] converges only if 1a  .              ■ 

Example 7.2: Determine the z-transform of the following sequence: 
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 X z  converges if  1 1   za z a    

  1 1

1 1
1 ,    z

1 1

z
X z a

a z az z a      
  

. 

The pole-zero plot and ROC: 

a

                  ■ 

Example 7.3: Determine the z-transform of the following sequence: 
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The pole-zero plot and ROC: 

1

3

              ■ 

Example 7.4: Determine the z-transform of the following sequence: 
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Both series converge if 
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  The ROC is z r . 
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Note: Some common z-transform pairs are listed in Table 7.1. 
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7-2 The Region of Convergence for the z-Transform 

Properties of the ROC for the z-transform: 

1. The ROC of X(z) consists of a ring in the z-plane centered about the origin. 

    j nX re x n r F  

The convergence of X(z) is dependent only on r z  but not on  . 

2. The ROC does not contain any poles. 

3. If x[n] is of finite duration, then the ROC is the entire z-plane, except possibly 0z   

and/or z  . 

   2

1

N n

n N
X z x n z


  

The z-transform is the sum of a finite number of terms.  

  X z  will converge for z not equal to zero or infinity. 

(1)  1 0 only negative powers of N z z     is included in the ROC, and 0z   

is not included in the ROC. 

(2) 1 20 and 0 0 and N N z z       are not included in the ROC. 

(3)  2 0 only positive powers of 0N z z    is included in the ROC, and z   is 

not included in the ROC. 

4. If x[n] is a right-sided sequence and if the circle 0z r  is in the ROC, then all finite 

values of z for which 0z r  will also be in the ROC. 

0r

 
Figure 7.2 The ROC for a right-sided sequence. 

 

   
1

n

n N
X z x n z

 


  

When 1 0N  , the summation includes terms with positive powers of z which become 

unbounded as z  . Consequently, for right-sided sequences, in general, the ROC 

will not include infinity. 
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Suppose that the z-transform of x[n] converges for some value of 0r r , i.e., 0z r  

is in the ROC. Then 

   
1

0 0
n n

n n N
x n r x n r

  
 

    .      (7.5) 

For 1 0r r , 

     
1

1 1 1
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1 0 0

0 0
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x n r x n r x n r

r r

 
    
  

   
       

   
       (7.6) 

1

1 1

0 0

 The maximum value of  in the summation is 
n N

r r

r r

     
         
  

0The -plane for  is in the ROC.z z r                                    

5. If x[n] is a left-sided sequence and if the circle 0z r  is in the ROC, then all values 

of z for which 00 z r   will also be in the ROC. 

0r

 

Figure 7.3 The ROC for a left-sided sequence. 

 

   2N n

n
X z x n z


  

When 2 0N  , the summation includes terms with negative powers of z which 

become unbound when 0z  . Consequently, for left-sided sequences, in general, 

the ROC will not include 0z  . 

Note: When 2 0N  , the ROC will include 0z  . 

Suppose 0z r  is in the ROC. Then 

 2

0

N n

n
x n r


  .        (7.7) 
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For 1 0r r , 
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   .  (7.8) 

2

1 1

0 0

 The maximum value of  in the summation is 
n N

r r

r r

     
         
  

6. If x[n] is a two-sided and if the circle 0z r  is in the ROC, then the ROC will 

consist of a ring in the z-plane which includes the circle 0z r . 

Note: A two-sided sequence can be expressed as a sum of a right-sided sequence and a 

left-sided sequence. 

Rr

 
(ROC for the right-sided sequence) 

Lr

 
(ROC for the left-sided sequence) 

LrRr

 

Figure 7.4 The ROC for a two-sided sequence. Lr  must be greater than Rr ; 

otherwise the ROC for  X z  does not exist. 
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Example 7.5: Determine the z-transform of the following sequence: 

  ,    0 1  ,   0

0  ,      otherwise.                
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The ROC includes the entire z-plane except the origin. 

 2
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pole-zero cancellation

zero:   0             

            ,         1,2, , 1
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■ 

 

Example 7.6: Determine the z-transform of the following sequence: 
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For 1b  , 
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For 1b  , there is no common ROC, and thus the z-transform does not exist. 
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Figure 7.5 The pole-zero plots and ROCs for Example 7.6: (a)  1X z  for |b| < 1; (b) 

 1X z  for |b| > 1; (c)  2X z  for |b| < 1; (d)  2X z  for |b| > 1; (e)  X z  for |b| < 1.   ■ 

Note: For any rational z-transform 

 The ROC will be bounded by poles or will extend to infinity. 

 For a right-sided sequence, the ROC is bounded on the inside by the pole with the 

largest magnitude and on the outside by infinity. 

 For a left-sided sequence, the ROC is bounded on the outside by the pole with the 

smallest magnitude and on the inside by zero. 
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Example 7.7: Determine the pole-zero plot and ROC for 

 
 1 1

1
1

1 1 2
3

X z
z z 


   
 

. 

The pole-zero plot: 

31

2

                     
The ROC when x[n] is right-sided: 

31

2

                   

The ROC when x[n] is left-sided: 

31

2

                        
The ROC when x[n] is two-sided: 

31

2

                  ■ 
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7-3 The Inverse z-Transform 

1. Formulation of the inverse z-transform 
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                           (7.9) 

1

  and    fixed

1

j

j

z re r

dz jre d jzd

d z dz
j







 
 
 
     
 
    
 

 

:  a counterclockwise closed circular contour centered at the origin and with radius r 

that can be chosen as any value for which X(z) converges. 

2. Another derivation of the inverse z-transform 

The Cauchy Integral Theorem from the theory of complex variables states that 

1 1, 01

0, 02
k k

z dz
kj






  

          (7.10) 

where   is a counterclockwise contour of integration enclosing the origin. Multiplying 

both sides of Eq. (7.3) by 
1 / (2 )kz j

 and doing integration along a suitable   

enclosing the origin in the ROC of X(z), we obtain 

   

   

1 1

1

1 1

2 2

1
.
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X z z dz x n z dz
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x n z dz x k
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Note that a suitable   can always be found for the integration since the ROC is an 

annular ring centered on the origin. Thus, the inverse z-transform can be expressed by 

    11

2
nx n X z z dz

j



  .                     (7.11) 
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3. Various methods for computing the inverse z-transform 

(1)  Cauchy integration 

In the usual case where X(z) is a rational function of z, the Cauchy Residue 

Theorem states that Eq. (7.11) can be evaluated by 

  i
i

x n                               (7.12) 

where all i  are the corresponding residues of   1nX z z   at the poles inside  . 

To show the case of k multiple poles at iz p  explicitly, we write 

   
 

1n i
k

i

z
X z z

z p
 



                     (7.13) 

and the residue at the pole iz p  is then given by 

 
 1

1

1

1 !
i

k
i

i k

z p

d z

k dz












.                 (7.14) 

For the case of 1k  , Eq. (7.14) becomes simply 

 i i ip   .                             (7.15) 

Example 7.8: Determine the inverse z-transform of 

        ,     
z

X z z a
z a

 


. 

The function   1 / ( )n nX z z z z a    has only one pole at z a  for 0n  , and 

has poles at z a  and 0z   for 0n  . Any   in the ROC z a  will 

enclose all of these poles. Thus, for 0n  , we have only one residue 

1
n n

z a
z a


  . For 1n   , there are two residues at z a  and 0z   given by 

1 1
1 z a

z a  


  ; 1

2
0

1

z

a
z a

 



  


. 

Thus   1 21 0x      . For all 1n   , we can calculate the residue at z a

using Eq. (7.15) and the residue at 0z   using (7.14). It can be checked that 

  0x n   for 1n   . As a consequence, 

   nx n a u n . 

The result agrees with the z-transform pair described in Example 7.1. 

■ 
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(2)  Long division 

   
 

0

0

M m
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N k
kk

b zN z
X z

D z a z







  


 

 If the ROC is the exterior of a circle, the corresponding inverse z-transform is 

a right-sided sequence. In this case, we can express N(z) and D(z) in 

polynomial form of 
1z

 (starting with the lowest powers of 1z ), and perform 

long division of N(z) and D(z) to expand X(z) in a power series of 1z . Then, 

the inverse z-transform can be obtained from the power series coefficients of 

X(z). 

 If the ROC is inside a circle, the corresponding inverse z-transform is a 

left-sided sequence. In this case, we can express N(z) and D(z) in polynomial 

form of z  (starting with the lowest powers of z ), and perform long division 

of N(z) and D(z) to expand X(z) in a power series of z  to obtain the inverse 

z-transform. 

 

Example 7.9:  
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2 3 5
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            0 1,  1 0,  2 4,  3 8,  4 0,  5 32,x x x x x x            ■ 

 
(3)  The Cauchy product and a recurrence relation 
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0 1 2
1 2 0

0 1 2

M
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X z x n z
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Consider that the numerator and denominator have the same degree. If this is not 

the case, we merely have some coefficients that are zero for the numerator 

polynomial or the denominator polynomial. 
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Thus we have 

  
      0 0 0

n n n
n nn n n

b z a z x n z
    
  

    

where 0  for  n na b n M   . Applying the Cauchy product to the right-hand 

side results in 
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Example 7.10:  
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■ 

 

(4)  Partial-fraction expansion 
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 If M N  and X(z) has no multiple poles, it may be expanded in a partial 

fraction of the form 

  11
,      (right-sided)

1

N k
k

k

A
X z z r

p z
 

            (7.16) 

with kp  being poles of X(z). Note that each term in the summation is just the 

z-transform of an exponential sequence, and thus the inverse z-transform of 

X(z) is given by 

   
1

.
N n

k kk
x n A p u n


                     (7.17) 

 If M N , we divide N(z) and D(z) starting with the highest powers of 1z  

to produce 

 
 

1
1 0

1
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M N
M N

N M
N M

C z C z C
R z

a z a b z b z b
D z

  


  

  

     


         (7.18) 

where the remainder polynomial R(z) is of order 1M N    or less. Then, 

   R z D z  can be expanded in a partial-fraction expansion as before and x[n] 

is given by 

     
0 1

M N N n
i k ki k

x n C n i A p u n

 
    .            (7.19) 

 For the case of multiple poles, e.g., K multiple poles of 1p , X(z) should be 

expanded as 

 
 

 

11 12
21 1

1 1

11 21
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         (7.20) 

 

Example 7.11: Consider 

 
2 1

1

2 2
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1

z z
X z z

z

 



 
 


. 

By the long division method, we obtain 

  2 3 4 52X z z z z z          

and thus 
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0,            0

2,            0

0,            1

1 ,     2.
n

n

n
x n

n

n


   
  

 

By the partial-fraction expansion method, we have  

  1
1

1
1 ,    1

1
X z z z

z


   


 

and thus 

         1 1
n

x n n n u n      . 

It can be checked that the results derived from different methods are the same. 

■ 

 

Example 7.12: 
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Example 7.13: 
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2 3 33
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An alternative solution: 

  1 1
1
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1 1 11
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■ 
 

Example 7.14: Consider a right-sided sequence with z-transform 
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Example 7.15: 
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Applying differentiation to both sides, we have 
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(5)  Power-series expansion 

If X(z) is given as a closed-form expression, its inverse z-transform x[n] can be 

obtained by deriving an appropriate power series or using a previously derived 

power-series expansion. 

 

Example 7.16: Assume a z-transform of the form 

  ,       0 .a zX z e z   

Since the ROC contains z   , the sequence x[n] must be causal. The power 

(Maclaurin) series for X(z) is given by 

 
0

.
!

n
n

n

a
X z z

n

 


   

From this, we have immediately that 

    .
!

na
x n u n

n
  

■ 
 

Example 7.17: Consider 

   1log 1   ,      .X z az z a    

The power series expansion for  log 1 y  is of the form 

 
1

1
log 1 n

n
y y

n






  . 

From this, we have 

 
1

1 n n

n
X z a z

n

 



  . 

Hence 

   1  .
na

x n u n
n

  
                           

■ 
 

Example 7.18: Determine the inverse z-transform of 

 

   
   

1

1 2 2

0

1
       ,      .

1

1 n n n n

n n

n

X z z a
az

X z az a z a z a u n z

x n a u n



    
 

 


      

 

 

 

■ 
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7-4 Properties of the z-Transform 

1. Linearity 

   
   

1 1 1

2 2 2

   ,     ROC

  ,     ROC

z

z

x n X z R

x n X z R

 

 
 

         1 1 2 2 1 1 2 2 1 2, ROC containing za x n a x n a X z a X z R R      (7.21) 

Note: If pole-zero cancellation occurs, the ROC may be larger than 1 2R R . 

 

2. Time shifting 

            ,    ROCz
xx n X z R   

   0
0

z nx n n z X z    , ROC xR  (except for possible addition or 

                                     deletion of the origin or infinity) 

(7.22) 

               

0

0

0

0

0   as  0

introducing  a  pole   0

                       a  zero   

0   as  

introducing  a  pole   

                       a  zero   0

n

n

n z z

z

z

n z z

z

z





   
 

 

    
  



 

 

3. Frequency shifting 

      ,    ROCz
xx n X z R   

   0 0   ,    ROCzj n j
xe x n X e z R           (7.23) 

 X z  0jX e z 

0
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 0 0
0

  ,    ROCzn
x

z
z x n X z R

z

 
   

 
        (7.24) 

   

0

0

0 0

0

0

1 , reduce to the above

 the pole and zero locations are rotated in the z-plane 

by an angle of  and scaled in position radially by a factor of .

j

j

z z e

z re

r





  

 


 

 

4. Time reversal 

      ,    ROCz
xx n X z R   

  1 1
  ,    ROC

1 1
     

z

x

p
p

x n X
z R

z z
z z

     
 

  
      (7.25) 

 

5. Convolution property 

   
     

1 1 1

2 2 2

,    ROC

,    ROC

 z

z

x n X z R

x n X z R

 

 
                        

       1 2 1 2 1 2,    ROC contains zx n x n X z X z R R          (7.26) 

Proof: 

         
     

    
   

   

1 2 1 2

1 2

1 2

1 2

1 2

   

           

           

           

k

n

n k

n

k k

k

k

y n x n x n x k x n k

Y z x k x n k z

x k x n k z

x k z X z

X z X z





  
 

  
 

 


   

  

 

 




 
 


 

■ 

Note: 

 The ROC may be larger than 1 2R R  if pole-zero cancellation occurs in 

   1 2X z X z . 

 When two polynomials or power series    1 2  and  X z X z  are multiplied, the 

coefficients in the polynomial representing the product are the convolution of the 

coefficients in the polynomials    1 2  and  X z X z . 
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1 2
1 0 1 2

1 2
2 0 1 2

3 1 2

1 2 2
3 0 1 2 2

0

1  points

 1  points

if      then

2 1  points

  ,      0,1, 2, , 2

N
N

N
N

N
N

N

n k n k n nk

X z a a z a z a z N

X z b b z b z b z N

X z X z X z

X z c c z c z c z N

c a b a b n N

  

  

  



      

      



      

   









 

 

6. Differentiation in the z-domain 

      ,    ROCz
xx n X z R   

      ,    ROCz
x

d
nx n z X z R

dz
               (7.27) 

If there is a pole at 0z   originally, then an extra pole at 0z   will occur after 

differentiating and that will be cancelled with the new zero 0z  . 

Proof: 

   

   

   

1

    

   

n

n

n

n

n

n

X z x n z

d
X z nx n z

dz
d

z X z nx n z
dz

 


  


 




 

  







 

■ 
 

Example 7.19:  

                    1ln 1   ,    X z az z a   . 

                 Find  x n  ?      

   

   

   

   

     

     

1

1

1

1

1
1

1

          ,    
1

1
      ,    

1

      ,    
1

1   ,    
1

1

1

z

n z

n z

n z

n

n

d az
nx n z X z z a

dz az

a u n z a
az

a
a a u n z a

az

az
a a u n z a

az

nx n a u n

a
x n u n

n














  


  


   


    


    

 
  



 
■ 
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Example 7.20:  

 
 

 

 
 

1

21

1

1

21 1

      ,    
1

1
      ,    

1

1
  ,    

1 1

zn

zn

az
X z z a

az

a u n z a
az

d az
na u n z z a

dz az az









 

 


 


       

 

■ 
 

7. The initial value theorem 

If   0x n   for 0n  , then 

   0 lim
z

x X z


 .          (7.28) 

Proof:             lim lim n

nz z
X z x n z

 
 

   

           

 
     

 

0

0 1 2

lim

lim 0 1 2

0

n

nz

z

x n z

x z x z x z

x

 


 





     






 
■ 

 

8. The final value theorem 

If  x n  is causal and stable with z-transform  X z , then 

     1

1
lim lim 1
n z

x n z X z

 
   (  X z  has poles inside the unit circle.)     (7.29) 

Proof: 

      First we know             1 11 1Z x k x k X z z X z z X z       . 

      Then take limit as 1z   on both sides: 

              

   

         

             
   

1

1

1
0 0

lim 1

lim 1 1

0 1 0 2 1 ...

lim

z

k

z
k k

n

z X z

x k x k z x k x k

x x x x x x

x x n





 



 





       
 

      

  

 
 

■ 
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7-5 The System Function for LTI Systems 

1. The system is stable   The impulse response  h n  is absolutely summable. 

  The Fourier transform of the impulse response  h n  converges. 

  The ROC of  H z  must include the unite circle 

2. If the system is both causal and stable, the ROC of the z-transform of the impulse 

response must include the unit circle and be outside the outermost pole. 

3. For a causal and stable system, all the poles of the system function must be inside the 

unit circle. 

Example 7.21:  

       

       

   
 

1 1

1 1

1 1 1

1 1
1 1

2 3
1 1

2 3
1 1

1 13 3
1 1 1

1 1 1
2 2 2

y n y n x n x n

Y z z Y z X z z X z

z zY z
H z

X z z z z

 

 

  

    

  


   

  
 

Assume the system is causal and stable. Then the ROC is 0.5z  . 

    

   

1

1
1 1 1

            1
2 3 2

n n

h n z H z

u n u n





 

        
     

■ 
 

4. Invertible systems: 

If an LTI system h[n] is invertible, there must exist an inverse system with impulse 

response [ ]Ih n  such that 

[ ] [ ] [ ]Ih n h n n  .                   (7.30) 

Expressing this relationship in terms of the z-transforms of h[n], [ ]Ih n , and [ ]n , we 

have 

( ) ( ) 1IH z H z   or 1
( )

( )IH z
H z

 .                 (7.31) 

If H(z) is the rational fraction B(z)/A(z), then HI(z) is the rational faction A(z)/B(z); the 

poles of H(z) are the zeros of HI(z), and vice versa. In general, the inverse system HI(z) 
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for a given H(z) is not unique because multiple ROCs can be defined for a rational 

z-transform A(z)/B(z) having at least poles at other than 0z   or z  . However, if 

we set the requirements of stability and/or causality on HI(z), it will be unique. 

Example 7.22: Consider the accumulator system function 

  1

1
,   1

1
H z z

z
 


 . 

The associated inverse system is 1( ) 1 ,   0,IH z z z    and the corresponding 

impulse response is [ ] [ ] [ 1]Ih n n n    . This system is known as a first-difference 

operator and is unique because HI(z) has only a pole at 0z  . It can be checked that 

[ ] [ ] [ ] { [ ] [ 1]}

                  [ ] [ 1]

                  [ ] .

Ih n h n u n n n

u n u n

n

 



    
  


 

■ 
 

Example 7.23: Consider a stable and causal system given by 

1

1

1 0.8
( ) ,   z 0.5

1 0.5

z
H z

z






 


 . 

We can identify two different inverse systems as follows: 

1

1 1

1 0.5
( ) ,   z 0.8

1 0.8I

z
H z

z






 


 

and 

1

2 1

1 0.5
( ) ,   z 0.8

1 0.8I

z
H z

z






 


 . 

In most practical applications, however, only HI1(z) is useful because it is both stable 

and causal. On the other hand, for the stable and causal system 

1

1

1 2
( ) ,   z 0.5

1 0.5

z
H z

z






 


 

the two possible inverse system are 

1

3 1

1 0.5
( ) ,   z 2

1 2I

z
H z

z






 


 

and 

1

4 1

1 0.5
( ) ,   z 2

1 2I

z
H z

z






 


 . 

Hence, in this case, we must choose between stability and causality for the inverse 

system because HI3(z) is causal but not stable, while HI4(z) is stable but not causal.   ■ 
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5. Systems described by linear constant-coefficient difference equations: 

Consider a linear constant-coefficient difference equation given by 

0 0

[ ] [ ]
N M

k k
k k

a y n k b x n k
 

    . 

Taking z-transform on both sides, we have 

0 0

( ) ( )
N M

k k
k k

k k

a z Y z b z X z 

 

  . 

The corresponding system function can be expressed by 

                  0

0

( )
( )

( )

M
k

k
k
N

k
k

k

b z
Y z

H z
X z

a z









 



.                     (7.32) 

 

Example 7.24: Consider the first-order linear difference equation 

[ ] [ 1] [ ]y n ay n x n   . 

We have 

       1(1 ) ( ) ( )az Y z X z  . 

The actual system function can be either 

             1 1

1
( ) ,   z

1
H z a

az
 


 

or 

       2 1

1
( ) ,   z

1
H z a

az
 


 

corresponding to the causal and anticausal impulse responses 

          1[ ] [ ]nh n a u n  

and 

                       2[ ] [ 1]nh n a u n     

respectively. Since h1[n] and h2[n] are both nonzero for an infinite time duration, they 

are classified as infinite-impulse-response (IIR) filters. Clearly, any filter with at least 

one nonzero, finite pole (i.e., a pole at other than 0z   or z  ) that is not 

canceled by a zero, will be IIR because such poles imply exponential components in 

h[n].             

■ 
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Example 7.25: Consider the first-difference operator defined by the system function 

                         1( ) 1 ,   0H z z z   . 

With H(z) = Y(z)/X(z) for Eq. (7.32), we can derive the corresponding difference 

equation as follows: 

                         [ ] [ ] [ 1]y n x n x n   . 

Since the associated impulse response 

                         [ ] [ ] [ 1]h n n n     

is nonzero for only a finite time duration, this filter is classified as a finite-impulse 

response (FIR) filter. Note that, in contrast to the IIR case, this FIR filter has only a 

pole at 0z  . 

■ 

 

Example 7.26: Linear-Phase FIR Filters  

Consider an FIR filter described by the finite-order nonrecursive difference equation 

                        
0

[ ] [ ].
M

k
k

y n b x n k


   

It is easy to see that the corresponding impulse response is 

                        
, 0,  1, ,     

[ ]
0, otherwise.     
nb n M

h n
 

 


 

Assume that [ ]h n  is real with either even or odd symmetry about the midpoint of 

[ ]h n , i.e., 

n M nb b   or n M nb b   . 

For even and odd values of M, some examples are given in Fig. 7.6 to demonstrate 

such symmetric properties. The system function ( )H z  of this FIR filter can be 

expressed as 

0

/2 ( )

0

( )

( )

M
n

n
n

L
M n M n

c n M n
n

H z b z

b z b z b z





   






  




 

where L  is the integer part of ( 1) / 2M   and cb  is the central coefficient (if there 

exists) given by 

/2 ,  even

0,  odd.
M

c

b M
b

M
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[ ]h n [ ]h n

0

2

M

/ 2Mb

0
2

MM M
n n

(  even)M (  odd)M

(a)  
[ ]h n [ ]h n

2

M

/ 2Mb

2

MM M
n n

(  even)M (  odd)M

(b)  

Figure 7.6 Four cases of symmetry for an FIR filter: (a) even symmetry and (b) odd 

symmetry. 

 

For the even-symmetry case ( )n M nb b  , the frequency response can be rewritten as 

follows: 

 

 

/ 2 ( )

0

/ 2 ( / 2 ) ( / 2 )

0

/ 2

0

/ 2

( ) ( )

( )

2 cos[ ( ) ]
2

( )

L
j j M j n j M n

c n
n

L
j M j M n j M n

c n
n

L
j M

c n
n

j M

H e b e b e e

e b b e e

M
e b b n

e R

       



      



 



 

  

  

   

 







 

where ( )R   is a purely real function of  . Thus, the magnitude and phase 

responses are  

( ) ( )jH e R    

and 

( ) ( )
2

j M
H e R 

     

where ( ) 0R    if ( ) 0R   , and ( )R      if ( ) 0R   . The following 

example is a lowpass filter with 1( ) 1H z z   and frequency response described by 

/2( ) 2 cos
2

j jH e e   
 . 
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The corresponding magnitude and phase responses are 

( ) 2cos
2

jH e  
  

and 

( ) ,
2

jH e   
       

as shown in Fig. 7.7. 





( )jH e | ( ) |jH e 







/ 2

/ 2

2

0

0

 

Figure 7.7 Magnitude and phase responses for 1( ) 1 .H z z   

Note: 

 Because the real function ( ) 2cos / 2R     changes sign at (2 1)k     for 

0,1,2,...k  , the phase discontinuities of   radians occur at these frequencies. 

 Except these discontinuities, the phase ( )jH e   is a linear function of  . So 

such FIR filters have (piecewise) linear-phase responses. 

 

For the odd-symmetry case ( n M nb b   ), we have 

/2

0

/2

( /2 /2)

( ) 2 sin ( )
2

           ( )

           ( ) .

L
j j M

n
n

j M

j M

M
H e je b n

je R

e R

  



 



     
 

 


 

Therefore, the magnitude and phase responses are  

| ( ) | | ( ) |jH e R            

and 

( ) ( )
2 2

j M
H e R

 
     . 

The following example is a highpass with 1( ) 1H z z   and frequency response 
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described by  

/2( ) 2 sin
2

j jH e je   
 . 

The corresponding magnitude and phase responses are 

| ( ) | 2 sin
2

jH e  
  

and  

/ 2 / 2, 0
( )

/ 2 / 2, 0 .
jH e

 
 

   
       

 

They are depicted as follows: 





( )jH e | ( ) |jH e 







/ 2

/ 2

2

0

0

 

Figure 7.8 Magnitude and phase responses for 1( ) 1 .H z z   

Note: 

 Because the real function ( ) 2sin / 2R     changes sign at 2k  for 

0,1, 2,...k  , the phase discontinuities of   radians occur at these frequencies. 

 Except these discontinuities, the phase ( )jH e   is a linear function of  . Again, 

such FIR filters have (piecewise) linear-phase responses. 

■ 

 

7-7 The Unilateral z-Transform 

The unilateral z-transform of a sequence [ ]x n  is defined by 

0

( ) [ ] .n

n

X z x n z






                           (7.33) 

It is a useful tool for finding the response of a causal system to a causal input when the 

system is described by a linear constant-coefficient difference equation with nonzero 

initial conditions. Note that such responses cannot be obtained through the relationship 

( ) ( ) ( )Y z H z X z  using the bilateral z-transform, which is applicable to LTI systems 
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only.  The basic properties of the unilateral z-transform that are useful for practical 

applications are related to the transforms of delayed signals [ ]x n k . For the unit delay 

case, i.e., [ 1]x n  , the unilateral z-transform can be written by 

0 1

1

0

1

[ 1] [ 1] [ 1]

[ 1] [ ]

[ 1] ( ) .

n n

n n

m

m

x n z x x n z

x z x m z

x z X z

 
 

 


 





    

  

  

 

        (7.34) 

Similarly, the unilateral z-transform of [ 2]x n   can be expressed as 

0 1

1

0

1 2

[ 2] [ 2] [ 2]

[ 2] [ 1]

[ 2] [ 1] ( )

n n

n n

m

m

x n z x x n z

x z x m z

x z x z X z

 
 

 


 



 

    

   

    

 

       (7.35) 

and so forth. The properties for some other delay cases are listed in Table 7.2. 

 

Example 7.27:  

Consider a discrete-time system described by the linear difference equation 

                   [ ] [ 1] [ ] [ ]ny n ay n x n b u n    , [ 1] Iy Y  . 

Applying the unilateral z-transform to both sides of this equation, we obtain 

                   1
1

1
( ) ( ) [ 1]

1
Y z az Y z ay

bz


   


     

                 1
1

1
(1 ) ( )

1Iaz Y z aY
bz


  


      

                 
1 1 1

1
( )

(1 )(1 ) 1
IaY

Y z
az bz az   

  
.     

The inverse z-transform of ( )Y z  is given by 

                   
1 1

1[ ] , 0
n n

n
I

b a
y n Y a n

b a

 


  


.     

Thus, the zero-input response [ ]zsy n  and the zero-state response [ ]ziy n  are as follows: 

                   
1 1

[ ] ,
n n

zs

b a
y n

b a

 



 1[ ] .n

zi Iy n Y a       

       ■ 
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Example 7.28:  

Consider the second-order difference equation 

1 2[ ] [ 1] [ 2] [ ]y n a y n a y n x n      

with [ ] 0x n   for 0n   and initial conditions 1[ 1] Iy Y   and 2[ 2] Iy Y  . Applying 

the unilateral z-transform to both sides of the difference equation, we obtain 

1 2 1
1 2

1 2 1
1 2 1 1 2 2 2 1

1
10 1

0 11 2 1 2
1 2 1 2

( ) { ( ) [ 1]} { ( ) [ 1] [ 2]} 0

( )[1 ] [ ]

1
( ) ( ) ( ) ( )

1 1

I I I

Y z a z Y z y a z Y z z y y

Y z a z a z a Y a Y a Y z

b b z
Y z b b z X z H z

a z a z a z a z

  

  




   

        

      


    

   

 

where 0 1 1 2 2[ ]I Ib a Y a Y    and 1 2 1Ib a Y  . The implies that the system can be 

described by an LTI system with input 1
0 1( ) ( )X z b b z   and system function 

                      1 2
1 2

1
( )  .

1
H z

a z a z 
 

      

Note: 

 The response of an all-pole discrete-time system with zero input for 0n   and 

nonzero initial conditions can be modeled as the impulse response of a pole-zero 

system at initial rest. 

■ 
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                  Table 7.1 Common z-Transform Pairs 

Sequence z-Transform ROC 

 n  1 all z 

 ,     0n m m    mz  0z   

 ,     0n m m    mz  z    

 u n  
1

1

1 z
 1z   

 1u n    
1

1

1 z
 1z   

 na u n  
1

1

1 az
 z a  

 1na u n    
1

1

1 az
 z a  

 nna u n   
1

211

az

az




 z a  

   cos n u n  
1

1 2

1 cos

1 2 cos

z

z z






 


 

 1z   

   sin n u n  
1

1 2

1 sin

1 2 cos

z

z z






 


 

 1z   

   cosna n u n  
1

1 2 2

1 cos

1 2 cos

az

az a z






 


 

 z a  

   sinna n u n  
1

1 2 2

1 sin

1 2 cos

az

az a z






 


 

 z a  

 

           Table 7.2  Unilateral z-Transforms of Delayed Signals 

Delayed Signal Unilateral z-Transform 

[ 1]x n   1 ( ) [ 1]z X z x    

[ 2]x n   2 1( ) [ 1] [ 2]z X z x z x      

[ 3]x n   3 2 1( ) [ 1] [ 2] [ 3]z X z x z x z x         

[ ]x n k  ( 1) 1( ) [ 1] [ ( 1)] [ ]k kz X z x z x k z x k            

 


