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Chapter 6  The Laplace Transform 
 

6-1 Definition of the Laplace Transform 

1. For a linear time-invariant (LTI) system with impulse response  h t , the output  y t  

corresponding to the input of the form 
ste  is 

    
eigenfunction

eigenvalue

sty t H s e          (6.1) 

where 

    stH s h t e dt
 


           (6.2) 

is referred to as the Laplace transform of  h t . Replacing s by j, we have 

    .j tH j h t e dt
 


                       (6.3) 

This is called the Fourier transform of  h t . 

 

2. The Laplace transform of a general signal  x t : 

      
   

stX s x t e dt x t

x t X s

 



 

 





        (6.4) 

      
s j

X s X j x t





  F         (6.5) 

 

3. The Laplace transform of  x t  can be interpreted as the Fourier transform of  x t  

after multiplication by a real exponential. 

s j    


       

    

j t

t j t t

X s X j x t e dt

x t e e dt x t e

 

  

 
  



   



  

   


 F

      (6.6) 

 

Example 6.1:         2
,   converges for  > 0 .atx t e u t X j a x t dt




    

    

      

0

0

1
,  0at j t

s a t

X j x t e e dt a
j a

X s x t e dt




  

  

   


 





F
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With s j   , we have 

        

   

 

0

1
,  0, i.e.,  or Re

1
,  Re

a t a tj tX j e e dt e u t

a a s a
j a

s a
s a

  

 
 

       

      
 

  


 F

 

    1
,  ReX s s a

s a
  


 

Note: 

 The Laplace transform converges for some values of  Re s , and not for the 

others. 

 The existence of the Laplace transform does not imply the existence of the Fourier 

transform , e.g.,    ,  0atx t e u t a  .  

■ 

Example 6.2:    atx t e u t    

     

        
 

0 1

0,  0

s a tat st

a t a tj t

X s e e u t dt e dt
s a

e e u t dt e u t

t a a

 

 

   

 

    



     


       
        

 




F
 

  X s  exists only for  Re s a  . 

Note: 

 In specifying the Laplace transform of a signal, both the algebraic expression and 

the range of values for which this expression is valid are required. 

 The range of values for which the Laplace transform exists is referred to as the 

region of convergence (ROC) of the Laplace transform. 

■ 

Example 6.3: The ROCs of     1 1/ ( )atX s e u t s a   in Example 6.1 and 

    2 1/ ( )atX s e u t s a      in Example 6.2 are illustrated as follows: 
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■ 

Example 6.4:      2t tx t e u t e u t    

     

   

 

2

2

1 1
,  Re 1

1 2

t t st

t st t st

X s e u t e u t e dt

e e u t dt e e u t dt

s
s s

   



    

 

   

 

   
 


   

  
 

  
 

      

 

 
 

2

1 1
, Re 1 , Re 2

1 2

2

2

1 1
,  Re 1

1 2
2 3

                                      ,  Re 1
3 2

numerator polynom
                                      

t t

s s
s s

t t

e u t e u t

e u t e u t s
s s

s
s

s s
N s

D s

 

 
 

 

 

     
 


  

 




 
 



ial

denominator polynomial

 
 
 
 
 
 
 
 
 
 
 
  

 

Note: 

 Whenever  x t  is a linear combination of real or complex exponentials,  X s  

can be expressed by      X s N s D s , i.e.,  X s  is rational. 

 The roots of the numerator polynomial (denominator polynomial) are referred to as 

the zeros (poles) of  X s  since for those values of s,   0X s  (  X s  ). 

      X s N s D s  

[The order of  N s ] < [The order of  D s ] 

 exist zeros at infinity   ,  0s X s   

[The order of  N s ] > [The order of  D s ] 

 exist poles at infinity   ,  s X s   

 The representation of      X s N s D s  through its poles and zeros in the 

s-plane is referred to as the pole-zero diagram or the pole-zero plot.            ■ 

ROC ROC
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Example 6.5:   2

2 3

3 2

s
X s

s s




 
 

             ■ 

 

Example 6.6:        24 1

3 3
t tx t t e u t e u t     

 

   

   

        
2

22

1,  ROC : entire s plane

4 4 1
,  Re 1

3 3 1
1 1 1

,  Re 2
3 3 2

,  2 0 2 Re 2

t

t

tt st j t

t

e u t s
s

e u t s
s

e e u t dt e e u t dt s 



 



   

 



   


  


       







 

   

 
    

2

4 1 1 1
1 ,  Re 2

3 1 3 2

1
,  Re 2

1 2

X s s
s s

s
s

s s

     
 


 

 

 

We will refer to the order of pole or zero as the number of times it is repeated at a 

given location. 

                ■ 
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6-2 Properties of the ROC for Laplace Transforms 

1. The ROC of  X s  consists of strips parallel to the j -axis in the s-plane. 

Example 6.7:  X s  converges only for  Re s a  (or  Re s a ). The ROC 

depends only on the real part of s.                                       ■ 

 

2. For rational Laplace transforms, the ROC does not contain any poles. 

s = pole  X s   

 

3. If  x t  is of finite duration and if there is at least one value of s for which the 

Laplace transform converges, then the ROC is the entire s-plane. 

 

 
Figure 6.1 A finite-duration signal. 

Proof: 

Let  x t  be zero outside the interval between 1T  and 2T . Then 

   2

1

T st

T
X s x t e dt  .        (6.7) 

Assume that the line   0Re s   is in the ROC. Then 

 2
0

1

T t

T
x t e dt   .                        (6.8) 

(1) For 1 0  , 

     

   

2 2
1 001

1 1

2
1 0 1 0

1

T T ttt

T T

TT t

T

x t e dt x t e e dt

e x t e dt

 

  

 

  



  

 


             (6.9) 

where the maximum value of  1 0 te   
 in the interval of integration is  1 0 1Te    . 

This implies that the s-plane for 0Re{ }s   is in the ROC. 

(2) For 2 0  , 

     

   

2 2
2 002

1 1

2
2 0 2 0

1

.

T T ttt

T T

TT t

T

x t e dt x t e e dt

e x t e dt

 

  

 

  



  

 


             (6.10) 
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This implies that the s-plane for 0Re{ }s   is in the ROC. From (1) and (2), we 

can see that the ROC of a finite-duration signal includes the entire s-plane. 
        ■ 

4. If  x t  is right-sided and if the line   0Re s   is in the ROC, then all values of s 

for which   0Re s   will also be in the ROC. 

 
Figure 6.2 A right-sided signal. 

 

Note: For some special signals such as    2tx t e u t , the corresponding Laplace 

transforms do not exist, i.e., there is no value of s for which the Laplace 

transforms converge. 

Suppose that the Laplace transform of ( )x t  converges for some value of  , denoted 

by 0 . Then  

  0tx t e dt 


        (6.11) 

   0

1

t

T
x t e dt    .                      (6.12) 

For 1 0  , 

         1 0 1 0 10 01

1 1 1

t Tt tt

T T T
x t e dt x t e e dt e x t e dt                     (6.13) 

where the maximum value of  1 0 te     in the interval of integration is  1 0 1Te    . So 

the ROC includes the s-plane right to the line   0Re s  . The ROC is shown as 

follows: 

 

Figure 6.3 The ROC of a right-sided signal. 

ROC
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5. If  x t  is left-sided and if the line   0Re s   is in the ROC, then all values of s 

for which   0Re s   will also be in the ROC. An example of this case is shown as 

follows: 

 

Figure 6.4 (a) A left-sided signal; (b) the ROC of a left-sided signal. 

6. If  x t  is two-sided and if the line   0Re s   is in the ROC, then the ROC will 

consist of a strip in the s-plane which includes the line   0Re s  . 

 

Figure 6.5 A two-sided signal divided into the sum of a right-sided signal and a 

left-sided signal. 

 

  Re Rs   

  Re Ls   

ROC
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Figure 6.6 The ROCs for the Laplace transforms of  Rx t  and  Lx t , assuming that 

they overlap. The overlap of the two ROCs is the ROC for      R Lx t x t x t  . 

Note:  

 L  must be greater than R ; otherwise, the Laplace transform of  x t  does not 

exist. 

Example 6.8: Consider a finite-duration sequence given by 

 
  0,

 otherwise.0   ,

at t Te
x t

  
 


 

Find the Laplace transform  X s  and its ROC. 

   

 

 
 

 

0

1
1

0

1 0

1
lim lim lim

T s a Tat st

s a T

s a T

aT sT

s a s a s a

X s e e dt e
s a

s a
s a

e

d
e

dsX s Te e T
d

s a
ds

  

 

 

 

  

    

      
   

 
    
    
  
 



 

           
 
 

 has no poles.

 has an infinite number of zeros.

X s

X s





  

            

   1 0 2 ,  0,  1,  2,

2
,  0,  1,  2,

s a Te s a T j k k

k
s a j k

T
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The ROC is the entire s-plane and the pole-zero diagram is as follows: 

 
■  

 

Example 6.9:   b tx t e  

     

   

   

right-sided left-sided

1
,  Re

1
- ,  Re

bt bt

bt

bt

x t e u t e u t

e u t s b
s b

e u t s b
s b





  

  



  


 





 

 
For b < 0, there is no common region of convergence.   x t  has no Laplace 

transform if b < 0. 

For b > 0,  

   2 2

1 1 2
,  Re

b
x t b s b

s b s b s b


     

  
 . 
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The pole-zero diagram with ROC is shown as follows: 

 
■ 

 

 

7. Summary for the ROC: 

Finite-duration signal 
entire -plane

does not exist

s
 


 

Right-sided signal 
right-half -plane

does not exist

s
 


 

Left-sided signal 
left-half -plane

does not exist

s
 


 

Two-sided signal 
a strip

does not exist


 


 

Note: 

 The ROC is bounded by poles or extends to infinity. 

 For a right-sided signal, the ROC is the region in the s-plane to the right of the 

rightmost pole. 

 For a left-sided signal, the ROC is the region in the s-plane to the left of the 

leftmost pole. 
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6-3 The Inverse Laplace Transform 

       t j t tX j x t e e dt x t e   
   


   F              

       1 1

2
t j tx t e X j X j e d     


 


   F            (6.14) 

        1 1

2 2
j tj t tx t X j e e d X j e d       

 
  

 
         (6.15) 

If we change the variable of integration from   to s and use the fact that   is constant 

so that ds jd , we obtain 

   1

2

j st

j
x t X s e ds

j




 

 
  .          (6.16) 

where   is any value in the ROC of  X s . This is the basic inverse Laplace transform 

equation that requires the use of contour integration along a vertical line in the complex 

s-plane. For rational Laplace transforms, a much simpler technique using partial-fraction 

expansion is often used to determine the inverse transforms, instead of evaluating (6.16) 

directly. Once the original rational transform  X s  has been expanded into a linear 

combination of lower-order rational transforms, we can infer the ROC for each of these 

terms from the overall ROC for  X s  and then find the corresponding inverse transform. 

Example 6.10: 

      

    
   
   

1

2

1
,  Re 1

1 2

1 1 1

1 2 1 2 1 2

1 1

2 1

s

s

X s s
s s

A B
X s

s s s s s s

A s X s

B s X s





  
 

    
     

  

   

 

Since the ROC for  X s  is  Re 1s   , the ROC for the individual terms in the 

partial fraction includes  Re 1s   . 
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2

2

1
,  Re 1 right-sided

1
1

,  Re 2 right-sided
2

1
,  Re 1

1 2

t

t

t t

e u t s
s

e u t s
s

e e u t s
s s





 

     
   
 

    
 







 

■ 
Example 6.11: 

        

  

          

   

   

   

2

2

1
,  Re 2 left-sided

1 2

1 1 1

1 2 1 2

1
,  Re 2

1 2

1
,  Re

1
,  Re 1

1
1

,  Re 2
2

t t

bt

t

t

X s s
s s

s s s s

x t e e u t s
s s

e u t s b
s b

e u t s
s

e u t s
s

 







  
 

  
   

      
 


  


          

 











 

■ 
 

Example 6.12:       1
,  2 Re 1

1 2
X s s

s s
    

 
 

          2 1
,  2 Re 1

1 2
t tx t e u t e u t s

s s
         

 
  

■ 
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6-4 Properties of the Laplace Transform 

1. Linearity 

1 1 1( ) ( ),  with ROCx t X s R   

2 2 2( ) ( ),  with ROCx t X s R   

 1 2 1 2( ) ( ) ( ) ( )ax t bx t aX s bX s    with ROC containing 1 2R R   (6.17) 

Note: The ROC of the Laplace transform for the combined signal could be larger than 

1 2R R . 

Example 6.13:    1

1
,  Re 1

1
X s s

s
  


 

      2

1
,  Re 1

1 2
X s s

s s
  

 
 

     

        

      

1 2

1 2

1 1

1 1 2

1 1
,  Re 2 (larger than Re 1)

1 2 2

x t x t x t

X s X s X s
s s s

s
s s

s s s

 

   
  


     

  

 

In the combination of 1( )x t  and 2 ( )x t , the pole at 1s    is cancelled by a zero at 

1s   .  “pole-zero cancellation”                         ■ 

 

2. Time shifting 

   ,  with ROCx t X s R   


   

    
0

0

0

0

,  with ROCst

stst

x t t e X s R

x t t e dt e X s



 



  

 



            (6.18) 

 

3. Shifting in the s-plane 

   ,  with ROCx t X s R   


     

 
0

0 0

0

,  with ROC Re

pole 

s t

p p

e x t X s s R s

s s s

   

 



    (6.19) 
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Figure 6.7 The effect on the ROC of shifting in the s-domain. 

 
4. Time scaling 

   ,  with ROCx t X s R   


 

 

1
,  with ROC

pole p p

s
x at X aR

a a

s as

   
 





          (6.20) 

 
Figure 6.8 The effect on the ROC of time scaling. 

 
a > 0, 

       1

1 1

s
t

st ax at x at e dt x t e dt
a

s s
X X

a a a a

 

 
  

       
   

 

 

a < 0, 

      

 

1

1 1

s
tst a

s
t

a

x at x at e dt x t e dt
a

s
x t e dt X

a a a

 

 





  

      
 

 





 

ROC ROC 

ROC ROC 
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5. Convolution property 

   1 1 1,  with ROCx t X s R   

   2 2 2,  with ROCx t X s R                       

            1 2 1 2
1 2

with ROC
,  

containing 
x t x t x t X s X s X s

R R
   


   (6.21) 

Note: The ROC of  X s  may be larger than 1 2R R  if pole-zero cancellation 

occurs in the product. 

 

Example 6.14: 

   

   

1

2

1
,  Re 2

2
2

,  Re 1
1

s
X s s

s
s

X s s
s


  




  


 

Then      1 2 1X s X s X s  , with ROC being the entire s-plane.      ■ 

 

6. Differentiation in the time domain 

   ,  with ROCx t X s R   


   ,  with ROC containing 

dx t
sX s R

dt
        (6.22) 

       1 1

2 2

j jst st

j j

d
x t X s e ds x t sX s e ds

j dt j

 

  
   

   

 
   

 
   

 

Example 6.15:       
2

3 2

2
2td

x t e u t
dt

    

   

     

          

3

3 2 2

2 2
3 2 2

2

1
,  with ROC Re 3

3
1

2 ,  with ROC Re 3
3

2 ,  with ROC Re 3
3

t

t s

t s

e u t s
s

e u t e s
s

d s
x t e u t X s e s

dt s



  

  

  


   


     








 

■ 
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Example 6.16:    
3 2

2

2 9 4 10
,  with Re 1

3 4

s s s
X s s

s s

  
  

 
 

2 3 2

3 2

2

2

                 2 3

3 4 2 9 4 10

                2 6 8         

                     3 12 10

                      3  9 12

                                   3 2

s

s s s s s

s s s

s s

s s

s



    

 

  

  


 

   

           1 4

1 2
2 3 ,  with Re 1

1 4

2 3 2t t

X s s s
s s

x t t t e u t e u t  

     
 

     
 

Note: The ROC of  sX s  includes the ROC of  X s  and may be larger if  X s  has 

a first order pole at 0s   which is cancelled by the multiplication by s.       ■ 

 

7. Differentiation in the s-domain 

   ,  with ROCx t X s R   

   
,  with ROC

dX s
tx t R

ds
         (6.23) 

   
   

st

st

X s x t e dt

dX s
tx t e dt

ds

 



 



  
 
     




 

 

8. Integration in the time domain 

   ,  with ROCx t X s R   

       , with ROC containing Re 0
t

x d X s s R s 


    (6.24) 

Note: 

     

   

   

 

1,  with ROC Re 0

1
From ,  with ROC Re

1
( ) ( ), with ROC containing Re{ } 0

t

at

t

x d u t x t

u t s s

e u t s a
s a

x d X s R s
s

 

 









 

  

      

 



 







 



EE3610 Signals and Systems                                                    2016-Fall 

 6-17

9. The initial and final value theorems 

Consider a signal ( ) 0x t   for t < 0 and ( )x t  contains no impulses or higher-order 

singularities at the origin. Then 

   0 lim The Initial Value Theorem
s

x sX s


             (6.25) 

     
0

lim lim The Final Value Theorem
t s

x t sX s
 

            (6.26) 

Proof: 

Expanding x(t) as a Taylor series at t = 0 , we obatin 

   1( ) (0 ) (0 ) (0 ) ( )
!

n
n t

x t x x t x u t
n

   
     
 

              

where x(n)(0+) denotes the nth derivative of  x(t) evaluated at 0t  . 

1
( )u t

s
                              

2

1
( )tu t

s
                             

                                  

1

1
( )

!

n

n

t
u t

n s                             

               1

2

1 1 1
0 0 0n

n
x t x x x X s

s s s
          

            1

1

1 1
0 0 0n

n
sX s x x x

s s
  

       

    lim 0 The Initial Value Theorem
s

sX s x 


   

Let us consider the limit of the integral 
 

0

stdx t
e dt

dt

   as s approach 0. Then we have 

         
00 00

lim lim 0st

s t

dx t dx t
e dt dt x t x t x

dt dt  

   

 
     .            

Also, it can be checked that the following equations hold: 

     

     
       

0 00 0 0

00 0

0 0

lim lim

lim

lim 0 0 lim

st
st st

s s

st st

s

s s

dx t de
e dt x t e x t dt

dt dt

x t e x t s e dt

x sX s x sX s

 



  

 

  



 

 

 
    
 

    

       

 

         

    
0

lim lim The Final Value Theorem
t s

x t sX s
 

                ■ 
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6-5 Analysis and Characterization of LTI Systems Using the Laplace Transform 

 x t  h t  y t

 X s  H s  Y s

     Y s H s X s
 

Figure 6.8 An LTI system with input  x t , output  y t , and impulse response  h t . 

 H s : the system function or transfer function 

With s j ,  H j  is called the frequency response of the LTI system. 

For a causal system,   0h t   for t < 0 (Fig. 6.9). 

  h t  is a right-sided signal. 

 The ROC is the entire region in the s-plane to the right of the rightmost pole. 

Note: 

 Anticausal system  h t  

 Its ROC is the region in the s-plane to the left of the leftmost pole. 

 An ROC to the right of the rightmost pole does not guarantee that the system is causal, 

only that the impulse response is right-sided. 

 The Fourier transform of the impulse response for a stable LTI system exists. 

 For a stable system, the ROC of H(s) must include the j -axis (Fig. 6.10). 

 For a causal and stable LTI system with a rational system function, all poles must lie 

in the left half of the s-plane. 

causal  The ROC must be to the right of the rightmost pole. 

stable  The ROC must include the j -axis. 





j

j





j

j

 
Figure 6.9 The relationship between the locations of poles and the impulse response in a 

causal system. (a) A pole in the left half of the s-plane corresponds to an exponentially 

decaying impulse response. (b) A pole in the right half of the s-plane corresponds to an 

exponentially increasing impulse response; the system is unstable in this case. 
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j

j





j

j





 
Figure 6.10 The relationship between the locations of poles and the impulse response in a 

stable system. (a) A pole in the left half of the s-plane corresponds to a right-sided 

impulse response. (b) A pole in the right half of the s-plane corresponds to an left-sided 

impulse response; the system is noncausal in this case. 
 

Example 6.17:        1
,  Re 1

1
th t e u t H s s

s
    


 

 causal and stable                                         ■ 
              

Example 6.18:    ,  Re 1
1

se
H s s

s
  


     1

,  Re 1
1

te u t s
s

   


  

      1 1 ,  Re 1
1

s
t e

e u t s
s

     


  

      1 1 ,  zero for 1 but not for 0th t e u t t t       

 The system is stable but not causal.          ■ 

Example 6.19: Possible ROCs of     
1

1 2

s
H s

s s




 
: 

       ■ 
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Example 6.20: Determine the impulse response with stability and causality constraints for 

the following system function: 

  2 1

3 2
H s

s s
 

 
. 

If the system is stable, then the pole at s = 3 contributes a right-sided term to the impulse 

response, while the pole at s = 2 contributes a left-sided term. Accordingly, the 

corresponding impulse response is 

     3 22 t th t e u t e u t   . 

If the system is causal, then both poles must contribute right-sided terms to the impulse 

response and the corresponding impulse response is 

     3 22 t th t e u t e u t  .                         ■ 

1. System characterized by linear constant-coefficient differential equations 

   

       

0 0

0 0

                                 

k k
N M

k kk kk k

N Mk k
k kk k

d y t d x t
a b

dt dt

a s Y s b s X s

 

 





 

 
    

   
 

 
 

0

0

M k
kk

N k
kk

b sY s
H s

X s a s





  



 

The system function has zeros and poles respectively at the solutions of 

0
0

M k
kk

b s


  and 
0

0
N k

kk
a s


 . 

Note: With additional information such as stability or causality of the system, the 

ROC can be inferred and the corresponding impulse response can be obtained. 
 

Example 6.21: Determine the impulse response of the system described by 

     3
dy t

y t x t
dt

  . 

         1
3

3
sY s Y s X s H s

s
   


 

If the system is causal, the ROC is  Re 3s   , and the corresponding impulse 

response is 

   3th t e u t . 

If the system is noncausal, then the ROC is  Re 3s   , and the corresponding 

impulse response is 

   3th t e u t   .                          ■ 
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2. System function for interconnections of LTI systems 

(1) Parallel interconnection 

 
 

1

1

h t

H s

 
 

2

2

h t

H s

 x t  y t

 

           1 2 1 2h t h t h t H s H s H s      

Figure 6.11 Parallel interconnection of two LTI systems. 

 

(2) Cascade interconnection 

 
 

1

1

h t

H s

 
 

2

2

h t

H s

 y t x t

 

           1 2 1 2h t h t h t H s H s H s     

Figure 6.12 Cascade interconnection of two LTI systems. 

 

(3) Feedback interconnection 
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Figure 6.13 Feedback interconnection of two LTI systems. 
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3. Design of a Butterworth filter with frequency response  B j  

 
   

2

2 2

1 1

1 1
N N

c c

B j
j j


   

 
 

               (6.27) 

     2 *B j B j B j                               (6.28) 

Restricting the impulse response of the Butterworth filter to be real, we have 

   *B j B j                     (6.29) 

     2
1 1

N

cB j B j j j                   (6.30) 

   
s j

B s B j





               (6.31) 

     2
1 1

N

cB s B s s j                 (6.32) 

The poles of    B s B s  are the solutions of 

 2
1 0

N

cs j                 (6.33) 

    1 2
1

N

p cs j                   (6.34) 
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                (6.35) 
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                                     (6.36) 

The pole locations of    B s B s  for N = 1, 2, 3, and 6 are shown as follows: 
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Figure 6.14 The pole locations of    B s B s  for N = 1, 2, 3, and 6. 
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(1) The poles of    B s B s  occurs in pairs, so that if there is a pole at ps s , then 

there is also a pole at ps s  . 

(2) To construct  B s , we choose one pole from each pair of poles. 

(3) If we restrict the system to be stable and causal, then the poles of  B s  should be 

in the left-half plane. 

(4)  2

0
1

s
B s


  

 1:  c

c

N B s
s




 


                      (6.37) 
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            (6.38) 

 (6.39) 

From these equations, we have 
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c c
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                 (6.40) 
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            (6.42) 

Accordingly, the corresponding differential equations for these three cases are as 

follows: 

     1:  c c

dy t
N y t x t

dt
                      (6.43) 
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22 :  2 c c c
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3 2

2 3 3
3 23 :  2 2c c c c
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6-6 The Unilateral Laplace Transform 

1. The unilateral Laplace transform of  x t  is defined as 

   
0

sts x t e dt


   .        (6.46) 

It is different from the bilateral Laplace transform given by 

    stX s x t e dt
 

 . 

When   0x t   for t < 0, the unilateral and bilateral Laplace transforms are identical. 

Note: The ROC for the unilateral Laplace transform is always a right-half plane, since 

it can be regarded as the bilateral Laplace transform of a causal signal. 

 

Example 6.22: 
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Example 6.23: 
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The unilateral and bilateral Laplace transforms are distinctly different.            ■ 

 

2. Most of the properties of the unilateral Laplace transform are the same as for the 

bilateral Laplace transform. 

 

3. The differentiation property of the unilateral Laplace transform 

         
 

00 0
0

Integration by parts

st st stdx t
e dt x t e s x t e dt s s x

dt  

         
     (6.47) 

where  s  is the unilateral Laplace transform of  x t . 
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Similarly 
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          (6.48) 

The general form for the differentiation property is 
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    (6.49) 

where the subscript u in u denotes the unilateral transform. 

Example 6.24: ( ) ( )atx t e u t  

Apply the product rule for differentiation to obtain the derivative of  x t , 0t  :  

        1at atd d a s
x t e u t ae u t t

dt dt s a s a
     

 
  

Using Eq. (6.50), we have 

  1
0u

d s
x t s

dt s a s a
  

 
 . 

The results are identical, since  x t  is a causal signal. 
■ 

 

4. The integration property of the unilateral Laplace transform 
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Proof: Let    
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y t x d 
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5. A primary use of the unilateral Laplace transform is in obtaining the solution of linear 

constant-coefficient differential equations with nonzero initial conditions. 

Example 6.25: 
           2

2

0
3 2 ,  0 3,  5

dyd y t dy t
y t x t y

dt dt dt


       

Let    2x t u t . Then we obtain 

             12 2
0 0 3 3 0 2s s sy y s s y s
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3 4 2
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where  s  is the unilateral Laplace transform of  y t . Thus, we have 

     21 1 3
1 3

1 2
t ts y t e e u t
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