EE3610 Signals and Systems 2016-Fall
Chapter 6 The Laplace Transform

6-1 Definition of the Laplace Transform

1. For a linear time-invariant (LTI) system with impulse response h(l) , the output y(t)

corresponding to the input of the form e* is

y(t)=H(s) - e’ (6.1)

- eigenfunction
eigenvalue

where
H(s)=[" n(t)edr (6.2)

is referred to as the Laplace transform of h(t) . Replacing s by jw, we have

H(jo)=[" h(t)e " dt. (6.3)

—00

This is called the Fourier transform of h(t) .

2. The Laplace transform of a general signal x(t) :
X(s)= J:x(t)e_”dt = E{x(z‘)}
x(z‘)(L)X(s)

X ()

(6.4)

= X (jo)=F {x(¢)} (6.5)

s=jw

3. The Laplace transform of x(¢) can be interpreted as the Fourier transform of x(¢)

after multiplication by a real exponential.
s=oc+jo

X(s)=X(o+jo)= .[:x(t)e_(g+jw)tdt
) | (6.6)
= [x(t)e"”}e””’dt = g{x(l)e’”’}

—00

Example 6.1: x(t)=e"u(t), X(jw) converges fora >0 (Iw ‘x(t)‘z dt < oo).

1

X(ja)) = g'{x(t)} = IOOO e e ldt = ora

X(s)=C {x(t)} = J.: e ) gy

,a>0
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With s=0+ jw, we have

X(o+jo)= J-Ow e\ eI g = oF {e_(m”)tu (t)}

=m, o+a>0,1.e., o>—aor Re{s}>—a
1
= R —
o e{s}>-a
:X(s):“l_a, Re{s}>—a

Note:

@ The Laplace transform converges for some values of Re{s}, and not for the

others.

@ The existence of the Laplace transform does not imply the existence of the Fourier

transform, e.g., x(¢)=e "u(t), a<0.

Example 6.2: x(t)=—e “u(—t)

X(s)= —Jm e e u(—t)dt = —IO e s = !
o =0 s+a

0

= —J. el ag oy, (—t)dt = —g'{ef(ma)’u (—t)}

—00

(‘.'t<0, .'.a+a<0:>a<—a)

= X (s) exists only for Re{s}<—a.

Note:

@ In specifying the Laplace transform of a signal, both the algebraic expression and
the range of values for which this expression is valid are required.

@ The range of values for which the Laplace transform exists is referred to as the
region of convergence (ROC) of the Laplace transform.

Example 6.3: The ROCs of X, (S) = ﬁ{ef‘"u(t)} =1/(s+a)in Example 6.1 and
X, (s) = L’{—e*‘”u (—t)} =1/(s+a) in Example 6.2 are illustrated as follows:
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i ROC ROC m

A Xgl.s'l

Re /% Pf

7 //

Example 6.4: x(1)=e"u(t)+eu(t)

X(s)= I:)[e”u(t) + e’ztu(t)] e dt

= j: e'e’u (t) dt + j: e ey (t) dt

L)

Ll Refsisoi
s+1 s+2
= £{e’tu(t)} + £{e’2‘u(t)}
ﬁ, Re{s}>-1 ﬁ Re{s}>-2
‘ 2 _ 11 B
:>£{e u(t)+e u(t)} = + R Re{s} >—1
2s+3

Ty Rel>
N (s) — numerator polynomial
- D(S) — denominator polynomial

Note:
@ Whenever x(t) is a linear combination of real or complex exponentials, X (s)
can be expressed by X / D(s s) is rational.
@ The roots of the numerator polynomlal (denommator polynomial) are referred to as
the zeros (poles) of X(s) since for those values of s, X (s)=0(X(s)—> ).
@ X(s (s)/D(s
[The order of N(s)]<[The order of D(s)]
=> exist zeros at infinity (s — 0, X(s)—> 0)
[The order of N(S)] > [The order of D(S) ]

=> exist poles at inﬁnity (s —> o0, X (s ) - oo)

@ The representation of X / D(s through its poles and zeros in the

s-plane is referred to as the pole-zero diagram or the pole-zero plot. |

6-3



EE3610 Signals and Systems

2016-Fall
25 +3
Example 6.5: X(s)=ﬁ
S”+I5+
, It
IV'// ROC
_
2 () Zeros
5 - : poles
5 / Re
-1
7.
]

Example 6.6: x(1)=5(1) —ge_tu(t) +%e2tu(t)
5(1)@1, ROC : entire s plane
%e’u(f)(L)i-L, Re{s}>-1

3 s+1
s 11

(Ii e*e”u(t)dt = J'i e(zfa)’e_*"“”u(t)dt, 2-0<0=0>2=Re{s}> 2)

401 1 1
X(s)=1-24.1 .1 R
()=1-57*3 5oy Rels)>2

G Re{s}>2

(s+1)(s-2)

We will refer to the order of pole or zero as the number of times it is repeated at a
given location.

Iﬂl 'Y |
F% ROC
2 Fe
X © >
- ) %
. )
|
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6-2 Properties of the ROC for Laplace Transforms

1. The ROC of X (S) consists of strips parallel to the jw -axis in the s-plane.
Example 6.7: X (s) converges only for Re{s}>a (or Re{s}<a). The ROC

depends only on the real part of s. [ ]

2. For rational Laplace transforms, the ROC does not contain any poles.

s=pole = X(s) >

3. If x(t) is of finite duration and if there is at least one value of s for which the

Laplace transform converges, then the ROC is the entire s-plane.

SN T

T T

Figure 6.1 A finite-duration signal.

Proof:

Let x(t) be zero outside the interval between 7; and 7). Then

T,

X(s)=["x(t)edr. (6.7)

Assume that the line Re{s} = o, is in the ROC. Then

ITZ
4

x () e dt <oo. (6.8)

(1) For o,>0,,

4

X (t)‘ e 'dt = J‘TT2 ‘x (t)‘ e e () gy

R (6.9)
<e J.T1 x(t)‘e "dt <o
where the maximum value of e "™ in the interval of integration is e (%" .
This implies that the s-plane for Re{s} > o, is in the ROC.
(2) For o, <0,
g oot g L —oyt ,~(02-00 )t
J-T] x(t)‘e dt—J-T] ‘x(t)‘e ‘e dt
(6.10)

< e‘(“z —%o )Tz J‘Tz
5

x(t)‘ e dt <o .
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This implies that the s-plane for Re{s} > o, is in the ROC. From (1) and (2), we

can see that the ROC of a finite-duration signal includes the entire s-plane.
n

4. If x(¢) is right-sided and if the line Re{s} = o, is in the ROC, then all values of s
for which Re{s} > o, will also be in the ROC.

XiEd

r |

Figure 6.2 A right-sided signal.

Note: For some special signals such as x(t)=e’2u(t), the corresponding Laplace
transforms do not exist, i.e., there is no value of s for which the Laplace

transforms converge.

Suppose that the Laplace transform of x(¢#) converges for some value of o, denoted
by o,. Then
[ e(6)]ede < oo (6.11)

= [ "|x(t) et <. (6.12)
For o, >0,

J.:‘x(t)‘ e 'dt = I:‘x(t)‘ e e ) gy < gl I:‘x(t)‘ e “'dt <o (6.13)

(o1-09 )t

where the maximum value of e in the interval of integration is e g

the ROC includes the s-plane right to the line Re{s} =0,. The ROC is shown as

follows:

| ROC

7

7

Figure 6.3 The ROC of a right-sided signal.
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5. If x(r) is left-sided and if the line Re{s} =0, is in the ROC, then all values of s
for which Re{s} <o, will also be in the ROC. An example of this case is shown as

follows:

ROC I

7

|
|
l
I-::f:l | I i

Figure 6.4 (a) A left-sided signal; (b) the ROC of a left-sided signal.

6. If x(7) is two-sided and if the line Re{s}=o0, is in the ROC, then the ROC will

consist of a strip in the s-plane which includes the line Re {s} =0,.

f\_{ Two-sided signal
b

Re{s}> o,

—
\_/ Fight-sided signal

Y

[
|
|
|
T:
/': Re{s} <o, Left-sided signal
I
|
T:

Figure 6.5 A two-sided signal divided into the sum of a right-sided signal and a
left-sided signal.
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Figure 6.6 The ROCs for the Laplace transforms of x,(¢) and x,(¢), assuming that
they overlap. The overlap of the two ROCs is the ROC for x(#)=x,(¢)+x,(¢).

Note:

@ o, must be greater than o, ; otherwise, the Laplace transform of x(t) does not

exist.

Example 6.8: Consider a finite-duration sequence given by

x(t):

e, 0<t<T

0 otherwise.

9

Find the Laplace transform X (s) and its ROC.

X(s)= '[OT e “edt = - j_ y [1 - ef(”“)T}

s+a—>0

s=—a=
1—e 9T 50

i 1 _ e*(S‘Fa)T
im X (5)= lim B —— == fm e e =T
% (S + Cl)

X (s) has no poles.

X (s) has an infinite number of zeros.

1= =0= (s +a)T = j2rk, k=0, £1, £2,...

:>s:—a+j#, k=0, £1, £2,...
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The ROC is the entire s-plane and the pole-zero diagram is as follows:

4 Im
O
5 — plane
Pole and zero at this O = EE
location are cancelled O —- T
each other. Re
O
o
O
|
Example 6.9: x(t) =e 'l
x(t)=e"u(t)+e"u(-r)
right-sided left-sided
1
e“”u(t)(L) , Re {s} >-b

s+b

ebtu(-t)#) o Re{s} <+b

S —
w(ty=o M
2 : .
15} i
1t i
0s /\
D 1 1 1 1 1
3 2 1 i 1 2 3
. —a ]
al 7]
oL i
D 1 1 1 1 1
3 2 1 i 1 2 3

For b < 0, there is no common region of convergence. = x(t) has no Laplace

transform if < 0.

For b >0,

()t 1 1 —2b

TR —b<Re{s}<b.
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The pole-zero diagram with ROC is shown as follows:

In

!

IROC

)

7. Summary for the ROC:

entire s-plane

Finite-duration signal — )
does not exist

right-half s-plane

Right-sided signal — { )
does not exist

) ) left-half s-plane
Left-sided signal — )
does not exist

. . a strip
Two-sided signal — .
does not exist

Note:
@ The ROC is bounded by poles or extends to infinity.

@ For a right-sided signal, the ROC is the region in the s-plane to the right of the
rightmost pole.

@ For a left-sided signal, the ROC is the region in the s-plane to the left of the
leftmost pole.
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6-3 The Inverse Laplace Transform

X(o+jo)= J‘:(x(t)e’”’)e’j”tdt =<F {x(t)e’”’}
-ot __ - . _ 1 ® . Jj
—x(t)e” =F ]{X(O'+]a))} _ELOX(GJFJW)e/ ‘dw (6.14)
= x(1) L X((f+jco)e-’“”e‘”a’w=L : X(G+ja))e(“+j”’)tda) (6.15)

2= 2 Y=
If we change the variable of integration from @ to s and use the fact that o is constant

so that ds = jdw, we obtain
I po+ie o

x(t):gj o X(s)e ds. (6.16)
where o is any value in the ROC of X (s) This is the basic inverse Laplace transform
equation that requires the use of contour integration along a vertical line in the complex
s-plane. For rational Laplace transforms, a much simpler technique using partial-fraction
expansion is often used to determine the inverse transforms, instead of evaluating (6.16)
directly. Once the original rational transform X (s) has been expanded into a linear

combination of lower-order rational transforms, we can infer the ROC for each of these

terms from the overall ROC for X (s) and then find the corresponding inverse transform.

Example 6.10:

1
X(s)= R -1
(5) (s+1)(s+2) els}>

1 A B 1 1
X = = = —
(S) (S+1)(S+2) s+1+s+2 s+1 s+2
A:(S+1)X(S)S=71:1
B:(s+2)X(s)s:_2:—l

Since the ROC for X(s) is Re{s}>-1, the ROC for the individual terms in the

partial fraction includes Re{s} >-—1.

I T

'
\\: hl
\RDC for L &RDC for

5+1 5+

Ee Ee
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e'u (t)<—£—>%, Re{s}>—1 (right-sided )
s
=
e u(t)«*t> 12, Re{s}>-2 (right-sided)
S+
I N 1
:>(e —eZt)u(t)\ £ ,(s+1)(s+2)’ Re{s}>—1
[
Example 6.11:
X6)=p; +1)1(S+2), Re{s) <2 (left-sided)
~ 1 1
_(s+1)(s+2)_s+1 s+2
1
[t -2t A\, £ _
x(t)—( e +e )u( t)\ (s+1)(s+2)’ Re{s}< 2
e b’u(—t)(% _lb’ Re{s}<b
5 —
e 'u(—t)(L) _+11, Re{s}<—1
N
e u(—1)«*=> :_12 Re{s}<-2
S
[
Example 6.12: X(S) = m, -2< Re{s} <-1
s s
—t -2t L 1
=- —t)— —> -2<R -1
x(t) e u( t) e u(t) (s+l)(s+2)’ < e{s}<
[
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6-4 Properties of the Laplace Transform

1. Linearity

x,(t) <~ X,(s), with ROC = R,
x, (1) <~ X, (s), with ROC = R,

= ax, (t) +bx,(t) —EsaX [(s)+bX,(s) with ROC containing R (R, (6.17)

Note: The ROC of the Laplace transform for the combined signal could be larger than

RNR,.
Example 6.13: Xl(s):ﬁ, Re{s}>—1
— L Refs}>-
XZ(S)_(S+1)(S+2)’ Refs)>-1
x(t):xl(z‘)—x2 (t)
X(S):XI(S)_XZ(S)Zs}rl_(s+1)l(s+2)
s+1 1

Gr)(s72) sea Relsh> 2 (larger than Refs)> )

In the combination of x,(f) and x,(¢), the pole at s=—-1 is cancelled by a zero at

s =—1.= “pole-zero cancellation” m

2. Time shifting
x(t)(L)X(S), with ROC =R

x(t—to)@eﬁ%)((s), with ROC = R

=/ (6.18)
(Lox(t —t,)e"dt = e”"X(S))
3. Shifting in the s-plane
x(t)(L)X(S), with ROC =R
e x(t)«~> X (s—s,), withROC =R +Re{s
(X (s-5) o] o

('.'polesp —>sp+s0)
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\ AN
& ) i — §\ L
" \’"1 r +Re:\'su::-\ \\\'1 n+Rels)
.

Xia) Xis—5)
Figure 6.7 The effect on the ROC of shifting in the s-domain.

4. Time scaling
x(t)(—ﬂ—>X(s), with ROC =R

x(at)@ix(i), with ROC = aR

N la|  \a (6.20)

—

" poles, > asp)

Py
-
—

111

ROC

=

oC

//45

N\
\

[

Figure 6.8 The effect on the ROC of time scaling.

a>0,

K(at) = [ e(at)ea=[" x(t)e Lar
“wl)

,C{x(at)} = j_w x(at)e™dt = J':ox(t')e%f la’t'

@ a

1 = - 1 s
- ’ a d!:_X e
a.f_wx(t)e t ( j

o] \a

L

——
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5. Convolution property

x, (t)«“> X, (s), withROC=R,
x, (t)«*> X, (s), with ROC =R,

with ROC

, .. 6.21
containing R, (R, (6.21)

:>x(t) =X (t)*x2 (t)(—L—>X(s) =X (S)X2 (S)

Note: The ROC of X (s) may be larger than R (1R, if pole-zero cancellation

occurs in the product.

Example 6.14:

Then X (s)=X,(s)X,(s)=1, with ROC being the entire s-plane. m

6. Differentiation in the time domain

x(t)(L)X(S), with ROC =R

= d);(tt) <_£_>sX(s), with ROC containing R (6.22)
[W)ﬁ- xed = (=5 ;j:sm)eszds}

2
Example 6.15: x(t)= %(6_3(’_2)01 (r-2))

e’%t(t)#) ! , with ROC Re{s} >-3
s+3

673(#2)1/[(1‘ -2)«*> i 3 e, with ROC Re{s}>-3
s

2 2
x(t) :%<63(’2)u(t ~2))¢> X (s)= e, with ROC Refs} > -3
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392
Example 6.16: X(s) = 2s 29S 3+ 4S4+ 10 , with Re{s} <-1
§s°—3s—

2s—3
s2—3s—4>2s3—9s2+4s+10

25> — 65> —8s
—3s+125+10

—3s*+ 95 +12
35—2

X(s):Zs—3+L+ 2
s+1 s—4

x(1) =260 (£) =38 (1)~ ”'u ()~ 26" u(~1)

, with Re{s} <1

Note: The ROC of sX (s) includes the ROC of X (s) and may be larger if X (s) has

a first order pole at s = 0 which is cancelled by the multiplication by s. [

7. Differentiation in the s-domain

x(t)«£>X(s), with ROC =R

= —tx(t)@dXd—(S), with ROC = R (6.23)
S

s)= J‘:x(t)e’”dt
dES) = [ [oe(e) Je e

=

8. Integration in the time domain
x(t)«~>X(s), withROC = R
:>J‘j x(z)dr«~> X (s)/s, with ROC containing R {Re{s} > 0} (6.24)

Note:
[" x(r)dr=u(r)*x(r)

u(t)(L)s_l, with ROC = Re{s} >0

(From e “u(t)«*> Jlr , with ROC =Re{s} > —aj
s+a

j ’ x(r)dr<—‘:—>lX(s), with ROC containing R ({Re{s} > 0}
. p

6-16



EE3610 Signals and Systems 2016-Fall

9. The initial and final value theorems

Consider a signal x(#)=0 for <0 and x(#) contains no impulses or higher-order

singularities at the origin. Then

x(O*) =limsX (8)eeeeees The Initial Value Theorem (6.25)
limx(¢)= lim s ()-eeeeees The Final Value Theorem (6.26)
t—0 5>

Proof:

Expanding x(7) as a Taylor series at £ =0", we obatin

x(f) = [x(0+ )+ x0 0" +---+x" (0 )’—n'+ . }u(z‘)
n.

where x(0") denotes the nth derivative of x(f) evaluated at ¢ =0".

u(z‘)(—ﬁ—)l
S
tu(t)<—‘—>i2
S
—n'r,t(t)<L>sn+1
= £{x(0)) =—1(07)+ 52 (0 ) orrt ) (07 )= X ()
N S N

(04 0 (0 ) et ) (07 ) e
:>sX(s)—x(0 )+ X (O )+ +s”‘ X (O )+
=limsX (s)= x(0+) --------- The Initial Value Theorem

o dx(t )
Let us consider the limit of the integral .[(y #e‘”dt as s approach 0. Then we have

. oodx(t) Ly oodx(t) o . )
lim e dt=.[0+—tdt=x(t)‘o+ :llmx(t)—x(O )

s—>04J0 d t—o0

Also, it can be checked that the following equations hold:

. OOdX(t) st . —st |° ® de_St
k) Mt df:lli’&{[x(f)e J =L 075 d’}
[ x(0)(-s)e e

= lim{[x(t)e”] :
= lim[—x(0+)+sX(s)} = —x(0+)+limsX(s)

s—0
s—0 s—0
= limox(¢)=1limsX () The Final Value Theorem m

t—o s—0
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6-5 Analysis and Characterization of LTI Systems Using the Laplace Transform

x(t) —» h(t) ()

Y(s) = H(S)X(s)
Figure 6.8 An LTI system with input x(¢), output y(¢), and impulse response A().

H (s) : the system function or transfer function
With s = jo, H(jo) is called the frequency response of the LTI system.
For a causal system, h(t) =0 forz<0 (Fig. 6.9).

= h(z‘) is a right-sided signal.

= The ROC is the entire region in the s-plane to the right of the rightmost pole.

Note:
@ Anticausal system A(7)
= Its ROC is the region in the s-plane to the left of the leftmost pole.
@ An ROC to the right of the rightmost pole does not guarantee that the system is causal,
only that the impulse response is right-sided.
@ The Fourier transform of the impulse response for a stable LTI system exists.
= For a stable system, the ROC of H(s) must include the jw -axis (Fig. 6.10).
@ For a causal and stable LTI system with a rational system function, all poles must lie
in the left half of the s-plane.
causal = The ROC must be to the right of the rightmost pole.
stable = The ROC must include the j -axis.

jo h(1)

x .o :D J\-l

0
(a)

jo h(r)

U. X .o :D (J. i

(b)
Figure 6.9 The relationship between the locations of poles and the impulse response in a
causal system. (a) A pole in the left half of the s-plane corresponds to an exponentially
decaying impulse response. (b) A pole in the right half of the s-plane corresponds to an

exponentially increasing impulse response; the system is unstable in this case.
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jo h(1)

s-plane

Jjo hit)

) U@—/‘,

s-plane

(b)
Figure 6.10 The relationship between the locations of poles and the impulse response in a
stable system. (a) A pole in the left half of the s-plane corresponds to a right-sided
impulse response. (b) A pole in the right half of the s-plane corresponds to an left-sided

impulse response; the system is noncausal in this case.

1

Example 6.17: h(t)=¢"u(t)= H(s)= T Re{s}>-1
s
= causal and stable [ |
Example 6.18: H (s)= Sil, Re{s}>-1 = e"u(t)(—ﬁﬁﬁ, Re{s}>-1
=e My (t+1) L Sil, Re{s}>-1

=h(t)= e_(’+l)u(t+1), zero for ¢ < —1 but not for £ < 0

= The system is stable but not causal. [
Example 6.19: Possible ROCs of H(s) = WESI—Q :
T Im Im
'y : I A : : A
N
\\ ROC S Q ROC & ROC
I\
Fa - % Ee ——e
-1 |1 Re - 1IN 2 -1 1 Ee
§
§
N N\ N\
unstable, n:aulsal stablel, nunn:aulsal unstahle,I noncausal

[o)}
—_

-19
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Example 6.20: Determine the impulse response with stability and causality constraints for
the following system function:

2 1
H = .
(S) S+3+S—2

If the system is stable, then the pole at s = —3 contributes a right-sided term to the impulse

response, while the pole at s = 2 contributes a left-sided term. Accordingly, the

corresponding impulse response is

h(t)=2e""u(t)—eu(-r).
If the system is causal, then both poles must contribute right-sided terms to the impulse
response and the corresponding impulse response is

h(t)=2e""u(t)+e"u(r). n

1. System characterized by linear constant-coefficient differential equations

v d() <, dx(2)
Zk:oak dt* ZZkzobk dt*

TL L
(>0 st 1Y (s) =T, b} X (s)

= H(s) = )i(S) _ {zk=0bks }

(S) {chvzo aksk}

The system function has zeros and poles respectively at the solutions of

M k _ N k _
obes” =0 and Zkzoaks =0.

Note: With additional information such as stability or causality of the system, the

ROC can be inferred and the corresponding impulse response can be obtained.

Example 6.21: Determine the impulse response of the system described by
dy (t)
—=+3y(t)=x(1).
dr ¥ ) (1)
1

=sY(s)+3Y(s)=X(s)= H(s)= 3

If the system is causal, the ROC is Re{s} > -3, and the corresponding impulse
response is

h(t)=e"u(t).
If the system is noncausal, then the ROC is Re{s} < -3, and the corresponding

impulse response is
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2. System function for interconnections of LTI systems

(1) Parallel interconnection

H, (s)

h(t)=h(t)+h,(t)= H(s)=H,(s)+H,(s)

Figure 6.11 Parallel interconnection of two LTI systems.

(2) Cascade interconnection

x(t) (1) hy(1) y(1)

T H() H,(s)

i

h(t)=h(t)*h,(t)= H(s)=H,(s)H,(s)

Figure 6.12 Cascade interconnection of two LTI systems.

(3) Feedback interconnection

H,(s)

Figure 6.13 Feedback interconnection of two LTI systems.
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3. Design of a Butterworth filter with frequency response B ( ja))

B(jo) = 1+(a)/1a)c L (jw;jwc E (627)
|B(jo)| =B(jo)B (jo) (6.28)
Restricting the impulse response of the Butterworth filter to be real, we have
B (jw)=B(-jo) (6.29)
B(jo)B(~jo)=1/[1+(jo/jo.)" ] (6.30)
“B(s))_, =B(jo) (6.31)
- B(s)B( —1/[1+ s/je,) } (6.32)
The poles of B(s)B(—s) are the solutions of
1+(s/jw,)" =0 (6.33)
=5, =(-1)"" (jo,) (6.34)
7(2k+1) 7 .
=ls,|= o, Zs, = TNty kisaninteger (6.35)

{zz(zkﬂ)i}

2N 2

(6.36)

Figure 6.14 The pole locations of B(s)B(—s) for N=1,2, 3, and 6.
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(1) The poles of B(S)B(—s) occurs in pairs, so that if there is a pole at s =s,, then

there is also a pole at s=—s,.
(2) To construct B(s) , we choose one pole from each pair of poles.

(3) If we restrict the system to be stable and causal, then the poles of B(S) should be
in the left-half plane.

@) B(s) =1

N=1: B(s)=—+ (6.37)
s+,
@’ ’
N=2: B(s)= : = ‘ 6.38
(5) i 2 s +Ras+ o’ (6.38)
stwe’ || s+we * ‘ ¢
X %
N=3: B(s)= ‘ = - 6.39
(5) pud 2 S 20,8 +20)s + @) (6.39)
(s+o,) s+we’ || s+me >

From these equations, we have

Lo, _Y(s)

o, x(s) X G)=st(s)ral(s) (6.40)
0)3 _ Y(S) 2 2 )
S +\2os+al  X(s) = @lX(5) =57 (s)+V2asY (s) + @Y (s)  (64D)
% _Y(s)
S 4205 +20° s+ @ X(s) (6.42)

= 0 X (s)=5Y(s)+2w,5°Y (s)+202sY (s)+ @Y (s)

Accordingly, the corresponding differential equations for these three cases are as

follows:
N=1: dyT(tt)Jra)cy(t):a)cx(t) (6.43)
2
N=2: dLgt)+«/§a)cdy—(t)+wfy(t)=a)fx(t) (6.44)
dt dt
d’y(t d’y(t dy(t
N=3: dtS )+2a)c dtﬁ )+2wj#+wjy(r):wjx(t) (6.45)
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6-6 The Unilateral Laplace Transform

1. The unilateral Laplace transform of x(t) is defined as
X(s)2 j; x(t)e™dt. (6.46)
It is different from the bilateral Laplace transform given by
X(s)= _[i x(t)e™dt.
When x(t) =0 for <0, the unilateral and bilateral Laplace transforms are identical.

Note: The ROC for the unilateral Laplace transform is always a right-half plane, since

it can be regarded as the bilateral Laplace transform of a causal signal.

Example 6.22:
t B tn—l » t
X(s)= ! -, Re{s}>—a
(s+a)
[
Example 6.23:
x(1)= ey (1+1)
eS
X(s)= R _
(s) o e{s}>-a
X(s)= J-w ey (t+1)e™"dr = J.: e e gt = J.: {e_‘”u (t)} e " dt
e—a
= R —
i a’ e{s}>-a
The unilateral and bilateral Laplace transforms are distinctly different. |

2. Most of the properties of the unilateral Laplace transform are the same as for the

bilateral Laplace transform.

3. The differentiation property of the unilateral Laplace transform

jwdx—weS’dt = x(z‘)e’”
o dt

(Integration by parts)

:7 +sj';x(t)e’“dt:SX(S)—X(O’) (647)

where X (S) is the unilateral Laplace transform of x(t) .
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Similarly

on me’”dt = SJ-: d);(t) e dt —x" (0’ )
0

:s[s?((s)—x(o_)]—x(l)( ) (6.48)
- SZX(S)—SX(O_)—X(I) (0_) .

The general form for the differentiation property is

dn—l dn—Z
SWX(S)_ n-1 x(t) -s n—2 X(t)
d" N dt L, dr .
—x(t)«—=—> (6.49)
dt —e— g ix(z‘) —S'Hx(Of)
i,

where the subscript u in £, denotes the unilateral transform.

Example 6.24: x(t)=e"u(t)

Apply the product rule for differentiation to obtain the derivative of x(t) , >0

i _i at — at , L a — N
dtx(t)—dte u(t) ae u(t)+§(t)\ s—a+1 —
Using Eq. (6.50), we have
—x(t)(—)ﬁ" s +0= a
dt s—a s—a

The results are identical, since x(l) is a causal signal.

[
4. The integration property of the unilateral Laplace transform
0
x(z7)dr
J-t x(r)dr\ = >‘|“°c ( ) +X(S) (6.50)
- s s
Proof: Let y(t)z_[t x(7)dr . Then
< p(0)=x(1
sy(s)—y(O’):X(s)
.
x(7)dr
y(s)= 20, L)
s s
[
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5. A primary use of the unilateral Laplace transform is in obtaining the solution of linear
constant-coefficient differential equations with nonzero initial conditions.
()

dy(1) (1) -
Example 6.25: o +3 % +2y(t):x(t),y(0 )=3, 7=—5

Let x(t) = Zu(t) . Then we obtain

s2y(s)—sy(0’)_y(1)(0—)+ 3sy(s) _3y(0*)+ zy(s) :2

s
3s+4

Y=+ e re )

where y(s) is the unilateral Laplace transform of y(l) . Thus, we have

y(s)zl_L+ 3

s s+1 s+2

:y(t)z[l—e” +3e’2t]u(t).
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