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Chapter 5  The Discrete-Time Fourier Transform 
 

5-1 The Fourier Transform of Aperiodic Discrete-Time Signals 

1. Consider a general aperiodic sequence  x n  which is of finite duration. From this 

aperiodic sequence, we can construct a periodic sequence  x n  for which  x n  is 

of one period. 

1N

 x n

1N
n

(a)  

1N

 x n

1N
n

NN

   N x n x n  
(b)  

Figure 5.1 (a) A finite-duration signal  x n ; (b) a periodic signal  x n  constructed 

to be equal to  x n  over one period. 

 

The discrete-time Fourier series representation of  x n  is  
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Defining the envelope of kNa  as  jX e  , we have 
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The coefficients ak are proportional to equally spaced samples of the envelope 

function  jX e  , where the sample spacing is equal to 0 2 N  . 
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As N  ,    x n x n . This means that the above equation becomes a 

representation of  x n  and the summation operator becomes the integration with 

0 d    and 0k  . Accordingly, we have the following discrete-time Fourier 

transform pair: 
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    (Synthesis Equation)         (5.9) 
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  (Analysis Equation)            (5.10) 

 jX e   is called the discrete-time Fourier transform (or spectrum) of  x n , and  

 x n is called the inverse Fourier transform of  jX e  . 

 

2. The synthesis equation can be interpreted as that  x n  is a linear combination of 

complex exponentials infinitesimally close in frequency and with amplitudes 

  2jX e d   . 

 

3. The convergence of the discrete-time Fourier transform is guaranteed if  x n  is 

absolutely summable or if the sequence has finite energy, i.e., 
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or 
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           (5.12) 

 

4. The major differences between the continuous-time Fourier transform and the 

discrete-time Fourier transform: 

(1) The discrete-time Fourier transform is periodic of period 2, and the 

continuous-time Fourier transform is aperiodic except for some special cases such 

as the periodic impulse train. 
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(2) The discrete-time Fourier transform has a finite interval of integration in the 

synthesis equation, while the continuous-time Fourier transform has an infinite 

interval of integration in the synthesis equation. 
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Example 5.1:   ,  1nx n a a   
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Example 5.2: 
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     The discrete-time counterpart of the sinc function: periodic with period 2.   ■ 

Example 5.3: Let    x n n . Then     1j j n

n
X e n e  


  . The following 

figure shows the approximation of  x n  by  x̂ n  for different values of W: 
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As W,    x̂ n x n  with no convergence problems and no Gibbs phenomenon.  ■ 
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5-2 Periodic Signals and the Discrete-Time Fourier Transform 

1. Fourier series coefficients as samples of the Fourier transform of one period 

Let  x n  be a periodic signal with period N, and let  x n  represent one period of 

 x n , i.e., 

   ,  1

otherwise0,

M n M Nx n
x n

   
 



 

where M is an arbitrary integer. Then 

2
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with ka  being the discrete-time Fourier series coefficients of  x n  and  jX e   

being the discrete-time Fourier transform of  x n . 

 Nak for k=0, 1, 2, …, N-1 correspond to N samples of the Fourier transform of one 

period. 

When M is varied,  jX e   is changed. But the values of  jX e   at the sample 

frequencies 2 k N  for k=0, 1, 2, …, N1 do not depend on M. 

Example 5.4: 

Let    
k

x n n kN


  . Then the corresponding discrete-time Fourier series 

coefficients can be calculated by 
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   . 

Let    1x n n  (i.e., M=0). Then the corresponding discrete-time Fourier transform 

is  1 1jX e   . 

Let    2x n n N   (i.e., 0 < M < N). Then the corresponding discrete-time Fourier 

transform is  2
j j NX e e   . 

Clearly,    1 2
j jX e X e  . However, at the set of sample frequencies 2 k N   

for k=0, 1, 2, …, N1,  1
jX e   and  2

jX e   are identical.       ■ 
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2. The discrete-time Fourier transform for periodic signals 

Consider the signal 

  0j nx n e  . 

Can we compute the corresponding discrete-time Fourier transform? --- No. 
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Let us consider the discrete-time Fourier transform 
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l
X e l 


   .                (5.13) 

Can we compute the corresponding inverse discrete-time Fourier transform? --- Yes. 
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(Any interval of length 2 includes exactly one impulse in the summation.) 

More generally, if x[n] is the sum of an arbitrary set of complex exponentials, i.e., 
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Note: 

 0j ne   is periodic when 02 m N    is a rational number or integer. 

   1 2
1 2

Mj n j n j n
Mx n b e b e b e       is periodic only when all of the 

2 i m N    are rational numbers or integers. 

 If  x n  is a periodic sequence with period N, we can determine its Fourier series 

representation first and then compute the corresponding Fourier transform as 

follows: 
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Figure 5.2 The Fourier transform of a discrete-time periodic signal: (a) the first 

summation on the right-hand side of (5.18); (b) the second summation on the 

right-hand side of (5.18); (c) the final summation on the right-hand side of (5.18); (d) 

the entire expression of (5.18). 

   

3. The discrete Fourier transform 

Let  

  0x n  , outside the interval 10 1n N    

   ,  0 1x n x n n N     

where  x n  is periodic with period N and 1N N . 
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Figure 5.3 A nonperiodic signal  x n  with finite duration and a periodic signal 

 x n  (with period N) constructed to be equal to  x n  over one period. 
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The Fourier series representation of  x n  is 
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Let   kX k Na . Then we can define the N-point discrete Fourier transform (DFT) of 

 x n  as 
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with 
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(5.20) 

Note: 

 The original finite duration signal can be reconstructed from its DFT. 

 The length of DFT is chosen approximately so that fast algorithms can easily be 

used for the computation. (Fast Fourier Transform algorithms) For example, a 

power of 2 ( 2m N ) is often chosen as a transform length. 

 

5-3 Properties of the Discrete-Time Fourier Transform 

1. Periodicity 

The discrete-time Fourier transform is always periodic in   with period 2. 
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2. Linearity 

   1 1
jx n X e F  

   2 2
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       1 1 2 2 1 1 2 2
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3. Symmetry properties 

If  x n  is a real-valued sequence, then 

(1)    * ( )j jX e X e                                              (5.22) 

(2)      ( )Re Re : even functionj jX e X e                           (5.23) 

(3)      ( )Im Im : odd functionj jX e X e                           (5.24) 

(4)    ( )j jX e X e                                              (5.25) 

(5)    ( )j jX e X e                                             (5.26) 

(6)     Re j
ex n X e F                                         (5.27) 

(7)     Im j
ox n j X e F                                        (5.28) 

4. Time shifting and frequency shifting 

If    jx n X e F , then 
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5. Differencing and Accumulation 
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            where  jg e   accounts for the dc value of u[n]. 
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(X( je  ) is periodic with period 2.)             ■ 

 

6. Time and frequency scaling 
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F : continuous-time case 

In the discrete-time case, the corresponding property is quite different. If a  is an 

integer,  x an  consists only of part of  x n . What happens if a  is not an 

integer? 
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Let k be a positive integer, and define 
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Figure 5.4 The signal  (2)x n  obtained from  x n  by inserting one zero 

between successive values of the original signal. 
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7. Differentiation in frequency 
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8. Parseval’s relation 

For aperiodic signals:  

   jx n X e F  
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For periodic signals: 
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9. Convolution property 

If      y n x n h n  , then 

     j j jY e X e H e           (5.38) 

where     jX e x n  F ,     jH e h n  F , and     jY e y n  F . 
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m

y n x m h n m



   



EE3610 Signals and Systems                                          2016-Fall 

5-14 

      
   

   
       

       

j j n

n

j n

n m

j n

m n

j j m j j m

m m

j j j j

Y e y n y n e

x m h n m e

x m h n m e

x m H e e H e x m e

H e X e X e H e

  


   
 

   
 

      
 

   

 

 

 

 

 


 
 
 

F

 

(1) Periodic convolution 

Consider the periodic convolution of two sequences  1x n  and  2x n  which are 

periodic with the same period N. The periodic convolution of  1x n  and  2x n  

is defined as 
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where  y n  is also periodic with period N. 
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Figure 5.5 The procedure for computing the periodic convolution of two periodic 

sequences. 
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For periodic convolution, the counterpart of the convolution property can be 

expressed in terms of the Fourier series coefficients. Let 
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(2) Let  1x n  and  2x n  be two finite-duration sequences, and suppose that 

 1 0x n  , outside the interval 10 1n N    

 2 0x n  , outside the interval 20 1n N    

Let       1 2y n x n x n   (aperiodic convolution). Then we can find 

               0y n  , outside the interval 1 20 2.n N N     

Choose 1 2 1N N N    and define signals  1x n  and  2x n  that are periodic 

with period N and such that 

                1 1x n x n , 0 1n N    

                2 2x n x n , 0 1n N   . 
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Let      1 2y n x n x n    (periodic convolution), then we obtain    y n y n  , 

0 1n N   . 

 The periodic convolution  y n  equals the aperiodic convolution  y n  over 

one period. 

An algorithm for the calculation of the aperiodic convolution of  1x n  and 

 2x n : 

(a) Calculate the DFTs  1X k  and  2X k  of  1x n  and  2x n . 

(b) Multiply these DFTs together to obtain the DFT of  y n : 

     1 2Y k X k X k     

(c) Calculate the inverse DFT of  .Y k  The result is the desired 

convolution  y n . 
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If   , 
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Example 5.7: 

Let    1 2

1, 0 1
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x n x n
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(i) Find      1 1 2y n x n x n    via DFT:    1 2x n x n   is periodic with period N. 

 1x n  is equal to  2x n  for 0 1n N   . 
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(ii) Find      2 1 2y n x n x n   via DFT: Since 2 ( 1)N N N   , we use 2N-point 

DFT and IDFT for calculating y2[n] as follows: 
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10. Modulation property 

                            1 2y n x n x n  

                          1 1
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                          2 2
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(5.40) 
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■ 

11. Duality between the discrete-time Fourier transform and the continuous-time Fourier 

series 

(1) The Fourier series representation of a periodic continuous-time signal with 

fundamental period 0T : 
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(2) The Fourier transform pair of an aperiodic discrete-time signal: 
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    (5.41)
 

Note that
  jX e   is a periodic function of a continuous variable   (rather than 

t) with fundamental period 2 (corresponding to 0T ). So the discrete-time Fourier 

transform expression can be regarded as a Fourier series representation with 

0 1   (corresponding to 02 /T ) and Fourier series coefficients  x n . 

(3) The Fourier series coefficients of  jX e   is the original sequence  x n  

reversed in order. 

     Fourier Transform Fourier Seriesjx n X e x k      (5.42) 

     

5-4 The Frequency Response of Systems Characterized by Linear Constant–Coefficient 

Difference Equations 

1. Calculation of the frequency and impulse responses 
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Assume that the Fourier transforms of  x n ,  y n , and the system impulse response 

 h n  all exist. 
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Example 5.8:        3 1
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2 4 2
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Note: 
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Example 5.9:   2
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2. Cascade- and parallel-form structures 

(1) Cascade-form structure 
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        (5.43) 

where k  and k  may be complex, and then appear in complex-conjugate pairs. 

For simplicity, we assume M N . Multiplying out   *1 1j j
k ke e       

and   *1 1j j
k ke e      , we obtain 
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  2* 2 2
1 21 1j j j j

k k k k ke e e e                      (5.44) 

and 

  2* 2 2
1 21 1j j j j

k k k k ke e e e                           (5.45) 

Thus, we have 
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(5.46) 

where all the coefficients are real. 

 

Note: 

 The frequency response of any LTI system described by a linear constant 

coefficient difference equation can be written as a product of first- and 

second-order terms. 

 The LTI system can be realized as a cascade of first- and second-order LTI 

subsystems. 

(a) Realization of a second-order LTI subsystem 
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                 (5.47) 

   2 2
1 2 1 21 1j j j j j j
k k k kY e e e X e e e                               (5.48) 

           1 2 1 21 2 1 2k k k ky n y n y n x n x n x n           
       (5.49) 

 

           
 

1 2 1 21 2 1 2k k k k

w n

y n y n y n x n x n x n            
 

(5.50) 

This difference equation can be realized using the direct form II structure 

as follows: 

1
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 x n  y n

1k
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1

 

Figure 5.6 Direct form II realization of a second-order LTI subsystem. 
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(b) The first-order subsystems can also be realized using the second-order 

structure with 2k  and 2k  equal to zero. 

(2) Parallel-form structure 

  11

Nj N k
jk

N k

b A
H e

a e


 
 

                   (5.51) 

Adding the pairs involving complex conjugate k ’s, we obtain 

  20 1
21 1

1 21 1

j
Q N Qj N k k k

j j jk k
N k k k

b r r e A
H e

a e e e  

 


      


  

          (5.52) 

where all the coefficients are real. According to this equation, we can realize the 

LTI system using a parallel interconnection of first- and second-order LTI 

subsystems. Each second-order subsystem can be realized using the direct form II 

structure as follows: 

1

1k

2k

 x n  y n

1kr

2kr

0kr

removing this part  

Figure 5.7 Direct form II realization of each second-order LTI subsystem in (5.52). 
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