EE3610 Signals and Systems 2016-Fall

Chapter 5 The Discrete-Time Fourier Transform

5-1 The Fourier Transform of Aperiodic Discrete-Time Signals

1. Consider a general aperiodic sequence x[n] which is of finite duration. From this
aperiodic sequence, we can construct a periodic sequence %[n] for which x[n] is

of one period.

ool

Figure 5.1 (a) A finite-duration signal x[n]; (b) a periodic signal )’E[n] constructed

to be equal to x[n] over one period.

The discrete-time Fourier series representation of )?[n] is

)E[n]: Z ae V (5.1

k=<N>

1 - —jk%n

a, :ﬁ x[n]e (5.2)

k=<N>
x[n]=i[n] for |n|SN1 (5.3)

1 N, L | w ik

.'.akzﬁzn?]v]x[n]e N :Wzn?wx[n]e N (5.4)

Defining the envelope of Na, as X (ejQ ), we have

X(e®)=2" x[n]e™ (5.5)

Na, =X () 0 [or a, =%X(ej2"7’[k D (5.6)
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The coefficients ax are proportional to equally spaced samples of the envelope

function X (ejQ), where the sample spacing is equal to Q, =27/N .

:i[n] = Z LX(e"'“‘QO))e"'l‘g"" (5.7)
k=<N>
= %[n]= ik;\/ X(ej(kQO) )e’m‘)”QO (5.8)

As N —>o, X[n]—>x[n]. This means that the above equation becomes a
representation of x[n] and the summation operator becomes the integration with
Q, > dQ and kQ, > Q. Accordingly, we have the following discrete-time Fourier

transform pair:

x[n]= i X (e-’Q ) e’"dQ (Synthesis Equation) (5.9)

X (e*’g) = Z:}:% X [n] e’ (Analysis Equation) (5.10)

X (e*’Q) is called the discrete-time Fourier transform (or spectrum) of x(n), and

x(n) is called the inverse Fourier transform of X (ejQ ) .

. The synthesis equation can be interpreted as that x[n] is a linear combination of

complex exponentials infinitesimally close in frequency and with amplitudes
X(e")(d/27).

. The convergence of the discrete-time Fourier transform is guaranteed if x[n] is

absolutely summable or if the sequence has finite energy, i.e.,

> fxln] <o (5.11)

or

Z:ﬂo‘x[n]‘z < 0, (5.12)

. The major differences between the continuous-time Fourier transform and the

discrete-time Fourier transform:

(1) The discrete-time Fourier transform is periodic of period 27 and the
continuous-time Fourier transform is aperiodic except for some special cases such

as the periodic impulse train.
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(2) The discrete-time Fourier transform has a finite interval of integration in the
synthesis equation, while the continuous-time Fourier transform has an infinite
interval of integration in the synthesis equation.

K(1)= [ X (jo)edo x[n] =5 [, X(e®)ean

X(]Cf))='|-oO X(t)e_jw’dt X(efg)zzz":iwx[n]e—jgn

—00

Example 5.1: x[n]= a", a| <1

iQ » -jQ ® —jQ ® -jQ -1 -n_—jQ
X(e’ )=z x[n]e’”=z a‘"‘e”’zz a"e’”+z ae ™
n=-ow n=-ow n=0 n=-w
© _ia 0 i\
=2 a4 () (m=—n)

I S G 1-a’
l—ae ™ \1-ae™ 1-2acosQ+a?

x[nj=a, a=05
1 T T T T T T T T

08t .
0Bt .
04t .
[T ‘
[ A ] q) ? (i) q) O oo i)
08 6 4 2 a2 4 E 8 10
n
3 T T
2 - .
(&
=
1 - .
D 1 1 1 1 1
3 2 - 0 1 2 3
0 lized b
fnormalized by x) -
Example 5.2:
1, [n| <N,
x[n] = | ! (rectangular pulse)
0, n| >N,
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jeY ZNI -jon _ ZZNI —jQ(m=Ny) -
X(e ) v, © € (m n+N1)
—JjQ(2N,+1)
_JONNO'ZM —jom __jON, l1-e ]
=e N = —————
m= 1_ e J

JOQN,

=e¢ —jn

e

o /AN)2 £6j9(2N1+1)/2 _ a2 J ~ sin (Q(le + 1)/2)
e

eV g2 sin (€2/2)

1 1 1 1
-1 a 1 2 3
L1 (narmalized by )

(]
ra

The discrete-time counterpart of the sinc function: periodic with period 27. =

Example 5.3: Let x[n]=6[n]. Then X(ejg):zni_mé[n]e*-"g" =1. The following

figure shows the approximation of x[n] by %[n] for different values of W

#[n] :i [/ emda=—tlem|" — L (em_em)~ Lin(m)
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As W—r, %[n] — x[n] with no convergence problems and no Gibbs phenomenon. m
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5-2 Periodic Signals and the Discrete-Time Fourier Transform

1. Fourier series coefficients as samples of the Fourier transform of one period
Let )’E[n] be a periodic signal with period N, and let x[n] represent one period of
x[n],ie.,
{fc[n], M<n<M+N-1
x[n]=

0, otherwise

where M is an arbitrary integer. Then

y
Na,=X|e "V

with @, being the discrete-time Fourier series coefficients of %[n] and X (e-’Q)

being the discrete-time Fourier transform of x[n] .

= Nay for k=0, 1, 2, ..., N-1 correspond to N samples of the Fourier transform of one

period.

When M is varied, X (ejQ) is changed. But the values of X (e-’Q) at the sample
frequencies 27k/N for k=0, 1,2, ..., N-1 do not depend on M.

Example 5.4

Let )?[n]:z::_m5 [n—kN]. Then the corresponding discrete-time Fourier series

coefficients can be calculated by

‘kz—”n 1

akzﬁ Z )E[n]e_] N =N

n=<N>
Let x,[n]=6[n] (i.e., M=0). Then the corresponding discrete-time Fourier transform

is Xl(ejg)zl.

Let x,[n]=6[n—N] (ie., 0 <M <N). Then the corresponding discrete-time Fourier

transform is X, (e-/Q) =e /.

Clearly, X, (ejg) # X, (ejQ). However, at the set of sample frequencies Q =27k/N
for k=0, 1,2, ..., N-1, X, (efg) and X, (ejﬂ) are identical. m
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2. The discrete-time Fourier transform for periodic signals
Consider the signal
x[n] = e/

Can we compute the corresponding discrete-time Fourier transform? --- No.

iQ o0 —jQ b Q —jQi
X(e’ ):Z x[n]e’”:z el e
n=-o n=-o0
B
—oo

Let us consider the discrete-time Fourier transform
X(e®)=3" 275(Q-Q,-27l). (5.13)
Can we compute the corresponding inverse discrete-time Fourier transform? --- Yes.
x|n 2728 (Q-Q, —27l)e’™dQ
[ J‘Zﬂ' z =—00 ( ) (5 14)
= e’Q"”“z’”” =e/™" (Q=Q, +27r, with [ =r)
(Any interval of length 2z includes exactly one impulse in the summation.)

More generally, if x[#] is the sum of an arbitrary set of complex exponentials, i.e.,

x[n]=be™™" +be™™" +---+ b, (5.15)
Then
X(e®)=bY " 225(Q-Q-27l)+b,y. " 275(Q-Q,-27l) 516
5.
+otby Y 275(Q-Q,, —27l).
Note:

@ ™" is periodic when 27/Q,=m/N is a rational number or integer.

@ x[n]=be" " +be™™" +---+b,e’™" is periodic only when all of the
27/Q, =m/N are rational numbers or integers.

@ If x[n] is a periodic sequence with period N, we can determine its Fourier series

representation first and then compute the corresponding Fourier transform as

follows:

2z 2z 2z
J—n J2(=)n J(N=1)(=)n
— N N N
x[n]=a,+ae ¥ +aye +-ta, e (5.17)

X(ejg) = aOZZiw2ﬂ§(Q—2ﬂZ)+aIZZ 2725(9—%—27[1]
(5.18)

+oetay ) 2;;5(9 (N- 1)%”—2”0
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2ra, =27a_, 2rxa, 2ra, =2ra,
Q
27 0 2z
(a)
2ra, =2ra_y,, 27a, 2zay =27ay.,
2 2z 2
—(N+1)— — —
¥ e (3 ()
2r
—(N-1)== 27 _12E
(v B (wv-nZ)
°es 2ray_ =2ra_y_, (c) 2za_, 2ray_, T
2ra_y 2ra, 2ray
F”amﬂ ] 2ra, ( 2zay.,
T I ' T I ' T I "
Y @ VO 27
2ra_y._, 2ra_, 2ray,_,

Figure 5.2 The Fourier transform of a discrete-time periodic signal: (a) the first
summation on the right-hand side of (5.18); (b) the second summation on the
right-hand side of (5.18); (c) the final summation on the right-hand side of (5.18); (d)

the entire expression of (5.18).

3. The discrete Fourier transform

Let
x[n] =0, outside the interval 0<n< N, -1

)?[n]=x[n], 0<n<N-1

where %[n] is periodic with period Nand N > N,.

x[n] *[n]

HH HM 1 HH

0 N, -1 0 N, -1N-1
Figure 5.3 A nonperiodic signal x[n] with finite duration and a periodic signal

X[n] (with period N) constructed to be equal to x[n] over one period.
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The Fourier series representation of x[n] is

L2

- Jk—n

[n]= 2 ae ¥
k

=<N>

where

1 ——n
a=y 2 n]e =_z SN

n=<N>
Let X [k] = Na, . Then we can define the N-point discrete Fourier transform (DFT) of
x[n] as
X[k]=3""x[a]e " k=0,1,2,...,N~1--DFT (5.19)
with
W27

x[n]= %ZZ_JX [k]e“¥"  n=0,1,2,....N—1 - Inverse DFT (IDFT)  (5.20)

Note:

@ The original finite duration signal can be reconstructed from its DFT.

@ The length of DFT is chosen approximately so that fast algorithms can easily be
used for the computation. (Fast Fourier Transform algorithms) For example, a

power of 2 (2" = N) is often chosen as a transform length.

5-3 Properties of the Discrete-Time Fourier Transform

1. Periodicity

The discrete-time Fourier transform is always periodic in € with period 2.
X(em)= Xl

x[n] =— X(efg)e-/g”dQ

2. Linearity

X, [n]<L>X2 (ejQ)

a,x, [n]+b2x2[n](L)aIXl(ejQ)+b2X2 (ejQ) (5.21)
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3. Symmetry properties

If x[n] isareal-valued sequence, then

(1) X(e)=x"() (5.22)
) Re{X(e-’Q)} - Re{X(e-’(’Q) )} even function (5.23)
3) Im{X(e«fQ )} = —Im{X(ej(‘Q) )} odd function (5.24)
@) [x (&) =|a () (5.25)
(5) 2X () =-2x () (5.26)
6) x, [n]<L>Re{X(efQ)} (5.27)
7 x,[n]«Z> jlm{X(e-fQ)} (5.28)

4. Time shifting and frequency shifting

If x[n](LxX(e’Q ) , then

x[n—n0]<L>e_jQ”°X(efQ) (5.29)
ejQ"’lx[n](L)X(ej(Q_Q")) (5.30)
L X(e-’(Q’Qo))efQ"dQ:L X(efQ')ef(QmO)”dQ'
272- 2 272- 2z
iQqn 1 Q' iQ'n ’ iQon
= /% p 2”X(e-’Q )e’Q dQ' = e’ x[n]
5. Differencing and Accumulation
x[n](LX(ejQ)
(1) x[n]—x[n—1]<L>(1—e"jQ)X(ejQ) (5.31)

@) y[r]=2_ x[m]=x[n]*u[n]

y[n]+c-y[n-1]-c=x[n]= Y(e-ig)(l—e_jg)zX(e’Q)
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= Y(e-’Q> = l—ijg X(e-iQ)+? (dependent on c)
n 1 ; § o
B3 T x () ()T (-2eh

This term reflects the dc or average
value that can result from summation.

Note:
Q@ 1«T527) " 5(Q-27k)

@ Average value (or dc value) is %X (e-’ '0) = %an:wx[m] :

Example 5.5:
x[n]= 5[n]<L>X(eJQ) =1

u[n] = an?wé'[m](L)

= +ry.  5(Q-27k)

'.'u[n]+c—u[n—1]—c:5[n]

g'{u[n]} = !

| Y

et (ejg)
where g(ejQ) accounts for the dc value of u[n].

u[n] =(u[n]—%—%§[n]j+%+%5[n]

—
odd part, u, [n] even part, u, [n]
u [n]

1
0.8r
0.6t
0.4
02

Dm g 6 4 2 ] 2 4 & a 10
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F {u, [n]} = & {u[n]) _%zﬂz:__wa(g_zﬂk)_l

i/Q-i-g( ) ﬂzk__ Q 27zk

1
( _1j+g( N-xS" 5(Q-2rk)
al

1- COSQ+]S1HQ 2

l-cosQ—jsinQ 1 )\ © 3
> 700500 2j+g(e ) ﬂzk?wé‘(Q 27zk)

:2_—]282?9 g(ef)-m . o(Q-2nk)

- oF {uo [n]} is purely imaginary.

g(e’Q) = ﬂZ:HO 5(Q—27k)

D X[m] = x[n]xu[n]
g'{z;}wx[m]} = g'{x[n]} g{u[n]} (convolution property )

= X(e-’Q)[ﬁ+7r2f_%5(9—27rk>}

1 : ._ ©
= —_— X(e’Q)+7rX(eJ°)Zk:_w§(Q—2ﬂk)
(X(e’®) is periodic with period 27.) n
6. Time and frequency scaling
x[n](LxX(ejQ)
(1) x[-n]«Tox () (5.33)

2, xmnle ™ =20 x[m]e™ (m=—n)
=2 K]

(2) x(at)&)ﬁ)( [ Jj Qj: continuous-time case
a a

In the discrete-time case, the corresponding property is quite different. If a is an
integer, x[an| consists only of part of x[n]. What happens if a is not an

integer?



EE3610 Signals and Systems 2016-Fall

Let k be a positive integer, and define

x[n/k] , ifn is a multiple of k
x(k) [n] = . . .
0 , ifn is not a multiple of &

x[n] X[ 1]

il

-1 10

IR

S5432-1 1012 345

Figure 5.4 The signal x, [n] obtained from x[n] by inserting one zero

between successive values of the original signal.

X (€)= % [n]e ™

=" X [rk]e " (x(k) [n]#0 when n= rk)
=37 x[r]e = x ()
X [n]eT— X () (5.34)

N
periodic with period 27/k

7. Differentiation in frequency
x[n](LX(ejQ) = Zw x[n]e"n”

dX(ejQ) " , . ‘
— _ . —jQn S N —jOn
dQ Zn:ﬁx:‘]nx[n]e :>‘] dQ anfoonx[n]e

iQ
:>nx[n]< £ >jan§;] )

(5.35)

&. Parseval’s relation

For aperiodic signals:

x[n](L)X(ejQ)
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© . 2
2l =) X () e
For periodic signals:

L2

x[n]= Z akeﬂCW

k=<N>
~ Z bl = X laf
k=<N>

Proof:

(1) Zj:_m‘x[n]‘z => " x[n]x'[n]= z:’_wx[n]i z,,X* (e-’Q )e_A,-QndQ

1 . 1 .
- 272- 2 (e]Q)X(QJQ )dQ - 272- 2r X(ejg)
(2)—_21\/‘[71‘——_21\/ n]x
LY Y e
N =<N> k=<N> ¢
—zak[ﬁz j S ]
k=<N> n=<N> k=<N>

9. Convolution property
If y[n] = x[n] * h[n] , then

Y(e-’Q):X(e-’Q)H(e-/Q)

where X(ejQ) = g'{x[n]} , H(e-’g) = g'{h[n]} , and Y(e«"g) = g'{y[n]} .

Proof:

y[n]=2, . x[m]h[n—m]

5-13
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V() =F ([l =2 vln]e ™
=2 2 X[ A[n—ml
=2, xmlX,  hln—m]e™
=Xl () = ()3 x[m]e ™

=H ()X () =X (e)H ()

(1) Periodic convolution

Consider the periodic convolution of two sequences %, [n] and %,[n] which are
periodic with the same period N. The periodic convolution of X [n] and X,[n]

1s defined as

c—— e ———— | ——— —
[ ]

e ——— — — —

(Circular shift)

Figure 5.5 The procedure for computing the periodic convolution of two periodic

sequences.
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For periodic convolution, the counterpart of the convolution property can be

expressed in terms of the Fourier series coefficients. Let

%[n]= D) e (Q,=27/N)

k=<N>
)Ez[n]z Z b e "
k=<N>
y[n]= Z c e
k=<N> .
Then
¢, = Na,b,
Proof:
)= 3 & [ms[n-n]
m=<N>
1 - i On
o I e

1 - - — jkQqn
= > > &[m]x[n-mle

n=<N>m=<N>

- Z X [m]% z )Ez[n—m]e_jkg‘)”

m=<N> n=<N>
- 1 - kG (n”
= 2 &[ml X mln]e
m=<N> Nn’=<N>
— " = jkQom —
= z % [m]e b, = Na,b,
m=<N>

(5.39)

(2) Let x,[n] and x,[n] be two finite-duration sequences, and suppose that

x,[n] =0, outside the interval 0<n<N, -1

x,[n] =0, outside the interval 0<n<N, -1

Let y[n]=x[n]*x,[n] (aperiodic convolution). Then we can find

y[n] =0, outside the interval 0<n<N,+ N, -2.

Choose N >N, +N,—1 and define signals %[n] and X,[n] that are periodic

with period N and such that
% [n]=x[n], 0<n<N-1

% [n]=x,[n], 0Sn<N-1
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Let )7[71]=5c1[n]®5c2 [n] (periodic convolution), then we obtain y[n]= )7[71],
0<n<N-I.
= The periodic convolution j[n] equals the aperiodic convolution y[n] over

one period.

An algorithm for the calculation of the aperiodic convolution of xl[n] and
x,[n]:
(a) Calculate the DFTs )Z'l(k) and )E'Z(k) of % [n] and X,[n].
(b) Multiply these DFTs together to obtain the DFT of y[n]:
Y(k)=X (k) X, (k)
(c) Calculate the inverse DFT of Y (k) The result is the desired

convolution y[n].

L2z
[ %,(k)=Na, = S lnle YL k=012, N1

L2

X,(k)=Nb, =3 " [n]le N, k=0,1,2,...,N -1

Y(k)=Nc, = N’ab, = X, (k)- X, (k), k=0,1,2,...,N -1

1 L2

| 7[] =WZII::Y(k)eJan, n=012,.N-1

Example 5.6:
_ . n F JjQ — 1
h[n]—a u[n](—)H(e ) P
N 1
x[n] =f u[n](LX(e’Q) = I~ pe
1

If a=p,
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If a=4,

ay 1 Y oad 1
r(e )—(l_ae—fﬂj = o\iTae®

1
F
auln] 1-aqe™ ™
e d( 1
neru[n} = ']dQ(l—aemj
(n+1)a" u[n+1]«ZT— je'* da;Z(l—ale-/Q)

(time shifting property, x [n —-n, ] «Z e /) (ejQ ))
)= (n+ 1) u[n+1]
a

=(n+1)a"u[n+1]

=(n+1)a”u[n] ('.‘nz—l, n+1=0)

Example 5.7
Let x [n] =X, [n] = {

LO<n<N-1

0, otherwise

(i) Find j,[n]=x[n]®%,[n] via DFT: % [n]=%,[n] is periodic with period N.
% [n] isequalto %,[n] for 0<n<N-I.

N-1 —jkz]:][n_{N, k:()

Xi(k)= Xy (k)= 2, e

0, otherwise
~ lad v Nz, k - 0
Yl(k)zXl(k)Xz (k):{ 0. otherwise

‘2—”)1
F[n]=~ Y (k) Y =N, 0<n<N-1

k=0

(ii) Find y,[n]=x[n]*x,[n] via DFT: Since 2N >(N+N —1), we use 2N-point
DFT and IDFT for calculating y2[#n] as follows:

22
2N-1 —J

X, (k) =%, (k)= "k =0,1,2,...,2N -1

n=0

Y, (k)=X, (k) X,(k), k=0,1,2,...,2N -1
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10. Modulation property
y[n]=x[n]x[n]
X, [n]<L>X1 (ejQ)
X, [n]<L>X2 (e-’Q)
y[n](LY(e-’Q)
1

:>Y(ej9):2— ) Xl(ejg)Xz(ej(Q_e))dH:
92

i){l ()@ x, (5.40)

Proof:

Y(ejg) = vlnle™ = x[n]x,[n]e”™

x [n]= i X (e""g)ejg"de

=2L i l(ejg)(Zj_f X, [n]eij(g*g)")de
T =
:2L ) l(ejg)Xz(ej(Q_'g))dH

P

11. Duality between the discrete-time Fourier transform and the continuous-time Fourier

series

(1) The Fourier series representation of a periodic continuous-time signal with
fundamental period 7j:

® Jkayt 27

x(t)=2."  ae"™, fundamental frequency e, = Y

0

— 1 —Jjkay
a, —?0 Tox(t)e et dt

(2) The Fourier transform pair of an aperiodic discrete-time signal:

x|n =L X(e™)e™dQ
[] (¢)

2 22

X (ejg) =Y x[n]e’™ (with fundamental period 27)

5-18



EE3610 Signals and Systems 2016-Fall

- JjQ andQ
= <[] 27 27 Xler)e (5.41)

X (ejQ) =Y x[-n]e’™ (with fundamental period 27)
Note that X (ej Q) is a periodic function of a continuous variable Q (rather than
t) with fundamental period 27 (corresponding to 7; ). So the discrete-time Fourier
transform expression can be regarded as a Fourier series representation with

@, =1 (corresponding to 27 /T;) and Fourier series coefficients x[—n] )

(3) The Fourier series coefficients of X (ejQ) is the original sequence x|[n]

reversed in order.

X[”l]/ Fourier Transform \X( )(Mx[_k] (542)

5-4 The Frequency Response of Systems Characterized by Linear Constant—Coefficient
Difference Equations

1. Calculation of the frequency and impulse responses
N M
zkzoaky[n—k] = kzobkx[n—k]

Assume that the Fourier transforms of x[n], y[n], and the system impulse response

h [n] all exist.

x[n]L)X(e’Q)
y[n]<L>Y<e’Q) |
h[n] H(e’g) = )Y(((ee’jg))

Y(ejQ)_%ejﬁy(ejQ)_'_éeJQQY(ejQ) = 2X(e’9)

Y(e’Q) 2

-jQ +1e—j29

—e
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Note:

. 1 y »
a H(e"Q):l —5 =1+ae P Late P ., |a|<1
—ae

h[n]:5[n]+a5[n—1]+a25[n—2]+---:a”u[n]

, a|<1

7 N
l1—ge ™

Example 5.9: H(efQ) =

1Y , 1
x[n] ) (Z] u[n] ) X(e‘lg) ) 1- L e /2
Y(e®)=H(e")x (") :
(405
2
— Bll + BIZ + le
1 —i0 1 . ? 1 -jQ
l-—e” (l—e -IQ) 1-—e”’
4 2
Y(v)= 2 s v =4,v,=2
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Note:
e Z(e’Q ! =J JQL[ ! j
(l—ae jﬂ)z a dQ\1-ae’®
1
a'u[n]«= S
p . d 1
no u[n](L)JE(l_ae_ij
(n+l)a("+])u[n+l]<i>jejni( ! A )
dQ\1-ae™
oo d 1 1
1 n 1 F i jQ % : —
(n+1)a"u[n+ ]<—>ae dQ(l_ae_,Q) (l—ae”n)z
:(n+l)a"u[n]< = >( ! AQ)Z ('.‘(n+1)a"u[n+1]=0whenn:—1)
I-ae™
[
2. Cascade- and parallel-form structures
(1) Cascade-form structure
bTT" (1+pe
H(e®)= o[ (e pe ™) (5.43)

aOHkle(H”keﬁQ)

where g, and 7, may be complex, and then appear in complex-conjugate pairs.
For simplicity, we assume M =N . Multiplying out (1+ ,uke"jg)(lJr ,u,te‘jg)
and (1 +n,e’” )(1 + nZe"jQ) , we obtain
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I+ (:Uk + 44 )e—jQ + |,le|2 e =14 fue + fue (5.44)
and
-j20

1+(77k +77Z)e*jQ +|77k|2e =l+a,e’ +a,e’ (5.45)

Thus, we have

i T A ™ e ) TL ™)
“ Hf:l (1 +aye’? aye ) H/Ic\:zg(l + nkeijg)

where all the coefficients are real.

(5.46)

H(e-’Q) =

Note:

@ The frequency response of any LTI system described by a linear constant
coefficient difference equation can be written as a product of first- and

second-order terms.

@ The LTI system can be realized as a cascade of first- and second-order LTI

subsystems.

(a) Realization of a second-order LTI subsystem

4 1 -JQ -i2a Y (e
Hz (ejg) = liﬁzz_jg iﬁzz—jzg = X((ejﬂ)) (5.47)

Y(e"Q)[1+051ke_"'Q +a2ke_"20] zX(eiQ)[1+,Blke_'jQ +,32ke_jm] (5.48)

y[n] + alky[n —1] + aZky[n —2] = x[n] +ﬂ1kx[n —1] +,62kx[n —2] (5.49)

y[n]=—a,y[n—1]-ayy[n-2]+x[n]+ Bx[n 1]+ Boyx[n-2] (5.50)
W]

This difference equation can be realized using the direct form II structure

x[n] —»M y[n]

as follows:

Figure 5.6 Direct form II realization of a second-order LTI subsystem.
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(b) The first-order subsystems can also be realized using the second-order

structure with f,, and «,, equal to zero.

(2) Parallel-form structure

H(e-f9)=b—N+zN _ A (5.51)

k=1 —-JjQ
ay l+7n.e

Adding the pairs involving complex conjugate 7, ’s, we obtain

JjQ bN o rOk + rlke_jQ N-20 Ak
H(e ): +Zk—1 —j0 o) +Zk—1 — (5.52)
ay “ltaye T raye’ - l4+ne”’

where all the coefficients are real. According to this equation, we can realize the
LTI system using a parallel interconnection of first- and second-order LTI
subsystems. Each second-order subsystem can be realized using the direct form II
structure as follows:

y([n]

removing this part

Figure 5.7 Direct form II realization of each second-order LTI subsystem in (5.52).
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