
EE3610 Signals and Systems    2016-Fall 

4-1 

Chapter 4  The Continuous-Time Fourier Transform 
 
4-1 The Fourier Transform of Aperiodic Continuous-Time Signals 

1. Development of the Fourier Transform 

 Periodic signals → Fourier series 

 Aperiodic signals → Fourier transform 

Consider a periodic square wave shown in Fig. 4.1. 

 

 

Figure 4.1 A periodic square wave. 

 

The corresponding Fourier series representation can be expressed as follows: 
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    (4.1) 

 The function   12sin T   represents the envelope of 0 kT a , i.e., 0 kT a  is a 

sampled value of   12sin T  , as shown in Fig. 4.2. 

0

0 0

The sampling interval is                                                                                                         

sampling spacing Fourier series coefficients approach theT



   



 0

                            

                                                             envelope function      

 is a rectangular pulse  (aperiodic)                                            T x t                      







 

Note:  

 We can think of an aperiodic signal as the limit of a periodic signal as the period 

becomes arbitrarily large. 

 Consider a general aperiodic signal  x t  that is of finite duration. From this 

aperiodic signal, we can construct a periodic signal  x t  for which  x t  is of 

one period, as shown in Fig. 4.3. 
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Figure 4.2 The Fourier coefficients and their envelope of the periodic square wave in Fig. 

4.1 for several values of T0 (with T1 fixed): (a) T0 = 4T1; (b) T0 = 8T1; (c) T0 = 16T1. 

 

 

 x t

 

Figure 4.3 (a) An aperiodic signal x(t); (b) a periodic signal  x t , constructed to be equal 

to x(t) over one period. 
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   0As  , T x t x t   

The Fourier series representation of  x t  is 
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Defining the envelope of 0 kT a  as  X j , we have 
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   0As  ,  T x t x t  , and the above equation becomes a representation of  x t . 

0 0As  ,  0,  , and T     0 d  . Accordingly, we have 

   1

2
j tx t X j e d 





                      (4.8) 

    j tX j x t e dt
 


                          (4.9) 

This is called the Fourier transform pair.  X j  is the Fourier transform or Fourier 

integral of  x t , and  x t  is the inverse Fourier transform of  X j . (4.8) is 

referred to as a synthesis equation, and (4.9) is referred to as an analysis equation. 

 

2. Convergence of the continuous-time Fourier transform 

(1) If  x t  is square-integrable, i.e., if 

  2
x t dt




   

then the Fourier transform  X j  converges in the sense that the total error 

energy E of the difference of  x t  and  x̂ t  synthesized by (4.8) is zero. 
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(2) The following three Dirichlet conditions ensure that the Fourier transform of  x t  

converges in the sense of E = 0, where  x̂ t  is equal to  x t  for any t except at a 

discontinuous point for which it is equal to the average value of the discontinuity. 

  x t  is absolutely integrable, i.e.,  x t dt



  . 

  x t  has a finite number of maxima and minima within any finite interval. 

  x t  has a finite number of finite discontinuities within any finite interval. 

 

3. Examples of the continuous-time Fourier transform 

Example 4.1: The Fourier transform of a rectangular pulse 
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Example 4.2: The inverse Fourier transform of a rectangular pulse 
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Note: Broader in the time domain → narrower in the frequency domain 

Narrower in the time domain → narrower in the frequency domain         ■ 
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4-2 Periodic Signals and the Continuous-Time Fourier Transform 

1. Fourier series coefficients as samples of the Fourier transform of one period 

Consider a periodic signal  x t  with fundamental period 0T  and the following 

Fourier series representation: 

  0jk t
kk

x t a e 
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0
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a x t e dt
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   . 

Let  x t  be an aperiodic signal formed by one period of  x t  as follows: 

                          0 0   ,    
2 2

0        ,         otherwise.
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Then the Fourier transform of  x t  is 

                        j tX j x t e dt
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General statement: 
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Example 4.3: Fourier transforms of different intervals for a periodic signal. 
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 1x t
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   1 2X j X j  , but      1 0 2 0 0 1 02sin / .X jk X jk k T k      --- Only some 

sample points are the same. 

Note: The Fourier coefficients of a periodic signal can be obtained from samples of 

the Fourier transform of an aperiodic signal that equals the original periodic signal 

over any arbitrary interval of length 0T  and that is zero outside this interval.      ■ 

2. The Fourier transform for periodic signals 

Consider a signal  x t  with Fourier transform    02X j     . 
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X j a k    


  , then   0jk t

kk
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 . 

This is corresponding to the Fourier series representation of a periodic signal. 

Note: If impulses are allowed in the continuous-time Fourier transform, we can define 

the following Fourier transform pairs: 

 0
02j te     F                                      (4.12) 

 0 1 2j te     F                                       (4.13) 

     0
02jk t

k kk k
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    F         (4.14) 

       Periodic signal → Fourier series representation 

      → Fourier transform 
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Example 4.4: The Fourier transform of a sinusoidal signal. 
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Example 4.5: The Fourier transform of a periodic impulse-train signal. 
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Note: Impulse train in the time domainF Impulse train in the frequency domain. ■ 

 



EE3610 Signals and Systems    2016-Fall 

4-8 

4-3 Properties of the Continuous-Time Fourier Transform 
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                Notations: 

   x t X jF  

    X j x t  F  

    -1x t X j F  

1. Linearity 
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       1 2 1 2ax t bx t aX j bX j    F                  (4.17) 

 

2. Symmetry Properties 

If  x t  is a real-valued function, then 

                       : complex conjugateX j X j              (4.18) 

Proof: 
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        Re ImX j X j j X j     

If  x t  is real, then 
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         polar formj jX j X j e      

If  x t  is real, then 
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 If  x t  is both real and even, then  X j  is also both real and even. 
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The symmetry property in (4.18)         realX j X j X j        

 If  x t  is both real and odd, then  X j  is both pure imaginary and odd. 

 A real function  x t  can always be expressed as 

     
even part odd part

e ox t x t x t                          (4.22) 
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3. Time Shifting 

   x t X jF                               
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Time shifting only introduces a phase shift but leaves the magnitude unchanged.  
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4. Differentiation and Integration 
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 0X : reflects the dc or average value resulting from the integration. 
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Example 4.6: Determine the Fourier transform of the unit step function u(t). 
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5. Time and Frequency Scaling 
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6. Duality 
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Proof: 
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Example 4.7: Compare the relationship between a rectangular pulse and a sinc 

function with the duality property. 

rectangular in the time domain → sinc in the frequency domain 

sinc in the time domain → rectangular in the frequency domain 
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Letting W = T1, we can see that the rectangular pulse and the sinc 

function satisfy the duality property.                            ■ 

 

Example 4.8: Calculate the Fourier transform of x(t) given below using the duality 

property. 

               2

2

1
x t

t



 

         Let   2

2

1
f u

u



      

                 2

2

1
g t f 


 


F  

                 2

2

1
tg t e f 


  


F               

                  2 2x t f t g e       F           

              2x t e   F                              ■ 



EE3610 Signals and Systems    2016-Fall 

4-13 

Note: Other Duality Properties 
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Note: 

 The total energy in the signal  x t  may be determined either by computing the 

energy per unit time and integrating over all time or by computing the energy per 

unit frequency and integrating over all frequencies. 

 For periodic signals, 

 
0

2 2

0

1
kkT

x t dt a
T




 .                   (4.37) 

 



EE3610 Signals and Systems    2016-Fall 

4-14 

8. Convolution Property 

           y t h t x t Y j H j X j     F            (4.38) 
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  H j : The Fourier transform of the system impulse response or the frequency 

response of the system. 
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 Periodic Convolution: [(periodic signal)(periodic signal)] 

Consider two periodic signals  1x t  and  2x t  with common period 0T . The 

periodic convolution of  1x t  and  2x t  is defined as 
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(ii) If a b  
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Example 4.10:  
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9. Modulation Property 
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Note: 

 Multiplication of one signal by another can be thought of as using one signal to 

scale or modulate the amplitude of the other. 

The multiplication of two signals is often referred to as amplitude modulation. 
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1

2
1

2

j t

jvt

jvt j t

r t s t p t

R j s t p t e dt

p t P jv e dv

R j s t P jv e dv e dt












 







  

 







    





 

 

     

  

    

   

1
         

2

1
         

2
1

         
2

j v t

S j v

P jv s t e dt dv

P jv S j v dv

P j S j










 


   

 







    

 

 

 





 

            ■ 

 

Example 4.12: Given R(jω) and p(t), calculate      1
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Example 4.13: Given s(t) and p(t), calculate      1
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Example 4.14: (Sampling Theorem) 
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  i.e., 0 12W   

Sampling Frequency2(Signal Bandwidth) 

  No aliasing in R(jω). 

  s(t) can be reconstructed from r(t). 

 

4-4 The Frequency Response of Systems Characterized by Linear Constant-Coefficient 

Differential Equations 

1. Calculation of the Frequency Response and the Impulse Response 
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Example 4.15: Determine the impulse response h(t) of the LTI system described by 

the following differential equation that is initially at rest. 
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Example 4.16: Determine the impulse response h(t) of the LTI system described by 

the following differential equation that is initially at rest. 
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Example 4.17: 

   

     

     

31 1

2 2
?

t

t t

x t e u t

h t e u t e u t

y t x t h t



 



 

  

 



EE3610 Signals and Systems    2016-Fall 

4-21 

 

     

  

 2

1 2
        

1 1 3

        
1 31

Y j X j H j

j

j j j

A B C

j jj

  


  

 




 

  

  
 

 

      

      

2

2

2 1 3 3 1

Let  

2 1 3 3 1

Set  1

1 2 1 2

Set  3

1 4 1 4

j A j j B j C j

s j

s A s s B s C s

s

B B

s

C C

    



       



        

 
    

 
     

               

 
   

2

3

0               the    term

1 1 1
1 4

4 2 4
t t t

A C s

A C y t e te e u t  

 

          

                

            ■ 

 

2. Cascade and Parallel-Form Structures for Implementation of LTI Systems 

(i) Cascade-form structure 
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                   (4.40) 

where k  and kv  may be complex. 

By multiplying together the two first-order terms involving complex conjugate 

'k s  or 'kv s , we obtain second-order terms with real coefficients. For example, 
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     (4.41) 

where the coefficients are all real. 

The system can be implemented using a cascade (let P=Q) of P second-order 

systems and (N-2P) first-order systems. 
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 Realization of a second-order system 
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For convenience, we only consider the following second-order terms for 

realization of a cascade system (as shown in Fig. 4.4): 
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Figure 4.4 A cascade-form structure of second-order subsystems with N=M=6 and 

P=Q=3. 

 

(ii) Parallel-form structure 
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If all the 'kv s  are distinct, then  H j  can be expressed as 
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Adding together the pairs involving complex conjugate 'kv s , we obtain 
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(All the coefficients are real.) 

  We can implement the system by using a parallel interconnection of Q 

second-order systems and (N-2Q) first-order systems. 

For convenience, we only consider the following second-order terms with an 

additional constant for realization of a parallel system (as shown in Fig. 4.5): 
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Figure 4.5 A parallel-form structure of second-order subsystems with N=6 and Q=3. 
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Appendix 
Partial Fraction Expansion 
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