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Chapter 2  Linear Time-Invariant Systems 
 

2-1 Discrete-Time Linear Time-Invariant (LTI) Systems 

1. The representation of discrete-time signals in terms of impulses 

               
generalized

0x n n x n x n n k x k n k               (2.1) 

where x[k] represents a specific value of the signal x[n] at time k. Therefore, x[n] can 

be expressed as the following weighted sum of time-shifted impulses: 

     
k

x n x k n k


         (2.2) 

Example 2.1: 

    ■ 

Figure 2.1 A graphical example illustrating the representation of a signal x[n] as a weighted 

sum of time-shifted impulses. 

Example 2.2:    
0k

u n n k


                                        ■ 
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2. The convolution-sum representation of discrete-time LTI systems 

Let     h n H n  be the impulse response of a discrete-time LTI system. Then 

  [ ]h n k H n k    is the response of the system to the shifted unit sample

 n k  . According to the linearity properties of LTI systems, we have 

         
    

    
 

k

k

k

y n H x n H x k n k

H x k n k

x k H n k



















  

 

  





              (2.3) 

With the time-invariance property, (2.3) becomes 

      
k

y n x k h n k



                             (2.4) 

This result is referred to as the convolution sum or superposition sum and will be 

represented symbolically as 

     y n x n h n                (2.5) 

Interpretation of the convolution of two sequences: 

 

Figure 2.2 Illustration of the convolution sum of two sequences. 

   1 1x n 

   0x n

   1 1x n 

   2 2x n 

   
k

x k n k
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Example 2.3: 

       
         

     

;  

,  0
0, 0

,  otherwise0

n

k

k

x n u n h n u n

y n x n h n x k h n k

k n
x k h n k n k k









 

   

 
    







 

(1) For n  0,  
1

0

1

1

n
n k

k
y n









 

 . 

(2) For n < 0,   0y n  . 

   
11

1

n

y n u n




 


          ■ 

Example 2.4: Multipath communication channels 

     1
1

2
y n x n x n                               

         1
1

2
x n n h n n n                            

Determine the output of this system in response to the input 

       2 4 1 2 2x n n n n                             

             2 4 1 2 2 2 5 1 3y n h n h n h n n n n                   ■ 

 

3. When the sequences are of long duration, the convolution-sum procedure could be 

cumbersome. So we need to use a systematic approach to for such computation. 

Rewrite (2.4) as 

       nk k
y n x k h n k w k

 

 
            (2.6) 

where      nw k x k h n k   is called the intermediate signal. In this equation, k is 

an independent variable and    ( )h n k h k n     is a reflected, time-shifted 

version of  h k : 

   
   

0,  time shift  to the left.

0,  time shift  to the right.

n h n k h k

n h n k h k
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Example 2.5: Convolution-sum evaluation by using an intermediate signal 

     3 4
n

h n u n  and x[n] = u[n]                      

Using the intermediate signal      nw k x k h n k  , we can determine the output of 

the system at time n = 5, 5, and 10 as follows: 

     3 4
n k

h n k u n k
                              

        
 

     

     

     

5

5

5

5

6
5 5

0

10

10

5,  5 3 4 5 0

5 0

,0 53 4
5,  5

,  otherwise0

1 3 4
5 3 4 3.288

1 3 4

,0 103 4
10,  10

,  otherwise0

k

k

k

k

k

n w x k h k u k u k

y

k
n w x k h k

y

k
n w x k h k

 










        

  

      



   



      




               

     11
10 10

0

1 3 4
10 3 4 3.831

1 3 4
k

k
y






   

                ■ 

 

Figure 2.3 Evaluation of the convolution sum for Example 2.5. (a) x[k] and h[nk], depicted 

as a function of k. (b) w5[k]. (c) w5[k]. (d) w10[k]. 
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Example 2.6: MA systems 

              3

0

1 1
4

4 4k
y n x n k x n n h n u n u n


                 

Determine the output of the system when the input is defined as 

     10x n u n u n                               

   

     

   

     

 

0

3

9

3

0,  0,  for all 0

1 4 ,0
0 3,  1 4 1 4

0 ,  otherwise

1 4, 3
3 9,  1 4 1

0 ,  otherwise

1 4, 3 9
9 12,  1 4 13 4

0 ,  otherwise

12 ,  0,  for 

n

n

n k

n

n k n

n k n

n

n w k k y n

k n
n w k y n n

n k n
n w k y n

n k
n w k y n n

n w k



 

 

   

 
      



  
     



  
      



 







 all 0k y n 

      ■ 

 

Figure 2.4 Evaluation of the convolution sum for Example 2.6. (a) h[n]. (b) x[n]. (c) x[k] and 

h[nk], depicted as a function of k. (d) wn[k] for 0  n  3. (e) wn[k] for 3 < n  9. (f) wn[k] for 

9 < n  12. (g) y[n]. 
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Example 2.7: 

  1 ,  0 4

0,  otherwise

n
x n

 
 


 and   ,  0 6

,  otherwise0

n n
h n

  
 


                

  ,  6

,  otherwise0

n k n k n
h n k

    
   


                                

Interval 1: n < 0 

       0 0nw k x k h n k y n                                 

Interval 2: 0 4n   

   
1

0

,0 1

,  otherwise 10

n k n
n n k

n k

k n
w k y n

 


 




  
    

             

Interval 3: 4 < n  6 

   
4 1

4

0

,0 4

,  otherwise 10

n k n n
n k

n k

k
w k y n

  


  




  
    

          

Interval 4: 6 < n  10 

   
4 7

4

6

, 6 4

,  otherwise 10

n k n
n k

n k n

n k
w k y n

  


 


 

   
    

        

Interval 5: 10 < n,    0 0nw k y n                    ■ 

 

4. Basic properties of convolution 

(1) Commutative property 

       x n h n h n x n              (2.7) 

               
k r

x n h n x k h n k x n r h r h n x n
 

 
            (2.8) 

(2) Associative property 

             1 2 1 2x n h n h n x n h n h n             (2.9) 
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Interpretation of the associative property 

 x n  y n

 x n  y n

 x n  y n

 x n  y n

(a)

(b)

(c)

(d)

1[ ]h n 2[ ]h n

1 2[ ]  [ ]* [ ]h n h n h n

2 1[ ]  [ ]* [ ]h n h n h n

2[ ]h n 1[ ]h n

 

Figure 2.5 The associative property of convolution and the implication of this and the 

commutative property for the series interconnection of LTI systems. 

 

(3) Distributive property 

              1 2 1 2x n h n h n x n h n x n h n                  (2.10) 

 x n  y n

 x n  y n

1[ ]h n

2[ ]h n

+

1 2[ ]  [ ] [ ]h n h n h n 

 

Figure 2.6 Interpretation of the distributive property of convolution for a parallel 

interconnection of LTI systems. 

 

Note: 

 The convolution-sum formula implies that the unit impulse response completely 

characterizes the behavior of an LTI system. 

 The unit impulse response of a nonlinear system does not completely 

characterize the behavior of the system. 
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Example 2.8: 

  1 ,  0,1

0, otherwise

n
h n


 


                            

(a) LTI systems: 

         
       0 1 1

k k
y n x k h n k h k x n k

h x n h x n

 

 
   

  

                   

There is exactly one LTI system with h[n] as its impulse response. 

(b) Nonlinear systems: 

      
      

2
1

with the same impulse response
max , 1

y n x n x n

y n x n x n

   


  
             

Let    x n n , then    y n h n . 

      
      
      
      

1 max 1 , 2 0

0 max 0 , 1 1

1 max 1 , 0 1

2 max 2 , 1 0

y x x

y x x

y x x

y x x

    

  

 

 

                         

      3 max 3 , 2 0y x x 


                            

There would be many nonlinear systems with the same response to the unit 

impulse input. 

(c) It is not true in general that the order in which nonlinear systems are cascaded 

can be changed without changing the overall response. 

Example 2.9: 

 2h n

 x n    24y n x n

 x n    22y n x n

multiply by 2 1[ ]h n 2[ ]h n

square
2[ ]h n 1[ ]h n

 1h n

    ■ 
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2-2 Continuous-Time LTI Systems 

1. The representation of continuous-time signals in terms of impulses 

Staircase approximation: 

   
1 ,  0

,  1
0 ,  otherwise

t
t t  

   
  


 (area  1)    (2.11) 

     ˆ
k

x t x k t k


              (2.12) 

       

   
0 0

ˆlim lim
k

x t x t x k t k

x t d



   


 





     

 




   (2.13) 

 x(t) equals the limit as   0 of the area under    x t     

   0t t   
            (2.14) 

              x t d x t t d x t t d x t         
  

  
         

(        x t x t t       )        

Example 2.10: 

       
0

u t u t d t d      
 


                      ■ 

2. The convolution-integral representation of continuous-time LTI systems 

From (2.13), the output y(t) of an LTI system corresponding to the input x(t) can be 

expressed as 

      
      

0

0

lim

lim  linear property

k

k

y t H x k t k

x k H t k











    

    


 

  (2-15) 

where   H t k    is defined as the response of the LTI system to the input 

 t k   . As 0,      H t k H t k       . Thus we have 

      
0

lim
k

y t x k H t k


      k  

d 

    (2-16)

      y t x H t d   



                           (2-17) 
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Let     H t h t   be the impulse response of the LTI system. Then  

      ( time-invariance property)H t h t            (2-18) 

       ty t x h t d w d    
 

 
           (2-19) 

where      tw x h t     is called the intermediate signal. This result is referred 

to as the convolution integral or convolution of x(t) and h(t). The convolution 

operation will be represented symbolically as 

     y t x t h t                           (2-20) 

 

Figure 2.7 (a) Impulse response of an LTI system H. (b) The output of an LTI system to a 

time-shifted and amplitude-scaled impulse is a time-shifted and amplitude-scaled impulse 

response. 

 

3. Properties of the continuous-time convolution 

(1) Commutativity 

       x t h t h t x t          (2-21) 

The roles of input signal and impulse response are interchangeable. 

(2) Associativity 

           1 2 1 2x t h t h t x t h t h t                  (2-22) 

A cascade combination of LTI systems can be condensed into a single system 

whose impulse response is the convolution of the individual impulse responses. 
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(3) Distributivity 

             1 2 1 2x t h t h t x t h t x t h t                      (2-23) 

A parallel combination of LTI systems is equivalent to a single system whose 

impulse response is the sum of the individual impulse response in the parallel 

configuration. 

Note: 

 The overall impulse response of a cascade of two nonlinear systems (or even 

linear but time-varying system) does depend upon the order in which the 

systems are cascaded. 

 A nonlinear continuous-time system is not completely described by its unit 

impulse response. 

Example 2.11: 

Let    atx t e u t  and    h t u t , where a > 0. 

            ,  0

,  otherwise0

a

t

te
y t x h t d w x h t

 
     






 
      


  

For t > 0,    
0

1
1

t a aty t e d e
a

      

For t < 0,   0y t   

     1
1 aty t e u t

a
                                             ■ 



 x 


 h 

 h t 



 

Figure 2.8 Evaluation of the convolution integral for Example 2.11. 
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Example 2.12: 

         
1 ,  0

0,  otherwise

t T
x t

 
 


 and  
,  0 2

0 ,  otherwise

t t T
h t

 
 


 

 

 

 

         

   

   

 

2 2 2

0

2

0

2 2

2

0,  0

0 ,  0

1 1

2 2
2 ,  0

1

2
2 3 ,  2

1 3

2 2
3 , 0

t

t

T

T

t T

t y t

t T t

w x h t t y t t d t t t

T t T T

y t t d Tt T

T t T t T T

y t t d t Tt T

T t y t



     



 



 


 

   

         

   

   

    

     

 







  ■ 

 h t 







 h t 

 h t 



 y t



 x 

 h 

 h 







 h t 



 h t 

T T t 2T

2     T t T 

T 2T -  2t T T 2T t 3T

3     2T t T 

2T 3TT-T-2T

 3t T
  0t 

 -  2t T t

  0t 

 0T t 

t

t

T
 

Figure 2.9 Evaluation of the convolution integral for Example 2.12. 
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Example 2.13:  

                1 3  and 2x t u t u t h t u t u t        

Evaluate the convolution integral for a system with x(t) and h(t). 

   

   

   

   

1,  0 0

1 ,  1
1 3,  1

0, otherwise

1,  2 3
3 5,  5

0 , otherwise

5 ,  0 0

t

t

t

t

t w y t

t
t w y t t

t
t w y t t

t w y t











   

 
     


  

     


   

                ■ 

 

Figure 2.10 The input signal x(t) and the impulse response h(t) for Example 2.13. 

 

 

Figure 2.11 Evaluation of the convolution integral for Example 2.13. 
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Example 2.14: An RC circuit’s output 

Assume RC = 1 sec.    th t e u t  and      2x t u t u t   . 

    

Figure 2.12 An RC circuit with the voltage source x(t) as input and the voltage measured 

across the capacitor, y(t), as output. 

 

     
   

 
 

   

 
 

     

0

2 2

0

0,  0 0

,  0
0 2,  1

,  otherwise0

,  0 2
2 ,  1

,  otherwise0

t

t

t
t t t

t

t
t t

t

h t e u t

t w y t

te
t w y t e d e

e
t w y t e d e e









 




 


 

 

 
  

 
  

  

   

        


       






        ■ 

 

Figure 2.13 Evaluation of the convolution integral for Example 2.14. 

 

Example 2.15: Radar range measurement: propagation model 

    0,  0sin

,  otherwise0
c t Tt

x t
  

 


 and    h t a t    

where a represents the attenuation factor and   the round-trip time delay. 

 tw 

 tw 

 h t 







 te  
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 even symmetryh a h a a a

h t a t

r t x a t d ax t

             

   

     




           

   

    



■ 

 

Figure 2.14 Radar range measurement. (a) Transmitted RF pulse. (b) The received echo is an 

attenuated and delayed version of the transmitted pulse. 

 

Example 2.16: Radar range measurement: the matched filter 

 

     

         
   

       

       

  

0

0

0 0

0 0 0

0

,  0sin

,  otherwise0

,  0 0

,

sin sin ,  

,  otherwise0

sin sin 

cos cos 2
2

c
m

t m

t

c c
t

t T

c c

c c

T tt
h t x t

w r h t r x t

t T t T w y t

t T T T t

a t t T
w

y t a t d

a
t





    

  

   

      


     

   



  
   


   

       

       

      


  

  


  

      

   

     

     

0

0

0

0

0

6
0

cos sin 2
2 4

cos
2

sin 2 sin
4

cos  10 rad/s
2

t T

t T

c c
c

c

c c
c

c c

t d

a a
t t T t

a
t t T

a
t T t

a
t t T





 

     


  

   


   





   

      

   

      

    





 

 



EE3610 Signals and Systems                                                           2016-Fall 

 2-16

       

       

   

   

0

0

0

0

0

,

sin sin ,  

,  otherwise0

sin sin

cos
2

,  0 0

c c
t

T

c ct

c

t

t T

a t t T
w

y t a t d

a
t T t

T t w y t



 

      


     

  

 



  

      


  


   

    

                ■ 

 

 

Figure 2.15 (a) The impulse response of the matched filter. (b) The received signal  r   

superimposed on the reflected and time-shifted matched filter impulse response  mh t  , 

depicted as function of  . (c) The matched filter output  y t . 

  

 r 





 mh t 

  

 

Chin-Liang
註解
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2-3 Properties of Linear Time-Invariant Systems 

1. LTI systems with or without memory 

(1) Discrete-time memoryless systems: y[n] depends only on x[n]. 

 h[n] = 0 for n  0           (2-24) 

 h[n] = cδ[n], c = h[0]           (2-25) 

 y[n] = cx[n]                             (2-26) 

If a discrete-time LTI system has an impulse response h[n] which is not 

identically zero for n  0, then the system has memory. 

Example 2.17: y[n] = x[n] + x[n1] 

  1 ,  0,1

0,  otherwise

n
h n


 


               ■ 

 

(2) Continuous-time memoryless systems: 

 
       

0 for 0h t t

y t cx t h t c t

  


  
      (2-27) 

  0h t   for some nonzero value of t  a “memory” system. 

If c = 1, then the convolution sum and convolution integral formulas of 

memoryless LTI systems imply that 

     
     

x n x n n

x t x t t





 

 
          (2-28) 

2. Invertibility of LTI systems 

 x t  x t( )h t ( )invh t
 

Figure 2.16 Concept of an inverse system for continuous-time LTI systems. 

     
     

inv

inv

h t h t t

h n h n n





  


 
     (2-29) 

The process of recovering  x t  from    h t x t  is termed deconvolution, since it 

corresponds to recovering or undoing the convolution operation. 
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Example 2.18: 

   
   
       

0

0

0 0 0delay by 

y t x t t

h t t t

x t t x t t t t





 

  


   

 

   
       
       

   

     

0

0 0 0

0 0

0 0

0

advance by 

inv

inv

h t t t

x t t x t t t t

h t h t t t t t

t t t d

t t d t





 

    

    









  


   
    

   

  




 

■ 

Example 2.19: Multipath communication channels: compensation by means of an 

inverse system 

              
     
     

     1

1

y n x n ax n

h n n a n 

  

   
  

Find a causal and stable inverse system that recovers  x n  from  y n .  

     
         
   
     
       

     
     

 

2 3

1

For 0, 0 causal

For 0, 0 1 1 0 1

For 0, 1 0 1

1 ,  2 ,  3 ,

inv

inv inv inv

k

inv

inv inv inv

inv inv inv inv

inv inv inv

ninv

kinv

k k

h n h n n

h k h n k h n ah n n

n h n

n h ah h

n h n ah n h n ah n

h a h a h a

h n a u n

h k a











 

     

 

     

       

     

  











 when 1a



  

 

■ 

3. Causality for LTI systems 

The output of a causal system depends only on the present and past values of the 

input. 

           
         

0

n

k k

k k

y n x k h n k y n x k h n k

h k x n k y n h k x n k



 

 

 

    

    

 
 

           (2-30) 
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0

t
y t x h t d y t x h t d

h x t d y t h x t d

     

     



 

 



    

    

 
 

           (2-31) 

 
 

0 for 0

0 for 0

h n n

h t t

   
 

         (2-32) 

Example 2.20: 

               
   
     

causal
1

h n u n

h n n n 

 
   

 

   0h t t t   is causal for 0 0t   and noncausal for 0 0t  .        ■ 

4. Stability for LTI systems 

BIBO stability: bounded input  bounded output 

(1) The impulse response h[n] is absolutely summable, i.e.,  
k

h k



  . 

 The discrete-time system is BIBO stable. 

(a)  
k

h k



     BIBO stable 

Consider   xx n M  for all n 

     

     
      for all 

k

k

x k

y n h k x n k

h k x n k a b a b

M h k n













 

    







     (2-33) 

Thus, if  
k

h k



  , then the system is BIBO stable. 

(b) BIBO stable     
k

h k



   

  
k

h k



   not BIBO stable (i.e., there exists a bounded 

input that can generate an unbounded output.) 

The system output at index 0n n  for the input x[n] is 

     0 0k
y n h k x n k




                  (2-34) 
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Consider a bounded input of the form  

  1,  for all x n B n       (2-35) 

and let     0 1signx n k h k B  , then 

           0 1  sign
k

y n B h k h k h k h k



      (2-36) 

     
k

h k



     0y n   

Therefore, “h[n]  is absolutely summable” is a sufficient and necessary 

condition to guarantee the BIBO stability of a discrete-time LTI system. 

(2) The impulse response h(t) is absolutely integrable, i.e.,  h d 



  . 

 The continuous-time system is BIBO stable. 

(a)  h d 



     BIBO stable 

Consider   xx t M  for all t 

     

   

 x

y t h x t d

h x t d

M h d

  

  

 













 

 








         (2-37) 

Thus, if  h d 



  , then the system is BIBO stable. 

(b) BIBO stable     h d 



   

  h d 



   not BIBO stable (i.e., there exists a bounded 

input that can generate an unbounded output.) 

The system output at time 0t t  for the input x(t) is 

     0 0y t h x t d  



       (2-38) 

Consider a bounded input of the form 

  2 ,  for all x t B t       (2-39) 
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and let     0 2signx t h B   , then 

           0 2  signy t B h d h h h    



      (2-40) 

     h d 



     0y t   

The system is BIBO stable if and only if the impulse response is 

absolutely integrable given as 

 h d 



        (2-41) 

Example 2.21:    0h n n n   

   
           

   

0

0

1  stable

accumulator

 unstable

n n

n

k k

k k

h n n n

h n u n y n x k h n k x k

u n u n

 

 



 

 

 

   

     

  

 
 

 
      ■ 

 

Example 2.22: Properties of the first-order recursive system 

                    1 ,  1y n y n x n      

The impulse response of the system is    nh n u n . 

 
 

 

0 for 0  The system is causal.

0 for 0  The system is with memory

The system is not BIBO stable.
k

k

k k k

h n n

h n n

h k    

  

   
   

      

  ■ 

    

5. The unit step response of an LTI system 

 
 

u t

u n

 
 

s t

s n

LTI System

( ),  [ ]h t h n
 

Figure 2.17 The step response of an LTI system H. 
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       n

k
s n u n h n h k


             (2-42) 

     1h n s n s n                  (2-43) 

       
t

s t u t h t h d 


              (2-44) 

     d
h t s t s t

dt
              (2-45) 

In both continuous-time and discrete-time cases, the unit step response also 

completely characterizes the behavior of an LTI system. 

 

Example 2.23: An RC circuit 

From chapter 1, the impulse response of an RC circuit is    1 t RCh t e u t
RC

 . 

Accordingly, the corresponding step response can be determined as follows: 

    

     
0

1
,  01
,  0

0

,  01

,  00

t RC
t RC

t RC

te u d
s t e u d RC

tRC

te

t


  

 








    
 

  


             ■ 

 

 

Figure 2.18 The step response of an RC circuit with RC = 1. 

 

 

 

 

  




