EE3610 Signals and Systems 2016-Fall
Chapter 2 Linear Time-Invariant Systems

2-1 Discrete-Time Linear Time-Invariant (LTI) Systems
1. The representation of discrete-time signals in terms of impulses

x[n]5[n] :x[0]5[n] = x[n]é'[n—k] :x[k]5[n—k] 2.1

generalized

where x[k] represents a specific value of the signal x[#n] at time k. Therefore, x[n] can

be expressed as the following weighted sum of time-shifted impulses:
x[n] :z:;oox[k]é‘[n—k] (2.2)
Example 2.1:

x[-2)5[n + 2]

]:xl-!]-
o0 OO 0—0—0— N
0

x[-1150n + 1]

o—n
1 0
+x[-1]

x[014[n]
+ x[0]

——O—0—0 — O O— NI
0

x[118n - 1]
+ x[1]4

OOOOOTOOOON
0

x[2]18[n - 2]

x[2] < T
—o—0 o—0—0 o—n
0

x[n]

Ll

Figure 2.1 A graphical example illustrating the representation of a signal x[n] as a weighted

sum of time-shifted impulses.

o0

Example 2.2: u[n]:z 5[n—k] ]

k=0
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2. The convolution-sum representation of discrete-time LTI systems

Let h[n] =H {5 [n]} be the impulse response of a discrete-time LTI system. Then
hn—-kl=H {6 [n—k]} is the response of the system to the shifted unit sample

o [n - k] . According to the linearity properties of LTI systems, we have

y[n)=H {x[n]} =B {¥_ x[k]5[n-k]}
=>"  H{x[k]5[n—k]} (2.3)
=2 [k] H{s[n—k]}

With the time-invariance property, (2.3) becomes

y[n] :zf:_mx[k]-h[n—k] (2.4)

This result is referred to as the convolution sum or superposition sum and will be

represented symbolically as
y[n]:x[n]*h[n] (2.5)
Interpretation of the convolution of two sequences:

.

k==l y[-1]6[n+1] x-1lhnsl] b=

1
-1 -1 P2
5 S I — hin] — ¥ - —O————G—0— N
l 1 2 3 4 L R
- LTI -1
k=0 x[0]&[n] x[0] hln ] k=0
Tl.-’Z 1.-’2‘ ? 2
o o—n —= h[n] — '3 foo—0—n
-1 1 2 3 4 1241 34 5 6
14 LTI
k=1 x[1]8[n-1] x[1] h[n—-1] k=1
I 1
i SRR
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I 1 2 3 4 1 2 0 4 5 6
1 LTI -1
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! 1 3 4 ol L Jf 1 | R
_I + _1,
Figure 2.2 Illustration of the convolution sum of two sequences.
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Example 2.3:
x[n] = a”u[n]; h[n] = u[n]
yin]=x[n]*hln] =3, x[k]h[n—F]

k
x[k]h[n—k]:{a O k2 0k 20)

0 , otherwise

n oy 1l

(1) Forn >0, y[n]: 0@ = -
(2) Forn <0, y[n]zO.
n+l
= y[n]=2%u[n] .

Example 2.4: Multipath communication channels
yln)=x{n]+ S xfn-1]
x[n]=8[n]= h[n]= 5[n]+%5[n—1]
Determine the output of this system in response to the input
x[n]=26[n]+45[n—1]-26[n-2]
= y[n]=2h[n]+4h[n—1]-2h[n—-2]=26[n]+556[n—-1]-5[n-3] n
3. When the sequences are of long duration, the convolution-sum procedure could be

cumbersome. So we need to use a systematic approach to for such computation.
Rewrite (2.4) as

yinl =2 X[kl =k] =2, w, (K] (2:6)

where w, [k]=x[k]h[n—k] is called the intermediate signal. In this equation, & is
an independent variable and h[n—k|=h[-(k—n)] is a reflected, time-shifted

version of h[k]:

n<0, h[n—k]=time shift h[—k] to the left.
n>0, h[n—k]=time shift h[-k] to the right.
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Example 2.5: Convolution-sum evaluation by using an intermediate signal
h[n]=(3/4)" u[n] and x[n] = u[n]

Using the intermediate signal w, [k]=x[k]h[n—k], we can determine the output of

the system at time n = -5, 5, and 10 as follows:
h[n—k]= (3/4)"_k uln—k]

n=-5 wy=x[k|h[-5-k]=u[k](3/4) " u[-5-k]=0

y[—S] =0

(3/4)5"‘ ,0<k<5
0 , otherwise

Ly[5]1=30 (34 = % =3.288

n=>5, w; :x[k]h[S—k]:{

(3/4)"",0<k<10

n=10, wy, :x[k]h[l()—k]:{ 0 otherwise

Ly[10]=X0 (3/4)" = II(_;?{/?M =3.831 "

x[k]

2 0 2 4 6

hln - k] w_s[k]

( l )n -k 1 j

4 \ % L

793—3—11 6-0-6-0-0-0— k —0-0-0-0-0-0-0-0-0-0—0—O-0-0-0-0-0-O0——— k
0 n

4 2 0 2 4

(a) (b)
e[k 3\5-k LTk
wslk] (z) wiolk] syiok
| Lenittl]]
0 2 4 0 2 4 6 8 10
(c) (d)

Figure 2.3 Evaluation of the convolution sum for Example 2.5. (a) x[k] and A[n—%], depicted
as a function of k. (b) w-s[k]. (c) ws[k]. (d) wio[k].
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Example 2.6: MA systems
1 1
y[nl= X x[n=k]= x[n]=6[n]= h[n] = (uln]-uln-4])
Determine the output of the system when the input is defined as
x[n] :u[n]—u[n—IO]
n<0, wn[k]=0, forallk:>y[n]=0
= y[n]=> Y4=(n+1)/4

1/4,n-3<k<n

0 , otherwise

1/4 ,0<k<n

0<n<3,w, [k]:{ 0 , otherwise

3<n<9, wn[k]z{ =>y[”]=z,f=n,31/4=1 ]

1/4,n-3<k<9
0 , otherwise

ynl= 2, A= (13-n)/4

9<n<l2, wn[k]:{

12<n, wn[k]:O, forallk:>y[n]:0

h[n] x[n]

0 2 4 6 0 2 4 6 8
(a) (b)
x[k]
1
. ¢ i k wlk]
h[n - k]
1/4
w—o—o—o—?—?—ti—o—o—o—% k 1/4 I ?—o—o—o—o-o—o— k
n-3 n 0 n 4
(c) (d)
wylk] w,lk]
— L o—o—Y—?—Tio—o— k —ol—/c‘}—LM—c o—?—?—to—o— k
n-3 n 2 4 n-39
(e) ()

y[n]

Al

0 2 4 6 8 10 12
(2)

Figure 2.4 Evaluation of the convolution sum for Example 2.6. (a) A[n]. (b) x[n]. (c) x[k] and
h[n—k], depicted as a function of k. (d) wa[k] for 0 < n < 3. (e) wa[k] for 3 <n < 9. (f) wu[k] for
9<n<12.(g)y[n].
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Example 2.7.

1,0<n<4 a",0<n<6
x[n]= . and h[n]= _
0, otherwise 0 , otherwise

n—k _
:h[n—k]:{a ,n—6<k<n

0 , otherwise

Interval 1: n <0

w [k] :x[k]h[n—k] =0=> y[n] =0

n

Interval 2: 0<n<4

a"* ,0<k<n P
W"[k]_{ 0 ,otherwise:y[n]_z":‘)a 1=

Interval 3:4<n<6

B a"* ,0<k<4 L b at — g™
4] _{ 0 , otherwise [7]= zk:()“ -«
Interval 4: 6 <n <10
B a"Fn—-6<k<4 RNl n_k_a”’4—a7
v l4] _{ 0 , otherwise [n]_z":"‘é  1-a
Interval 5: 10 <n, w,[k]=0= y[n]=0 =
4. Basic properties of convolution
(1) Commutative property
x[n]*h[n] = h[n]*x[n] (2.7)

x[n] *h [n] = z:ﬂox[k] h [n — k] = z,im x[n - r] h [r] =h [n] * x[n] (2.8)

(2) Associative property
x[n]*(fq [n]*h2 [n]) =(x[n]=!<h1 [n])*h2 [n] (2.9
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Interpretation of the associative property

x[n] — R[n] > hln] —» y[n]

x[n] ——» h[n] = h[n]*h,[n] —» y[n]

x[n] ——» h[n] = hy[n]*h[n] — y[n]

x[n] ——» hyn] > h[n] —» y[n]

(d)

Figure 2.5 The associative property of convolution and the implication of this and the

commutative property for the series interconnection of LTI systems.

(3) Distributive property

x[n] >1<(h1 [n]+h, [n]) = x[n]* b [n]+x[n]*h,[n] (2.10)
h[n]
x[n] v[n]
ity
(a)

x[n] ——h[n] = W[n]+h[n]— y[n]

(®)

Figure 2.6 Interpretation of the distributive property of convolution for a parallel

interconnection of LTI systems.

Note:

@ The convolution-sum formula implies that the unit impulse response completely

characterizes the behavior of an LTI system.

@ The unit impulse response of a nonlinear system does not completely

characterize the behavior of the system.
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Example 2.8:

h[n]:{l , n=0,.1

0, otherwise
(a) LTI systems:
1=2x [k aln—k]= 2 h[k]x[n—k]
=h[0]x [n]+h[1] [n-1]
There is exactly one LTI system with A[#n] as its impulse response.

(b) Nonlinear systems:

y[n] = (x[n] + x[n - 1])2
y[n] = max(x[n],x[n - 1])

with the same impulse response

Let x[n]=8[n],then y[n]=h[n].

y[—l] = max(x[—l],x[—Z]) =0
(0] = max (<[o], [-1]) =1
y[1] max(x )
y[2]= max (x[2].x[1]) = 0
max(x[3 x[2)
There would be many nonlinear systems with the same response to the unit
impulse input.

(c) It is not true in general that the order in which nonlinear systems are cascaded

can be changed without changing the overall response.

Example 2.9:
by [n]

— multiply by 2 —» x[n] —» h[n] > /,[n] —»y[n]=4x2[n]
hy [n]

— » square | x[n] — hy[n] » h[n] — y[n]=2x*[n]
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2-2 Continuous-Time LTI Systems

1. The representation of continuous-time signals in terms of impulses

Staircase approximation:

/AL 0<t<A ~ B
S, (t)—{ 0 . otherwise’ A5, (1)=1 (area=1) (2.11)
2(6)=2"  x(kA)S,(1—kA)A (2.12)
x(t)=lim&(r)=limY " x(kA)S,(1—kA)
Azo A—0 = (213)
= _mx(r)é’(t—r)df
@ x() equals the limit as A — 0 of the area under x(7)6, (1 —7)
S, (t—-7)—>6(t-7) (2.14)
Q LO t r dz' I_Zx(t)&(t—r)dr:x(t).[:§(t—r)dz'=x(t)
('.'x(r)&(t—r)zx(t)é(t—r))
Example 2.10:
u(t):I:u(r)5(t—r)dr:I:5(Z—r)d2' [

2. The convolution-integral representation of continuous-time LTI systems

From (2.13), the output y(z) of an LTI system corresponding to the input x(¢) can be

expressed as
)= kL%H{Z : 4)a|

_£1B%Z { ( kA)} (.- linear property)

(2-15)

where H {5A (t—kA)} is defined as the response of the LTI system to the input
S,(t—kA).As A0, H{5,(t—kA)} — H{5(t-kA)}. Thus we have

A—dr
y(6)=tim> " x(kA)H{S(i—kA)jA  KADT (2-16)
=j:x(r)H{5(t—r)}dr (2-17)
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Let H {5 (t)} =h(t) be the impulse response of the LTI system. Then

H {5 (t - T)} =h (t - Z') (.- time-invariance property) (2-18)

0

= y(0)=[" x(e)h(t-r)dr =] w,(r)dr (2-19)

—00

where w,(7)=x(7)h(t—7) is called the intermediate signal. This result is referred
to as the convolution integral or convolution of x(f) and #4(f). The convolution

operation will be represented symbolically as

y(t)=x(t)*h(r) (2-20)

h(r)

/-\\J" '
0 r
(a)

1

x(0)s (t=1) x(D) h(t =T)

x@)
—> hit) —> /\
t LTI O\ t
) T Ny

0o ° (
(b)

Figure 2.7 (a) Impulse response of an LTI system H. (b) The output of an LTI system to a
time-shifted and amplitude-scaled impulse is a time-shifted and amplitude-scaled impulse

response.

3. Properties of the continuous-time convolution

(1) Commutativity
x(t)xh(t)="h(r)*x(r) (2-21)
The roles of input signal and impulse response are interchangeable.
(2) Associativity
x(e) [ (e)h (6) J=[x () 2 (e) ] (1) (2-22)

A cascade combination of LTI systems can be condensed into a single system

whose impulse response is the convolution of the individual impulse responses.
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(3) Distributivity
x() [ (0)+hy (¢) | = [x(e) % (£) ]+ [ x(£) % hy () ] (2-23)

A parallel combination of LTI systems is equivalent to a single system whose
impulse response is the sum of the individual impulse response in the parallel

configuration.

Note:

@ The overall impulse response of a cascade of two nonlinear systems (or even
linear but time-varying system) does depend upon the order in which the
systems are cascaded.

@ A nonlinear continuous-time system is not completely described by its unit

impulse response.

Example 2.11:

Let x(t)=e “u(r) and h(t)=u(r), where a> 0.

. e ,0<r<t
y(t)—I_wx(z')h(t—z')dr:wt(r)—x(r)h(t—r)—{ 0 . otherwise
t_ar 1 —at
For >0, y(t)=JOe dr=;(1—e )
Fort<0, y(t)=0
1 —at
y() = (1= Jule) .
x(7)
\
0 » T
A
h(-7)
0 » T
h(-t+1)a
0 t T
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Example 2.12:

t, 0<t<2T

0, otherwise

x(1)=

{1,0<t<T

0, otherwise

and h(t):{

1<0,y(¢)=0
O0<t<T,0<7r<t

w(7)=x(2)h(t—7) =t~ = p(t)= [ (t~)dr =7’ —%ﬁ :%tz
T<t<2T, 0<z<T

y(0)=[ (e-7)ar :n_%rz

2T <t<3T,t-2T <t<T
_(r 1, 3.2
y(t)—J.t_ZT(t—r)dr——Et +Tt+ET

3T <1, y(t)=0

Ax(7) h(-7+1)

2T >t > T

> T

0 T
hkw /
0 T 2T

(-7)
( t =0

(-z+1)

h
T
h

\/
N

2T T |
h(—r+t)
It<0
» T
t - 2T t‘ | | -
0| T 2T 3T
h(—r+t)
T>t >0
| > 7
o] t'1

Figure 2.9 Evaluation of the convolution integral for Example 2.12.
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Example 2.13:

x(t) :u(t—l)—u(t—3) and h(t) =u(t)—u(t—2)
Evaluate the convolution integral for a system with x(¢) and A(?)

t<1, wt(f):O:y(t)=0
1,1<z<t
=t-1
{O,otherwise:y(t) !

1<t<3, w/(7r)=

3<t<5, w,(r)—{l’ t_2<r<3:y(t):5—t

0 , otherwise
5<t, w[(f)zozy(t)=0

h(t)

1 «‘» 1
f t } t
0 1 2

x(7)
1
o 1 2 3 ’
- w(7)
hit -
t-2 t 0‘ 1t
(a) (b)
»ir)
w7
v(7) >
1+ 1
T }
D | -2 3 0 ] 2 3 4 5
(d)

Figure 2.11 Evaluation of the convolution integral for Example 2.13.
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Example 2.14: An RC circuit’s output

Assume RC = 1sec. h(t)=e"u(t) and x(1)=u(t)—u(r-2).

R
A
+
x(t)é @ =<C y®

Figure 2.12 An RC circuit with the voltage source x(¢) as input and the voltage measured

across the capacitor, y(), as output.

h(t-7)= e_('_r)u(t -7)
t<0, w,(r):0:>y(t):0

0<t<2, w,(r)z{e

(=) 0<zr<t
0 , otherwise
e 0<r<2

0 , otherwise

2<1, wt(r):{

x(t)

(c) (d)

Figure 2.13 Evaluation of the convolution integral for Example 2.14.

Example 2.15: Radar range measurement: propagation model

sin(w,t), 0<t<T,
= ‘ d h(t)=ao(t-
x(t) { 0 , otherwise n (t) . (t 'B)

where a represents the attenuation factor and /£ the round-trip time delay.
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h(r)=ad(z—p)= h(-7)=ad(-t-p)= a5(—(r+ﬂ)) =ad(r+ ) (- even symmetry)
h(t—r):aé‘(r—(t—ﬂ)) ]
r(t) = Iix(r)a&(r—(t—ﬂ))dr = ax(t—,B)

x(1) r(t)

NN NN ,
VAVAVAVAV =S

(b)

Figure 2.14 Radar range measurement. (a) Transmitted RF pulse. (b) The received echo is an

attenuated and delayed version of the transmitted pulse.

Example 2.16: Radar range measurement: the matched filter

LTI system , fz,(7) .
S S

(matched filter)

—sin(a,t), —1,<t<0
hm(t):x(_t):{ (§ & , otherwise
wt(z')=r(z')hm(t—z')=r(z‘)x(r—z‘)
t+T,<B=t<f-T, w(r)=0=y(1)=0
Bt+ T, <p+T, = p-T,<t<p,
(T)_{asin(a)c(r—ﬂ))sin(a)c(r—t)), B<r<t+T,

w :
0 , otherwise

N y(1)= J';To asin(a)c(r—ﬂ))sin(a)c(r—t))dr
- %J-;TO [cos(a)c (t-p))- cos(a)c (2c-p —t))]dr

t+1,
a

:%cos(a)c (t—ﬂ))[t +7, —ﬂ] + 1o sin(a)c (22' —,B—l‘))

¢ B

= Leos(o (- )i +1,- ]
o [sin(o (427, ) =sin(. (1)

~ %cos(a)c(t—ﬂ))[t—i-]"o - f] ( , > lOérad/s)
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f<t<f+T,
() = {asin(a)c(r—,B))sin(a)c(z'—t)), t<r< ﬂ.+TO
0 , otherwise
y(t)zjtﬂ+%asin(wc(r ﬂ )sm( T—t )dr .
=

z%cos(a)c(t—ﬁ'))[ﬂ+7}) —1]
B+1,<t, w,(r):0:y(t):0

()

AL
AN

(b)

=

(c)

Figure 2.15 (a) The impulse response of the matched filter. (b) The received signal r(r)
superimposed on the reflected and time-shifted matched filter impulse response /4, (t - T) ,

depicted as function of 7. (c) The matched filter output y().
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2-3 Properties of Linear Time-Invariant Systems

1. LTI systems with or without memory

(1) Discrete-time memoryless systems: y[n] depends only on x[#].

= h[n]=0forn+0 (2-24)
= h[n] = cd[n], c = h[0] (2-25)
= y[n] = cx[n] (2-26)

If a discrete-time LTI system has an impulse response A[n] which is not

identically zero for n # 0, then the system has memory.

Example 2.17: y[n] = x[n] + x[n—1]

h[n]:{l , n=0,1 .

0, otherwise

(2) Continuous-time memoryless systems:

{h(t) =0 forz#0
(2-27)

y(t) = cx(t) = h(t) = c5(t)
h(t)#0 for some nonzero value of 7 = a “memory” system.

If ¢ = 1, then the convolution sum and convolution integral formulas of

memoryless LTI systems imply that

x[n]:x[n]*5[n]

x(1)=x(t)*5(1) (329
2. Invertibility of LTI systems
x(t) —» h(t) - K™ (@t) > x(2)
Figure 2.16 Concept of an inverse system for continuous-time LTI systems.
h(t)*h™ (1)=&
{hﬁ)ﬁhmﬁ)];[f] =

The process of recovering x(¢) from h(z)#*x(¢) is termed deconvolution, since it

corresponds to recovering or undoing the convolution operation.
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Example 2.18:

{hi”v(t):5(t+to)

x(t+1,)=x(t)*5(¢t+1,) (advance by 7,)
h(t)*=h™ (t)=5(t—t,)*5(t+1,)
=Ii§(r—t0)5(t—r+to)dr

=5(t)[" 5(z—1,)dr=5(1)

Example 2.19: Multipath communication channels: compensation by means of an

inverse system

y[n] = x[n]+ax[n—1]
= h[n] = 5[n]+a5[n—l]
Find a causal and stable inverse system that recovers x[n] from y [n] )

h[n] * " [n] = 5[11]
= " h[k]h"™ [n—k]=h"[n]+ah"™ [n—1]=5]n]
Forn<0, h"™ [n] =0 ( causal)
Forn=0, A" [0] +ah™ [—1] =1=h™ [0] =1
Forn >0, h™ [n] +ah™ [n - 1] =0=hr" [n] =—ah™ [n - 1]

= 11 =—a, K" [2]=d?, K" [3]=—d,...
S k™ [n]=(-a) u[n]

Zjﬂo ™ [k]‘ = Zf=7w|a|k < oo when |a| <1

3. Causality for LTI systems
The output of a causal system depends only on the present and past values of the

input.
yinl= 2 x[k]hln—k]= y[n] =20, *[K]A[n—F]
= 2Nk =k]= y[n]= 2 hlk]x[n—k]

(2-30)
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t

h

y(t) x\7

x(r)h

(t—r)dr
h(t)x(t-7)dr

J: ( ) (t—r)a’r:>y(t):L0 231
| h(@)x(t=r)dr= y(t)=]

h

T)x(t—7

0

h[n]=0 forn<0

:{h(t)zo fort <0 (2-32)

Example 2.20.

h[n]:u[n]

h[n] _ 5[’1] ~ 5[n _1]} = causal

h(t)=5(t—1t,) iscausal for £, >0 and noncausal for #, <0. n

4. Stability for LTI systems
BIBO stability: bounded input — bounded output

(1) The impulse response h[n] is absolutely summable, i.e., z::_w‘h[k]‘ <.
< The discrete-time system is BIBO stable.

@ . |h[k] < = BIBO stable
Consider ‘x[n]‘SMx for all n
yln] =X nlk]x{n -]

<X lklln k] (<lacpl<la+p) o @33)
<M.y |n[k] foralln

Thus, if Zf}ao‘h[k]‘ <0, then the system is BIBO stable.
(b) BIBOstable = >" |h[k]<o

= Zrﬂ‘h[k]‘—)oo = not BIBO stable (i.e., there exists a bounded

input that can generate an unbounded output.)

The system output at index n=n, for the input x[n] is
ylm] =20 hlk]x[n, ~ k] (2-34)
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Consider a bounded input of the form
x[n] =18, foralln (2-35)

and let x[n, —k]=sign(hk[k])B,, then

[ne]= B X |nlk] (- sign(h[¥])A[¥] = |a[k]) (2-36)
z:):_w‘h[k]‘aw y[no]—>oo

Therefore, “h[n] 1is absolutely summable” is a sufficient and necessary

condition to guarantee the BIBO stability of a discrete-time LTI system.

(2) The impulse response /(%) is absolutely integrable, i.e., J-_w ‘h(z‘)‘ dr <o,

<> The continuous-time system is BIBO stable.

(a) f:‘h(r)‘dr<oo = BIBO stable
Consider ‘x(t)‘SMx for all ¢
‘y(t)‘: j:h(f)x(t—r)dr

<[ |n(z)|x(t-7)dr (2-37)

< fo;‘h(r) dr

Thus, if I:‘h(r)‘ dt <o, then the system is BIBO stable.
(b) BIBOstable = [ |h(r)|dr <

= ro ‘h(r)‘dr—)oo = not BIBO stable (i.e., there exists a bounded
input that can generate an unbounded output.)

The system output at time ¢ =1, for the input x(¢) is

y(to)z.[:h(r)x(to —r)dr (2-38)
Consider a bounded input of the form

x(t)=+B,, forall 1 (2-39)
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and let x(f,—7)= sign(h(z'))B2 , then

y(to) = Bz'f:‘h(r))dr ( sign(h(f))h(r) = ‘h(z‘)‘) (2-40)
J-:‘h(r)ﬁr -0 y(f)o®

The system is BIBO stable if and only if the impulse response is
absolutely integrable given as

[" |n(z)|dr <oo (2-41)

Example 2.21: h[n]=6[n—n,|

> _w‘h[”]‘ = Z:}Jﬂn - ”o]‘ =1= stable

h[n]=u[n]:>y[n]=2f X k]h[n k] Z:_w :>accumulator [

Z:ﬂ‘”[”]‘ = Zfzo\u[n ‘ =o0 = unstable

Example 2.22: Properties of the first-order recursive system

<1

y[ ] py[n 1] +x
The impulse response of the system is A[n]= p"u[n].

h[n]=0 forn<0= The system is causal.

h [n] # 0 for n > 0= The system is with memory |

‘h k]‘— k_fw‘p ‘— o |p| <o = The system is not BIBO stable.

5. The unit step response of an LTI system

u(r) LTI System s(2)
— >

Figure 2.17 The step response of an LTI system H.
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s[n]=u[n]*h[n]= 3 hlk] (2-42)
] =s[n]-s[n-1] 243)
s(t)=u(t)xh(0)=[ h(r)dz (2-44)
W) =5(0)=5'(0) (2-45)

In both continuous-time and discrete-time cases, the unit step response also

completely characterizes the behavior of an LTI system.

Example 2.23: An RC circuit

1 —t/RC
—e ult).
=o€ ult)

Accordingly, the corresponding step response can be determined as follows:

From chapter 1, the impulse response of an RC circuit is A(¢)=

1 ¢t
b ke B —J- e u(r)dr, 120
S(t)—LoRCe u(r)dr_ RC 70 ; <0

B l_eft/RC’ tZO
- 0 ,t<0

0.9
0.8}
0.7}
0.6
s() 0.5
04
03
0.2
0.1

Figure 2.18 The step response of an RC circuit with RC = 1.
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