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Chapter 1  Fundamentals of Signals and Systems 
 

1-1 Signals  

1. Information in a signal is contained in a pattern of variations of some form. 

Example 1.1: The human vocal mechanism produces speech by creating fluctuations 

in acoustic pressure.                                                   ■ 

 
Figure 1.1 Example of a recording of speech [1]. 

 

Example 1.2: Monochromatic picture: variation in brightness.                  ■ 

 

Figure 1.2 A monochromatic picture [1]. 

 

2. Signals are represented mathematically as functions of one or more independent 

variables that convey information on the nature of a physical phenomenon. 

Example 1.3: Speech signal  acoustic pressure: function of time (one-dimensional). ■ 

Example 1.4: Picture  brightness: function of two spatial variables (two-dimensional). ■ 
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Note: For convenience, we will generally refer to the independent variable as time, 

although it may not in fact represent time in specific applications. 

 

3. Classification of signals 

Five methods of classifying signals: 

(1) Continuous-time and discrete-time signals 

(a) A signal x(t) is said to be a continuous-time signal if it is defined for all 

time t. The amplitude or value varies continuously with time, e.g., speech 

signal. 

(b) A discrete-time signal is defined only at discrete instants of time. Thus, 

the independent variable has discrete values only, which are usually 

uniformly spaced, e.g., stock market index x[n]. 

 

Figure 1.3 An example of a discrete-time signal: the weekly Dow-Jones stock market index 

from January 5, 1929 to January 4, 1930 [1]. 

 

(c) Digital signal: discrete-time and discrete-state signal 

(d) Analog signal: continuous-time and continuous-state signal 

Note: 

 If the signal amplitude is continuous, the signal is called “continuous-state” 

signal; otherwise, it is called “discrete-state” signal. 

 A discrete-time signal is often referred to as a discrete-time sequence. 

 continuous-time signal sampling  discrete-time signal 

 

(2) Even and odd signals 

(a) Even: x(t) = x(t) for all t  symmetric about vertical axis 

(b) Odd: x(t) = x(t) for all t  anti-symmetric about vertical axis 
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Example 1.5: 

 
sin ,

,otherwise
0

t
T t T

x t T

         


 

   sin sin
t t

x t x t
T T

             
   

 odd signal 

■ 

(c) Any signal can be broken into a sum of an odd signal and an even signal 

     e ox t x t x t                     (1.1) 

where  ex t  and  ox t  mean even and odd signals, respectively. 

                             and  e e o ox t x t x t x t                        (1.2a) 

          e o e ox t x t x t x t x t                         (1.2b) 

     1

2ex t x t x t       and      1

2ox t x t x t          (1.2c) 

 

Example 1.6: 

   
     

2

2 2

cos

cos cos

t

t t

x t e t

x t e t e t



   
 

         

     

2 21
cos cos cosh 2 cos

2
sinh 2 cos

t t
e

o

x t e t e t t t

x t t t

      
  

 

■ 

(d) A complex-valued signal x(t) is said to be conjugate symmetric if 

   x t x t                        (1.3) 

Let ( ) ( ) ( )x t a t jb t  . Then *( ) ( ) ( ).x t a t jb t   

     
     

       ,  

even odd

x t a t jb t

a t jb t x t

a t a t b t b t



    


  

      

    (1.4) 
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(3) Periodic signals and aperiodic signals 

(a) Periodic signal: x(t+T) = x(t) for all t, where T is a positive constant. 

0 0 0,  2 ,  3 ,T T T T   

 T=T0 : fundamental period 

 1/T : fundamental frequency, f = 1/T  Hz or cycles/sec 

 2 2f T    : angular frequency (radians/sec) 

Note: x(t) is a constant 

 The fundamental period is undefined. 

 The fundamental frequency is defined to be zero. 

(b) x[n] = x[n+N] for integer n, where N is a positive integer. 

 fundamental period: smallest N (samples) 

 fundamental angular frequency: =2/N (radians or radians/sample) 

(4) Deterministic signals and random signals 

(a) A deterministic signal is a signal about which there is no uncertainty with 

respect to its value at any time. 

(b) A random signal is a signal about which there is uncertainty before it 

occurs. 

(5) Energy signals and power signals 

(a) The instantaneous power dissipated in the resistor R is defined by 

     
   

2 2

2 2 ,  1 ohm

p t v t R i t R

v t i t R

  

  
      (1.5) 

We may express the instantaneous power of the signal as  

   2p t x t          (1.6) 

the total energy of the non-periodic continuous-time signal x(t) as 

   
2 2 2

2
lim

T

TT
E x t dt x t dt



 
        (1.7) 

and its time-averaged, or average, power as 

 

 

2 2

2

2 2

2

1
lim

1
( , for periodic signal)

T

TT

T

T

P x t dt
T

x t dt
T












     (1.8) 

P  means root mean-squared (rms) value of the periodic signal x(t). 
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(b) For a non-periodic discrete-time signal x[n], the total energy is defined by 

 2

n
E x n




         (1.9) 

and its average power is defined by 

 

 

2

1

1 2

0

1
lim

2
1

( , for periodic signals)

N

n NN

N

n

P x n
N

x n
N

 












      (1.10) 

(c) A signal is referred to as an energy signal if and only if the total energy of 

the signal satisfies the condition 

0 E           (1.11) 

A signal is referred to as a power signal if and only if the average power 

of the signal satisfies the condition 

0 P          (1.12) 

(d) An energy signal has zero time-average power and a power signal has 

infinite energy. They are mutually exclusive. 

Note: 

 Periodic signals and random signals are usually viewed as power signals, 

whereas signals that are both deterministic and non-periodic are usually 

viewed as energy signals. 

 Signals that satisfy neither property are referred to as neither energy 

signals nor power signals [3]. 

 

1-2 Basic Operations on Signals 

1. Operations performed on dependent variables 

(1) Amplitude scaling 

   y t cx t           (1.13) 

where c is a scaling factor. 

   y n cx n          (1.14) 

(2) Addition, e.g., mixer 

     1 2y t x t x t         (1.15) 

     1 2y n x n x n         (1.16) 
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(3) Multiplication, e.g., amplitude modulation (AM) radio signal 

     1 2y t x t x t         (1.17) 

     1 2y n x n x n         (1.18) 

(4) Differentiation:  d
x t

dt
, e.g., inductor,    d

v t L i t
dt

 . 

(5) Integration:    
t

y t x d 


  , e.g., capacitor,    1 t
v t i d

C
 


  . 

2. Operations performed on the independent variable 

(1) Time scaling: 

   y t x at         (1.19) 

   
   

1  is a compressed version of .

0 1  is an expanded (stretched) version of .

a y t x t

a y t x t

  


  
     

   ,  0y n x kn k           (1.20) 

k > 1  some values of x[n] are lost. 

(2) Reflection: 

   y t x t             (1.21) 

y(t) represents a reflected version of x(t) about t = 0. An even signal is the same 

as its reflected version. An odd signal is the negative of its reflected version. 

(3) Time shifting: 

   0y t x t t          (1.22) 

   
   

0

0

0  is obtained by shifting  toward the right.

0  is obtained by shifting  toward the left.

t y t x t

t y t x t

  


 
 

   y n x n m              (1.23) 

where the shift m must be a positive or negative integer. 
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3. Precedence rule for time shifting and time scaling 

Let y(t) is derived from another signal x(t) through a combination of time shifting and 

time scaling; that is, 

   y t x at b             (1.24) 

To obtain y(t) from x(t), the time-shifting and time-scaling operations must be 

performed in the correct order: time-shifting  time-scaling 

(1) The time-shifting operation always replaces t by tb. 

(2) The scaling operation always replaces t by at. 

   
     

v t x t b

y t v at x at b

 

  
       (1.25) 

Example 1.7:    2 3y t x t   

Time scaling  time shifting:         3 2 3 2 3y t v t x t x t       

 x t

t

 ( ) 2v t x t

t

1
3

2


1
2

2


  (2 6)y t x t 

1 1/ 2 1/ 2 3 2 1 01

1 1 1

 

Time shifting  time scaling:      2 2 3y t v t x t    

 x t

t

   3v t x t     2y t v t

1

1 123 2 11

1 1

4 00
         ■ 

 

1-3 Basic Continuous-Time Signals 

1. Complex exponential signal 

     atx t Be         (1.26) 

Sinusoidal signal 

   cos  x t A t         (1.27) 
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   d
i t C v t

dt


 v t
C

R





(1) B and a are real  real exponential signal 

growing B 0a 
t

0

( )x t ( )x t

B 0a 
t

0

decaying

(a) (b)  

Figure 1.4 Continuous-time real exponential   atx t Be : (a) a > 0; (b) a < 0 [1]. 

 

Example 1.8: The operation of the capacitor for t  0 

    0
d

RC v t v t
dt

    

  0
t RCv t V e   

where V0 denotes the initial value of the voltage developed across the capacitor. 

■ 

 

(2) B is real and a is pure imaginary  periodic complex exponential 

  0
0,  j tx t Be a j   : periodic            (1.28) 

 00 0 0j t Tj t j t j Te e e e              (1.29) 

0 1j Te     the fundamental period is 0
0

2
T




 . 

Euler’s relation:  

0
0 0cos sinj te t j t             (1.30) 

     0

0 0cos sinj te t j t                 (1.31) 

     0

0 0cos sinj te t j t               (1.32) 

     0 0

0

1
cos

2
j t j tt e e             or     0

0cos Re j tt e        (1.33) 

where Re{} denotes the real part of the complex quantity enclosed inside the 

braces. 

   0
0cos Re ,  j t jA t Be B Ae            (1.34) 
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   d
i t C v t

dt


 v t C




Note: 

 Fundamental period = T0  

 Fundamental frequency = 0 02 T   

 The fundamental frequency of a constant signal is zero. 

 Harmonically related complex exponentials: 

  0 , 0, 1, 2,jk t
k t e k          (1.35) 

k = 0  k  is a constant 

k  0  k  is periodic with fundamental period  02 k   or 

fundamental frequency 0k  .  k t  has a common period of 02  . 

 

   Example 1.9: 

   
2

2
0

d
LC v t v t

dt
    

              0 0cos ,  0v t V t t    

where 0 1 LC   is the natural angular frequency of oscillation of the circuit. 

                                                              ■ 

 

(3) B is complex and a is complex: general complex exponential function 

jB B e   and 0a r j       (1.36) 

   

   

   

0 0

0 0

0 0

cos sin

cos cos 2

r j t j tat j rt

rt rt

rt rt

Be B e e B e e

B e t j B e t

B e t j B e t

  

   

    

   

   

    

  (1.37) 

r = 0  the real and imaginary parts are sinusoidal. 

r > 0  the real and imaginary parts are sinusoidal signals multiplied by a 

growing exponential. 

r < 0  the real and imaginary parts are sinusoidal signals multiplied by a 

decaying exponential. 
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2. The continuous-time unit-step function 

 

 

0, 0

1, 0

0,  undefined

t
u t

t

t


  



              (1.38) 

( )u t

0 t

1

 
Figure 1.5 Continuous-time version of the unit-step function of unit amplitude. 

 

Example 1.10: Rectangular pulse 

 

     

,0 0.5

, 0.50

0.5 0.5

tA
x t

t

x t Au t Au t

 
  
   

 

■ 

Example 1.11: RC circuit 


0

DC voltage

source V

0t 
R

C
0 ( )V u t

 v t


C
R

 

 
 

     0

0

0 0
1 t RC

v
v t V e u t

v V


   
  

 

        ■ 

3. The continuous-time unit impulse function 

(1) The continuous-time version of the unit impulse is defined by the following pair 

of relations: 

   0 for 0 and 1t t t dt 



            (1.39) 

The impulse  t  is also referred to as the Dirac delta function. 
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(2) The impulse and the unit-step function are related to each other in that if we are 

given either one, we can uniquely determine the other. 

     
t

t u t d   


          (1.40) 

   du t
t

dt
   (in a restricted sense)      (1.41) 

u(t) is discontinuous at t = 0.  not differentiable at t = 0 

2

 u t

2

1 

   du t
x t

dt


 

2 2

1

"unity area"

(a) (b)

t t

 

Figure 1.6 (a) Continuous approximation to the unit step; (b) derivative of  u t  [1]. 

 

    
0

limt x t 
        (1.42) 

 t  k t

1

0
(a) (b)

0

k

t t

 

Figure 1.7 (a) Unit impulse; (b) scaled impulse [1]. 

 

“The height of the arrow used to depict the scaled impulse will be chosen to be 

representative of its area.” 

 

Example 1.12: RC circuit (continued) 


0

DC voltage

source V

0t 
R

C
0 ( )V u t

 v t


C
R

 

   

     

0

0

v t V u t

d
i t C v t CV t

dt




  


 

■ 
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(3) Graphical interpretation of  

   
t

u t d  


            (1.43) 

Alternative interpretation: 

   
 

    
0

0

t

t d d
u t d t d t d

   
        



    
            (1.44) 

  



 0 0t u t  

  



 0 1t u t  

Interval of integration

(a)

(b)

Interval of integration

t

t

0

0
 

Figure 1.8 Running integral given in (1.43): (a) t < 0; (b) t > 0. 

 

 t 



 0 0t u t  

 t 



 0 1t u t  

Interval of integration

t 0 (a)

Interval of integration

t(b)
0

 

Figure 1.9 Relationship given in (1.44): (a) t < 0; (b) t > 0. 

(4) Equivalence property: Product of  x t  and  t  

             
       

       

1
0

0 0 0

0  and lim

0

x t x t x t x x t x t t

x t t x t

x t t t x t t t



 

 

  
  

 

  

     (1.45) 
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2

 x t
 x t

t

2
 

Figure 1.10 The product    x t x t  [1]. 

(5) Shifting property:      0 0x t t t dt x t



   

         0 0 0 0x t t t dt t t dt x t x t 
 

 

            (1.46) 

It is assumed that x(t) is continuous at time 0t t . 

 

(6) Time-scaling property: 

   1
at t

a
        (1.47) 

0

1
lim ( ) ( )x at t

a


        (1.48) 

 

1 
 x t

a

 x at

area 1 a

a 
 ax at



0 0

1 

a

0

 

Figure 1.11 Steps involved in proving the time-scaling property of the unit impulse. 

 

4. Ramp function 

The integral of the step function u(t) is a ramp function of unit slope. The ramp 

function is defined as 

   ,  0

0 , 0

t t
r t tu t

t


  

          (1.49) 
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Example 1.13: Parallel circuit 

   

     

   

0

0
0

0 0

0 ,  01 1

, 0

t t

i t I u t

t
v t i d I u d

I t C tC C

I I
tu t r t

C C

   
 




    

 

   

 i t  i t



 0I u t
0

DC current

source I

Switch is open

at 0.t 

C

 v t



 v t



C

Switch is open

at 0.t   ■ 

1-4 Basic Discrete-Time Signals 

1. Discrete-time unit step sequence 

  0, 0

1, 0

n
u n

n


  

             (1.50) 

 u n

n
0

1

 
Figure 1.12 Discrete-time version of step function of unit amplitude. 

 

2. Discrete-time unit impulse (or unit sample) 

 

  0, 0

1, 0

n
n

n



  

          (1.51) 

 n

0

n

1

 

Figure 1.13 Discrete-time form of the unit impulse. 
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       0x n n x n          (1.52) 

     1n u n u n            (1.53) 

   n

m
u n m


             (1.54) 

or    
0k

u n n k


               (1.55) 

 m
  0u n 

 m   1u n 

0n 

m

m

(a)

(b)

0n 

 

Figure 1.14 Running sum of (54): (a) n < 0; (b) n > 0 [1]. 

 

3. Discrete-time ramp function 

   ,  0

0,  0

n n
r n nu n

n


  

             (1.56) 

 r n

1 2 3 4

1
2

3
4

0

n

 
Figure 1.15 Discrete-time version of the ramp function. 

 

4. Discrete-time complex exponential signals 

   ,   may be any complex number.n nx n Br Be r e          (1.57) 

sinusoidal signals 

   cosx n A n            (1.58) 
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(1) B and r are real 

1r    the signal grows exponentially with n. 

1r  1r  

(a)

(b)

 

Figure 1.16   nx n Br : (a) r > 1; (b) r < 1 [1]. 

1r    the signal decays exponentially with n. 

0 1r 
1 0r  

(a)

(b)
 

Figure 1.17   nx n Br : (a) 0 < r < 1; (b) 1 < r < 0 [1]. 

(2)  is pure imaginary 

  0
0 0cos sinj nx n e n j n              (1.59) 

  0 0
0cos

2 2
j n j nj jA A

A n e e e e              (1.60) 

Both 0  and  have units of radians. 
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Example 1.14: sinusoidal sequences:                                ■ 

 
Figure 1.18 Discrete-time sinusoidal signals [1]. 

(3) General complex exponential 

   

0

0 0

,

cos sin

jj

n nn

B B e r r e

Br B r n j B r n



 

 

     
     (1.61) 

 

Figure 1.19  0[ ] cos
n

x n B r n    : (a) |r| > 1 (growing); (b) |r| < 1 (decaying) [1]. 
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(4) Periodicity properties of discrete-time complex exponentials 

Continuous-time 0j te   

(a) The larger the magnitude of 0, the higher the rate of oscillation in the 

signal. 

(b) 0j te   is periodic for any value of 0. 

Discrete-time 0j ne   

(a)  0 0 02 2j n j n j nj ne e e e                    (1.62) 

 The signal with frequency 0  is identical to the signals with 

frequencies 0 2  , 0 4  , and so on. 

 We only need to consider an interval of 2  in which to choose 0 . 

( 00 2    or 0     ). 

 The signal 0j ne   does not have a continually increasing rate of 
oscillation as 0  is increasing in magnitude. 

0  : signal with increasing rates of oscillation 

2  : signal with decreasing rates of oscillation 

 

  Example 1.15: Magnitude of the Fourier transform of a discrete-time signal     ■ 


20



( )jH e 

 

Figure 1.20 The magnitude of ( )jH e   from 0   to 2   radians. 

(b)  0 0 0 0
01 2

2
j n N j n j N m

e e e N m
N




    
             (1.63) 

The signal 0j ne   is periodic with period N only if 0 2  is a rational 

number. (For example, Figs. 18(a) and (b) are periodic, T = 12 and 31; Fig. 

18(c) is not periodic.) 

 If x[n] is periodic with fundamental period N, its fundamental 

frequency is 2 N  (radians/sample). 

 N: the number of samples contained in a single cycle of x[n]. 

 If N and m have no factors in common, the fundamental period of x[n] 

is N. 
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 02

N m

 
  and 

0

2
N m


 


. 

 Constant discrete-time signal: fundamental frequency = 0; 

fundamental period is undefined. 

 

Example 1.16: Periods of discrete-time sinusoidal signals 

A pair of sinusoidal signals with a common angular frequency is 

defined by    1 sin 5x n n  and    2 3 cos 5x n n . Find their 

fundamental period and express the composite sinusoidal signal 

     1 2y n x n x n  . 

5  rad/sample 2 2 5N m m        

For  1x n  and  2x n  to be period, N must be an integer. This can be 

so only for m = 5, 10, 15,…, which results in N = 2, 4, 6,…. 

     

   

   

sin 5 3 cos 5

1 3
1 3 sin 5 cos 5

2 2

2 sin 5 cos cos 5 sin
3 3

2sin 5
3

y n n n

n n

n n

n

 

 

  



 

 
   

 
             

   
 

 

■ 
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(c) Differences between the signals 0j te   and 0j ne   

0j te   0j ne   

Distinct signals for distinct 

values of 0  

Identical signals for exponentials 

at frequencies separated by 2 

Periodic for any choice of 0  
Periodic only if 0 (2 / )m N    

N > 0; m and N are integers. 

Fundamental frequency 0  

Fundamental frequency: 

0( / ) (2 / )m N  ; 

m and N have no factors in 

common. 

Fundamental period 

0 0  : undefined 

0 0  : 02 /   

Fundamental period 

0 0  : undefined 

0 0  : 0(2 / )N m     

 

(d) Harmonically related periodic exponentials 

 2[ ] , 0, 1,jk N n
k n e k          (1.64) 

    2 22[ ] [ ]j k N N n jk N nj n
k N kn e e e n  
            (1.65) 

There are only N distinct periodic exponentials in the set given in the 

above equation. 

(e) A discrete-time signal obtained by taking samples of a continuous-time 

signal 

   00
0 0

j T nj nTx n e e T         (1.66) 

x[n] is periodic only if 0 0( / 2 ) ( 2 )T     is a rational number. 

Similarly, 

   cos 2x t t        (1.67) 

       0

0

cos 2 cos

                    2

x n x nT nT n

T





   

 
       (1.68) 

Example 1.17: 

Fig. 1.18(a): 0 01 12 6 2 1 12 12T N         

Fig. 1.18(b): 0 04 31 8 31 2 4 31 31T N         

Fig. 1.18(c): 0 01 12 1 6 2 1 12T             ■ 

 


